[yaml2obj/obj2yaml] - Do not trigger llvm_unreachable when dumping/parsing relocation...
[llvm-complete.git] / unittests / Transforms / Scalar / LoopPassManagerTest.cpp
blob9926396509cede820964acbd0ee5a73f0a15e26a
1 //===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Scalar/LoopPassManager.h"
10 #include "llvm/Analysis/AliasAnalysis.h"
11 #include "llvm/Analysis/AssumptionCache.h"
12 #include "llvm/Analysis/ScalarEvolution.h"
13 #include "llvm/Analysis/TargetLibraryInfo.h"
14 #include "llvm/Analysis/TargetTransformInfo.h"
15 #include "llvm/AsmParser/Parser.h"
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/LLVMContext.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/Support/SourceMgr.h"
23 #include "gmock/gmock.h"
24 #include "gtest/gtest.h"
26 using namespace llvm;
28 namespace {
30 using testing::DoDefault;
31 using testing::Return;
32 using testing::Expectation;
33 using testing::Invoke;
34 using testing::InvokeWithoutArgs;
35 using testing::_;
37 template <typename DerivedT, typename IRUnitT,
38 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
39 typename... ExtraArgTs>
40 class MockAnalysisHandleBase {
41 public:
42 class Analysis : public AnalysisInfoMixin<Analysis> {
43 friend AnalysisInfoMixin<Analysis>;
44 friend MockAnalysisHandleBase;
45 static AnalysisKey Key;
47 DerivedT *Handle;
49 Analysis(DerivedT &Handle) : Handle(&Handle) {
50 static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
51 "Must pass the derived type to this template!");
54 public:
55 class Result {
56 friend MockAnalysisHandleBase;
58 DerivedT *Handle;
60 Result(DerivedT &Handle) : Handle(&Handle) {}
62 public:
63 // Forward invalidation events to the mock handle.
64 bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
65 typename AnalysisManagerT::Invalidator &Inv) {
66 return Handle->invalidate(IR, PA, Inv);
70 Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
71 return Handle->run(IR, AM, ExtraArgs...);
75 Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
76 typename Analysis::Result getResult() {
77 return typename Analysis::Result(static_cast<DerivedT &>(*this));
80 protected:
81 // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
82 // the template, so we use a boring static function.
83 static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
84 typename AnalysisManagerT::Invalidator &Inv) {
85 auto PAC = PA.template getChecker<Analysis>();
86 return !PAC.preserved() &&
87 !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
90 /// Derived classes should call this in their constructor to set up default
91 /// mock actions. (We can't do this in our constructor because this has to
92 /// run after the DerivedT is constructed.)
93 void setDefaults() {
94 ON_CALL(static_cast<DerivedT &>(*this),
95 run(_, _, testing::Matcher<ExtraArgTs>(_)...))
96 .WillByDefault(Return(this->getResult()));
97 ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
98 .WillByDefault(Invoke(&invalidateCallback));
102 template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
103 typename... ExtraArgTs>
104 AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
105 ExtraArgTs...>::Analysis::Key;
107 /// Mock handle for loop analyses.
109 /// This is provided as a template accepting an (optional) integer. Because
110 /// analyses are identified and queried by type, this allows constructing
111 /// multiple handles with distinctly typed nested 'Analysis' types that can be
112 /// registered and queried. If you want to register multiple loop analysis
113 /// passes, you'll need to instantiate this type with different values for I.
114 /// For example:
116 /// MockLoopAnalysisHandleTemplate<0> h0;
117 /// MockLoopAnalysisHandleTemplate<1> h1;
118 /// typedef decltype(h0)::Analysis Analysis0;
119 /// typedef decltype(h1)::Analysis Analysis1;
120 template <size_t I = static_cast<size_t>(-1)>
121 struct MockLoopAnalysisHandleTemplate
122 : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
123 LoopAnalysisManager,
124 LoopStandardAnalysisResults &> {
125 typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;
127 MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
128 LoopStandardAnalysisResults &));
130 MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
131 LoopAnalysisManager::Invalidator &));
133 MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
136 typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;
138 struct MockFunctionAnalysisHandle
139 : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
140 MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));
142 MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
143 FunctionAnalysisManager::Invalidator &));
145 MockFunctionAnalysisHandle() { setDefaults(); }
148 template <typename DerivedT, typename IRUnitT,
149 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
150 typename... ExtraArgTs>
151 class MockPassHandleBase {
152 public:
153 class Pass : public PassInfoMixin<Pass> {
154 friend MockPassHandleBase;
156 DerivedT *Handle;
158 Pass(DerivedT &Handle) : Handle(&Handle) {
159 static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
160 "Must pass the derived type to this template!");
163 public:
164 PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
165 ExtraArgTs... ExtraArgs) {
166 return Handle->run(IR, AM, ExtraArgs...);
170 Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }
172 protected:
173 /// Derived classes should call this in their constructor to set up default
174 /// mock actions. (We can't do this in our constructor because this has to
175 /// run after the DerivedT is constructed.)
176 void setDefaults() {
177 ON_CALL(static_cast<DerivedT &>(*this),
178 run(_, _, testing::Matcher<ExtraArgTs>(_)...))
179 .WillByDefault(Return(PreservedAnalyses::all()));
183 struct MockLoopPassHandle
184 : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
185 LoopStandardAnalysisResults &, LPMUpdater &> {
186 MOCK_METHOD4(run,
187 PreservedAnalyses(Loop &, LoopAnalysisManager &,
188 LoopStandardAnalysisResults &, LPMUpdater &));
189 MockLoopPassHandle() { setDefaults(); }
192 struct MockFunctionPassHandle
193 : MockPassHandleBase<MockFunctionPassHandle, Function> {
194 MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));
196 MockFunctionPassHandle() { setDefaults(); }
199 struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
200 MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));
202 MockModulePassHandle() { setDefaults(); }
205 /// Define a custom matcher for objects which support a 'getName' method
206 /// returning a StringRef.
208 /// LLVM often has IR objects or analysis objects which expose a StringRef name
209 /// and in tests it is convenient to match these by name for readability. This
210 /// matcher supports any type exposing a getName() method of this form.
212 /// It should be used as:
214 /// HasName("my_function")
216 /// No namespace or other qualification is required.
217 MATCHER_P(HasName, Name, "") {
218 // The matcher's name and argument are printed in the case of failure, but we
219 // also want to print out the name of the argument. This uses an implicitly
220 // avaiable std::ostream, so we have to construct a std::string.
221 *result_listener << "has name '" << arg.getName().str() << "'";
222 return Name == arg.getName();
225 std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
226 SMDiagnostic Err;
227 return parseAssemblyString(IR, Err, C);
230 class LoopPassManagerTest : public ::testing::Test {
231 protected:
232 LLVMContext Context;
233 std::unique_ptr<Module> M;
235 LoopAnalysisManager LAM;
236 FunctionAnalysisManager FAM;
237 ModuleAnalysisManager MAM;
239 MockLoopAnalysisHandle MLAHandle;
240 MockLoopPassHandle MLPHandle;
241 MockFunctionPassHandle MFPHandle;
242 MockModulePassHandle MMPHandle;
244 static PreservedAnalyses
245 getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
246 LoopStandardAnalysisResults &AR, LPMUpdater &) {
247 (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
248 return PreservedAnalyses::all();
251 public:
252 LoopPassManagerTest()
253 : M(parseIR(Context,
254 "define void @f(i1* %ptr) {\n"
255 "entry:\n"
256 " br label %loop.0\n"
257 "loop.0:\n"
258 " %cond.0 = load volatile i1, i1* %ptr\n"
259 " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
260 "loop.0.0.ph:\n"
261 " br label %loop.0.0\n"
262 "loop.0.0:\n"
263 " %cond.0.0 = load volatile i1, i1* %ptr\n"
264 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
265 "loop.0.1.ph:\n"
266 " br label %loop.0.1\n"
267 "loop.0.1:\n"
268 " %cond.0.1 = load volatile i1, i1* %ptr\n"
269 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
270 "loop.0.latch:\n"
271 " br label %loop.0\n"
272 "end:\n"
273 " ret void\n"
274 "}\n"
275 "\n"
276 "define void @g(i1* %ptr) {\n"
277 "entry:\n"
278 " br label %loop.g.0\n"
279 "loop.g.0:\n"
280 " %cond.0 = load volatile i1, i1* %ptr\n"
281 " br i1 %cond.0, label %loop.g.0, label %end\n"
282 "end:\n"
283 " ret void\n"
284 "}\n")),
285 LAM(true), FAM(true), MAM(true) {
286 // Register our mock analysis.
287 LAM.registerPass([&] { return MLAHandle.getAnalysis(); });
289 // We need DominatorTreeAnalysis for LoopAnalysis.
290 FAM.registerPass([&] { return DominatorTreeAnalysis(); });
291 FAM.registerPass([&] { return LoopAnalysis(); });
292 // We also allow loop passes to assume a set of other analyses and so need
293 // those.
294 FAM.registerPass([&] { return AAManager(); });
295 FAM.registerPass([&] { return AssumptionAnalysis(); });
296 FAM.registerPass([&] { return MemorySSAAnalysis(); });
297 FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
298 FAM.registerPass([&] { return TargetLibraryAnalysis(); });
299 FAM.registerPass([&] { return TargetIRAnalysis(); });
301 // Register required pass instrumentation analysis.
302 LAM.registerPass([&] { return PassInstrumentationAnalysis(); });
303 FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
304 MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
306 // Cross-register proxies.
307 LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
308 FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
309 FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
310 MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
314 TEST_F(LoopPassManagerTest, Basic) {
315 ModulePassManager MPM(true);
316 ::testing::InSequence MakeExpectationsSequenced;
318 // First we just visit all the loops in all the functions and get their
319 // analysis results. This will run the analysis a total of four times,
320 // once for each loop.
321 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
322 .WillOnce(Invoke(getLoopAnalysisResult));
323 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
324 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
325 .WillOnce(Invoke(getLoopAnalysisResult));
326 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
327 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
328 .WillOnce(Invoke(getLoopAnalysisResult));
329 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
330 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
331 .WillOnce(Invoke(getLoopAnalysisResult));
332 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
333 // Wire the loop pass through pass managers into the module pipeline.
335 LoopPassManager LPM(true);
336 LPM.addPass(MLPHandle.getPass());
337 FunctionPassManager FPM(true);
338 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
339 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
342 // Next we run two passes over the loops. The first one invalidates the
343 // analyses for one loop, the second ones try to get the analysis results.
344 // This should force only one analysis to re-run within the loop PM, but will
345 // also invalidate everything after the loop pass manager finishes.
346 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
347 .WillOnce(DoDefault())
348 .WillOnce(Invoke(getLoopAnalysisResult));
349 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
350 .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
351 .WillOnce(Invoke(getLoopAnalysisResult));
352 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
353 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
354 .WillOnce(DoDefault())
355 .WillOnce(Invoke(getLoopAnalysisResult));
356 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
357 .WillOnce(DoDefault())
358 .WillOnce(Invoke(getLoopAnalysisResult));
359 // Wire two loop pass runs into the module pipeline.
361 LoopPassManager LPM(true);
362 LPM.addPass(MLPHandle.getPass());
363 LPM.addPass(MLPHandle.getPass());
364 FunctionPassManager FPM(true);
365 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
366 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
369 // And now run the pipeline across the module.
370 MPM.run(*M, MAM);
373 TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
374 ModulePassManager MPM(true);
375 FunctionPassManager FPM(true);
376 // We process each function completely in sequence.
377 ::testing::Sequence FSequence, GSequence;
379 // First, force the analysis result to be computed for each loop.
380 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
381 .InSequence(FSequence)
382 .WillOnce(DoDefault());
383 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
384 .InSequence(FSequence)
385 .WillOnce(DoDefault());
386 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
387 .InSequence(FSequence)
388 .WillOnce(DoDefault());
389 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
390 .InSequence(GSequence)
391 .WillOnce(DoDefault());
392 FPM.addPass(createFunctionToLoopPassAdaptor(
393 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
395 // No need to re-run if we require again from a fresh loop pass manager.
396 FPM.addPass(createFunctionToLoopPassAdaptor(
397 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
398 // For 'f', preserve most things but not the specific loop analyses.
399 auto PA = getLoopPassPreservedAnalyses();
400 if (EnableMSSALoopDependency)
401 PA.preserve<MemorySSAAnalysis>();
402 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
403 .InSequence(FSequence)
404 .WillOnce(Return(PA));
405 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
406 .InSequence(FSequence)
407 .WillOnce(DoDefault());
408 // On one loop, skip the invalidation (as though we did an internal update).
409 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
410 .InSequence(FSequence)
411 .WillOnce(Return(false));
412 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
413 .InSequence(FSequence)
414 .WillOnce(DoDefault());
415 // Now two loops still have to be recomputed.
416 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
417 .InSequence(FSequence)
418 .WillOnce(DoDefault());
419 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
420 .InSequence(FSequence)
421 .WillOnce(DoDefault());
422 // Preserve things in the second function to ensure invalidation remains
423 // isolated to one function.
424 EXPECT_CALL(MFPHandle, run(HasName("g"), _))
425 .InSequence(GSequence)
426 .WillOnce(DoDefault());
427 FPM.addPass(MFPHandle.getPass());
428 FPM.addPass(createFunctionToLoopPassAdaptor(
429 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
431 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
432 .InSequence(FSequence)
433 .WillOnce(DoDefault());
434 // For 'g', fail to preserve anything, causing the loops themselves to be
435 // cleared. We don't get an invalidation event here as the loop is gone, but
436 // we should still have to recompute the analysis.
437 EXPECT_CALL(MFPHandle, run(HasName("g"), _))
438 .InSequence(GSequence)
439 .WillOnce(Return(PreservedAnalyses::none()));
440 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
441 .InSequence(GSequence)
442 .WillOnce(DoDefault());
443 FPM.addPass(MFPHandle.getPass());
444 FPM.addPass(createFunctionToLoopPassAdaptor(
445 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
447 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
449 // Verify with a separate function pass run that we didn't mess up 'f's
450 // cache. No analysis runs should be necessary here.
451 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
452 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
454 MPM.run(*M, MAM);
457 TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
458 ModulePassManager MPM(true);
459 ::testing::InSequence MakeExpectationsSequenced;
461 // First, force the analysis result to be computed for each loop.
462 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
463 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
464 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
465 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
466 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
467 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
469 // Walking all the way out and all the way back in doesn't re-run the
470 // analysis.
471 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
472 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
474 // But a module pass that doesn't preserve the actual mock loop analysis
475 // invalidates all the way down and forces recomputing.
476 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
477 auto PA = getLoopPassPreservedAnalyses();
478 PA.preserve<FunctionAnalysisManagerModuleProxy>();
479 if (EnableMSSALoopDependency)
480 PA.preserve<MemorySSAAnalysis>();
481 return PA;
482 }));
483 // All the loop analyses from both functions get invalidated before we
484 // recompute anything.
485 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
486 // On one loop, again skip the invalidation (as though we did an internal
487 // update).
488 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
489 .WillOnce(Return(false));
490 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
491 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
492 // Now all but one of the loops gets re-analyzed.
493 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
494 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
495 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
496 MPM.addPass(MMPHandle.getPass());
497 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
498 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
500 // Verify that the cached values persist.
501 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
502 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
504 // Now we fail to preserve the loop analysis and observe that the loop
505 // analyses are cleared (so no invalidation event) as the loops themselves
506 // are no longer valid.
507 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
508 auto PA = PreservedAnalyses::none();
509 PA.preserve<FunctionAnalysisManagerModuleProxy>();
510 return PA;
511 }));
512 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
513 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
514 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
515 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
516 MPM.addPass(MMPHandle.getPass());
517 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
518 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
520 // Verify that the cached values persist.
521 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
522 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
524 // Next, check that even if we preserve everything within the function itelf,
525 // if the function's module pass proxy isn't preserved and the potential set
526 // of functions changes, the clear reaches the loop analyses as well. This
527 // will again trigger re-runs but not invalidation events.
528 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
529 auto PA = PreservedAnalyses::none();
530 PA.preserveSet<AllAnalysesOn<Function>>();
531 PA.preserveSet<AllAnalysesOn<Loop>>();
532 return PA;
533 }));
534 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
535 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
536 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
537 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
538 MPM.addPass(MMPHandle.getPass());
539 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
540 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
542 MPM.run(*M, MAM);
545 // Test that if any of the bundled analyses provided in the LPM's signature
546 // become invalid, the analysis proxy itself becomes invalid and we clear all
547 // loop analysis results.
548 TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
549 ModulePassManager MPM(true);
550 FunctionPassManager FPM(true);
551 ::testing::InSequence MakeExpectationsSequenced;
553 // First, force the analysis result to be computed for each loop.
554 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
555 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
556 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
557 FPM.addPass(createFunctionToLoopPassAdaptor(
558 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
560 // No need to re-run if we require again from a fresh loop pass manager.
561 FPM.addPass(createFunctionToLoopPassAdaptor(
562 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
564 // Preserving everything but the loop analyses themselves results in
565 // invalidation and running.
566 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
567 .WillOnce(Return(getLoopPassPreservedAnalyses()));
568 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
569 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
570 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
571 FPM.addPass(MFPHandle.getPass());
572 FPM.addPass(createFunctionToLoopPassAdaptor(
573 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
575 // The rest don't invalidate analyses, they only trigger re-runs because we
576 // clear the cache completely.
577 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
578 auto PA = PreservedAnalyses::none();
579 // Not preserving `AAManager`.
580 PA.preserve<DominatorTreeAnalysis>();
581 PA.preserve<LoopAnalysis>();
582 PA.preserve<LoopAnalysisManagerFunctionProxy>();
583 PA.preserve<ScalarEvolutionAnalysis>();
584 return PA;
585 }));
586 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
587 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
588 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
589 FPM.addPass(MFPHandle.getPass());
590 FPM.addPass(createFunctionToLoopPassAdaptor(
591 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
593 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
594 auto PA = PreservedAnalyses::none();
595 PA.preserve<AAManager>();
596 // Not preserving `DominatorTreeAnalysis`.
597 PA.preserve<LoopAnalysis>();
598 PA.preserve<LoopAnalysisManagerFunctionProxy>();
599 PA.preserve<ScalarEvolutionAnalysis>();
600 return PA;
601 }));
602 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
603 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
604 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
605 FPM.addPass(MFPHandle.getPass());
606 FPM.addPass(createFunctionToLoopPassAdaptor(
607 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
609 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
610 auto PA = PreservedAnalyses::none();
611 PA.preserve<AAManager>();
612 PA.preserve<DominatorTreeAnalysis>();
613 // Not preserving the `LoopAnalysis`.
614 PA.preserve<LoopAnalysisManagerFunctionProxy>();
615 PA.preserve<ScalarEvolutionAnalysis>();
616 return PA;
617 }));
618 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
619 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
620 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
621 FPM.addPass(MFPHandle.getPass());
622 FPM.addPass(createFunctionToLoopPassAdaptor(
623 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
625 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
626 auto PA = PreservedAnalyses::none();
627 PA.preserve<AAManager>();
628 PA.preserve<DominatorTreeAnalysis>();
629 PA.preserve<LoopAnalysis>();
630 // Not preserving the `LoopAnalysisManagerFunctionProxy`.
631 PA.preserve<ScalarEvolutionAnalysis>();
632 return PA;
633 }));
634 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
635 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
636 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
637 FPM.addPass(MFPHandle.getPass());
638 FPM.addPass(createFunctionToLoopPassAdaptor(
639 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
641 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
642 auto PA = PreservedAnalyses::none();
643 PA.preserve<AAManager>();
644 PA.preserve<DominatorTreeAnalysis>();
645 PA.preserve<LoopAnalysis>();
646 PA.preserve<LoopAnalysisManagerFunctionProxy>();
647 // Not preserving `ScalarEvolutionAnalysis`.
648 return PA;
649 }));
650 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
651 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
652 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
653 FPM.addPass(MFPHandle.getPass());
654 FPM.addPass(createFunctionToLoopPassAdaptor(
655 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
657 // After all the churn on 'f', we'll compute the loop analysis results for
658 // 'g' once with a requires pass and then run our mock pass over g a bunch
659 // but just get cached results each time.
660 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
661 EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);
663 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
664 MPM.run(*M, MAM);
667 TEST_F(LoopPassManagerTest, IndirectInvalidation) {
668 // We need two distinct analysis types and handles.
669 enum { A, B };
670 MockLoopAnalysisHandleTemplate<A> MLAHandleA;
671 MockLoopAnalysisHandleTemplate<B> MLAHandleB;
672 LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
673 LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
674 typedef decltype(MLAHandleA)::Analysis AnalysisA;
675 typedef decltype(MLAHandleB)::Analysis AnalysisB;
677 // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
678 // need to get the AnalysisB results in AnalysisA's run method and check if
679 // AnalysisB gets invalidated in AnalysisA's invalidate method.
680 ON_CALL(MLAHandleA, run(_, _, _))
681 .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
682 LoopStandardAnalysisResults &AR) {
683 (void)AM.getResult<AnalysisB>(L, AR);
684 return MLAHandleA.getResult();
685 }));
686 ON_CALL(MLAHandleA, invalidate(_, _, _))
687 .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
688 LoopAnalysisManager::Invalidator &Inv) {
689 auto PAC = PA.getChecker<AnalysisA>();
690 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
691 Inv.invalidate<AnalysisB>(L, PA);
692 }));
694 ::testing::InSequence MakeExpectationsSequenced;
696 // Compute the analyses across all of 'f' first.
697 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
698 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
699 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
700 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
701 EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
702 EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));
704 // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
705 // preserve everything for the rest. This in turn triggers that one loop to
706 // recompute both AnalysisB *and* AnalysisA if indirect invalidation is
707 // working.
708 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
709 .WillOnce(InvokeWithoutArgs([] {
710 auto PA = getLoopPassPreservedAnalyses();
711 // Specifically preserve AnalysisA so that it would survive if it
712 // didn't depend on AnalysisB.
713 PA.preserve<AnalysisA>();
714 return PA;
715 }));
716 // It happens that AnalysisB is invalidated first. That shouldn't matter
717 // though, and we should still call AnalysisA's invalidation.
718 EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
719 EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
720 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
721 .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
722 LoopStandardAnalysisResults &AR, LPMUpdater &) {
723 (void)AM.getResult<AnalysisA>(L, AR);
724 return PreservedAnalyses::all();
725 }));
726 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
727 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
728 // The rest of the loops should run and get cached results.
729 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
730 .Times(2)
731 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
732 LoopStandardAnalysisResults &AR, LPMUpdater &) {
733 (void)AM.getResult<AnalysisA>(L, AR);
734 return PreservedAnalyses::all();
735 }));
736 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
737 .Times(2)
738 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
739 LoopStandardAnalysisResults &AR, LPMUpdater &) {
740 (void)AM.getResult<AnalysisA>(L, AR);
741 return PreservedAnalyses::all();
742 }));
744 // The run over 'g' should be boring, with us just computing the analyses once
745 // up front and then running loop passes and getting cached results.
746 EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
747 EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
748 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
749 .Times(2)
750 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
751 LoopStandardAnalysisResults &AR, LPMUpdater &) {
752 (void)AM.getResult<AnalysisA>(L, AR);
753 return PreservedAnalyses::all();
754 }));
756 // Build the pipeline and run it.
757 ModulePassManager MPM(true);
758 FunctionPassManager FPM(true);
759 FPM.addPass(
760 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
761 LoopPassManager LPM(true);
762 LPM.addPass(MLPHandle.getPass());
763 LPM.addPass(MLPHandle.getPass());
764 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
765 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
766 MPM.run(*M, MAM);
769 TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
770 typedef decltype(MLAHandle)::Analysis LoopAnalysis;
772 MockFunctionAnalysisHandle MFAHandle;
773 FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
774 typedef decltype(MFAHandle)::Analysis FunctionAnalysis;
776 // Set up the loop analysis to depend on both the function and module
777 // analysis.
778 ON_CALL(MLAHandle, run(_, _, _))
779 .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
780 LoopStandardAnalysisResults &AR) {
781 auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
782 auto &FAM = FAMP.getManager();
783 Function &F = *L.getHeader()->getParent();
784 if (FAM.getCachedResult<FunctionAnalysis>(F))
785 FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
786 LoopAnalysis>();
787 return MLAHandle.getResult();
788 }));
790 ::testing::InSequence MakeExpectationsSequenced;
792 // Compute the analyses across all of 'f' first.
793 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
794 .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
795 // Force the computing of the function analysis so it is available in
796 // this function.
797 (void)AM.getResult<FunctionAnalysis>(F);
798 return PreservedAnalyses::all();
799 }));
800 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
801 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
802 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
804 // Now invalidate the function analysis but preserve the loop analyses.
805 // This should trigger immediate invalidation of the loop analyses, despite
806 // the fact that they were preserved.
807 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
808 auto PA = getLoopPassPreservedAnalyses();
809 if (EnableMSSALoopDependency)
810 PA.preserve<MemorySSAAnalysis>();
811 PA.preserveSet<AllAnalysesOn<Loop>>();
812 return PA;
813 }));
814 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
815 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
816 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
818 // And re-running a requires pass recomputes them.
819 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
820 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
821 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
823 // When we run over 'g' we don't populate the cache with the function
824 // analysis.
825 EXPECT_CALL(MFPHandle, run(HasName("g"), _))
826 .WillOnce(Return(PreservedAnalyses::all()));
827 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
829 // Which means that no extra invalidation occurs and cached values are used.
830 EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
831 auto PA = getLoopPassPreservedAnalyses();
832 if (EnableMSSALoopDependency)
833 PA.preserve<MemorySSAAnalysis>();
834 PA.preserveSet<AllAnalysesOn<Loop>>();
835 return PA;
836 }));
838 // Build the pipeline and run it.
839 ModulePassManager MPM(true);
840 FunctionPassManager FPM(true);
841 FPM.addPass(MFPHandle.getPass());
842 FPM.addPass(
843 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
844 FPM.addPass(MFPHandle.getPass());
845 FPM.addPass(
846 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
847 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
848 MPM.run(*M, MAM);
851 TEST_F(LoopPassManagerTest, LoopChildInsertion) {
852 // Super boring module with three loops in a single loop nest.
853 M = parseIR(Context, "define void @f(i1* %ptr) {\n"
854 "entry:\n"
855 " br label %loop.0\n"
856 "loop.0:\n"
857 " %cond.0 = load volatile i1, i1* %ptr\n"
858 " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
859 "loop.0.0.ph:\n"
860 " br label %loop.0.0\n"
861 "loop.0.0:\n"
862 " %cond.0.0 = load volatile i1, i1* %ptr\n"
863 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
864 "loop.0.1.ph:\n"
865 " br label %loop.0.1\n"
866 "loop.0.1:\n"
867 " %cond.0.1 = load volatile i1, i1* %ptr\n"
868 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
869 "loop.0.2.ph:\n"
870 " br label %loop.0.2\n"
871 "loop.0.2:\n"
872 " %cond.0.2 = load volatile i1, i1* %ptr\n"
873 " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
874 "loop.0.latch:\n"
875 " br label %loop.0\n"
876 "end:\n"
877 " ret void\n"
878 "}\n");
880 // Build up variables referring into the IR so we can rewrite it below
881 // easily.
882 Function &F = *M->begin();
883 ASSERT_THAT(F, HasName("f"));
884 Argument &Ptr = *F.arg_begin();
885 auto BBI = F.begin();
886 BasicBlock &EntryBB = *BBI++;
887 ASSERT_THAT(EntryBB, HasName("entry"));
888 BasicBlock &Loop0BB = *BBI++;
889 ASSERT_THAT(Loop0BB, HasName("loop.0"));
890 BasicBlock &Loop00PHBB = *BBI++;
891 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
892 BasicBlock &Loop00BB = *BBI++;
893 ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
894 BasicBlock &Loop01PHBB = *BBI++;
895 ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
896 BasicBlock &Loop01BB = *BBI++;
897 ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
898 BasicBlock &Loop02PHBB = *BBI++;
899 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
900 BasicBlock &Loop02BB = *BBI++;
901 ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
902 BasicBlock &Loop0LatchBB = *BBI++;
903 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
904 BasicBlock &EndBB = *BBI++;
905 ASSERT_THAT(EndBB, HasName("end"));
906 ASSERT_THAT(BBI, F.end());
907 auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
908 const char *Name, BasicBlock *BB) {
909 auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
910 /*isVolatile*/ true, BB);
911 BranchInst::Create(TrueBB, FalseBB, Cond, BB);
914 // Build the pass managers and register our pipeline. We build a single loop
915 // pass pipeline consisting of three mock pass runs over each loop. After
916 // this we run both domtree and loop verification passes to make sure that
917 // the IR remained valid during our mutations.
918 ModulePassManager MPM(true);
919 FunctionPassManager FPM(true);
920 LoopPassManager LPM(true);
921 LPM.addPass(MLPHandle.getPass());
922 LPM.addPass(MLPHandle.getPass());
923 LPM.addPass(MLPHandle.getPass());
924 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
925 FPM.addPass(DominatorTreeVerifierPass());
926 FPM.addPass(LoopVerifierPass());
927 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
929 // All the visit orders are deterministic, so we use simple fully order
930 // expectations.
931 ::testing::InSequence MakeExpectationsSequenced;
933 // We run loop passes three times over each of the loops.
934 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
935 .WillOnce(Invoke(getLoopAnalysisResult));
936 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
937 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
938 .Times(2)
939 .WillRepeatedly(Invoke(getLoopAnalysisResult));
941 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
942 .WillOnce(Invoke(getLoopAnalysisResult));
943 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
945 // When running over the middle loop, the second run inserts two new child
946 // loops, inserting them and itself into the worklist.
947 BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
948 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
949 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
950 LoopStandardAnalysisResults &AR,
951 LPMUpdater &Updater) {
952 auto *NewLoop = AR.LI.AllocateLoop();
953 L.addChildLoop(NewLoop);
954 auto *NewLoop010PHBB =
955 BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
956 NewLoop010BB =
957 BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
958 NewLoop01LatchBB =
959 BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
960 Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
961 BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
962 CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
963 NewLoop010BB);
964 BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
965 AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
966 AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
967 AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
968 EXPECT_TRUE(AR.DT.verify());
969 L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
970 NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
971 L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
972 NewLoop->verifyLoop();
973 L.verifyLoop();
974 Updater.addChildLoops({NewLoop});
975 return PreservedAnalyses::all();
976 }));
978 // We should immediately drop down to fully visit the new inner loop.
979 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
980 .WillOnce(Invoke(getLoopAnalysisResult));
981 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
982 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
983 .Times(2)
984 .WillRepeatedly(Invoke(getLoopAnalysisResult));
986 // After visiting the inner loop, we should re-visit the second loop
987 // reflecting its new loop nest structure.
988 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
989 .WillOnce(Invoke(getLoopAnalysisResult));
991 // In the second run over the middle loop after we've visited the new child,
992 // we add another child to check that we can repeatedly add children, and add
993 // children to a loop that already has children.
994 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
995 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
996 LoopStandardAnalysisResults &AR,
997 LPMUpdater &Updater) {
998 auto *NewLoop = AR.LI.AllocateLoop();
999 L.addChildLoop(NewLoop);
1000 auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
1001 auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
1002 NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
1003 NewLoop011PHBB);
1004 BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
1005 CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
1006 NewLoop011BB);
1007 AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
1008 auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
1009 AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
1010 EXPECT_TRUE(AR.DT.verify());
1011 L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
1012 NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
1013 NewLoop->verifyLoop();
1014 L.verifyLoop();
1015 Updater.addChildLoops({NewLoop});
1016 return PreservedAnalyses::all();
1017 }));
1019 // Again, we should immediately drop down to visit the new, unvisited child
1020 // loop. We don't need to revisit the other child though.
1021 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1022 .WillOnce(Invoke(getLoopAnalysisResult));
1023 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
1024 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1025 .Times(2)
1026 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1028 // And now we should pop back up to the second loop and do a full pipeline of
1029 // three passes on its current form.
1030 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1031 .Times(3)
1032 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1034 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1035 .WillOnce(Invoke(getLoopAnalysisResult));
1036 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1037 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1038 .Times(2)
1039 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1041 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1042 .WillOnce(Invoke(getLoopAnalysisResult));
1043 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1044 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1045 .Times(2)
1046 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1048 // Now that all the expected actions are registered, run the pipeline over
1049 // our module. All of our expectations are verified when the test finishes.
1050 MPM.run(*M, MAM);
1053 TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
1054 // Super boring module with two loop nests and loop nest with two child
1055 // loops.
1056 M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1057 "entry:\n"
1058 " br label %loop.0\n"
1059 "loop.0:\n"
1060 " %cond.0 = load volatile i1, i1* %ptr\n"
1061 " br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
1062 "loop.0.0.ph:\n"
1063 " br label %loop.0.0\n"
1064 "loop.0.0:\n"
1065 " %cond.0.0 = load volatile i1, i1* %ptr\n"
1066 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
1067 "loop.0.2.ph:\n"
1068 " br label %loop.0.2\n"
1069 "loop.0.2:\n"
1070 " %cond.0.2 = load volatile i1, i1* %ptr\n"
1071 " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
1072 "loop.0.latch:\n"
1073 " br label %loop.0\n"
1074 "loop.2.ph:\n"
1075 " br label %loop.2\n"
1076 "loop.2:\n"
1077 " %cond.2 = load volatile i1, i1* %ptr\n"
1078 " br i1 %cond.2, label %loop.2, label %end\n"
1079 "end:\n"
1080 " ret void\n"
1081 "}\n");
1083 // Build up variables referring into the IR so we can rewrite it below
1084 // easily.
1085 Function &F = *M->begin();
1086 ASSERT_THAT(F, HasName("f"));
1087 Argument &Ptr = *F.arg_begin();
1088 auto BBI = F.begin();
1089 BasicBlock &EntryBB = *BBI++;
1090 ASSERT_THAT(EntryBB, HasName("entry"));
1091 BasicBlock &Loop0BB = *BBI++;
1092 ASSERT_THAT(Loop0BB, HasName("loop.0"));
1093 BasicBlock &Loop00PHBB = *BBI++;
1094 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1095 BasicBlock &Loop00BB = *BBI++;
1096 ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1097 BasicBlock &Loop02PHBB = *BBI++;
1098 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1099 BasicBlock &Loop02BB = *BBI++;
1100 ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1101 BasicBlock &Loop0LatchBB = *BBI++;
1102 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1103 BasicBlock &Loop2PHBB = *BBI++;
1104 ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
1105 BasicBlock &Loop2BB = *BBI++;
1106 ASSERT_THAT(Loop2BB, HasName("loop.2"));
1107 BasicBlock &EndBB = *BBI++;
1108 ASSERT_THAT(EndBB, HasName("end"));
1109 ASSERT_THAT(BBI, F.end());
1110 auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
1111 const char *Name, BasicBlock *BB) {
1112 auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
1113 /*isVolatile*/ true, BB);
1114 BranchInst::Create(TrueBB, FalseBB, Cond, BB);
1117 // Build the pass managers and register our pipeline. We build a single loop
1118 // pass pipeline consisting of three mock pass runs over each loop. After
1119 // this we run both domtree and loop verification passes to make sure that
1120 // the IR remained valid during our mutations.
1121 ModulePassManager MPM(true);
1122 FunctionPassManager FPM(true);
1123 LoopPassManager LPM(true);
1124 LPM.addPass(MLPHandle.getPass());
1125 LPM.addPass(MLPHandle.getPass());
1126 LPM.addPass(MLPHandle.getPass());
1127 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1128 FPM.addPass(DominatorTreeVerifierPass());
1129 FPM.addPass(LoopVerifierPass());
1130 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1132 // All the visit orders are deterministic, so we use simple fully order
1133 // expectations.
1134 ::testing::InSequence MakeExpectationsSequenced;
1136 // We run loop passes three times over each of the loops.
1137 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1138 .WillOnce(Invoke(getLoopAnalysisResult));
1139 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1141 // On the second run, we insert a sibling loop.
1142 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1143 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1144 LoopStandardAnalysisResults &AR,
1145 LPMUpdater &Updater) {
1146 auto *NewLoop = AR.LI.AllocateLoop();
1147 L.getParentLoop()->addChildLoop(NewLoop);
1148 auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
1149 auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
1150 BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
1151 CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
1152 Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
1153 AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
1154 auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
1155 AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
1156 EXPECT_TRUE(AR.DT.verify());
1157 L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
1158 NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
1159 L.getParentLoop()->verifyLoop();
1160 Updater.addSiblingLoops({NewLoop});
1161 return PreservedAnalyses::all();
1162 }));
1163 // We finish processing this loop as sibling loops don't perturb the
1164 // postorder walk.
1165 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1166 .WillOnce(Invoke(getLoopAnalysisResult));
1168 // We visit the inserted sibling next.
1169 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1170 .WillOnce(Invoke(getLoopAnalysisResult));
1171 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1172 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1173 .Times(2)
1174 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1176 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1177 .WillOnce(Invoke(getLoopAnalysisResult));
1178 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1179 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1180 .WillOnce(Invoke(getLoopAnalysisResult));
1181 // Next, on the third pass run on the last inner loop we add more new
1182 // siblings, more than one, and one with nested child loops. By doing this at
1183 // the end we make sure that edge case works well.
1184 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1185 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1186 LoopStandardAnalysisResults &AR,
1187 LPMUpdater &Updater) {
1188 Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
1189 AR.LI.AllocateLoop()};
1190 L.getParentLoop()->addChildLoop(NewLoops[0]);
1191 L.getParentLoop()->addChildLoop(NewLoops[1]);
1192 NewLoops[1]->addChildLoop(NewLoops[2]);
1193 auto *NewLoop03PHBB =
1194 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1195 auto *NewLoop03BB =
1196 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1197 auto *NewLoop04PHBB =
1198 BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
1199 auto *NewLoop04BB =
1200 BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
1201 auto *NewLoop040PHBB =
1202 BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
1203 auto *NewLoop040BB =
1204 BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
1205 auto *NewLoop04LatchBB =
1206 BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
1207 Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
1208 BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1209 CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
1210 BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
1211 CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
1212 BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
1213 CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
1214 BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
1215 AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
1216 AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1217 AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
1218 auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
1219 AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
1220 AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
1221 AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
1222 AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
1223 EXPECT_TRUE(AR.DT.verify());
1224 L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1225 NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1226 L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
1227 NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
1228 NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
1229 NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
1230 NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
1231 L.getParentLoop()->verifyLoop();
1232 Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
1233 return PreservedAnalyses::all();
1234 }));
1236 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1237 .WillOnce(Invoke(getLoopAnalysisResult));
1238 EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1239 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1240 .Times(2)
1241 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1243 // Note that we need to visit the inner loop of this added sibling before the
1244 // sibling itself!
1245 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1246 .WillOnce(Invoke(getLoopAnalysisResult));
1247 EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
1248 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1249 .Times(2)
1250 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1252 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1253 .WillOnce(Invoke(getLoopAnalysisResult));
1254 EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
1255 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1256 .Times(2)
1257 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1259 // And only now do we visit the outermost loop of the nest.
1260 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1261 .WillOnce(Invoke(getLoopAnalysisResult));
1262 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1263 // On the second pass, we add sibling loops which become new top-level loops.
1264 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1265 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1266 LoopStandardAnalysisResults &AR,
1267 LPMUpdater &Updater) {
1268 auto *NewLoop = AR.LI.AllocateLoop();
1269 AR.LI.addTopLevelLoop(NewLoop);
1270 auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
1271 auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
1272 BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
1273 CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
1274 Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
1275 AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
1276 auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
1277 AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
1278 EXPECT_TRUE(AR.DT.verify());
1279 NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
1280 NewLoop->verifyLoop();
1281 Updater.addSiblingLoops({NewLoop});
1282 return PreservedAnalyses::all();
1283 }));
1284 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1285 .WillOnce(Invoke(getLoopAnalysisResult));
1287 EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1288 .WillOnce(Invoke(getLoopAnalysisResult));
1289 EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
1290 EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1291 .Times(2)
1292 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1294 EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1295 .WillOnce(Invoke(getLoopAnalysisResult));
1296 EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
1297 EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1298 .Times(2)
1299 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1301 // Now that all the expected actions are registered, run the pipeline over
1302 // our module. All of our expectations are verified when the test finishes.
1303 MPM.run(*M, MAM);
1306 TEST_F(LoopPassManagerTest, LoopDeletion) {
1307 // Build a module with a single loop nest that contains one outer loop with
1308 // three subloops, and one of those with its own subloop. We will
1309 // incrementally delete all of these to test different deletion scenarios.
1310 M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1311 "entry:\n"
1312 " br label %loop.0\n"
1313 "loop.0:\n"
1314 " %cond.0 = load volatile i1, i1* %ptr\n"
1315 " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
1316 "loop.0.0.ph:\n"
1317 " br label %loop.0.0\n"
1318 "loop.0.0:\n"
1319 " %cond.0.0 = load volatile i1, i1* %ptr\n"
1320 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
1321 "loop.0.1.ph:\n"
1322 " br label %loop.0.1\n"
1323 "loop.0.1:\n"
1324 " %cond.0.1 = load volatile i1, i1* %ptr\n"
1325 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
1326 "loop.0.2.ph:\n"
1327 " br label %loop.0.2\n"
1328 "loop.0.2:\n"
1329 " %cond.0.2 = load volatile i1, i1* %ptr\n"
1330 " br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
1331 "loop.0.2.0.ph:\n"
1332 " br label %loop.0.2.0\n"
1333 "loop.0.2.0:\n"
1334 " %cond.0.2.0 = load volatile i1, i1* %ptr\n"
1335 " br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
1336 "loop.0.2.latch:\n"
1337 " br label %loop.0.2\n"
1338 "loop.0.latch:\n"
1339 " br label %loop.0\n"
1340 "end:\n"
1341 " ret void\n"
1342 "}\n");
1344 // Build up variables referring into the IR so we can rewrite it below
1345 // easily.
1346 Function &F = *M->begin();
1347 ASSERT_THAT(F, HasName("f"));
1348 Argument &Ptr = *F.arg_begin();
1349 auto BBI = F.begin();
1350 BasicBlock &EntryBB = *BBI++;
1351 ASSERT_THAT(EntryBB, HasName("entry"));
1352 BasicBlock &Loop0BB = *BBI++;
1353 ASSERT_THAT(Loop0BB, HasName("loop.0"));
1354 BasicBlock &Loop00PHBB = *BBI++;
1355 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1356 BasicBlock &Loop00BB = *BBI++;
1357 ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1358 BasicBlock &Loop01PHBB = *BBI++;
1359 ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
1360 BasicBlock &Loop01BB = *BBI++;
1361 ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
1362 BasicBlock &Loop02PHBB = *BBI++;
1363 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1364 BasicBlock &Loop02BB = *BBI++;
1365 ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1366 BasicBlock &Loop020PHBB = *BBI++;
1367 ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
1368 BasicBlock &Loop020BB = *BBI++;
1369 ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
1370 BasicBlock &Loop02LatchBB = *BBI++;
1371 ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
1372 BasicBlock &Loop0LatchBB = *BBI++;
1373 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1374 BasicBlock &EndBB = *BBI++;
1375 ASSERT_THAT(EndBB, HasName("end"));
1376 ASSERT_THAT(BBI, F.end());
1378 // Helper to do the actual deletion of a loop. We directly encode this here
1379 // to isolate ourselves from the rest of LLVM and for simplicity. Here we can
1380 // egregiously cheat based on knowledge of the test case. For example, we
1381 // have no PHI nodes and there is always a single i-dom.
1382 auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
1383 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1384 assert(L.empty() && "Can only delete leaf loops with this routine!");
1385 SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
1386 Updater.markLoopAsDeleted(L, L.getName());
1387 IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
1388 L.getUniqueExitBlock());
1389 for (BasicBlock *LoopBB : LoopBBs) {
1390 SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
1391 AR.DT[LoopBB]->end());
1392 for (DomTreeNode *ChildNode : ChildNodes)
1393 AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
1394 AR.DT.eraseNode(LoopBB);
1395 AR.LI.removeBlock(LoopBB);
1396 LoopBB->dropAllReferences();
1398 for (BasicBlock *LoopBB : LoopBBs)
1399 LoopBB->eraseFromParent();
1401 AR.LI.erase(&L);
1404 // Build up the pass managers.
1405 ModulePassManager MPM(true);
1406 FunctionPassManager FPM(true);
1407 // We run several loop pass pipelines across the loop nest, but they all take
1408 // the same form of three mock pass runs in a loop pipeline followed by
1409 // domtree and loop verification. We use a lambda to stamp this out each
1410 // time.
1411 auto AddLoopPipelineAndVerificationPasses = [&] {
1412 LoopPassManager LPM(true);
1413 LPM.addPass(MLPHandle.getPass());
1414 LPM.addPass(MLPHandle.getPass());
1415 LPM.addPass(MLPHandle.getPass());
1416 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1417 FPM.addPass(DominatorTreeVerifierPass());
1418 FPM.addPass(LoopVerifierPass());
1421 // All the visit orders are deterministic so we use simple fully order
1422 // expectations.
1423 ::testing::InSequence MakeExpectationsSequenced;
1425 // We run the loop pipeline with three passes over each of the loops. When
1426 // running over the middle loop, the second pass in the pipeline deletes it.
1427 // This should prevent the third pass from visiting it but otherwise leave
1428 // the process unimpacted.
1429 AddLoopPipelineAndVerificationPasses();
1430 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1431 .WillOnce(Invoke(getLoopAnalysisResult));
1432 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1433 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1434 .Times(2)
1435 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1437 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1438 .WillOnce(Invoke(getLoopAnalysisResult));
1439 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1440 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1441 .WillOnce(
1442 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1443 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1444 Loop *ParentL = L.getParentLoop();
1445 AR.SE.forgetLoop(&L);
1446 EraseLoop(L, Loop01PHBB, AR, Updater);
1447 ParentL->verifyLoop();
1448 return PreservedAnalyses::all();
1449 }));
1451 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1452 .WillOnce(Invoke(getLoopAnalysisResult));
1453 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
1454 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1455 .Times(2)
1456 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1458 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1459 .WillOnce(Invoke(getLoopAnalysisResult));
1460 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1461 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1462 .Times(2)
1463 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1465 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1466 .WillOnce(Invoke(getLoopAnalysisResult));
1467 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1468 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1469 .Times(2)
1470 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1472 // Run the loop pipeline again. This time we delete the last loop, which
1473 // contains a nested loop within it and insert a new loop into the nest. This
1474 // makes sure we can handle nested loop deletion.
1475 AddLoopPipelineAndVerificationPasses();
1476 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1477 .Times(3)
1478 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1480 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1481 .Times(3)
1482 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1484 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1485 .WillOnce(Invoke(getLoopAnalysisResult));
1486 BasicBlock *NewLoop03PHBB;
1487 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1488 .WillOnce(
1489 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1490 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1491 AR.SE.forgetLoop(*L.begin());
1492 EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);
1494 auto *ParentL = L.getParentLoop();
1495 AR.SE.forgetLoop(&L);
1496 EraseLoop(L, Loop02PHBB, AR, Updater);
1498 // Now insert a new sibling loop.
1499 auto *NewSibling = AR.LI.AllocateLoop();
1500 ParentL->addChildLoop(NewSibling);
1501 NewLoop03PHBB =
1502 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1503 auto *NewLoop03BB =
1504 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1505 BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1506 auto *Cond =
1507 new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3",
1508 /*isVolatile*/ true, NewLoop03BB);
1509 BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
1510 Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
1511 NewLoop03PHBB);
1512 AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
1513 AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1514 AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
1515 AR.DT[NewLoop03BB]);
1516 EXPECT_TRUE(AR.DT.verify());
1517 ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1518 NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1519 NewSibling->verifyLoop();
1520 ParentL->verifyLoop();
1521 Updater.addSiblingLoops({NewSibling});
1522 return PreservedAnalyses::all();
1523 }));
1525 // To respect our inner-to-outer traversal order, we must visit the
1526 // newly-inserted sibling of the loop we just deleted before we visit the
1527 // outer loop. When we do so, this must compute a fresh analysis result, even
1528 // though our new loop has the same pointer value as the loop we deleted.
1529 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1530 .WillOnce(Invoke(getLoopAnalysisResult));
1531 EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1532 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1533 .Times(2)
1534 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1536 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1537 .Times(3)
1538 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1540 // In the final loop pipeline run we delete every loop, including the last
1541 // loop of the nest. We do this again in the second pass in the pipeline, and
1542 // as a consequence we never make it to three runs on any loop. We also cover
1543 // deleting multiple loops in a single pipeline, deleting the first loop and
1544 // deleting the (last) top level loop.
1545 AddLoopPipelineAndVerificationPasses();
1546 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1547 .WillOnce(Invoke(getLoopAnalysisResult));
1548 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1549 .WillOnce(
1550 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1551 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1552 AR.SE.forgetLoop(&L);
1553 EraseLoop(L, Loop00PHBB, AR, Updater);
1554 return PreservedAnalyses::all();
1555 }));
1557 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1558 .WillOnce(Invoke(getLoopAnalysisResult));
1559 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1560 .WillOnce(
1561 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1562 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1563 AR.SE.forgetLoop(&L);
1564 EraseLoop(L, *NewLoop03PHBB, AR, Updater);
1565 return PreservedAnalyses::all();
1566 }));
1568 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1569 .WillOnce(Invoke(getLoopAnalysisResult));
1570 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1571 .WillOnce(
1572 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1573 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1574 AR.SE.forgetLoop(&L);
1575 EraseLoop(L, EntryBB, AR, Updater);
1576 return PreservedAnalyses::all();
1577 }));
1579 // Add the function pass pipeline now that it is fully built up and run it
1580 // over the module's one function.
1581 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1582 MPM.run(*M, MAM);