[llvm-dlltool] Set a proper machine type for weak symbol object files
[llvm-complete.git] / unittests / IR / PatternMatch.cpp
blobe380fb90ad781282e5cd97bd298bf9b3bd6d3006
1 //===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/IR/PatternMatch.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/Analysis/ValueTracking.h"
12 #include "llvm/IR/BasicBlock.h"
13 #include "llvm/IR/Constants.h"
14 #include "llvm/IR/DataLayout.h"
15 #include "llvm/IR/DerivedTypes.h"
16 #include "llvm/IR/Function.h"
17 #include "llvm/IR/IRBuilder.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/NoFolder.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/IR/Type.h"
25 #include "gtest/gtest.h"
27 using namespace llvm;
28 using namespace llvm::PatternMatch;
30 namespace {
32 struct PatternMatchTest : ::testing::Test {
33 LLVMContext Ctx;
34 std::unique_ptr<Module> M;
35 Function *F;
36 BasicBlock *BB;
37 IRBuilder<NoFolder> IRB;
39 PatternMatchTest()
40 : M(new Module("PatternMatchTestModule", Ctx)),
41 F(Function::Create(
42 FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false),
43 Function::ExternalLinkage, "f", M.get())),
44 BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {}
47 TEST_F(PatternMatchTest, OneUse) {
48 // Build up a little tree of values:
50 // One = (1 + 2) + 42
51 // Two = One + 42
52 // Leaf = (Two + 8) + (Two + 13)
53 Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)),
54 IRB.getInt32(42));
55 Value *Two = IRB.CreateAdd(One, IRB.getInt32(42));
56 Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)),
57 IRB.CreateAdd(Two, IRB.getInt32(13)));
58 Value *V;
60 EXPECT_TRUE(m_OneUse(m_Value(V)).match(One));
61 EXPECT_EQ(One, V);
63 EXPECT_FALSE(m_OneUse(m_Value()).match(Two));
64 EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf));
67 TEST_F(PatternMatchTest, CommutativeDeferredValue) {
68 Value *X = IRB.getInt32(1);
69 Value *Y = IRB.getInt32(2);
72 Value *tX = X;
73 EXPECT_TRUE(match(X, m_Deferred(tX)));
74 EXPECT_FALSE(match(Y, m_Deferred(tX)));
77 const Value *tX = X;
78 EXPECT_TRUE(match(X, m_Deferred(tX)));
79 EXPECT_FALSE(match(Y, m_Deferred(tX)));
82 Value *const tX = X;
83 EXPECT_TRUE(match(X, m_Deferred(tX)));
84 EXPECT_FALSE(match(Y, m_Deferred(tX)));
87 const Value *const tX = X;
88 EXPECT_TRUE(match(X, m_Deferred(tX)));
89 EXPECT_FALSE(match(Y, m_Deferred(tX)));
93 Value *tX = nullptr;
94 EXPECT_TRUE(match(IRB.CreateAnd(X, X), m_And(m_Value(tX), m_Deferred(tX))));
95 EXPECT_EQ(tX, X);
98 Value *tX = nullptr;
99 EXPECT_FALSE(
100 match(IRB.CreateAnd(X, Y), m_c_And(m_Value(tX), m_Deferred(tX))));
103 auto checkMatch = [X, Y](Value *Pattern) {
104 Value *tX = nullptr, *tY = nullptr;
105 EXPECT_TRUE(match(
106 Pattern, m_c_And(m_Value(tX), m_c_And(m_Deferred(tX), m_Value(tY)))));
107 EXPECT_EQ(tX, X);
108 EXPECT_EQ(tY, Y);
111 checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(X, Y)));
112 checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(Y, X)));
113 checkMatch(IRB.CreateAnd(IRB.CreateAnd(X, Y), X));
114 checkMatch(IRB.CreateAnd(IRB.CreateAnd(Y, X), X));
117 TEST_F(PatternMatchTest, FloatingPointOrderedMin) {
118 Type *FltTy = IRB.getFloatTy();
119 Value *L = ConstantFP::get(FltTy, 1.0);
120 Value *R = ConstantFP::get(FltTy, 2.0);
121 Value *MatchL, *MatchR;
123 // Test OLT.
124 EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
125 .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
126 EXPECT_EQ(L, MatchL);
127 EXPECT_EQ(R, MatchR);
129 // Test OLE.
130 EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
131 .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
132 EXPECT_EQ(L, MatchL);
133 EXPECT_EQ(R, MatchR);
135 // Test no match on OGE.
136 EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
137 .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
139 // Test no match on OGT.
140 EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
141 .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
143 // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
144 // %cmp = fcmp oge L, R
145 // %min = select %cmp R, L
146 // Given L == NaN
147 // the above is expanded to %cmp == false ==> %min = L
148 // which is true for UnordFMin, not OrdFMin, so test that:
150 // [OU]GE with inverted select.
151 EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
152 .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
153 EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
154 .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
155 EXPECT_EQ(L, MatchL);
156 EXPECT_EQ(R, MatchR);
158 // [OU]GT with inverted select.
159 EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
160 .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
161 EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
162 .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
163 EXPECT_EQ(L, MatchL);
164 EXPECT_EQ(R, MatchR);
167 TEST_F(PatternMatchTest, FloatingPointOrderedMax) {
168 Type *FltTy = IRB.getFloatTy();
169 Value *L = ConstantFP::get(FltTy, 1.0);
170 Value *R = ConstantFP::get(FltTy, 2.0);
171 Value *MatchL, *MatchR;
173 // Test OGT.
174 EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
175 .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
176 EXPECT_EQ(L, MatchL);
177 EXPECT_EQ(R, MatchR);
179 // Test OGE.
180 EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
181 .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
182 EXPECT_EQ(L, MatchL);
183 EXPECT_EQ(R, MatchR);
185 // Test no match on OLE.
186 EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
187 .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
189 // Test no match on OLT.
190 EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
191 .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
194 // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
195 // %cmp = fcmp ole L, R
196 // %max = select %cmp, R, L
197 // Given L == NaN,
198 // the above is expanded to %cmp == false ==> %max == L
199 // which is true for UnordFMax, not OrdFMax, so test that:
201 // [OU]LE with inverted select.
202 EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
203 .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
204 EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
205 .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
206 EXPECT_EQ(L, MatchL);
207 EXPECT_EQ(R, MatchR);
209 // [OUT]LT with inverted select.
210 EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
211 .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
212 EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
213 .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
214 EXPECT_EQ(L, MatchL);
215 EXPECT_EQ(R, MatchR);
218 TEST_F(PatternMatchTest, FloatingPointUnorderedMin) {
219 Type *FltTy = IRB.getFloatTy();
220 Value *L = ConstantFP::get(FltTy, 1.0);
221 Value *R = ConstantFP::get(FltTy, 2.0);
222 Value *MatchL, *MatchR;
224 // Test ULT.
225 EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
226 .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
227 EXPECT_EQ(L, MatchL);
228 EXPECT_EQ(R, MatchR);
230 // Test ULE.
231 EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
232 .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
233 EXPECT_EQ(L, MatchL);
234 EXPECT_EQ(R, MatchR);
236 // Test no match on UGE.
237 EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
238 .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
240 // Test no match on UGT.
241 EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
242 .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
244 // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
245 // %cmp = fcmp uge L, R
246 // %min = select %cmp R, L
247 // Given L == NaN
248 // the above is expanded to %cmp == true ==> %min = R
249 // which is true for OrdFMin, not UnordFMin, so test that:
251 // [UO]GE with inverted select.
252 EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
253 .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
254 EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
255 .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
256 EXPECT_EQ(L, MatchL);
257 EXPECT_EQ(R, MatchR);
259 // [UO]GT with inverted select.
260 EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
261 .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
262 EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
263 .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
264 EXPECT_EQ(L, MatchL);
265 EXPECT_EQ(R, MatchR);
268 TEST_F(PatternMatchTest, FloatingPointUnorderedMax) {
269 Type *FltTy = IRB.getFloatTy();
270 Value *L = ConstantFP::get(FltTy, 1.0);
271 Value *R = ConstantFP::get(FltTy, 2.0);
272 Value *MatchL, *MatchR;
274 // Test UGT.
275 EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
276 .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
277 EXPECT_EQ(L, MatchL);
278 EXPECT_EQ(R, MatchR);
280 // Test UGE.
281 EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
282 .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
283 EXPECT_EQ(L, MatchL);
284 EXPECT_EQ(R, MatchR);
286 // Test no match on ULE.
287 EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
288 .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
290 // Test no match on ULT.
291 EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
292 .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
294 // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
295 // %cmp = fcmp ule L, R
296 // %max = select %cmp R, L
297 // Given L == NaN
298 // the above is expanded to %cmp == true ==> %max = R
299 // which is true for OrdFMax, not UnordFMax, so test that:
301 // [UO]LE with inverted select.
302 EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
303 .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
304 EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
305 .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
306 EXPECT_EQ(L, MatchL);
307 EXPECT_EQ(R, MatchR);
309 // [UO]LT with inverted select.
310 EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
311 .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
312 EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
313 .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
314 EXPECT_EQ(L, MatchL);
315 EXPECT_EQ(R, MatchR);
318 TEST_F(PatternMatchTest, OverflowingBinOps) {
319 Value *L = IRB.getInt32(1);
320 Value *R = IRB.getInt32(2);
321 Value *MatchL, *MatchR;
323 EXPECT_TRUE(
324 m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R)));
325 EXPECT_EQ(L, MatchL);
326 EXPECT_EQ(R, MatchR);
327 MatchL = MatchR = nullptr;
328 EXPECT_TRUE(
329 m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R)));
330 EXPECT_EQ(L, MatchL);
331 EXPECT_EQ(R, MatchR);
332 MatchL = MatchR = nullptr;
333 EXPECT_TRUE(
334 m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R)));
335 EXPECT_EQ(L, MatchL);
336 EXPECT_EQ(R, MatchR);
337 MatchL = MatchR = nullptr;
338 EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match(
339 IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
340 EXPECT_EQ(L, MatchL);
341 EXPECT_EQ(R, MatchR);
343 EXPECT_TRUE(
344 m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R)));
345 EXPECT_EQ(L, MatchL);
346 EXPECT_EQ(R, MatchR);
347 MatchL = MatchR = nullptr;
348 EXPECT_TRUE(
349 m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R)));
350 EXPECT_EQ(L, MatchL);
351 EXPECT_EQ(R, MatchR);
352 MatchL = MatchR = nullptr;
353 EXPECT_TRUE(
354 m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R)));
355 EXPECT_EQ(L, MatchL);
356 EXPECT_EQ(R, MatchR);
357 MatchL = MatchR = nullptr;
358 EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match(
359 IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
360 EXPECT_EQ(L, MatchL);
361 EXPECT_EQ(R, MatchR);
363 EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
364 EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
365 EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
366 EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
367 EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
368 EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
369 EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
370 EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R)));
371 EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
372 EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
373 EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(
374 IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
375 EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
377 EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
378 EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
379 EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
380 EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
381 EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
382 EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
383 EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
384 EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R)));
385 EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
386 EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
387 EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(
388 IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
389 EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
392 TEST_F(PatternMatchTest, LoadStoreOps) {
393 // Create this load/store sequence:
395 // %p = alloca i32*
396 // %0 = load i32*, i32** %p
397 // store i32 42, i32* %0
399 Value *Alloca = IRB.CreateAlloca(IRB.getInt32Ty());
400 Value *LoadInst = IRB.CreateLoad(IRB.getInt32Ty(), Alloca);
401 Value *FourtyTwo = IRB.getInt32(42);
402 Value *StoreInst = IRB.CreateStore(FourtyTwo, Alloca);
403 Value *MatchLoad, *MatchStoreVal, *MatchStorePointer;
405 EXPECT_TRUE(m_Load(m_Value(MatchLoad)).match(LoadInst));
406 EXPECT_EQ(Alloca, MatchLoad);
408 EXPECT_TRUE(m_Load(m_Specific(Alloca)).match(LoadInst));
410 EXPECT_FALSE(m_Load(m_Value(MatchLoad)).match(Alloca));
412 EXPECT_TRUE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
413 .match(StoreInst));
414 EXPECT_EQ(FourtyTwo, MatchStoreVal);
415 EXPECT_EQ(Alloca, MatchStorePointer);
417 EXPECT_FALSE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
418 .match(Alloca));
420 EXPECT_TRUE(m_Store(m_SpecificInt(42), m_Specific(Alloca))
421 .match(StoreInst));
422 EXPECT_FALSE(m_Store(m_SpecificInt(42), m_Specific(FourtyTwo))
423 .match(StoreInst));
424 EXPECT_FALSE(m_Store(m_SpecificInt(43), m_Specific(Alloca))
425 .match(StoreInst));
428 TEST_F(PatternMatchTest, VectorOps) {
429 // Build up small tree of vector operations
431 // Val = 0 + 1
432 // Val2 = Val + 3
433 // VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef>
434 // VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4>
435 // VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4>
436 // VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2>
438 // SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer
439 // SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> <i8 0, i8 2>
440 // SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer
441 // SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer
443 // SP1 = VectorSplat(2, i8 2)
444 // SP2 = VectorSplat(2, i8 %Val)
445 Type *VecTy = VectorType::get(IRB.getInt8Ty(), 2);
446 Type *i32 = IRB.getInt32Ty();
447 Type *i32VecTy = VectorType::get(i32, 2);
449 Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1));
450 Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3));
452 SmallVector<Constant *, 2> VecElemIdxs;
453 VecElemIdxs.push_back(ConstantInt::get(i32, 0));
454 VecElemIdxs.push_back(ConstantInt::get(i32, 2));
455 auto *IdxVec = ConstantVector::get(VecElemIdxs);
457 Value *UndefVec = UndefValue::get(VecTy);
458 Value *VI1 = IRB.CreateInsertElement(UndefVec, IRB.getInt8(1), (uint64_t)0);
459 Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val);
460 Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1);
461 Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val);
463 Value *EX1 = IRB.CreateExtractElement(VI4, Val);
464 Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0);
465 Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1);
467 Value *Zero = ConstantAggregateZero::get(i32VecTy);
468 Value *SI1 = IRB.CreateShuffleVector(VI1, UndefVec, Zero);
469 Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec);
470 Value *SI3 = IRB.CreateShuffleVector(VI3, UndefVec, Zero);
471 Value *SI4 = IRB.CreateShuffleVector(VI4, UndefVec, Zero);
473 Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2));
474 Value *SP2 = IRB.CreateVectorSplat(2, Val);
476 Value *A = nullptr, *B = nullptr, *C = nullptr;
478 // Test matching insertelement
479 EXPECT_TRUE(match(VI1, m_InsertElement(m_Value(), m_Value(), m_Value())));
480 EXPECT_TRUE(
481 match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_ConstantInt())));
482 EXPECT_TRUE(
483 match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_Zero())));
484 EXPECT_TRUE(
485 match(VI1, m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero())));
486 EXPECT_TRUE(match(VI2, m_InsertElement(m_Value(), m_Value(), m_Value())));
487 EXPECT_FALSE(
488 match(VI2, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())));
489 EXPECT_FALSE(
490 match(VI2, m_InsertElement(m_Value(), m_ConstantInt(), m_Value())));
491 EXPECT_FALSE(match(VI2, m_InsertElement(m_Constant(), m_Value(), m_Value())));
492 EXPECT_TRUE(match(VI3, m_InsertElement(m_Value(A), m_Value(B), m_Value(C))));
493 EXPECT_TRUE(A == VI1);
494 EXPECT_TRUE(B == Val2);
495 EXPECT_TRUE(isa<ConstantInt>(C));
496 A = B = C = nullptr; // reset
498 // Test matching extractelement
499 EXPECT_TRUE(match(EX1, m_ExtractElement(m_Value(A), m_Value(B))));
500 EXPECT_TRUE(A == VI4);
501 EXPECT_TRUE(B == Val);
502 A = B = C = nullptr; // reset
503 EXPECT_FALSE(match(EX1, m_ExtractElement(m_Value(), m_ConstantInt())));
504 EXPECT_TRUE(match(EX2, m_ExtractElement(m_Value(), m_ConstantInt())));
505 EXPECT_TRUE(match(EX3, m_ExtractElement(m_Constant(), m_ConstantInt())));
507 // Test matching shufflevector
508 EXPECT_TRUE(match(SI1, m_ShuffleVector(m_Value(), m_Undef(), m_Zero())));
509 EXPECT_TRUE(match(SI2, m_ShuffleVector(m_Value(A), m_Value(B), m_Value(C))));
510 EXPECT_TRUE(A == VI3);
511 EXPECT_TRUE(B == VI4);
512 EXPECT_TRUE(C == IdxVec);
513 A = B = C = nullptr; // reset
515 // Test matching the vector splat pattern
516 EXPECT_TRUE(match(
517 SI1,
518 m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()),
519 m_Undef(), m_Zero())));
520 EXPECT_FALSE(match(
521 SI3, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
522 m_Undef(), m_Zero())));
523 EXPECT_FALSE(match(
524 SI4, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
525 m_Undef(), m_Zero())));
526 EXPECT_TRUE(match(
527 SP1,
528 m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(2), m_Zero()),
529 m_Undef(), m_Zero())));
530 EXPECT_TRUE(match(
531 SP2, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(A), m_Zero()),
532 m_Undef(), m_Zero())));
533 EXPECT_TRUE(A == Val);
536 TEST_F(PatternMatchTest, VectorUndefInt) {
537 Type *ScalarTy = IRB.getInt8Ty();
538 Type *VectorTy = VectorType::get(ScalarTy, 4);
539 Constant *ScalarUndef = UndefValue::get(ScalarTy);
540 Constant *VectorUndef = UndefValue::get(VectorTy);
541 Constant *ScalarZero = Constant::getNullValue(ScalarTy);
542 Constant *VectorZero = Constant::getNullValue(VectorTy);
544 SmallVector<Constant *, 4> Elems;
545 Elems.push_back(ScalarUndef);
546 Elems.push_back(ScalarZero);
547 Elems.push_back(ScalarUndef);
548 Elems.push_back(ScalarZero);
549 Constant *VectorZeroUndef = ConstantVector::get(Elems);
551 EXPECT_TRUE(match(ScalarUndef, m_Undef()));
552 EXPECT_TRUE(match(VectorUndef, m_Undef()));
553 EXPECT_FALSE(match(ScalarZero, m_Undef()));
554 EXPECT_FALSE(match(VectorZero, m_Undef()));
555 EXPECT_FALSE(match(VectorZeroUndef, m_Undef()));
557 EXPECT_FALSE(match(ScalarUndef, m_Zero()));
558 EXPECT_FALSE(match(VectorUndef, m_Zero()));
559 EXPECT_TRUE(match(ScalarZero, m_Zero()));
560 EXPECT_TRUE(match(VectorZero, m_Zero()));
561 EXPECT_TRUE(match(VectorZeroUndef, m_Zero()));
564 TEST_F(PatternMatchTest, VectorUndefFloat) {
565 Type *ScalarTy = IRB.getFloatTy();
566 Type *VectorTy = VectorType::get(ScalarTy, 4);
567 Constant *ScalarUndef = UndefValue::get(ScalarTy);
568 Constant *VectorUndef = UndefValue::get(VectorTy);
569 Constant *ScalarZero = Constant::getNullValue(ScalarTy);
570 Constant *VectorZero = Constant::getNullValue(VectorTy);
572 SmallVector<Constant *, 4> Elems;
573 Elems.push_back(ScalarUndef);
574 Elems.push_back(ScalarZero);
575 Elems.push_back(ScalarUndef);
576 Elems.push_back(ScalarZero);
577 Constant *VectorZeroUndef = ConstantVector::get(Elems);
579 EXPECT_TRUE(match(ScalarUndef, m_Undef()));
580 EXPECT_TRUE(match(VectorUndef, m_Undef()));
581 EXPECT_FALSE(match(ScalarZero, m_Undef()));
582 EXPECT_FALSE(match(VectorZero, m_Undef()));
583 EXPECT_FALSE(match(VectorZeroUndef, m_Undef()));
585 EXPECT_FALSE(match(ScalarUndef, m_AnyZeroFP()));
586 EXPECT_FALSE(match(VectorUndef, m_AnyZeroFP()));
587 EXPECT_TRUE(match(ScalarZero, m_AnyZeroFP()));
588 EXPECT_TRUE(match(VectorZero, m_AnyZeroFP()));
589 EXPECT_TRUE(match(VectorZeroUndef, m_AnyZeroFP()));
592 template <typename T> struct MutableConstTest : PatternMatchTest { };
594 typedef ::testing::Types<std::tuple<Value*, Instruction*>,
595 std::tuple<const Value*, const Instruction *>>
596 MutableConstTestTypes;
597 TYPED_TEST_CASE(MutableConstTest, MutableConstTestTypes);
599 TYPED_TEST(MutableConstTest, ICmp) {
600 auto &IRB = PatternMatchTest::IRB;
602 typedef typename std::tuple_element<0, TypeParam>::type ValueType;
603 typedef typename std::tuple_element<1, TypeParam>::type InstructionType;
605 Value *L = IRB.getInt32(1);
606 Value *R = IRB.getInt32(2);
607 ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT;
609 ValueType MatchL;
610 ValueType MatchR;
611 ICmpInst::Predicate MatchPred;
613 EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR))
614 .match((InstructionType)IRB.CreateICmp(Pred, L, R)));
615 EXPECT_EQ(L, MatchL);
616 EXPECT_EQ(R, MatchR);
619 } // anonymous namespace.