[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-complete.git] / include / llvm / CodeGen / CallingConvLower.h
blobe0b05751b3b84781c934bff7289a7ba9e8126fa6
1 //===- llvm/CallingConvLower.h - Calling Conventions ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CCState and CCValAssign classes, used for lowering
10 // and implementing calling conventions.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
15 #define LLVM_CODEGEN_CALLINGCONVLOWER_H
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/TargetCallingConv.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/Support/Alignment.h"
25 namespace llvm {
27 class CCState;
28 class MVT;
29 class TargetMachine;
30 class TargetRegisterInfo;
32 /// CCValAssign - Represent assignment of one arg/retval to a location.
33 class CCValAssign {
34 public:
35 enum LocInfo {
36 Full, // The value fills the full location.
37 SExt, // The value is sign extended in the location.
38 ZExt, // The value is zero extended in the location.
39 AExt, // The value is extended with undefined upper bits.
40 SExtUpper, // The value is in the upper bits of the location and should be
41 // sign extended when retrieved.
42 ZExtUpper, // The value is in the upper bits of the location and should be
43 // zero extended when retrieved.
44 AExtUpper, // The value is in the upper bits of the location and should be
45 // extended with undefined upper bits when retrieved.
46 BCvt, // The value is bit-converted in the location.
47 VExt, // The value is vector-widened in the location.
48 // FIXME: Not implemented yet. Code that uses AExt to mean
49 // vector-widen should be fixed to use VExt instead.
50 FPExt, // The floating-point value is fp-extended in the location.
51 Indirect // The location contains pointer to the value.
52 // TODO: a subset of the value is in the location.
55 private:
56 /// ValNo - This is the value number begin assigned (e.g. an argument number).
57 unsigned ValNo;
59 /// Loc is either a stack offset or a register number.
60 unsigned Loc;
62 /// isMem - True if this is a memory loc, false if it is a register loc.
63 unsigned isMem : 1;
65 /// isCustom - True if this arg/retval requires special handling.
66 unsigned isCustom : 1;
68 /// Information about how the value is assigned.
69 LocInfo HTP : 6;
71 /// ValVT - The type of the value being assigned.
72 MVT ValVT;
74 /// LocVT - The type of the location being assigned to.
75 MVT LocVT;
76 public:
78 static CCValAssign getReg(unsigned ValNo, MVT ValVT,
79 unsigned RegNo, MVT LocVT,
80 LocInfo HTP) {
81 CCValAssign Ret;
82 Ret.ValNo = ValNo;
83 Ret.Loc = RegNo;
84 Ret.isMem = false;
85 Ret.isCustom = false;
86 Ret.HTP = HTP;
87 Ret.ValVT = ValVT;
88 Ret.LocVT = LocVT;
89 return Ret;
92 static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT,
93 unsigned RegNo, MVT LocVT,
94 LocInfo HTP) {
95 CCValAssign Ret;
96 Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP);
97 Ret.isCustom = true;
98 return Ret;
101 static CCValAssign getMem(unsigned ValNo, MVT ValVT,
102 unsigned Offset, MVT LocVT,
103 LocInfo HTP) {
104 CCValAssign Ret;
105 Ret.ValNo = ValNo;
106 Ret.Loc = Offset;
107 Ret.isMem = true;
108 Ret.isCustom = false;
109 Ret.HTP = HTP;
110 Ret.ValVT = ValVT;
111 Ret.LocVT = LocVT;
112 return Ret;
115 static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT,
116 unsigned Offset, MVT LocVT,
117 LocInfo HTP) {
118 CCValAssign Ret;
119 Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP);
120 Ret.isCustom = true;
121 return Ret;
124 // There is no need to differentiate between a pending CCValAssign and other
125 // kinds, as they are stored in a different list.
126 static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
127 LocInfo HTP, unsigned ExtraInfo = 0) {
128 return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
131 void convertToReg(unsigned RegNo) {
132 Loc = RegNo;
133 isMem = false;
136 void convertToMem(unsigned Offset) {
137 Loc = Offset;
138 isMem = true;
141 unsigned getValNo() const { return ValNo; }
142 MVT getValVT() const { return ValVT; }
144 bool isRegLoc() const { return !isMem; }
145 bool isMemLoc() const { return isMem; }
147 bool needsCustom() const { return isCustom; }
149 Register getLocReg() const { assert(isRegLoc()); return Loc; }
150 unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
151 unsigned getExtraInfo() const { return Loc; }
152 MVT getLocVT() const { return LocVT; }
154 LocInfo getLocInfo() const { return HTP; }
155 bool isExtInLoc() const {
156 return (HTP == AExt || HTP == SExt || HTP == ZExt);
159 bool isUpperBitsInLoc() const {
160 return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
164 /// Describes a register that needs to be forwarded from the prologue to a
165 /// musttail call.
166 struct ForwardedRegister {
167 ForwardedRegister(unsigned VReg, MCPhysReg PReg, MVT VT)
168 : VReg(VReg), PReg(PReg), VT(VT) {}
169 unsigned VReg;
170 MCPhysReg PReg;
171 MVT VT;
174 /// CCAssignFn - This function assigns a location for Val, updating State to
175 /// reflect the change. It returns 'true' if it failed to handle Val.
176 typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
177 MVT LocVT, CCValAssign::LocInfo LocInfo,
178 ISD::ArgFlagsTy ArgFlags, CCState &State);
180 /// CCCustomFn - This function assigns a location for Val, possibly updating
181 /// all args to reflect changes and indicates if it handled it. It must set
182 /// isCustom if it handles the arg and returns true.
183 typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
184 MVT &LocVT, CCValAssign::LocInfo &LocInfo,
185 ISD::ArgFlagsTy &ArgFlags, CCState &State);
187 /// CCState - This class holds information needed while lowering arguments and
188 /// return values. It captures which registers are already assigned and which
189 /// stack slots are used. It provides accessors to allocate these values.
190 class CCState {
191 private:
192 CallingConv::ID CallingConv;
193 bool IsVarArg;
194 bool AnalyzingMustTailForwardedRegs = false;
195 MachineFunction &MF;
196 const TargetRegisterInfo &TRI;
197 SmallVectorImpl<CCValAssign> &Locs;
198 LLVMContext &Context;
200 unsigned StackOffset;
201 Align MaxStackArgAlign;
202 SmallVector<uint32_t, 16> UsedRegs;
203 SmallVector<CCValAssign, 4> PendingLocs;
204 SmallVector<ISD::ArgFlagsTy, 4> PendingArgFlags;
206 // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
208 // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
209 // tracking.
210 // Or, in another words it tracks byval parameters that are stored in
211 // general purpose registers.
213 // For 4 byte stack alignment,
214 // instance index means byval parameter number in formal
215 // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
216 // then, for function "foo":
218 // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
220 // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
221 // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
223 // In case of 8 bytes stack alignment,
224 // ByValRegs may also contain information about wasted registers.
225 // In function shown above, r3 would be wasted according to AAPCS rules.
226 // And in that case ByValRegs[1].Waste would be "true".
227 // ByValRegs vector size still would be 2,
228 // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
230 // Supposed use-case for this collection:
231 // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
232 // 2. HandleByVal fillups ByValRegs.
233 // 3. Argument analysis (LowerFormatArguments, for example). After
234 // some byval argument was analyzed, InRegsParamsProcessed is increased.
235 struct ByValInfo {
236 ByValInfo(unsigned B, unsigned E, bool IsWaste = false) :
237 Begin(B), End(E), Waste(IsWaste) {}
238 // First register allocated for current parameter.
239 unsigned Begin;
241 // First after last register allocated for current parameter.
242 unsigned End;
244 // Means that current range of registers doesn't belong to any
245 // parameters. It was wasted due to stack alignment rules.
246 // For more information see:
247 // AAPCS, 5.5 Parameter Passing, Stage C, C.3.
248 bool Waste;
250 SmallVector<ByValInfo, 4 > ByValRegs;
252 // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
253 // during argument analysis.
254 unsigned InRegsParamsProcessed;
256 public:
257 CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
258 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);
260 void addLoc(const CCValAssign &V) {
261 Locs.push_back(V);
264 LLVMContext &getContext() const { return Context; }
265 MachineFunction &getMachineFunction() const { return MF; }
266 CallingConv::ID getCallingConv() const { return CallingConv; }
267 bool isVarArg() const { return IsVarArg; }
269 /// getNextStackOffset - Return the next stack offset such that all stack
270 /// slots satisfy their alignment requirements.
271 unsigned getNextStackOffset() const {
272 return StackOffset;
275 /// getAlignedCallFrameSize - Return the size of the call frame needed to
276 /// be able to store all arguments and such that the alignment requirement
277 /// of each of the arguments is satisfied.
278 unsigned getAlignedCallFrameSize() const {
279 return alignTo(StackOffset, MaxStackArgAlign);
282 /// isAllocated - Return true if the specified register (or an alias) is
283 /// allocated.
284 bool isAllocated(unsigned Reg) const {
285 return UsedRegs[Reg/32] & (1 << (Reg&31));
288 /// AnalyzeFormalArguments - Analyze an array of argument values,
289 /// incorporating info about the formals into this state.
290 void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
291 CCAssignFn Fn);
293 /// The function will invoke AnalyzeFormalArguments.
294 void AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
295 CCAssignFn Fn) {
296 AnalyzeFormalArguments(Ins, Fn);
299 /// AnalyzeReturn - Analyze the returned values of a return,
300 /// incorporating info about the result values into this state.
301 void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
302 CCAssignFn Fn);
304 /// CheckReturn - Analyze the return values of a function, returning
305 /// true if the return can be performed without sret-demotion, and
306 /// false otherwise.
307 bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
308 CCAssignFn Fn);
310 /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
311 /// incorporating info about the passed values into this state.
312 void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
313 CCAssignFn Fn);
315 /// AnalyzeCallOperands - Same as above except it takes vectors of types
316 /// and argument flags.
317 void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
318 SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
319 CCAssignFn Fn);
321 /// The function will invoke AnalyzeCallOperands.
322 void AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> &Outs,
323 CCAssignFn Fn) {
324 AnalyzeCallOperands(Outs, Fn);
327 /// AnalyzeCallResult - Analyze the return values of a call,
328 /// incorporating info about the passed values into this state.
329 void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
330 CCAssignFn Fn);
332 /// A shadow allocated register is a register that was allocated
333 /// but wasn't added to the location list (Locs).
334 /// \returns true if the register was allocated as shadow or false otherwise.
335 bool IsShadowAllocatedReg(unsigned Reg) const;
337 /// AnalyzeCallResult - Same as above except it's specialized for calls which
338 /// produce a single value.
339 void AnalyzeCallResult(MVT VT, CCAssignFn Fn);
341 /// getFirstUnallocated - Return the index of the first unallocated register
342 /// in the set, or Regs.size() if they are all allocated.
343 unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
344 for (unsigned i = 0; i < Regs.size(); ++i)
345 if (!isAllocated(Regs[i]))
346 return i;
347 return Regs.size();
350 /// AllocateReg - Attempt to allocate one register. If it is not available,
351 /// return zero. Otherwise, return the register, marking it and any aliases
352 /// as allocated.
353 unsigned AllocateReg(unsigned Reg) {
354 if (isAllocated(Reg)) return 0;
355 MarkAllocated(Reg);
356 return Reg;
359 /// Version of AllocateReg with extra register to be shadowed.
360 unsigned AllocateReg(unsigned Reg, unsigned ShadowReg) {
361 if (isAllocated(Reg)) return 0;
362 MarkAllocated(Reg);
363 MarkAllocated(ShadowReg);
364 return Reg;
367 /// AllocateReg - Attempt to allocate one of the specified registers. If none
368 /// are available, return zero. Otherwise, return the first one available,
369 /// marking it and any aliases as allocated.
370 unsigned AllocateReg(ArrayRef<MCPhysReg> Regs) {
371 unsigned FirstUnalloc = getFirstUnallocated(Regs);
372 if (FirstUnalloc == Regs.size())
373 return 0; // Didn't find the reg.
375 // Mark the register and any aliases as allocated.
376 unsigned Reg = Regs[FirstUnalloc];
377 MarkAllocated(Reg);
378 return Reg;
381 /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
382 /// registers. If this is not possible, return zero. Otherwise, return the first
383 /// register of the block that were allocated, marking the entire block as allocated.
384 unsigned AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
385 if (RegsRequired > Regs.size())
386 return 0;
388 for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
389 ++StartIdx) {
390 bool BlockAvailable = true;
391 // Check for already-allocated regs in this block
392 for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
393 if (isAllocated(Regs[StartIdx + BlockIdx])) {
394 BlockAvailable = false;
395 break;
398 if (BlockAvailable) {
399 // Mark the entire block as allocated
400 for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
401 MarkAllocated(Regs[StartIdx + BlockIdx]);
403 return Regs[StartIdx];
406 // No block was available
407 return 0;
410 /// Version of AllocateReg with list of registers to be shadowed.
411 unsigned AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
412 unsigned FirstUnalloc = getFirstUnallocated(Regs);
413 if (FirstUnalloc == Regs.size())
414 return 0; // Didn't find the reg.
416 // Mark the register and any aliases as allocated.
417 unsigned Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
418 MarkAllocated(Reg);
419 MarkAllocated(ShadowReg);
420 return Reg;
423 /// AllocateStack - Allocate a chunk of stack space with the specified size
424 /// and alignment.
425 unsigned AllocateStack(unsigned Size, unsigned Alignment) {
426 const llvm::Align Align(Alignment);
427 StackOffset = alignTo(StackOffset, Align);
428 unsigned Result = StackOffset;
429 StackOffset += Size;
430 MaxStackArgAlign = std::max(Align, MaxStackArgAlign);
431 ensureMaxAlignment(Align);
432 return Result;
435 void ensureMaxAlignment(llvm::Align Align) {
436 if (!AnalyzingMustTailForwardedRegs)
437 MF.getFrameInfo().ensureMaxAlignment(Align.value());
440 /// Version of AllocateStack with extra register to be shadowed.
441 unsigned AllocateStack(unsigned Size, unsigned Align, unsigned ShadowReg) {
442 MarkAllocated(ShadowReg);
443 return AllocateStack(Size, Align);
446 /// Version of AllocateStack with list of extra registers to be shadowed.
447 /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
448 unsigned AllocateStack(unsigned Size, unsigned Align,
449 ArrayRef<MCPhysReg> ShadowRegs) {
450 for (unsigned i = 0; i < ShadowRegs.size(); ++i)
451 MarkAllocated(ShadowRegs[i]);
452 return AllocateStack(Size, Align);
455 // HandleByVal - Allocate a stack slot large enough to pass an argument by
456 // value. The size and alignment information of the argument is encoded in its
457 // parameter attribute.
458 void HandleByVal(unsigned ValNo, MVT ValVT,
459 MVT LocVT, CCValAssign::LocInfo LocInfo,
460 int MinSize, int MinAlign, ISD::ArgFlagsTy ArgFlags);
462 // Returns count of byval arguments that are to be stored (even partly)
463 // in registers.
464 unsigned getInRegsParamsCount() const { return ByValRegs.size(); }
466 // Returns count of byval in-regs arguments proceed.
467 unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }
469 // Get information about N-th byval parameter that is stored in registers.
470 // Here "ByValParamIndex" is N.
471 void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
472 unsigned& BeginReg, unsigned& EndReg) const {
473 assert(InRegsParamRecordIndex < ByValRegs.size() &&
474 "Wrong ByVal parameter index");
476 const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
477 BeginReg = info.Begin;
478 EndReg = info.End;
481 // Add information about parameter that is kept in registers.
482 void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
483 ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
486 // Goes either to next byval parameter (excluding "waste" record), or
487 // to the end of collection.
488 // Returns false, if end is reached.
489 bool nextInRegsParam() {
490 unsigned e = ByValRegs.size();
491 if (InRegsParamsProcessed < e)
492 ++InRegsParamsProcessed;
493 return InRegsParamsProcessed < e;
496 // Clear byval registers tracking info.
497 void clearByValRegsInfo() {
498 InRegsParamsProcessed = 0;
499 ByValRegs.clear();
502 // Rewind byval registers tracking info.
503 void rewindByValRegsInfo() {
504 InRegsParamsProcessed = 0;
507 // Get list of pending assignments
508 SmallVectorImpl<CCValAssign> &getPendingLocs() {
509 return PendingLocs;
512 // Get a list of argflags for pending assignments.
513 SmallVectorImpl<ISD::ArgFlagsTy> &getPendingArgFlags() {
514 return PendingArgFlags;
517 /// Compute the remaining unused register parameters that would be used for
518 /// the given value type. This is useful when varargs are passed in the
519 /// registers that normal prototyped parameters would be passed in, or for
520 /// implementing perfect forwarding.
521 void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
522 CCAssignFn Fn);
524 /// Compute the set of registers that need to be preserved and forwarded to
525 /// any musttail calls.
526 void analyzeMustTailForwardedRegisters(
527 SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
528 CCAssignFn Fn);
530 /// Returns true if the results of the two calling conventions are compatible.
531 /// This is usually part of the check for tailcall eligibility.
532 static bool resultsCompatible(CallingConv::ID CalleeCC,
533 CallingConv::ID CallerCC, MachineFunction &MF,
534 LLVMContext &C,
535 const SmallVectorImpl<ISD::InputArg> &Ins,
536 CCAssignFn CalleeFn, CCAssignFn CallerFn);
538 /// The function runs an additional analysis pass over function arguments.
539 /// It will mark each argument with the attribute flag SecArgPass.
540 /// After running, it will sort the locs list.
541 template <class T>
542 void AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> &Args,
543 CCAssignFn Fn) {
544 unsigned NumFirstPassLocs = Locs.size();
546 /// Creates similar argument list to \p Args in which each argument is
547 /// marked using SecArgPass flag.
548 SmallVector<T, 16> SecPassArg;
549 // SmallVector<ISD::InputArg, 16> SecPassArg;
550 for (auto Arg : Args) {
551 Arg.Flags.setSecArgPass();
552 SecPassArg.push_back(Arg);
555 // Run the second argument pass
556 AnalyzeArguments(SecPassArg, Fn);
558 // Sort the locations of the arguments according to their original position.
559 SmallVector<CCValAssign, 16> TmpArgLocs;
560 TmpArgLocs.swap(Locs);
561 auto B = TmpArgLocs.begin(), E = TmpArgLocs.end();
562 std::merge(B, B + NumFirstPassLocs, B + NumFirstPassLocs, E,
563 std::back_inserter(Locs),
564 [](const CCValAssign &A, const CCValAssign &B) -> bool {
565 return A.getValNo() < B.getValNo();
569 private:
570 /// MarkAllocated - Mark a register and all of its aliases as allocated.
571 void MarkAllocated(unsigned Reg);
574 } // end namespace llvm
576 #endif // LLVM_CODEGEN_CALLINGCONVLOWER_H