Modify annotate intrinsic to take 2 additional args: file and line number.
[llvm-complete.git] / lib / CodeGen / RegAllocLocal.cpp
blob3c58afe0e427dfc1be7eade958efb265c2ad79cf
1 //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/BasicBlock.h"
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/SSARegMap.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/RegAllocRegistry.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/ADT/IndexedMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include <algorithm>
33 using namespace llvm;
35 STATISTIC(NumStores, "Number of stores added");
36 STATISTIC(NumLoads , "Number of loads added");
37 STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
39 namespace {
40 static RegisterRegAlloc
41 localRegAlloc("local", " local register allocator",
42 createLocalRegisterAllocator);
45 class VISIBILITY_HIDDEN RALocal : public MachineFunctionPass {
46 public:
47 static char ID;
48 RALocal() : MachineFunctionPass((intptr_t)&ID) {}
49 private:
50 const TargetMachine *TM;
51 MachineFunction *MF;
52 const MRegisterInfo *RegInfo;
53 LiveVariables *LV;
55 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
56 // values are spilled.
57 std::map<unsigned, int> StackSlotForVirtReg;
59 // Virt2PhysRegMap - This map contains entries for each virtual register
60 // that is currently available in a physical register.
61 IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
63 unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
64 return Virt2PhysRegMap[VirtReg];
67 // PhysRegsUsed - This array is effectively a map, containing entries for
68 // each physical register that currently has a value (ie, it is in
69 // Virt2PhysRegMap). The value mapped to is the virtual register
70 // corresponding to the physical register (the inverse of the
71 // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
72 // because it is used by a future instruction, and to -2 if it is not
73 // allocatable. If the entry for a physical register is -1, then the
74 // physical register is "not in the map".
76 std::vector<int> PhysRegsUsed;
78 // PhysRegsUseOrder - This contains a list of the physical registers that
79 // currently have a virtual register value in them. This list provides an
80 // ordering of registers, imposing a reallocation order. This list is only
81 // used if all registers are allocated and we have to spill one, in which
82 // case we spill the least recently used register. Entries at the front of
83 // the list are the least recently used registers, entries at the back are
84 // the most recently used.
86 std::vector<unsigned> PhysRegsUseOrder;
88 // VirtRegModified - This bitset contains information about which virtual
89 // registers need to be spilled back to memory when their registers are
90 // scavenged. If a virtual register has simply been rematerialized, there
91 // is no reason to spill it to memory when we need the register back.
93 std::vector<bool> VirtRegModified;
95 void markVirtRegModified(unsigned Reg, bool Val = true) {
96 assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
97 Reg -= MRegisterInfo::FirstVirtualRegister;
98 if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
99 VirtRegModified[Reg] = Val;
102 bool isVirtRegModified(unsigned Reg) const {
103 assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
104 assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
105 && "Illegal virtual register!");
106 return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
109 void MarkPhysRegRecentlyUsed(unsigned Reg) {
110 if (PhysRegsUseOrder.empty() ||
111 PhysRegsUseOrder.back() == Reg) return; // Already most recently used
113 for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
114 if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
115 unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
116 PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
117 // Add it to the end of the list
118 PhysRegsUseOrder.push_back(RegMatch);
119 if (RegMatch == Reg)
120 return; // Found an exact match, exit early
124 public:
125 virtual const char *getPassName() const {
126 return "Local Register Allocator";
129 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130 AU.addRequired<LiveVariables>();
131 AU.addRequiredID(PHIEliminationID);
132 AU.addRequiredID(TwoAddressInstructionPassID);
133 MachineFunctionPass::getAnalysisUsage(AU);
136 private:
137 /// runOnMachineFunction - Register allocate the whole function
138 bool runOnMachineFunction(MachineFunction &Fn);
140 /// AllocateBasicBlock - Register allocate the specified basic block.
141 void AllocateBasicBlock(MachineBasicBlock &MBB);
144 /// areRegsEqual - This method returns true if the specified registers are
145 /// related to each other. To do this, it checks to see if they are equal
146 /// or if the first register is in the alias set of the second register.
148 bool areRegsEqual(unsigned R1, unsigned R2) const {
149 if (R1 == R2) return true;
150 for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
151 *AliasSet; ++AliasSet) {
152 if (*AliasSet == R1) return true;
154 return false;
157 /// getStackSpaceFor - This returns the frame index of the specified virtual
158 /// register on the stack, allocating space if necessary.
159 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
161 /// removePhysReg - This method marks the specified physical register as no
162 /// longer being in use.
164 void removePhysReg(unsigned PhysReg);
166 /// spillVirtReg - This method spills the value specified by PhysReg into
167 /// the virtual register slot specified by VirtReg. It then updates the RA
168 /// data structures to indicate the fact that PhysReg is now available.
170 void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
171 unsigned VirtReg, unsigned PhysReg);
173 /// spillPhysReg - This method spills the specified physical register into
174 /// the virtual register slot associated with it. If OnlyVirtRegs is set to
175 /// true, then the request is ignored if the physical register does not
176 /// contain a virtual register.
178 void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
179 unsigned PhysReg, bool OnlyVirtRegs = false);
181 /// assignVirtToPhysReg - This method updates local state so that we know
182 /// that PhysReg is the proper container for VirtReg now. The physical
183 /// register must not be used for anything else when this is called.
185 void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
187 /// liberatePhysReg - Make sure the specified physical register is available
188 /// for use. If there is currently a value in it, it is either moved out of
189 /// the way or spilled to memory.
191 void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
192 unsigned PhysReg);
194 /// isPhysRegAvailable - Return true if the specified physical register is
195 /// free and available for use. This also includes checking to see if
196 /// aliased registers are all free...
198 bool isPhysRegAvailable(unsigned PhysReg) const;
200 /// getFreeReg - Look to see if there is a free register available in the
201 /// specified register class. If not, return 0.
203 unsigned getFreeReg(const TargetRegisterClass *RC);
205 /// getReg - Find a physical register to hold the specified virtual
206 /// register. If all compatible physical registers are used, this method
207 /// spills the last used virtual register to the stack, and uses that
208 /// register.
210 unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
211 unsigned VirtReg);
213 /// reloadVirtReg - This method transforms the specified specified virtual
214 /// register use to refer to a physical register. This method may do this
215 /// in one of several ways: if the register is available in a physical
216 /// register already, it uses that physical register. If the value is not
217 /// in a physical register, and if there are physical registers available,
218 /// it loads it into a register. If register pressure is high, and it is
219 /// possible, it tries to fold the load of the virtual register into the
220 /// instruction itself. It avoids doing this if register pressure is low to
221 /// improve the chance that subsequent instructions can use the reloaded
222 /// value. This method returns the modified instruction.
224 MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
225 unsigned OpNum);
228 void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
229 unsigned PhysReg);
231 char RALocal::ID = 0;
234 /// getStackSpaceFor - This allocates space for the specified virtual register
235 /// to be held on the stack.
236 int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
237 // Find the location Reg would belong...
238 std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg);
240 if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
241 return I->second; // Already has space allocated?
243 // Allocate a new stack object for this spill location...
244 int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
245 RC->getAlignment());
247 // Assign the slot...
248 StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
249 return FrameIdx;
253 /// removePhysReg - This method marks the specified physical register as no
254 /// longer being in use.
256 void RALocal::removePhysReg(unsigned PhysReg) {
257 PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
259 std::vector<unsigned>::iterator It =
260 std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
261 if (It != PhysRegsUseOrder.end())
262 PhysRegsUseOrder.erase(It);
266 /// spillVirtReg - This method spills the value specified by PhysReg into the
267 /// virtual register slot specified by VirtReg. It then updates the RA data
268 /// structures to indicate the fact that PhysReg is now available.
270 void RALocal::spillVirtReg(MachineBasicBlock &MBB,
271 MachineBasicBlock::iterator I,
272 unsigned VirtReg, unsigned PhysReg) {
273 assert(VirtReg && "Spilling a physical register is illegal!"
274 " Must not have appropriate kill for the register or use exists beyond"
275 " the intended one.");
276 DOUT << " Spilling register " << RegInfo->getName(PhysReg)
277 << " containing %reg" << VirtReg;
278 if (!isVirtRegModified(VirtReg))
279 DOUT << " which has not been modified, so no store necessary!";
281 // Otherwise, there is a virtual register corresponding to this physical
282 // register. We only need to spill it into its stack slot if it has been
283 // modified.
284 if (isVirtRegModified(VirtReg)) {
285 const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
286 int FrameIndex = getStackSpaceFor(VirtReg, RC);
287 DOUT << " to stack slot #" << FrameIndex;
288 RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RC);
289 ++NumStores; // Update statistics
292 getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
294 DOUT << "\n";
295 removePhysReg(PhysReg);
299 /// spillPhysReg - This method spills the specified physical register into the
300 /// virtual register slot associated with it. If OnlyVirtRegs is set to true,
301 /// then the request is ignored if the physical register does not contain a
302 /// virtual register.
304 void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
305 unsigned PhysReg, bool OnlyVirtRegs) {
306 if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
307 assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
308 if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
309 spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
310 } else {
311 // If the selected register aliases any other registers, we must make
312 // sure that one of the aliases isn't alive.
313 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
314 *AliasSet; ++AliasSet)
315 if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
316 PhysRegsUsed[*AliasSet] != -2) // If allocatable.
317 if (PhysRegsUsed[*AliasSet] == 0) {
318 // This must have been a dead def due to something like this:
319 // %EAX :=
320 // := op %AL
321 // No more use of %EAX, %AH, etc.
322 // %EAX isn't dead upon definition, but %AH is. However %AH isn't
323 // an operand of definition MI so it's not marked as such.
324 DOUT << " Register " << RegInfo->getName(*AliasSet)
325 << " [%reg" << *AliasSet
326 << "] is never used, removing it frame live list\n";
327 removePhysReg(*AliasSet);
328 } else
329 spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
334 /// assignVirtToPhysReg - This method updates local state so that we know
335 /// that PhysReg is the proper container for VirtReg now. The physical
336 /// register must not be used for anything else when this is called.
338 void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
339 assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
340 // Update information to note the fact that this register was just used, and
341 // it holds VirtReg.
342 PhysRegsUsed[PhysReg] = VirtReg;
343 getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
344 PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
348 /// isPhysRegAvailable - Return true if the specified physical register is free
349 /// and available for use. This also includes checking to see if aliased
350 /// registers are all free...
352 bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
353 if (PhysRegsUsed[PhysReg] != -1) return false;
355 // If the selected register aliases any other allocated registers, it is
356 // not free!
357 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
358 *AliasSet; ++AliasSet)
359 if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
360 return false; // Can't use this reg then.
361 return true;
365 /// getFreeReg - Look to see if there is a free register available in the
366 /// specified register class. If not, return 0.
368 unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
369 // Get iterators defining the range of registers that are valid to allocate in
370 // this class, which also specifies the preferred allocation order.
371 TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
372 TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
374 for (; RI != RE; ++RI)
375 if (isPhysRegAvailable(*RI)) { // Is reg unused?
376 assert(*RI != 0 && "Cannot use register!");
377 return *RI; // Found an unused register!
379 return 0;
383 /// liberatePhysReg - Make sure the specified physical register is available for
384 /// use. If there is currently a value in it, it is either moved out of the way
385 /// or spilled to memory.
387 void RALocal::liberatePhysReg(MachineBasicBlock &MBB,
388 MachineBasicBlock::iterator &I,
389 unsigned PhysReg) {
390 spillPhysReg(MBB, I, PhysReg);
394 /// getReg - Find a physical register to hold the specified virtual
395 /// register. If all compatible physical registers are used, this method spills
396 /// the last used virtual register to the stack, and uses that register.
398 unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
399 unsigned VirtReg) {
400 const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
402 // First check to see if we have a free register of the requested type...
403 unsigned PhysReg = getFreeReg(RC);
405 // If we didn't find an unused register, scavenge one now!
406 if (PhysReg == 0) {
407 assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
409 // Loop over all of the preallocated registers from the least recently used
410 // to the most recently used. When we find one that is capable of holding
411 // our register, use it.
412 for (unsigned i = 0; PhysReg == 0; ++i) {
413 assert(i != PhysRegsUseOrder.size() &&
414 "Couldn't find a register of the appropriate class!");
416 unsigned R = PhysRegsUseOrder[i];
418 // We can only use this register if it holds a virtual register (ie, it
419 // can be spilled). Do not use it if it is an explicitly allocated
420 // physical register!
421 assert(PhysRegsUsed[R] != -1 &&
422 "PhysReg in PhysRegsUseOrder, but is not allocated?");
423 if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
424 // If the current register is compatible, use it.
425 if (RC->contains(R)) {
426 PhysReg = R;
427 break;
428 } else {
429 // If one of the registers aliased to the current register is
430 // compatible, use it.
431 for (const unsigned *AliasIt = RegInfo->getAliasSet(R);
432 *AliasIt; ++AliasIt) {
433 if (RC->contains(*AliasIt) &&
434 // If this is pinned down for some reason, don't use it. For
435 // example, if CL is pinned, and we run across CH, don't use
436 // CH as justification for using scavenging ECX (which will
437 // fail).
438 PhysRegsUsed[*AliasIt] != 0 &&
440 // Make sure the register is allocatable. Don't allocate SIL on
441 // x86-32.
442 PhysRegsUsed[*AliasIt] != -2) {
443 PhysReg = *AliasIt; // Take an aliased register
444 break;
451 assert(PhysReg && "Physical register not assigned!?!?");
453 // At this point PhysRegsUseOrder[i] is the least recently used register of
454 // compatible register class. Spill it to memory and reap its remains.
455 spillPhysReg(MBB, I, PhysReg);
458 // Now that we know which register we need to assign this to, do it now!
459 assignVirtToPhysReg(VirtReg, PhysReg);
460 return PhysReg;
464 /// reloadVirtReg - This method transforms the specified specified virtual
465 /// register use to refer to a physical register. This method may do this in
466 /// one of several ways: if the register is available in a physical register
467 /// already, it uses that physical register. If the value is not in a physical
468 /// register, and if there are physical registers available, it loads it into a
469 /// register. If register pressure is high, and it is possible, it tries to
470 /// fold the load of the virtual register into the instruction itself. It
471 /// avoids doing this if register pressure is low to improve the chance that
472 /// subsequent instructions can use the reloaded value. This method returns the
473 /// modified instruction.
475 MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
476 unsigned OpNum) {
477 unsigned VirtReg = MI->getOperand(OpNum).getReg();
479 // If the virtual register is already available, just update the instruction
480 // and return.
481 if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
482 MarkPhysRegRecentlyUsed(PR); // Already have this value available!
483 MI->getOperand(OpNum).setReg(PR); // Assign the input register
484 return MI;
487 // Otherwise, we need to fold it into the current instruction, or reload it.
488 // If we have registers available to hold the value, use them.
489 const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
490 unsigned PhysReg = getFreeReg(RC);
491 int FrameIndex = getStackSpaceFor(VirtReg, RC);
493 if (PhysReg) { // Register is available, allocate it!
494 assignVirtToPhysReg(VirtReg, PhysReg);
495 } else { // No registers available.
496 // If we can fold this spill into this instruction, do so now.
497 if (MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)){
498 ++NumFolded;
499 // Since we changed the address of MI, make sure to update live variables
500 // to know that the new instruction has the properties of the old one.
501 LV->instructionChanged(MI, FMI);
502 return MBB.insert(MBB.erase(MI), FMI);
505 // It looks like we can't fold this virtual register load into this
506 // instruction. Force some poor hapless value out of the register file to
507 // make room for the new register, and reload it.
508 PhysReg = getReg(MBB, MI, VirtReg);
511 markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
513 DOUT << " Reloading %reg" << VirtReg << " into "
514 << RegInfo->getName(PhysReg) << "\n";
516 // Add move instruction(s)
517 RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
518 ++NumLoads; // Update statistics
520 MF->setPhysRegUsed(PhysReg);
521 MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
522 return MI;
527 void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
528 // loop over each instruction
529 MachineBasicBlock::iterator MII = MBB.begin();
530 const TargetInstrInfo &TII = *TM->getInstrInfo();
532 DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
533 if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
535 // If this is the first basic block in the machine function, add live-in
536 // registers as active.
537 if (&MBB == &*MF->begin()) {
538 for (MachineFunction::livein_iterator I = MF->livein_begin(),
539 E = MF->livein_end(); I != E; ++I) {
540 unsigned Reg = I->first;
541 MF->setPhysRegUsed(Reg);
542 PhysRegsUsed[Reg] = 0; // It is free and reserved now
543 PhysRegsUseOrder.push_back(Reg);
544 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
545 *AliasSet; ++AliasSet) {
546 if (PhysRegsUsed[*AliasSet] != -2) {
547 PhysRegsUseOrder.push_back(*AliasSet);
548 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
549 MF->setPhysRegUsed(*AliasSet);
555 // Otherwise, sequentially allocate each instruction in the MBB.
556 while (MII != MBB.end()) {
557 MachineInstr *MI = MII++;
558 const TargetInstrDescriptor &TID = TII.get(MI->getOpcode());
559 DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
560 DOUT << " Regs have values: ";
561 for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
562 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
563 DOUT << "[" << RegInfo->getName(i)
564 << ",%reg" << PhysRegsUsed[i] << "] ";
565 DOUT << "\n");
567 // Loop over the implicit uses, making sure that they are at the head of the
568 // use order list, so they don't get reallocated.
569 if (TID.ImplicitUses) {
570 for (const unsigned *ImplicitUses = TID.ImplicitUses;
571 *ImplicitUses; ++ImplicitUses)
572 MarkPhysRegRecentlyUsed(*ImplicitUses);
575 SmallVector<unsigned, 8> Kills;
576 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
577 MachineOperand& MO = MI->getOperand(i);
578 if (MO.isRegister() && MO.isKill())
579 Kills.push_back(MO.getReg());
582 // Get the used operands into registers. This has the potential to spill
583 // incoming values if we are out of registers. Note that we completely
584 // ignore physical register uses here. We assume that if an explicit
585 // physical register is referenced by the instruction, that it is guaranteed
586 // to be live-in, or the input is badly hosed.
588 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
589 MachineOperand& MO = MI->getOperand(i);
590 // here we are looking for only used operands (never def&use)
591 if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
592 MRegisterInfo::isVirtualRegister(MO.getReg()))
593 MI = reloadVirtReg(MBB, MI, i);
596 // If this instruction is the last user of this register, kill the
597 // value, freeing the register being used, so it doesn't need to be
598 // spilled to memory.
600 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
601 unsigned VirtReg = Kills[i];
602 unsigned PhysReg = VirtReg;
603 if (MRegisterInfo::isVirtualRegister(VirtReg)) {
604 // If the virtual register was never materialized into a register, it
605 // might not be in the map, but it won't hurt to zero it out anyway.
606 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
607 PhysReg = PhysRegSlot;
608 PhysRegSlot = 0;
609 } else if (PhysRegsUsed[PhysReg] == -2) {
610 // Unallocatable register dead, ignore.
611 continue;
614 if (PhysReg) {
615 DOUT << " Last use of " << RegInfo->getName(PhysReg)
616 << "[%reg" << VirtReg <<"], removing it from live set\n";
617 removePhysReg(PhysReg);
618 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
619 *AliasSet; ++AliasSet) {
620 if (PhysRegsUsed[*AliasSet] != -2) {
621 DOUT << " Last use of "
622 << RegInfo->getName(*AliasSet)
623 << "[%reg" << VirtReg <<"], removing it from live set\n";
624 removePhysReg(*AliasSet);
630 // Loop over all of the operands of the instruction, spilling registers that
631 // are defined, and marking explicit destinations in the PhysRegsUsed map.
632 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
633 MachineOperand& MO = MI->getOperand(i);
634 if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
635 MRegisterInfo::isPhysicalRegister(MO.getReg())) {
636 unsigned Reg = MO.getReg();
637 if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
639 MF->setPhysRegUsed(Reg);
640 spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
641 PhysRegsUsed[Reg] = 0; // It is free and reserved now
642 PhysRegsUseOrder.push_back(Reg);
643 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
644 *AliasSet; ++AliasSet) {
645 if (PhysRegsUsed[*AliasSet] != -2) {
646 PhysRegsUseOrder.push_back(*AliasSet);
647 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
648 MF->setPhysRegUsed(*AliasSet);
654 // Loop over the implicit defs, spilling them as well.
655 if (TID.ImplicitDefs) {
656 for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
657 *ImplicitDefs; ++ImplicitDefs) {
658 unsigned Reg = *ImplicitDefs;
659 bool IsNonAllocatable = PhysRegsUsed[Reg] == -2;
660 if (!IsNonAllocatable) {
661 spillPhysReg(MBB, MI, Reg, true);
662 PhysRegsUseOrder.push_back(Reg);
663 PhysRegsUsed[Reg] = 0; // It is free and reserved now
665 MF->setPhysRegUsed(Reg);
667 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
668 *AliasSet; ++AliasSet) {
669 if (PhysRegsUsed[*AliasSet] != -2) {
670 if (!IsNonAllocatable) {
671 PhysRegsUseOrder.push_back(*AliasSet);
672 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
674 MF->setPhysRegUsed(*AliasSet);
680 SmallVector<unsigned, 8> DeadDefs;
681 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
682 MachineOperand& MO = MI->getOperand(i);
683 if (MO.isRegister() && MO.isDead())
684 DeadDefs.push_back(MO.getReg());
687 // Okay, we have allocated all of the source operands and spilled any values
688 // that would be destroyed by defs of this instruction. Loop over the
689 // explicit defs and assign them to a register, spilling incoming values if
690 // we need to scavenge a register.
692 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
693 MachineOperand& MO = MI->getOperand(i);
694 if (MO.isRegister() && MO.isDef() && MO.getReg() &&
695 MRegisterInfo::isVirtualRegister(MO.getReg())) {
696 unsigned DestVirtReg = MO.getReg();
697 unsigned DestPhysReg;
699 // If DestVirtReg already has a value, use it.
700 if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
701 DestPhysReg = getReg(MBB, MI, DestVirtReg);
702 MF->setPhysRegUsed(DestPhysReg);
703 markVirtRegModified(DestVirtReg);
704 MI->getOperand(i).setReg(DestPhysReg); // Assign the output register
708 // If this instruction defines any registers that are immediately dead,
709 // kill them now.
711 for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
712 unsigned VirtReg = DeadDefs[i];
713 unsigned PhysReg = VirtReg;
714 if (MRegisterInfo::isVirtualRegister(VirtReg)) {
715 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
716 PhysReg = PhysRegSlot;
717 assert(PhysReg != 0);
718 PhysRegSlot = 0;
719 } else if (PhysRegsUsed[PhysReg] == -2) {
720 // Unallocatable register dead, ignore.
721 continue;
724 if (PhysReg) {
725 DOUT << " Register " << RegInfo->getName(PhysReg)
726 << " [%reg" << VirtReg
727 << "] is never used, removing it frame live list\n";
728 removePhysReg(PhysReg);
729 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
730 *AliasSet; ++AliasSet) {
731 if (PhysRegsUsed[*AliasSet] != -2) {
732 DOUT << " Register " << RegInfo->getName(*AliasSet)
733 << " [%reg" << *AliasSet
734 << "] is never used, removing it frame live list\n";
735 removePhysReg(*AliasSet);
741 // Finally, if this is a noop copy instruction, zap it.
742 unsigned SrcReg, DstReg;
743 if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) {
744 LV->removeVirtualRegistersKilled(MI);
745 LV->removeVirtualRegistersDead(MI);
746 MBB.erase(MI);
750 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
752 // Spill all physical registers holding virtual registers now.
753 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
754 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
755 if (unsigned VirtReg = PhysRegsUsed[i])
756 spillVirtReg(MBB, MI, VirtReg, i);
757 else
758 removePhysReg(i);
760 #if 0
761 // This checking code is very expensive.
762 bool AllOk = true;
763 for (unsigned i = MRegisterInfo::FirstVirtualRegister,
764 e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i)
765 if (unsigned PR = Virt2PhysRegMap[i]) {
766 cerr << "Register still mapped: " << i << " -> " << PR << "\n";
767 AllOk = false;
769 assert(AllOk && "Virtual registers still in phys regs?");
770 #endif
772 // Clear any physical register which appear live at the end of the basic
773 // block, but which do not hold any virtual registers. e.g., the stack
774 // pointer.
775 PhysRegsUseOrder.clear();
779 /// runOnMachineFunction - Register allocate the whole function
781 bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
782 DOUT << "Machine Function " << "\n";
783 MF = &Fn;
784 TM = &Fn.getTarget();
785 RegInfo = TM->getRegisterInfo();
786 LV = &getAnalysis<LiveVariables>();
788 PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
790 // At various places we want to efficiently check to see whether a register
791 // is allocatable. To handle this, we mark all unallocatable registers as
792 // being pinned down, permanently.
794 BitVector Allocable = RegInfo->getAllocatableSet(Fn);
795 for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
796 if (!Allocable[i])
797 PhysRegsUsed[i] = -2; // Mark the reg unallocable.
800 // initialize the virtual->physical register map to have a 'null'
801 // mapping for all virtual registers
802 Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg());
804 // Loop over all of the basic blocks, eliminating virtual register references
805 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
806 MBB != MBBe; ++MBB)
807 AllocateBasicBlock(*MBB);
809 StackSlotForVirtReg.clear();
810 PhysRegsUsed.clear();
811 VirtRegModified.clear();
812 Virt2PhysRegMap.clear();
813 return true;
816 FunctionPass *llvm::createLocalRegisterAllocator() {
817 return new RALocal();