UnXFAIL this test.
[llvm-complete.git] / utils / TableGen / DAGISelEmitter.cpp
blob8502d6197a73fb446429a731f0234cfae9f3914e
1 //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits a DAG instruction selector.
12 //===----------------------------------------------------------------------===//
14 #include "DAGISelEmitter.h"
15 #include "Record.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/MathExtras.h"
19 #include "llvm/Support/Streams.h"
20 #include <algorithm>
21 using namespace llvm;
23 //===----------------------------------------------------------------------===//
24 // DAGISelEmitter Helper methods
27 /// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
28 /// ComplexPattern.
29 static bool NodeIsComplexPattern(TreePatternNode *N) {
30 return (N->isLeaf() &&
31 dynamic_cast<DefInit*>(N->getLeafValue()) &&
32 static_cast<DefInit*>(N->getLeafValue())->getDef()->
33 isSubClassOf("ComplexPattern"));
36 /// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
37 /// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
38 static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
39 CodeGenDAGPatterns &CGP) {
40 if (N->isLeaf() &&
41 dynamic_cast<DefInit*>(N->getLeafValue()) &&
42 static_cast<DefInit*>(N->getLeafValue())->getDef()->
43 isSubClassOf("ComplexPattern")) {
44 return &CGP.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
45 ->getDef());
47 return NULL;
50 /// getPatternSize - Return the 'size' of this pattern. We want to match large
51 /// patterns before small ones. This is used to determine the size of a
52 /// pattern.
53 static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) {
54 assert((MVT::isExtIntegerInVTs(P->getExtTypes()) ||
55 MVT::isExtFloatingPointInVTs(P->getExtTypes()) ||
56 P->getExtTypeNum(0) == MVT::isVoid ||
57 P->getExtTypeNum(0) == MVT::Flag ||
58 P->getExtTypeNum(0) == MVT::iPTR) &&
59 "Not a valid pattern node to size!");
60 unsigned Size = 3; // The node itself.
61 // If the root node is a ConstantSDNode, increases its size.
62 // e.g. (set R32:$dst, 0).
63 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
64 Size += 2;
66 // FIXME: This is a hack to statically increase the priority of patterns
67 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
68 // Later we can allow complexity / cost for each pattern to be (optionally)
69 // specified. To get best possible pattern match we'll need to dynamically
70 // calculate the complexity of all patterns a dag can potentially map to.
71 const ComplexPattern *AM = NodeGetComplexPattern(P, CGP);
72 if (AM)
73 Size += AM->getNumOperands() * 3;
75 // If this node has some predicate function that must match, it adds to the
76 // complexity of this node.
77 if (!P->getPredicateFn().empty())
78 ++Size;
80 // Count children in the count if they are also nodes.
81 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
82 TreePatternNode *Child = P->getChild(i);
83 if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
84 Size += getPatternSize(Child, CGP);
85 else if (Child->isLeaf()) {
86 if (dynamic_cast<IntInit*>(Child->getLeafValue()))
87 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
88 else if (NodeIsComplexPattern(Child))
89 Size += getPatternSize(Child, CGP);
90 else if (!Child->getPredicateFn().empty())
91 ++Size;
95 return Size;
98 /// getResultPatternCost - Compute the number of instructions for this pattern.
99 /// This is a temporary hack. We should really include the instruction
100 /// latencies in this calculation.
101 static unsigned getResultPatternCost(TreePatternNode *P,
102 CodeGenDAGPatterns &CGP) {
103 if (P->isLeaf()) return 0;
105 unsigned Cost = 0;
106 Record *Op = P->getOperator();
107 if (Op->isSubClassOf("Instruction")) {
108 Cost++;
109 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName());
110 if (II.usesCustomDAGSchedInserter)
111 Cost += 10;
113 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
114 Cost += getResultPatternCost(P->getChild(i), CGP);
115 return Cost;
118 /// getResultPatternCodeSize - Compute the code size of instructions for this
119 /// pattern.
120 static unsigned getResultPatternSize(TreePatternNode *P,
121 CodeGenDAGPatterns &CGP) {
122 if (P->isLeaf()) return 0;
124 unsigned Cost = 0;
125 Record *Op = P->getOperator();
126 if (Op->isSubClassOf("Instruction")) {
127 Cost += Op->getValueAsInt("CodeSize");
129 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
130 Cost += getResultPatternSize(P->getChild(i), CGP);
131 return Cost;
134 // PatternSortingPredicate - return true if we prefer to match LHS before RHS.
135 // In particular, we want to match maximal patterns first and lowest cost within
136 // a particular complexity first.
137 struct PatternSortingPredicate {
138 PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {}
139 CodeGenDAGPatterns &CGP;
141 bool operator()(const PatternToMatch *LHS,
142 const PatternToMatch *RHS) {
143 unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP);
144 unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP);
145 LHSSize += LHS->getAddedComplexity();
146 RHSSize += RHS->getAddedComplexity();
147 if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
148 if (LHSSize < RHSSize) return false;
150 // If the patterns have equal complexity, compare generated instruction cost
151 unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
152 unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
153 if (LHSCost < RHSCost) return true;
154 if (LHSCost > RHSCost) return false;
156 return getResultPatternSize(LHS->getDstPattern(), CGP) <
157 getResultPatternSize(RHS->getDstPattern(), CGP);
161 /// getRegisterValueType - Look up and return the first ValueType of specified
162 /// RegisterClass record
163 static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
164 if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
165 return RC->getValueTypeNum(0);
166 return MVT::Other;
170 /// RemoveAllTypes - A quick recursive walk over a pattern which removes all
171 /// type information from it.
172 static void RemoveAllTypes(TreePatternNode *N) {
173 N->removeTypes();
174 if (!N->isLeaf())
175 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
176 RemoveAllTypes(N->getChild(i));
179 /// NodeHasProperty - return true if TreePatternNode has the specified
180 /// property.
181 static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
182 CodeGenDAGPatterns &CGP) {
183 if (N->isLeaf()) {
184 const ComplexPattern *CP = NodeGetComplexPattern(N, CGP);
185 if (CP)
186 return CP->hasProperty(Property);
187 return false;
189 Record *Operator = N->getOperator();
190 if (!Operator->isSubClassOf("SDNode")) return false;
192 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
195 static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
196 CodeGenDAGPatterns &CGP) {
197 if (NodeHasProperty(N, Property, CGP))
198 return true;
200 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
201 TreePatternNode *Child = N->getChild(i);
202 if (PatternHasProperty(Child, Property, CGP))
203 return true;
206 return false;
209 //===----------------------------------------------------------------------===//
210 // Node Transformation emitter implementation.
212 void DAGISelEmitter::EmitNodeTransforms(std::ostream &OS) {
213 // Walk the pattern fragments, adding them to a map, which sorts them by
214 // name.
215 typedef std::map<std::string, CodeGenDAGPatterns::NodeXForm> NXsByNameTy;
216 NXsByNameTy NXsByName;
218 for (CodeGenDAGPatterns::nx_iterator I = CGP.nx_begin(), E = CGP.nx_end();
219 I != E; ++I)
220 NXsByName.insert(std::make_pair(I->first->getName(), I->second));
222 OS << "\n// Node transformations.\n";
224 for (NXsByNameTy::iterator I = NXsByName.begin(), E = NXsByName.end();
225 I != E; ++I) {
226 Record *SDNode = I->second.first;
227 std::string Code = I->second.second;
229 if (Code.empty()) continue; // Empty code? Skip it.
231 std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName();
232 const char *C2 = ClassName == "SDNode" ? "N" : "inN";
234 OS << "inline SDOperand Transform_" << I->first << "(SDNode *" << C2
235 << ") {\n";
236 if (ClassName != "SDNode")
237 OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
238 OS << Code << "\n}\n";
242 //===----------------------------------------------------------------------===//
243 // Predicate emitter implementation.
246 void DAGISelEmitter::EmitPredicateFunctions(std::ostream &OS) {
247 OS << "\n// Predicate functions.\n";
249 // Walk the pattern fragments, adding them to a map, which sorts them by
250 // name.
251 typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy;
252 PFsByNameTy PFsByName;
254 for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end();
255 I != E; ++I)
256 PFsByName.insert(std::make_pair(I->first->getName(), *I));
259 for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end();
260 I != E; ++I) {
261 Record *PatFragRecord = I->second.first;// Record that derives from PatFrag.
262 TreePattern *P = I->second.second;
264 // If there is a code init for this fragment, emit the predicate code.
265 std::string Code = PatFragRecord->getValueAsCode("Predicate");
266 if (Code.empty()) continue;
268 if (P->getOnlyTree()->isLeaf())
269 OS << "inline bool Predicate_" << PatFragRecord->getName()
270 << "(SDNode *N) {\n";
271 else {
272 std::string ClassName =
273 CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
274 const char *C2 = ClassName == "SDNode" ? "N" : "inN";
276 OS << "inline bool Predicate_" << PatFragRecord->getName()
277 << "(SDNode *" << C2 << ") {\n";
278 if (ClassName != "SDNode")
279 OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
281 OS << Code << "\n}\n";
284 OS << "\n\n";
288 //===----------------------------------------------------------------------===//
289 // PatternCodeEmitter implementation.
291 class PatternCodeEmitter {
292 private:
293 CodeGenDAGPatterns &CGP;
295 // Predicates.
296 ListInit *Predicates;
297 // Pattern cost.
298 unsigned Cost;
299 // Instruction selector pattern.
300 TreePatternNode *Pattern;
301 // Matched instruction.
302 TreePatternNode *Instruction;
304 // Node to name mapping
305 std::map<std::string, std::string> VariableMap;
306 // Node to operator mapping
307 std::map<std::string, Record*> OperatorMap;
308 // Names of all the folded nodes which produce chains.
309 std::vector<std::pair<std::string, unsigned> > FoldedChains;
310 // Original input chain(s).
311 std::vector<std::pair<std::string, std::string> > OrigChains;
312 std::set<std::string> Duplicates;
314 /// GeneratedCode - This is the buffer that we emit code to. The first int
315 /// indicates whether this is an exit predicate (something that should be
316 /// tested, and if true, the match fails) [when 1], or normal code to emit
317 /// [when 0], or initialization code to emit [when 2].
318 std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
319 /// GeneratedDecl - This is the set of all SDOperand declarations needed for
320 /// the set of patterns for each top-level opcode.
321 std::set<std::string> &GeneratedDecl;
322 /// TargetOpcodes - The target specific opcodes used by the resulting
323 /// instructions.
324 std::vector<std::string> &TargetOpcodes;
325 std::vector<std::string> &TargetVTs;
327 std::string ChainName;
328 unsigned TmpNo;
329 unsigned OpcNo;
330 unsigned VTNo;
332 void emitCheck(const std::string &S) {
333 if (!S.empty())
334 GeneratedCode.push_back(std::make_pair(1, S));
336 void emitCode(const std::string &S) {
337 if (!S.empty())
338 GeneratedCode.push_back(std::make_pair(0, S));
340 void emitInit(const std::string &S) {
341 if (!S.empty())
342 GeneratedCode.push_back(std::make_pair(2, S));
344 void emitDecl(const std::string &S) {
345 assert(!S.empty() && "Invalid declaration");
346 GeneratedDecl.insert(S);
348 void emitOpcode(const std::string &Opc) {
349 TargetOpcodes.push_back(Opc);
350 OpcNo++;
352 void emitVT(const std::string &VT) {
353 TargetVTs.push_back(VT);
354 VTNo++;
356 public:
357 PatternCodeEmitter(CodeGenDAGPatterns &cgp, ListInit *preds,
358 TreePatternNode *pattern, TreePatternNode *instr,
359 std::vector<std::pair<unsigned, std::string> > &gc,
360 std::set<std::string> &gd,
361 std::vector<std::string> &to,
362 std::vector<std::string> &tv)
363 : CGP(cgp), Predicates(preds), Pattern(pattern), Instruction(instr),
364 GeneratedCode(gc), GeneratedDecl(gd),
365 TargetOpcodes(to), TargetVTs(tv),
366 TmpNo(0), OpcNo(0), VTNo(0) {}
368 /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
369 /// if the match fails. At this point, we already know that the opcode for N
370 /// matches, and the SDNode for the result has the RootName specified name.
371 void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
372 const std::string &RootName, const std::string &ChainSuffix,
373 bool &FoundChain) {
374 bool isRoot = (P == NULL);
375 // Emit instruction predicates. Each predicate is just a string for now.
376 if (isRoot) {
377 std::string PredicateCheck;
378 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
379 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
380 Record *Def = Pred->getDef();
381 if (!Def->isSubClassOf("Predicate")) {
382 #ifndef NDEBUG
383 Def->dump();
384 #endif
385 assert(0 && "Unknown predicate type!");
387 if (!PredicateCheck.empty())
388 PredicateCheck += " && ";
389 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
393 emitCheck(PredicateCheck);
396 if (N->isLeaf()) {
397 if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
398 emitCheck("cast<ConstantSDNode>(" + RootName +
399 ")->getSignExtended() == " + itostr(II->getValue()));
400 return;
401 } else if (!NodeIsComplexPattern(N)) {
402 assert(0 && "Cannot match this as a leaf value!");
403 abort();
407 // If this node has a name associated with it, capture it in VariableMap. If
408 // we already saw this in the pattern, emit code to verify dagness.
409 if (!N->getName().empty()) {
410 std::string &VarMapEntry = VariableMap[N->getName()];
411 if (VarMapEntry.empty()) {
412 VarMapEntry = RootName;
413 } else {
414 // If we get here, this is a second reference to a specific name. Since
415 // we already have checked that the first reference is valid, we don't
416 // have to recursively match it, just check that it's the same as the
417 // previously named thing.
418 emitCheck(VarMapEntry + " == " + RootName);
419 return;
422 if (!N->isLeaf())
423 OperatorMap[N->getName()] = N->getOperator();
427 // Emit code to load the child nodes and match their contents recursively.
428 unsigned OpNo = 0;
429 bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, CGP);
430 bool HasChain = PatternHasProperty(N, SDNPHasChain, CGP);
431 bool EmittedUseCheck = false;
432 if (HasChain) {
433 if (NodeHasChain)
434 OpNo = 1;
435 if (!isRoot) {
436 // Multiple uses of actual result?
437 emitCheck(RootName + ".hasOneUse()");
438 EmittedUseCheck = true;
439 if (NodeHasChain) {
440 // If the immediate use can somehow reach this node through another
441 // path, then can't fold it either or it will create a cycle.
442 // e.g. In the following diagram, XX can reach ld through YY. If
443 // ld is folded into XX, then YY is both a predecessor and a successor
444 // of XX.
446 // [ld]
447 // ^ ^
448 // | |
449 // / \---
450 // / [YY]
451 // | ^
452 // [XX]-------|
453 bool NeedCheck = false;
454 if (P != Pattern)
455 NeedCheck = true;
456 else {
457 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator());
458 NeedCheck =
459 P->getOperator() == CGP.get_intrinsic_void_sdnode() ||
460 P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
461 P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
462 PInfo.getNumOperands() > 1 ||
463 PInfo.hasProperty(SDNPHasChain) ||
464 PInfo.hasProperty(SDNPInFlag) ||
465 PInfo.hasProperty(SDNPOptInFlag);
468 if (NeedCheck) {
469 std::string ParentName(RootName.begin(), RootName.end()-1);
470 emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName +
471 ".Val, N.Val)");
476 if (NodeHasChain) {
477 if (FoundChain) {
478 emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || "
479 "IsChainCompatible(" + ChainName + ".Val, " +
480 RootName + ".Val))");
481 OrigChains.push_back(std::make_pair(ChainName, RootName));
482 } else
483 FoundChain = true;
484 ChainName = "Chain" + ChainSuffix;
485 emitInit("SDOperand " + ChainName + " = " + RootName +
486 ".getOperand(0);");
490 // Don't fold any node which reads or writes a flag and has multiple uses.
491 // FIXME: We really need to separate the concepts of flag and "glue". Those
492 // real flag results, e.g. X86CMP output, can have multiple uses.
493 // FIXME: If the optional incoming flag does not exist. Then it is ok to
494 // fold it.
495 if (!isRoot &&
496 (PatternHasProperty(N, SDNPInFlag, CGP) ||
497 PatternHasProperty(N, SDNPOptInFlag, CGP) ||
498 PatternHasProperty(N, SDNPOutFlag, CGP))) {
499 if (!EmittedUseCheck) {
500 // Multiple uses of actual result?
501 emitCheck(RootName + ".hasOneUse()");
505 // If there is a node predicate for this, emit the call.
506 if (!N->getPredicateFn().empty())
507 emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)");
510 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
511 // a constant without a predicate fn that has more that one bit set, handle
512 // this as a special case. This is usually for targets that have special
513 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
514 // handling stuff). Using these instructions is often far more efficient
515 // than materializing the constant. Unfortunately, both the instcombiner
516 // and the dag combiner can often infer that bits are dead, and thus drop
517 // them from the mask in the dag. For example, it might turn 'AND X, 255'
518 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
519 // to handle this.
520 if (!N->isLeaf() &&
521 (N->getOperator()->getName() == "and" ||
522 N->getOperator()->getName() == "or") &&
523 N->getChild(1)->isLeaf() &&
524 N->getChild(1)->getPredicateFn().empty()) {
525 if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
526 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
527 emitInit("SDOperand " + RootName + "0" + " = " +
528 RootName + ".getOperand(" + utostr(0) + ");");
529 emitInit("SDOperand " + RootName + "1" + " = " +
530 RootName + ".getOperand(" + utostr(1) + ");");
532 emitCheck("isa<ConstantSDNode>(" + RootName + "1)");
533 const char *MaskPredicate = N->getOperator()->getName() == "or"
534 ? "CheckOrMask(" : "CheckAndMask(";
535 emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" +
536 RootName + "1), " + itostr(II->getValue()) + ")");
538 EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0),
539 ChainSuffix + utostr(0), FoundChain);
540 return;
545 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
546 emitInit("SDOperand " + RootName + utostr(OpNo) + " = " +
547 RootName + ".getOperand(" +utostr(OpNo) + ");");
549 EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo),
550 ChainSuffix + utostr(OpNo), FoundChain);
553 // Handle cases when root is a complex pattern.
554 const ComplexPattern *CP;
555 if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
556 std::string Fn = CP->getSelectFunc();
557 unsigned NumOps = CP->getNumOperands();
558 for (unsigned i = 0; i < NumOps; ++i) {
559 emitDecl("CPTmp" + utostr(i));
560 emitCode("SDOperand CPTmp" + utostr(i) + ";");
562 if (CP->hasProperty(SDNPHasChain)) {
563 emitDecl("CPInChain");
564 emitDecl("Chain" + ChainSuffix);
565 emitCode("SDOperand CPInChain;");
566 emitCode("SDOperand Chain" + ChainSuffix + ";");
569 std::string Code = Fn + "(" + RootName + ", " + RootName;
570 for (unsigned i = 0; i < NumOps; i++)
571 Code += ", CPTmp" + utostr(i);
572 if (CP->hasProperty(SDNPHasChain)) {
573 ChainName = "Chain" + ChainSuffix;
574 Code += ", CPInChain, Chain" + ChainSuffix;
576 emitCheck(Code + ")");
580 void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent,
581 const std::string &RootName,
582 const std::string &ChainSuffix, bool &FoundChain) {
583 if (!Child->isLeaf()) {
584 // If it's not a leaf, recursively match.
585 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator());
586 emitCheck(RootName + ".getOpcode() == " +
587 CInfo.getEnumName());
588 EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
589 if (NodeHasProperty(Child, SDNPHasChain, CGP))
590 FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
591 } else {
592 // If this child has a name associated with it, capture it in VarMap. If
593 // we already saw this in the pattern, emit code to verify dagness.
594 if (!Child->getName().empty()) {
595 std::string &VarMapEntry = VariableMap[Child->getName()];
596 if (VarMapEntry.empty()) {
597 VarMapEntry = RootName;
598 } else {
599 // If we get here, this is a second reference to a specific name.
600 // Since we already have checked that the first reference is valid,
601 // we don't have to recursively match it, just check that it's the
602 // same as the previously named thing.
603 emitCheck(VarMapEntry + " == " + RootName);
604 Duplicates.insert(RootName);
605 return;
609 // Handle leaves of various types.
610 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
611 Record *LeafRec = DI->getDef();
612 if (LeafRec->isSubClassOf("RegisterClass") ||
613 LeafRec->getName() == "ptr_rc") {
614 // Handle register references. Nothing to do here.
615 } else if (LeafRec->isSubClassOf("Register")) {
616 // Handle register references.
617 } else if (LeafRec->isSubClassOf("ComplexPattern")) {
618 // Handle complex pattern.
619 const ComplexPattern *CP = NodeGetComplexPattern(Child, CGP);
620 std::string Fn = CP->getSelectFunc();
621 unsigned NumOps = CP->getNumOperands();
622 for (unsigned i = 0; i < NumOps; ++i) {
623 emitDecl("CPTmp" + utostr(i));
624 emitCode("SDOperand CPTmp" + utostr(i) + ";");
626 if (CP->hasProperty(SDNPHasChain)) {
627 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator());
628 FoldedChains.push_back(std::make_pair("CPInChain",
629 PInfo.getNumResults()));
630 ChainName = "Chain" + ChainSuffix;
631 emitDecl("CPInChain");
632 emitDecl(ChainName);
633 emitCode("SDOperand CPInChain;");
634 emitCode("SDOperand " + ChainName + ";");
637 std::string Code = Fn + "(N, ";
638 if (CP->hasProperty(SDNPHasChain)) {
639 std::string ParentName(RootName.begin(), RootName.end()-1);
640 Code += ParentName + ", ";
642 Code += RootName;
643 for (unsigned i = 0; i < NumOps; i++)
644 Code += ", CPTmp" + utostr(i);
645 if (CP->hasProperty(SDNPHasChain))
646 Code += ", CPInChain, Chain" + ChainSuffix;
647 emitCheck(Code + ")");
648 } else if (LeafRec->getName() == "srcvalue") {
649 // Place holder for SRCVALUE nodes. Nothing to do here.
650 } else if (LeafRec->isSubClassOf("ValueType")) {
651 // Make sure this is the specified value type.
652 emitCheck("cast<VTSDNode>(" + RootName +
653 ")->getVT() == MVT::" + LeafRec->getName());
654 } else if (LeafRec->isSubClassOf("CondCode")) {
655 // Make sure this is the specified cond code.
656 emitCheck("cast<CondCodeSDNode>(" + RootName +
657 ")->get() == ISD::" + LeafRec->getName());
658 } else {
659 #ifndef NDEBUG
660 Child->dump();
661 cerr << " ";
662 #endif
663 assert(0 && "Unknown leaf type!");
666 // If there is a node predicate for this, emit the call.
667 if (!Child->getPredicateFn().empty())
668 emitCheck(Child->getPredicateFn() + "(" + RootName +
669 ".Val)");
670 } else if (IntInit *II =
671 dynamic_cast<IntInit*>(Child->getLeafValue())) {
672 emitCheck("isa<ConstantSDNode>(" + RootName + ")");
673 unsigned CTmp = TmpNo++;
674 emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+
675 RootName + ")->getSignExtended();");
677 emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue()));
678 } else {
679 #ifndef NDEBUG
680 Child->dump();
681 #endif
682 assert(0 && "Unknown leaf type!");
687 /// EmitResultCode - Emit the action for a pattern. Now that it has matched
688 /// we actually have to build a DAG!
689 std::vector<std::string>
690 EmitResultCode(TreePatternNode *N, std::vector<Record*> DstRegs,
691 bool InFlagDecled, bool ResNodeDecled,
692 bool LikeLeaf = false, bool isRoot = false) {
693 // List of arguments of getTargetNode() or SelectNodeTo().
694 std::vector<std::string> NodeOps;
695 // This is something selected from the pattern we matched.
696 if (!N->getName().empty()) {
697 std::string &Val = VariableMap[N->getName()];
698 assert(!Val.empty() &&
699 "Variable referenced but not defined and not caught earlier!");
700 if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
701 // Already selected this operand, just return the tmpval.
702 NodeOps.push_back(Val);
703 return NodeOps;
706 const ComplexPattern *CP;
707 unsigned ResNo = TmpNo++;
708 if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
709 assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
710 std::string CastType;
711 switch (N->getTypeNum(0)) {
712 default:
713 cerr << "Cannot handle " << getEnumName(N->getTypeNum(0))
714 << " type as an immediate constant. Aborting\n";
715 abort();
716 case MVT::i1: CastType = "bool"; break;
717 case MVT::i8: CastType = "unsigned char"; break;
718 case MVT::i16: CastType = "unsigned short"; break;
719 case MVT::i32: CastType = "unsigned"; break;
720 case MVT::i64: CastType = "uint64_t"; break;
722 emitCode("SDOperand Tmp" + utostr(ResNo) +
723 " = CurDAG->getTargetConstant(((" + CastType +
724 ") cast<ConstantSDNode>(" + Val + ")->getValue()), " +
725 getEnumName(N->getTypeNum(0)) + ");");
726 NodeOps.push_back("Tmp" + utostr(ResNo));
727 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
728 // value if used multiple times by this pattern result.
729 Val = "Tmp"+utostr(ResNo);
730 } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
731 Record *Op = OperatorMap[N->getName()];
732 // Transform ExternalSymbol to TargetExternalSymbol
733 if (Op && Op->getName() == "externalsym") {
734 emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
735 "ExternalSymbol(cast<ExternalSymbolSDNode>(" +
736 Val + ")->getSymbol(), " +
737 getEnumName(N->getTypeNum(0)) + ");");
738 NodeOps.push_back("Tmp" + utostr(ResNo));
739 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
740 // this value if used multiple times by this pattern result.
741 Val = "Tmp"+utostr(ResNo);
742 } else {
743 NodeOps.push_back(Val);
745 } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr"
746 || N->getOperator()->getName() == "tglobaltlsaddr")) {
747 Record *Op = OperatorMap[N->getName()];
748 // Transform GlobalAddress to TargetGlobalAddress
749 if (Op && (Op->getName() == "globaladdr" ||
750 Op->getName() == "globaltlsaddr")) {
751 emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
752 "GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
753 ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
754 ");");
755 NodeOps.push_back("Tmp" + utostr(ResNo));
756 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
757 // this value if used multiple times by this pattern result.
758 Val = "Tmp"+utostr(ResNo);
759 } else {
760 NodeOps.push_back(Val);
762 } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
763 NodeOps.push_back(Val);
764 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
765 // value if used multiple times by this pattern result.
766 Val = "Tmp"+utostr(ResNo);
767 } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") {
768 NodeOps.push_back(Val);
769 // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
770 // value if used multiple times by this pattern result.
771 Val = "Tmp"+utostr(ResNo);
772 } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
773 for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
774 emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");");
775 NodeOps.push_back("CPTmp" + utostr(i));
777 } else {
778 // This node, probably wrapped in a SDNodeXForm, behaves like a leaf
779 // node even if it isn't one. Don't select it.
780 if (!LikeLeaf) {
781 emitCode("AddToISelQueue(" + Val + ");");
782 if (isRoot && N->isLeaf()) {
783 emitCode("ReplaceUses(N, " + Val + ");");
784 emitCode("return NULL;");
787 NodeOps.push_back(Val);
789 return NodeOps;
791 if (N->isLeaf()) {
792 // If this is an explicit register reference, handle it.
793 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
794 unsigned ResNo = TmpNo++;
795 if (DI->getDef()->isSubClassOf("Register")) {
796 emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
797 getQualifiedName(DI->getDef()) + ", " +
798 getEnumName(N->getTypeNum(0)) + ");");
799 NodeOps.push_back("Tmp" + utostr(ResNo));
800 return NodeOps;
801 } else if (DI->getDef()->getName() == "zero_reg") {
802 emitCode("SDOperand Tmp" + utostr(ResNo) +
803 " = CurDAG->getRegister(0, " +
804 getEnumName(N->getTypeNum(0)) + ");");
805 NodeOps.push_back("Tmp" + utostr(ResNo));
806 return NodeOps;
808 } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
809 unsigned ResNo = TmpNo++;
810 assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
811 emitCode("SDOperand Tmp" + utostr(ResNo) +
812 " = CurDAG->getTargetConstant(" + itostr(II->getValue()) +
813 ", " + getEnumName(N->getTypeNum(0)) + ");");
814 NodeOps.push_back("Tmp" + utostr(ResNo));
815 return NodeOps;
818 #ifndef NDEBUG
819 N->dump();
820 #endif
821 assert(0 && "Unknown leaf type!");
822 return NodeOps;
825 Record *Op = N->getOperator();
826 if (Op->isSubClassOf("Instruction")) {
827 const CodeGenTarget &CGT = CGP.getTargetInfo();
828 CodeGenInstruction &II = CGT.getInstruction(Op->getName());
829 const DAGInstruction &Inst = CGP.getInstruction(Op);
830 const TreePattern *InstPat = Inst.getPattern();
831 // FIXME: Assume actual pattern comes before "implicit".
832 TreePatternNode *InstPatNode =
833 isRoot ? (InstPat ? InstPat->getTree(0) : Pattern)
834 : (InstPat ? InstPat->getTree(0) : NULL);
835 if (InstPatNode && InstPatNode->getOperator()->getName() == "set") {
836 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
838 bool HasVarOps = isRoot && II.isVariadic;
839 // FIXME: fix how we deal with physical register operands.
840 bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
841 bool HasImpResults = isRoot && DstRegs.size() > 0;
842 bool NodeHasOptInFlag = isRoot &&
843 PatternHasProperty(Pattern, SDNPOptInFlag, CGP);
844 bool NodeHasInFlag = isRoot &&
845 PatternHasProperty(Pattern, SDNPInFlag, CGP);
846 bool NodeHasOutFlag = isRoot &&
847 PatternHasProperty(Pattern, SDNPOutFlag, CGP);
848 bool NodeHasChain = InstPatNode &&
849 PatternHasProperty(InstPatNode, SDNPHasChain, CGP);
850 bool InputHasChain = isRoot &&
851 NodeHasProperty(Pattern, SDNPHasChain, CGP);
852 unsigned NumResults = Inst.getNumResults();
853 unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0;
855 if (NodeHasOptInFlag) {
856 emitCode("bool HasInFlag = "
857 "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
859 if (HasVarOps)
860 emitCode("SmallVector<SDOperand, 8> Ops" + utostr(OpcNo) + ";");
862 // How many results is this pattern expected to produce?
863 unsigned NumPatResults = 0;
864 for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
865 MVT::ValueType VT = Pattern->getTypeNum(i);
866 if (VT != MVT::isVoid && VT != MVT::Flag)
867 NumPatResults++;
870 if (OrigChains.size() > 0) {
871 // The original input chain is being ignored. If it is not just
872 // pointing to the op that's being folded, we should create a
873 // TokenFactor with it and the chain of the folded op as the new chain.
874 // We could potentially be doing multiple levels of folding, in that
875 // case, the TokenFactor can have more operands.
876 emitCode("SmallVector<SDOperand, 8> InChains;");
877 for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
878 emitCode("if (" + OrigChains[i].first + ".Val != " +
879 OrigChains[i].second + ".Val) {");
880 emitCode(" AddToISelQueue(" + OrigChains[i].first + ");");
881 emitCode(" InChains.push_back(" + OrigChains[i].first + ");");
882 emitCode("}");
884 emitCode("AddToISelQueue(" + ChainName + ");");
885 emitCode("InChains.push_back(" + ChainName + ");");
886 emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, "
887 "&InChains[0], InChains.size());");
890 // Loop over all of the operands of the instruction pattern, emitting code
891 // to fill them all in. The node 'N' usually has number children equal to
892 // the number of input operands of the instruction. However, in cases
893 // where there are predicate operands for an instruction, we need to fill
894 // in the 'execute always' values. Match up the node operands to the
895 // instruction operands to do this.
896 std::vector<std::string> AllOps;
897 unsigned NumEAInputs = 0; // # of synthesized 'execute always' inputs.
898 for (unsigned ChildNo = 0, InstOpNo = NumResults;
899 InstOpNo != II.OperandList.size(); ++InstOpNo) {
900 std::vector<std::string> Ops;
902 // If this is a normal operand or a predicate operand without
903 // 'execute always', emit it.
904 Record *OperandNode = II.OperandList[InstOpNo].Rec;
905 if ((!OperandNode->isSubClassOf("PredicateOperand") &&
906 !OperandNode->isSubClassOf("OptionalDefOperand")) ||
907 CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
908 Ops = EmitResultCode(N->getChild(ChildNo), DstRegs,
909 InFlagDecled, ResNodeDecled);
910 AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
911 ++ChildNo;
912 } else {
913 // Otherwise, this is a predicate or optional def operand, emit the
914 // 'default ops' operands.
915 const DAGDefaultOperand &DefaultOp =
916 CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
917 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) {
918 Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs,
919 InFlagDecled, ResNodeDecled);
920 AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
921 NumEAInputs += Ops.size();
926 // Emit all the chain and CopyToReg stuff.
927 bool ChainEmitted = NodeHasChain;
928 if (NodeHasChain)
929 emitCode("AddToISelQueue(" + ChainName + ");");
930 if (NodeHasInFlag || HasImpInputs)
931 EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
932 InFlagDecled, ResNodeDecled, true);
933 if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
934 if (!InFlagDecled) {
935 emitCode("SDOperand InFlag(0, 0);");
936 InFlagDecled = true;
938 if (NodeHasOptInFlag) {
939 emitCode("if (HasInFlag) {");
940 emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);");
941 emitCode(" AddToISelQueue(InFlag);");
942 emitCode("}");
946 unsigned ResNo = TmpNo++;
947 if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag ||
948 NodeHasOptInFlag || HasImpResults) {
949 std::string Code;
950 std::string Code2;
951 std::string NodeName;
952 if (!isRoot) {
953 NodeName = "Tmp" + utostr(ResNo);
954 Code2 = "SDOperand " + NodeName + "(";
955 } else {
956 NodeName = "ResNode";
957 if (!ResNodeDecled) {
958 Code2 = "SDNode *" + NodeName + " = ";
959 ResNodeDecled = true;
960 } else
961 Code2 = NodeName + " = ";
964 Code += "CurDAG->getTargetNode(Opc" + utostr(OpcNo);
965 unsigned OpsNo = OpcNo;
966 emitOpcode(II.Namespace + "::" + II.TheDef->getName());
968 // Output order: results, chain, flags
969 // Result types.
970 if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
971 Code += ", VT" + utostr(VTNo);
972 emitVT(getEnumName(N->getTypeNum(0)));
974 // Add types for implicit results in physical registers, scheduler will
975 // care of adding copyfromreg nodes.
976 for (unsigned i = 0; i < NumDstRegs; i++) {
977 Record *RR = DstRegs[i];
978 if (RR->isSubClassOf("Register")) {
979 MVT::ValueType RVT = getRegisterValueType(RR, CGT);
980 Code += ", " + getEnumName(RVT);
983 if (NodeHasChain)
984 Code += ", MVT::Other";
985 if (NodeHasOutFlag)
986 Code += ", MVT::Flag";
988 // Figure out how many fixed inputs the node has. This is important to
989 // know which inputs are the variable ones if present.
990 unsigned NumInputs = AllOps.size();
991 NumInputs += NodeHasChain;
993 // Inputs.
994 if (HasVarOps) {
995 for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
996 emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
997 AllOps.clear();
1000 if (HasVarOps) {
1001 // Figure out whether any operands at the end of the op list are not
1002 // part of the variable section.
1003 std::string EndAdjust;
1004 if (NodeHasInFlag || HasImpInputs)
1005 EndAdjust = "-1"; // Always has one flag.
1006 else if (NodeHasOptInFlag)
1007 EndAdjust = "-(HasInFlag?1:0)"; // May have a flag.
1009 emitCode("for (unsigned i = " + utostr(NumInputs - NumEAInputs) +
1010 ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {");
1012 emitCode(" AddToISelQueue(N.getOperand(i));");
1013 emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
1014 emitCode("}");
1017 if (NodeHasChain) {
1018 if (HasVarOps)
1019 emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
1020 else
1021 AllOps.push_back(ChainName);
1024 if (HasVarOps) {
1025 if (NodeHasInFlag || HasImpInputs)
1026 emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
1027 else if (NodeHasOptInFlag) {
1028 emitCode("if (HasInFlag)");
1029 emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);");
1031 Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
1032 ".size()";
1033 } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
1034 AllOps.push_back("InFlag");
1036 unsigned NumOps = AllOps.size();
1037 if (NumOps) {
1038 if (!NodeHasOptInFlag && NumOps < 4) {
1039 for (unsigned i = 0; i != NumOps; ++i)
1040 Code += ", " + AllOps[i];
1041 } else {
1042 std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { ";
1043 for (unsigned i = 0; i != NumOps; ++i) {
1044 OpsCode += AllOps[i];
1045 if (i != NumOps-1)
1046 OpsCode += ", ";
1048 emitCode(OpsCode + " };");
1049 Code += ", Ops" + utostr(OpsNo) + ", ";
1050 if (NodeHasOptInFlag) {
1051 Code += "HasInFlag ? ";
1052 Code += utostr(NumOps) + " : " + utostr(NumOps-1);
1053 } else
1054 Code += utostr(NumOps);
1058 if (!isRoot)
1059 Code += "), 0";
1060 emitCode(Code2 + Code + ");");
1062 if (NodeHasChain)
1063 // Remember which op produces the chain.
1064 if (!isRoot)
1065 emitCode(ChainName + " = SDOperand(" + NodeName +
1066 ".Val, " + utostr(NumResults+NumDstRegs) + ");");
1067 else
1068 emitCode(ChainName + " = SDOperand(" + NodeName +
1069 ", " + utostr(NumResults+NumDstRegs) + ");");
1071 if (!isRoot) {
1072 NodeOps.push_back("Tmp" + utostr(ResNo));
1073 return NodeOps;
1076 bool NeedReplace = false;
1077 if (NodeHasOutFlag) {
1078 if (!InFlagDecled) {
1079 emitCode("SDOperand InFlag(ResNode, " +
1080 utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + ");");
1081 InFlagDecled = true;
1082 } else
1083 emitCode("InFlag = SDOperand(ResNode, " +
1084 utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + ");");
1087 if (FoldedChains.size() > 0) {
1088 std::string Code;
1089 for (unsigned j = 0, e = FoldedChains.size(); j < e; j++)
1090 emitCode("ReplaceUses(SDOperand(" +
1091 FoldedChains[j].first + ".Val, " +
1092 utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " +
1093 utostr(NumResults+NumDstRegs) + "));");
1094 NeedReplace = true;
1097 if (NodeHasOutFlag) {
1098 emitCode("ReplaceUses(SDOperand(N.Val, " +
1099 utostr(NumPatResults + (unsigned)InputHasChain)
1100 +"), InFlag);");
1101 NeedReplace = true;
1104 if (NeedReplace && InputHasChain)
1105 emitCode("ReplaceUses(SDOperand(N.Val, " +
1106 utostr(NumPatResults) + "), SDOperand(" + ChainName
1107 + ".Val, " + ChainName + ".ResNo" + "));");
1109 // User does not expect the instruction would produce a chain!
1110 if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
1112 } else if (InputHasChain && !NodeHasChain) {
1113 // One of the inner node produces a chain.
1114 if (NodeHasOutFlag)
1115 emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(NumPatResults+1) +
1116 "), SDOperand(ResNode, N.ResNo-1));");
1117 emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(NumPatResults) +
1118 "), " + ChainName + ");");
1121 emitCode("return ResNode;");
1122 } else {
1123 std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" +
1124 utostr(OpcNo);
1125 if (N->getTypeNum(0) != MVT::isVoid)
1126 Code += ", VT" + utostr(VTNo);
1127 if (NodeHasOutFlag)
1128 Code += ", MVT::Flag";
1130 if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
1131 AllOps.push_back("InFlag");
1133 unsigned NumOps = AllOps.size();
1134 if (NumOps) {
1135 if (!NodeHasOptInFlag && NumOps < 4) {
1136 for (unsigned i = 0; i != NumOps; ++i)
1137 Code += ", " + AllOps[i];
1138 } else {
1139 std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { ";
1140 for (unsigned i = 0; i != NumOps; ++i) {
1141 OpsCode += AllOps[i];
1142 if (i != NumOps-1)
1143 OpsCode += ", ";
1145 emitCode(OpsCode + " };");
1146 Code += ", Ops" + utostr(OpcNo) + ", ";
1147 Code += utostr(NumOps);
1150 emitCode(Code + ");");
1151 emitOpcode(II.Namespace + "::" + II.TheDef->getName());
1152 if (N->getTypeNum(0) != MVT::isVoid)
1153 emitVT(getEnumName(N->getTypeNum(0)));
1156 return NodeOps;
1157 } else if (Op->isSubClassOf("SDNodeXForm")) {
1158 assert(N->getNumChildren() == 1 && "node xform should have one child!");
1159 // PatLeaf node - the operand may or may not be a leaf node. But it should
1160 // behave like one.
1161 std::vector<std::string> Ops =
1162 EmitResultCode(N->getChild(0), DstRegs, InFlagDecled,
1163 ResNodeDecled, true);
1164 unsigned ResNo = TmpNo++;
1165 emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
1166 + "(" + Ops.back() + ".Val);");
1167 NodeOps.push_back("Tmp" + utostr(ResNo));
1168 if (isRoot)
1169 emitCode("return Tmp" + utostr(ResNo) + ".Val;");
1170 return NodeOps;
1171 } else {
1172 N->dump();
1173 cerr << "\n";
1174 throw std::string("Unknown node in result pattern!");
1178 /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
1179 /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
1180 /// 'Pat' may be missing types. If we find an unresolved type to add a check
1181 /// for, this returns true otherwise false if Pat has all types.
1182 bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
1183 const std::string &Prefix, bool isRoot = false) {
1184 // Did we find one?
1185 if (Pat->getExtTypes() != Other->getExtTypes()) {
1186 // Move a type over from 'other' to 'pat'.
1187 Pat->setTypes(Other->getExtTypes());
1188 // The top level node type is checked outside of the select function.
1189 if (!isRoot)
1190 emitCheck(Prefix + ".Val->getValueType(0) == " +
1191 getName(Pat->getTypeNum(0)));
1192 return true;
1195 unsigned OpNo =
1196 (unsigned) NodeHasProperty(Pat, SDNPHasChain, CGP);
1197 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
1198 if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
1199 Prefix + utostr(OpNo)))
1200 return true;
1201 return false;
1204 private:
1205 /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
1206 /// being built.
1207 void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
1208 bool &ChainEmitted, bool &InFlagDecled,
1209 bool &ResNodeDecled, bool isRoot = false) {
1210 const CodeGenTarget &T = CGP.getTargetInfo();
1211 unsigned OpNo =
1212 (unsigned) NodeHasProperty(N, SDNPHasChain, CGP);
1213 bool HasInFlag = NodeHasProperty(N, SDNPInFlag, CGP);
1214 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
1215 TreePatternNode *Child = N->getChild(i);
1216 if (!Child->isLeaf()) {
1217 EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
1218 InFlagDecled, ResNodeDecled);
1219 } else {
1220 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
1221 if (!Child->getName().empty()) {
1222 std::string Name = RootName + utostr(OpNo);
1223 if (Duplicates.find(Name) != Duplicates.end())
1224 // A duplicate! Do not emit a copy for this node.
1225 continue;
1228 Record *RR = DI->getDef();
1229 if (RR->isSubClassOf("Register")) {
1230 MVT::ValueType RVT = getRegisterValueType(RR, T);
1231 if (RVT == MVT::Flag) {
1232 if (!InFlagDecled) {
1233 emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";");
1234 InFlagDecled = true;
1235 } else
1236 emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
1237 emitCode("AddToISelQueue(InFlag);");
1238 } else {
1239 if (!ChainEmitted) {
1240 emitCode("SDOperand Chain = CurDAG->getEntryNode();");
1241 ChainName = "Chain";
1242 ChainEmitted = true;
1244 emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");");
1245 if (!InFlagDecled) {
1246 emitCode("SDOperand InFlag(0, 0);");
1247 InFlagDecled = true;
1249 std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
1250 emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
1251 ", " + getQualifiedName(RR) +
1252 ", " + RootName + utostr(OpNo) + ", InFlag).Val;");
1253 ResNodeDecled = true;
1254 emitCode(ChainName + " = SDOperand(ResNode, 0);");
1255 emitCode("InFlag = SDOperand(ResNode, 1);");
1262 if (HasInFlag) {
1263 if (!InFlagDecled) {
1264 emitCode("SDOperand InFlag = " + RootName +
1265 ".getOperand(" + utostr(OpNo) + ");");
1266 InFlagDecled = true;
1267 } else
1268 emitCode("InFlag = " + RootName +
1269 ".getOperand(" + utostr(OpNo) + ");");
1270 emitCode("AddToISelQueue(InFlag);");
1275 /// EmitCodeForPattern - Given a pattern to match, emit code to the specified
1276 /// stream to match the pattern, and generate the code for the match if it
1277 /// succeeds. Returns true if the pattern is not guaranteed to match.
1278 void DAGISelEmitter::GenerateCodeForPattern(const PatternToMatch &Pattern,
1279 std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
1280 std::set<std::string> &GeneratedDecl,
1281 std::vector<std::string> &TargetOpcodes,
1282 std::vector<std::string> &TargetVTs) {
1283 PatternCodeEmitter Emitter(CGP, Pattern.getPredicates(),
1284 Pattern.getSrcPattern(), Pattern.getDstPattern(),
1285 GeneratedCode, GeneratedDecl,
1286 TargetOpcodes, TargetVTs);
1288 // Emit the matcher, capturing named arguments in VariableMap.
1289 bool FoundChain = false;
1290 Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);
1292 // TP - Get *SOME* tree pattern, we don't care which.
1293 TreePattern &TP = *CGP.pf_begin()->second;
1295 // At this point, we know that we structurally match the pattern, but the
1296 // types of the nodes may not match. Figure out the fewest number of type
1297 // comparisons we need to emit. For example, if there is only one integer
1298 // type supported by a target, there should be no type comparisons at all for
1299 // integer patterns!
1301 // To figure out the fewest number of type checks needed, clone the pattern,
1302 // remove the types, then perform type inference on the pattern as a whole.
1303 // If there are unresolved types, emit an explicit check for those types,
1304 // apply the type to the tree, then rerun type inference. Iterate until all
1305 // types are resolved.
1307 TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
1308 RemoveAllTypes(Pat);
1310 do {
1311 // Resolve/propagate as many types as possible.
1312 try {
1313 bool MadeChange = true;
1314 while (MadeChange)
1315 MadeChange = Pat->ApplyTypeConstraints(TP,
1316 true/*Ignore reg constraints*/);
1317 } catch (...) {
1318 assert(0 && "Error: could not find consistent types for something we"
1319 " already decided was ok!");
1320 abort();
1323 // Insert a check for an unresolved type and add it to the tree. If we find
1324 // an unresolved type to add a check for, this returns true and we iterate,
1325 // otherwise we are done.
1326 } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
1328 Emitter.EmitResultCode(Pattern.getDstPattern(), Pattern.getDstRegs(),
1329 false, false, false, true);
1330 delete Pat;
1333 /// EraseCodeLine - Erase one code line from all of the patterns. If removing
1334 /// a line causes any of them to be empty, remove them and return true when
1335 /// done.
1336 static bool EraseCodeLine(std::vector<std::pair<const PatternToMatch*,
1337 std::vector<std::pair<unsigned, std::string> > > >
1338 &Patterns) {
1339 bool ErasedPatterns = false;
1340 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1341 Patterns[i].second.pop_back();
1342 if (Patterns[i].second.empty()) {
1343 Patterns.erase(Patterns.begin()+i);
1344 --i; --e;
1345 ErasedPatterns = true;
1348 return ErasedPatterns;
1351 /// EmitPatterns - Emit code for at least one pattern, but try to group common
1352 /// code together between the patterns.
1353 void DAGISelEmitter::EmitPatterns(std::vector<std::pair<const PatternToMatch*,
1354 std::vector<std::pair<unsigned, std::string> > > >
1355 &Patterns, unsigned Indent,
1356 std::ostream &OS) {
1357 typedef std::pair<unsigned, std::string> CodeLine;
1358 typedef std::vector<CodeLine> CodeList;
1359 typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList;
1361 if (Patterns.empty()) return;
1363 // Figure out how many patterns share the next code line. Explicitly copy
1364 // FirstCodeLine so that we don't invalidate a reference when changing
1365 // Patterns.
1366 const CodeLine FirstCodeLine = Patterns.back().second.back();
1367 unsigned LastMatch = Patterns.size()-1;
1368 while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
1369 --LastMatch;
1371 // If not all patterns share this line, split the list into two pieces. The
1372 // first chunk will use this line, the second chunk won't.
1373 if (LastMatch != 0) {
1374 PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
1375 PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
1377 // FIXME: Emit braces?
1378 if (Shared.size() == 1) {
1379 const PatternToMatch &Pattern = *Shared.back().first;
1380 OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
1381 Pattern.getSrcPattern()->print(OS);
1382 OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
1383 Pattern.getDstPattern()->print(OS);
1384 OS << "\n";
1385 unsigned AddedComplexity = Pattern.getAddedComplexity();
1386 OS << std::string(Indent, ' ') << "// Pattern complexity = "
1387 << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
1388 << " cost = "
1389 << getResultPatternCost(Pattern.getDstPattern(), CGP)
1390 << " size = "
1391 << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
1393 if (FirstCodeLine.first != 1) {
1394 OS << std::string(Indent, ' ') << "{\n";
1395 Indent += 2;
1397 EmitPatterns(Shared, Indent, OS);
1398 if (FirstCodeLine.first != 1) {
1399 Indent -= 2;
1400 OS << std::string(Indent, ' ') << "}\n";
1403 if (Other.size() == 1) {
1404 const PatternToMatch &Pattern = *Other.back().first;
1405 OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
1406 Pattern.getSrcPattern()->print(OS);
1407 OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
1408 Pattern.getDstPattern()->print(OS);
1409 OS << "\n";
1410 unsigned AddedComplexity = Pattern.getAddedComplexity();
1411 OS << std::string(Indent, ' ') << "// Pattern complexity = "
1412 << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
1413 << " cost = "
1414 << getResultPatternCost(Pattern.getDstPattern(), CGP)
1415 << " size = "
1416 << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
1418 EmitPatterns(Other, Indent, OS);
1419 return;
1422 // Remove this code from all of the patterns that share it.
1423 bool ErasedPatterns = EraseCodeLine(Patterns);
1425 bool isPredicate = FirstCodeLine.first == 1;
1427 // Otherwise, every pattern in the list has this line. Emit it.
1428 if (!isPredicate) {
1429 // Normal code.
1430 OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
1431 } else {
1432 OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
1434 // If the next code line is another predicate, and if all of the pattern
1435 // in this group share the same next line, emit it inline now. Do this
1436 // until we run out of common predicates.
1437 while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
1438 // Check that all of fhe patterns in Patterns end with the same predicate.
1439 bool AllEndWithSamePredicate = true;
1440 for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
1441 if (Patterns[i].second.back() != Patterns.back().second.back()) {
1442 AllEndWithSamePredicate = false;
1443 break;
1445 // If all of the predicates aren't the same, we can't share them.
1446 if (!AllEndWithSamePredicate) break;
1448 // Otherwise we can. Emit it shared now.
1449 OS << " &&\n" << std::string(Indent+4, ' ')
1450 << Patterns.back().second.back().second;
1451 ErasedPatterns = EraseCodeLine(Patterns);
1454 OS << ") {\n";
1455 Indent += 2;
1458 EmitPatterns(Patterns, Indent, OS);
1460 if (isPredicate)
1461 OS << std::string(Indent-2, ' ') << "}\n";
1464 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
1465 return CGP.getSDNodeInfo(Op).getEnumName();
1468 static std::string getLegalCName(std::string OpName) {
1469 std::string::size_type pos = OpName.find("::");
1470 if (pos != std::string::npos)
1471 OpName.replace(pos, 2, "_");
1472 return OpName;
1475 void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
1476 const CodeGenTarget &Target = CGP.getTargetInfo();
1478 // Get the namespace to insert instructions into. Make sure not to pick up
1479 // "TargetInstrInfo" by accidentally getting the namespace off the PHI
1480 // instruction or something.
1481 std::string InstNS;
1482 for (CodeGenTarget::inst_iterator i = Target.inst_begin(),
1483 e = Target.inst_end(); i != e; ++i) {
1484 InstNS = i->second.Namespace;
1485 if (InstNS != "TargetInstrInfo")
1486 break;
1489 if (!InstNS.empty()) InstNS += "::";
1491 // Group the patterns by their top-level opcodes.
1492 std::map<std::string, std::vector<const PatternToMatch*> > PatternsByOpcode;
1493 // All unique target node emission functions.
1494 std::map<std::string, unsigned> EmitFunctions;
1495 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
1496 E = CGP.ptm_end(); I != E; ++I) {
1497 const PatternToMatch &Pattern = *I;
1499 TreePatternNode *Node = Pattern.getSrcPattern();
1500 if (!Node->isLeaf()) {
1501 PatternsByOpcode[getOpcodeName(Node->getOperator(), CGP)].
1502 push_back(&Pattern);
1503 } else {
1504 const ComplexPattern *CP;
1505 if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
1506 PatternsByOpcode[getOpcodeName(CGP.getSDNodeNamed("imm"), CGP)].
1507 push_back(&Pattern);
1508 } else if ((CP = NodeGetComplexPattern(Node, CGP))) {
1509 std::vector<Record*> OpNodes = CP->getRootNodes();
1510 for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
1511 PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)]
1512 .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)].begin(),
1513 &Pattern);
1515 } else {
1516 cerr << "Unrecognized opcode '";
1517 Node->dump();
1518 cerr << "' on tree pattern '";
1519 cerr << Pattern.getDstPattern()->getOperator()->getName() << "'!\n";
1520 exit(1);
1525 // For each opcode, there might be multiple select functions, one per
1526 // ValueType of the node (or its first operand if it doesn't produce a
1527 // non-chain result.
1528 std::map<std::string, std::vector<std::string> > OpcodeVTMap;
1530 // Emit one Select_* method for each top-level opcode. We do this instead of
1531 // emitting one giant switch statement to support compilers where this will
1532 // result in the recursive functions taking less stack space.
1533 for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
1534 PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
1535 PBOI != E; ++PBOI) {
1536 const std::string &OpName = PBOI->first;
1537 std::vector<const PatternToMatch*> &PatternsOfOp = PBOI->second;
1538 assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
1540 // We want to emit all of the matching code now. However, we want to emit
1541 // the matches in order of minimal cost. Sort the patterns so the least
1542 // cost one is at the start.
1543 std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(),
1544 PatternSortingPredicate(CGP));
1546 // Split them into groups by type.
1547 std::map<MVT::ValueType, std::vector<const PatternToMatch*> >PatternsByType;
1548 for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
1549 const PatternToMatch *Pat = PatternsOfOp[i];
1550 TreePatternNode *SrcPat = Pat->getSrcPattern();
1551 MVT::ValueType VT = SrcPat->getTypeNum(0);
1552 std::map<MVT::ValueType,
1553 std::vector<const PatternToMatch*> >::iterator TI =
1554 PatternsByType.find(VT);
1555 if (TI != PatternsByType.end())
1556 TI->second.push_back(Pat);
1557 else {
1558 std::vector<const PatternToMatch*> PVec;
1559 PVec.push_back(Pat);
1560 PatternsByType.insert(std::make_pair(VT, PVec));
1564 for (std::map<MVT::ValueType, std::vector<const PatternToMatch*> >::iterator
1565 II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
1566 ++II) {
1567 MVT::ValueType OpVT = II->first;
1568 std::vector<const PatternToMatch*> &Patterns = II->second;
1569 typedef std::vector<std::pair<unsigned,std::string> > CodeList;
1570 typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI;
1572 std::vector<std::pair<const PatternToMatch*, CodeList> > CodeForPatterns;
1573 std::vector<std::vector<std::string> > PatternOpcodes;
1574 std::vector<std::vector<std::string> > PatternVTs;
1575 std::vector<std::set<std::string> > PatternDecls;
1576 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1577 CodeList GeneratedCode;
1578 std::set<std::string> GeneratedDecl;
1579 std::vector<std::string> TargetOpcodes;
1580 std::vector<std::string> TargetVTs;
1581 GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
1582 TargetOpcodes, TargetVTs);
1583 CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
1584 PatternDecls.push_back(GeneratedDecl);
1585 PatternOpcodes.push_back(TargetOpcodes);
1586 PatternVTs.push_back(TargetVTs);
1589 // Scan the code to see if all of the patterns are reachable and if it is
1590 // possible that the last one might not match.
1591 bool mightNotMatch = true;
1592 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
1593 CodeList &GeneratedCode = CodeForPatterns[i].second;
1594 mightNotMatch = false;
1596 for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
1597 if (GeneratedCode[j].first == 1) { // predicate.
1598 mightNotMatch = true;
1599 break;
1603 // If this pattern definitely matches, and if it isn't the last one, the
1604 // patterns after it CANNOT ever match. Error out.
1605 if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
1606 cerr << "Pattern '";
1607 CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream());
1608 cerr << "' is impossible to select!\n";
1609 exit(1);
1613 // Factor target node emission code (emitted by EmitResultCode) into
1614 // separate functions. Uniquing and share them among all instruction
1615 // selection routines.
1616 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
1617 CodeList &GeneratedCode = CodeForPatterns[i].second;
1618 std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
1619 std::vector<std::string> &TargetVTs = PatternVTs[i];
1620 std::set<std::string> Decls = PatternDecls[i];
1621 std::vector<std::string> AddedInits;
1622 int CodeSize = (int)GeneratedCode.size();
1623 int LastPred = -1;
1624 for (int j = CodeSize-1; j >= 0; --j) {
1625 if (LastPred == -1 && GeneratedCode[j].first == 1)
1626 LastPred = j;
1627 else if (LastPred != -1 && GeneratedCode[j].first == 2)
1628 AddedInits.push_back(GeneratedCode[j].second);
1631 std::string CalleeCode = "(const SDOperand &N";
1632 std::string CallerCode = "(N";
1633 for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
1634 CalleeCode += ", unsigned Opc" + utostr(j);
1635 CallerCode += ", " + TargetOpcodes[j];
1637 for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
1638 CalleeCode += ", MVT::ValueType VT" + utostr(j);
1639 CallerCode += ", " + TargetVTs[j];
1641 for (std::set<std::string>::iterator
1642 I = Decls.begin(), E = Decls.end(); I != E; ++I) {
1643 std::string Name = *I;
1644 CalleeCode += ", SDOperand &" + Name;
1645 CallerCode += ", " + Name;
1647 CallerCode += ");";
1648 CalleeCode += ") ";
1649 // Prevent emission routines from being inlined to reduce selection
1650 // routines stack frame sizes.
1651 CalleeCode += "DISABLE_INLINE ";
1652 CalleeCode += "{\n";
1654 for (std::vector<std::string>::const_reverse_iterator
1655 I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
1656 CalleeCode += " " + *I + "\n";
1658 for (int j = LastPred+1; j < CodeSize; ++j)
1659 CalleeCode += " " + GeneratedCode[j].second + "\n";
1660 for (int j = LastPred+1; j < CodeSize; ++j)
1661 GeneratedCode.pop_back();
1662 CalleeCode += "}\n";
1664 // Uniquing the emission routines.
1665 unsigned EmitFuncNum;
1666 std::map<std::string, unsigned>::iterator EFI =
1667 EmitFunctions.find(CalleeCode);
1668 if (EFI != EmitFunctions.end()) {
1669 EmitFuncNum = EFI->second;
1670 } else {
1671 EmitFuncNum = EmitFunctions.size();
1672 EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
1673 OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
1676 // Replace the emission code within selection routines with calls to the
1677 // emission functions.
1678 CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode;
1679 GeneratedCode.push_back(std::make_pair(false, CallerCode));
1682 // Print function.
1683 std::string OpVTStr;
1684 if (OpVT == MVT::iPTR) {
1685 OpVTStr = "_iPTR";
1686 } else if (OpVT == MVT::isVoid) {
1687 // Nodes with a void result actually have a first result type of either
1688 // Other (a chain) or Flag. Since there is no one-to-one mapping from
1689 // void to this case, we handle it specially here.
1690 } else {
1691 OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::'
1693 std::map<std::string, std::vector<std::string> >::iterator OpVTI =
1694 OpcodeVTMap.find(OpName);
1695 if (OpVTI == OpcodeVTMap.end()) {
1696 std::vector<std::string> VTSet;
1697 VTSet.push_back(OpVTStr);
1698 OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
1699 } else
1700 OpVTI->second.push_back(OpVTStr);
1702 OS << "SDNode *Select_" << getLegalCName(OpName)
1703 << OpVTStr << "(const SDOperand &N) {\n";
1705 // Loop through and reverse all of the CodeList vectors, as we will be
1706 // accessing them from their logical front, but accessing the end of a
1707 // vector is more efficient.
1708 for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
1709 CodeList &GeneratedCode = CodeForPatterns[i].second;
1710 std::reverse(GeneratedCode.begin(), GeneratedCode.end());
1713 // Next, reverse the list of patterns itself for the same reason.
1714 std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
1716 // Emit all of the patterns now, grouped together to share code.
1717 EmitPatterns(CodeForPatterns, 2, OS);
1719 // If the last pattern has predicates (which could fail) emit code to
1720 // catch the case where nothing handles a pattern.
1721 if (mightNotMatch) {
1722 OS << " cerr << \"Cannot yet select: \";\n";
1723 if (OpName != "ISD::INTRINSIC_W_CHAIN" &&
1724 OpName != "ISD::INTRINSIC_WO_CHAIN" &&
1725 OpName != "ISD::INTRINSIC_VOID") {
1726 OS << " N.Val->dump(CurDAG);\n";
1727 } else {
1728 OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
1729 "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
1730 << " cerr << \"intrinsic %\"<< "
1731 "Intrinsic::getName((Intrinsic::ID)iid);\n";
1733 OS << " cerr << '\\n';\n"
1734 << " abort();\n"
1735 << " return NULL;\n";
1737 OS << "}\n\n";
1741 // Emit boilerplate.
1742 OS << "SDNode *Select_INLINEASM(SDOperand N) {\n"
1743 << " std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n"
1744 << " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n\n"
1746 << " // Ensure that the asm operands are themselves selected.\n"
1747 << " for (unsigned j = 0, e = Ops.size(); j != e; ++j)\n"
1748 << " AddToISelQueue(Ops[j]);\n\n"
1750 << " std::vector<MVT::ValueType> VTs;\n"
1751 << " VTs.push_back(MVT::Other);\n"
1752 << " VTs.push_back(MVT::Flag);\n"
1753 << " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], "
1754 "Ops.size());\n"
1755 << " return New.Val;\n"
1756 << "}\n\n";
1758 OS << "SDNode *Select_LABEL(const SDOperand &N) {\n"
1759 << " SDOperand Chain = N.getOperand(0);\n"
1760 << " SDOperand N1 = N.getOperand(1);\n"
1761 << " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n"
1762 << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
1763 << " AddToISelQueue(Chain);\n"
1764 << " SDOperand Ops[] = { Tmp, Chain };\n"
1765 << " return CurDAG->getTargetNode(TargetInstrInfo::LABEL,\n"
1766 << " MVT::Other, Ops, 2);\n"
1767 << "}\n\n";
1769 OS << "SDNode *Select_EXTRACT_SUBREG(const SDOperand &N) {\n"
1770 << " SDOperand N0 = N.getOperand(0);\n"
1771 << " SDOperand N1 = N.getOperand(1);\n"
1772 << " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n"
1773 << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
1774 << " AddToISelQueue(N0);\n"
1775 << " SDOperand Ops[] = { N0, Tmp };\n"
1776 << " return CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,\n"
1777 << " N.getValueType(), Ops, 2);\n"
1778 << "}\n\n";
1780 OS << "SDNode *Select_INSERT_SUBREG(const SDOperand &N) {\n"
1781 << " SDOperand N0 = N.getOperand(0);\n"
1782 << " SDOperand N1 = N.getOperand(1);\n"
1783 << " SDOperand N2 = N.getOperand(2);\n"
1784 << " unsigned C = cast<ConstantSDNode>(N2)->getValue();\n"
1785 << " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
1786 << " AddToISelQueue(N1);\n"
1787 << " SDOperand Ops[] = { N0, N1, Tmp };\n"
1788 << " if (N0.getOpcode() == ISD::UNDEF) {\n"
1789 << " return CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG,\n"
1790 << " N.getValueType(), Ops+1, 2);\n"
1791 << " } else {\n"
1792 << " AddToISelQueue(N0);\n"
1793 << " return CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG,\n"
1794 << " N.getValueType(), Ops, 3);\n"
1795 << " }\n"
1796 << "}\n\n";
1798 OS << "// The main instruction selector code.\n"
1799 << "SDNode *SelectCode(SDOperand N) {\n"
1800 << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
1801 << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
1802 << "INSTRUCTION_LIST_END)) {\n"
1803 << " return NULL; // Already selected.\n"
1804 << " }\n\n"
1805 << " MVT::ValueType NVT = N.Val->getValueType(0);\n"
1806 << " switch (N.getOpcode()) {\n"
1807 << " default: break;\n"
1808 << " case ISD::EntryToken: // These leaves remain the same.\n"
1809 << " case ISD::BasicBlock:\n"
1810 << " case ISD::Register:\n"
1811 << " case ISD::HANDLENODE:\n"
1812 << " case ISD::TargetConstant:\n"
1813 << " case ISD::TargetConstantPool:\n"
1814 << " case ISD::TargetFrameIndex:\n"
1815 << " case ISD::TargetExternalSymbol:\n"
1816 << " case ISD::TargetJumpTable:\n"
1817 << " case ISD::TargetGlobalTLSAddress:\n"
1818 << " case ISD::TargetGlobalAddress: {\n"
1819 << " return NULL;\n"
1820 << " }\n"
1821 << " case ISD::AssertSext:\n"
1822 << " case ISD::AssertZext: {\n"
1823 << " AddToISelQueue(N.getOperand(0));\n"
1824 << " ReplaceUses(N, N.getOperand(0));\n"
1825 << " return NULL;\n"
1826 << " }\n"
1827 << " case ISD::TokenFactor:\n"
1828 << " case ISD::CopyFromReg:\n"
1829 << " case ISD::CopyToReg: {\n"
1830 << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
1831 << " AddToISelQueue(N.getOperand(i));\n"
1832 << " return NULL;\n"
1833 << " }\n"
1834 << " case ISD::INLINEASM: return Select_INLINEASM(N);\n"
1835 << " case ISD::LABEL: return Select_LABEL(N);\n"
1836 << " case ISD::EXTRACT_SUBREG: return Select_EXTRACT_SUBREG(N);\n"
1837 << " case ISD::INSERT_SUBREG: return Select_INSERT_SUBREG(N);\n";
1840 // Loop over all of the case statements, emiting a call to each method we
1841 // emitted above.
1842 for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
1843 PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
1844 PBOI != E; ++PBOI) {
1845 const std::string &OpName = PBOI->first;
1846 // Potentially multiple versions of select for this opcode. One for each
1847 // ValueType of the node (or its first true operand if it doesn't produce a
1848 // result.
1849 std::map<std::string, std::vector<std::string> >::iterator OpVTI =
1850 OpcodeVTMap.find(OpName);
1851 std::vector<std::string> &OpVTs = OpVTI->second;
1852 OS << " case " << OpName << ": {\n";
1853 // Keep track of whether we see a pattern that has an iPtr result.
1854 bool HasPtrPattern = false;
1855 bool HasDefaultPattern = false;
1857 OS << " switch (NVT) {\n";
1858 for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
1859 std::string &VTStr = OpVTs[i];
1860 if (VTStr.empty()) {
1861 HasDefaultPattern = true;
1862 continue;
1865 // If this is a match on iPTR: don't emit it directly, we need special
1866 // code.
1867 if (VTStr == "_iPTR") {
1868 HasPtrPattern = true;
1869 continue;
1871 OS << " case MVT::" << VTStr.substr(1) << ":\n"
1872 << " return Select_" << getLegalCName(OpName)
1873 << VTStr << "(N);\n";
1875 OS << " default:\n";
1877 // If there is an iPTR result version of this pattern, emit it here.
1878 if (HasPtrPattern) {
1879 OS << " if (NVT == TLI.getPointerTy())\n";
1880 OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n";
1882 if (HasDefaultPattern) {
1883 OS << " return Select_" << getLegalCName(OpName) << "(N);\n";
1885 OS << " break;\n";
1886 OS << " }\n";
1887 OS << " break;\n";
1888 OS << " }\n";
1891 OS << " } // end of big switch.\n\n"
1892 << " cerr << \"Cannot yet select: \";\n"
1893 << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
1894 << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
1895 << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
1896 << " N.Val->dump(CurDAG);\n"
1897 << " } else {\n"
1898 << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
1899 "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
1900 << " cerr << \"intrinsic %\"<< "
1901 "Intrinsic::getName((Intrinsic::ID)iid);\n"
1902 << " }\n"
1903 << " cerr << '\\n';\n"
1904 << " abort();\n"
1905 << " return NULL;\n"
1906 << "}\n";
1909 void DAGISelEmitter::run(std::ostream &OS) {
1910 EmitSourceFileHeader("DAG Instruction Selector for the " +
1911 CGP.getTargetInfo().getName() + " target", OS);
1913 OS << "// *** NOTE: This file is #included into the middle of the target\n"
1914 << "// *** instruction selector class. These functions are really "
1915 << "methods.\n\n";
1917 OS << "#include \"llvm/Support/Compiler.h\"\n";
1919 OS << "// Instruction selector priority queue:\n"
1920 << "std::vector<SDNode*> ISelQueue;\n";
1921 OS << "/// Keep track of nodes which have already been added to queue.\n"
1922 << "unsigned char *ISelQueued;\n";
1923 OS << "/// Keep track of nodes which have already been selected.\n"
1924 << "unsigned char *ISelSelected;\n";
1925 OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n"
1926 << "std::vector<SDNode*> ISelKilled;\n\n";
1928 OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n";
1929 OS << "/// not reach Op.\n";
1930 OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n";
1931 OS << " if (Chain->getOpcode() == ISD::EntryToken)\n";
1932 OS << " return true;\n";
1933 OS << " else if (Chain->getOpcode() == ISD::TokenFactor)\n";
1934 OS << " return false;\n";
1935 OS << " else if (Chain->getNumOperands() > 0) {\n";
1936 OS << " SDOperand C0 = Chain->getOperand(0);\n";
1937 OS << " if (C0.getValueType() == MVT::Other)\n";
1938 OS << " return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n";
1939 OS << " }\n";
1940 OS << " return true;\n";
1941 OS << "}\n";
1943 OS << "/// Sorting functions for the selection queue.\n"
1944 << "struct isel_sort : public std::binary_function"
1945 << "<SDNode*, SDNode*, bool> {\n"
1946 << " bool operator()(const SDNode* left, const SDNode* right) "
1947 << "const {\n"
1948 << " return (left->getNodeId() > right->getNodeId());\n"
1949 << " }\n"
1950 << "};\n\n";
1952 OS << "inline void setQueued(int Id) {\n";
1953 OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n";
1954 OS << "}\n";
1955 OS << "inline bool isQueued(int Id) {\n";
1956 OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n";
1957 OS << "}\n";
1958 OS << "inline void setSelected(int Id) {\n";
1959 OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n";
1960 OS << "}\n";
1961 OS << "inline bool isSelected(int Id) {\n";
1962 OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n";
1963 OS << "}\n\n";
1965 OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n";
1966 OS << " int Id = N.Val->getNodeId();\n";
1967 OS << " if (Id != -1 && !isQueued(Id)) {\n";
1968 OS << " ISelQueue.push_back(N.Val);\n";
1969 OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
1970 OS << " setQueued(Id);\n";
1971 OS << " }\n";
1972 OS << "}\n\n";
1974 OS << "inline void RemoveKilled() {\n";
1975 OS << " unsigned NumKilled = ISelKilled.size();\n";
1976 OS << " if (NumKilled) {\n";
1977 OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n";
1978 OS << " SDNode *Temp = ISelKilled[i];\n";
1979 OS << " ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(), "
1980 << "Temp), ISelQueue.end());\n";
1981 OS << " };\n";
1982 OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
1983 OS << " ISelKilled.clear();\n";
1984 OS << " }\n";
1985 OS << "}\n\n";
1987 OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n";
1988 OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, &ISelKilled);\n";
1989 OS << " setSelected(F.Val->getNodeId());\n";
1990 OS << " RemoveKilled();\n";
1991 OS << "}\n";
1992 OS << "void ReplaceUses(SDNode *F, SDNode *T) DISABLE_INLINE {\n";
1993 OS << " unsigned FNumVals = F->getNumValues();\n";
1994 OS << " unsigned TNumVals = T->getNumValues();\n";
1995 OS << " if (FNumVals != TNumVals) {\n";
1996 OS << " for (unsigned i = 0, e = std::min(FNumVals, TNumVals); "
1997 << "i < e; ++i)\n";
1998 OS << " CurDAG->ReplaceAllUsesOfValueWith(SDOperand(F, i), "
1999 << "SDOperand(T, i), &ISelKilled);\n";
2000 OS << " } else {\n";
2001 OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n";
2002 OS << " }\n";
2003 OS << " setSelected(F->getNodeId());\n";
2004 OS << " RemoveKilled();\n";
2005 OS << "}\n\n";
2007 OS << "// SelectRoot - Top level entry to DAG isel.\n";
2008 OS << "SDOperand SelectRoot(SDOperand Root) {\n";
2009 OS << " SelectRootInit();\n";
2010 OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n";
2011 OS << " ISelQueued = new unsigned char[NumBytes];\n";
2012 OS << " ISelSelected = new unsigned char[NumBytes];\n";
2013 OS << " memset(ISelQueued, 0, NumBytes);\n";
2014 OS << " memset(ISelSelected, 0, NumBytes);\n";
2015 OS << "\n";
2016 OS << " // Create a dummy node (which is not added to allnodes), that adds\n"
2017 << " // a reference to the root node, preventing it from being deleted,\n"
2018 << " // and tracking any changes of the root.\n"
2019 << " HandleSDNode Dummy(CurDAG->getRoot());\n"
2020 << " ISelQueue.push_back(CurDAG->getRoot().Val);\n";
2021 OS << " while (!ISelQueue.empty()) {\n";
2022 OS << " SDNode *Node = ISelQueue.front();\n";
2023 OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
2024 OS << " ISelQueue.pop_back();\n";
2025 OS << " if (!isSelected(Node->getNodeId())) {\n";
2026 OS << " SDNode *ResNode = Select(SDOperand(Node, 0));\n";
2027 OS << " if (ResNode != Node) {\n";
2028 OS << " if (ResNode)\n";
2029 OS << " ReplaceUses(Node, ResNode);\n";
2030 OS << " if (Node->use_empty()) { // Don't delete EntryToken, etc.\n";
2031 OS << " CurDAG->RemoveDeadNode(Node, ISelKilled);\n";
2032 OS << " RemoveKilled();\n";
2033 OS << " }\n";
2034 OS << " }\n";
2035 OS << " }\n";
2036 OS << " }\n";
2037 OS << "\n";
2038 OS << " delete[] ISelQueued;\n";
2039 OS << " ISelQueued = NULL;\n";
2040 OS << " delete[] ISelSelected;\n";
2041 OS << " ISelSelected = NULL;\n";
2042 OS << " return Dummy.getValue();\n";
2043 OS << "}\n";
2045 EmitNodeTransforms(OS);
2046 EmitPredicateFunctions(OS);
2048 DOUT << "\n\nALL PATTERNS TO MATCH:\n\n";
2049 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
2050 I != E; ++I) {
2051 DOUT << "PATTERN: "; DEBUG(I->getSrcPattern()->dump());
2052 DOUT << "\nRESULT: "; DEBUG(I->getDstPattern()->dump());
2053 DOUT << "\n";
2056 // At this point, we have full information about the 'Patterns' we need to
2057 // parse, both implicitly from instructions as well as from explicit pattern
2058 // definitions. Emit the resultant instruction selector.
2059 EmitInstructionSelector(OS);