1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
115 using namespace llvm
;
116 using namespace llvm::PatternMatch
;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls
, "Number of tail calls");
121 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted
,
124 "Number of constants with their storage promoted into constant pools");
127 ARMInterworking("arm-interworking", cl::Hidden
,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 static cl::opt
<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden
,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden
,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
140 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden
,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs
[] = {
147 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
,
151 MVT PromotedBitwiseVT
) {
152 if (VT
!= PromotedLdStVT
) {
153 setOperationAction(ISD::LOAD
, VT
, Promote
);
154 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
156 setOperationAction(ISD::STORE
, VT
, Promote
);
157 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
160 MVT ElemTy
= VT
.getVectorElementType();
161 if (ElemTy
!= MVT::f64
)
162 setOperationAction(ISD::SETCC
, VT
, Custom
);
163 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
165 if (ElemTy
== MVT::i32
) {
166 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
167 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
168 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
169 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
171 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
172 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
173 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
176 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
177 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
178 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
180 setOperationAction(ISD::SELECT
, VT
, Expand
);
181 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
182 setOperationAction(ISD::VSELECT
, VT
, Expand
);
183 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
184 if (VT
.isInteger()) {
185 setOperationAction(ISD::SHL
, VT
, Custom
);
186 setOperationAction(ISD::SRA
, VT
, Custom
);
187 setOperationAction(ISD::SRL
, VT
, Custom
);
190 // Promote all bit-wise operations.
191 if (VT
.isInteger() && VT
!= PromotedBitwiseVT
) {
192 setOperationAction(ISD::AND
, VT
, Promote
);
193 AddPromotedToType (ISD::AND
, VT
, PromotedBitwiseVT
);
194 setOperationAction(ISD::OR
, VT
, Promote
);
195 AddPromotedToType (ISD::OR
, VT
, PromotedBitwiseVT
);
196 setOperationAction(ISD::XOR
, VT
, Promote
);
197 AddPromotedToType (ISD::XOR
, VT
, PromotedBitwiseVT
);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV
, VT
, Expand
);
202 setOperationAction(ISD::UDIV
, VT
, Expand
);
203 setOperationAction(ISD::FDIV
, VT
, Expand
);
204 setOperationAction(ISD::SREM
, VT
, Expand
);
205 setOperationAction(ISD::UREM
, VT
, Expand
);
206 setOperationAction(ISD::FREM
, VT
, Expand
);
208 if (!VT
.isFloatingPoint() &&
209 VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
210 for (auto Opcode
: {ISD::ABS
, ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
211 setOperationAction(Opcode
, VT
, Legal
);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
215 addRegisterClass(VT
, &ARM::DPRRegClass
);
216 addTypeForNEON(VT
, MVT::f64
, MVT::v2i32
);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
220 addRegisterClass(VT
, &ARM::DPairRegClass
);
221 addTypeForNEON(VT
, MVT::v2f64
, MVT::v4i32
);
224 void ARMTargetLowering::setAllExpand(MVT VT
) {
225 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
226 setOperationAction(Opc
, VT
, Expand
);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST
, VT
, Legal
);
232 setOperationAction(ISD::LOAD
, VT
, Legal
);
233 setOperationAction(ISD::STORE
, VT
, Legal
);
234 setOperationAction(ISD::UNDEF
, VT
, Legal
);
237 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
238 LegalizeAction Action
) {
239 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
240 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
241 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
245 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
247 for (auto VT
: IntTypes
) {
248 addRegisterClass(VT
, &ARM::MQPRRegClass
);
249 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
250 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
252 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
253 setOperationAction(ISD::SHL
, VT
, Custom
);
254 setOperationAction(ISD::SRA
, VT
, Custom
);
255 setOperationAction(ISD::SRL
, VT
, Custom
);
256 setOperationAction(ISD::SMIN
, VT
, Legal
);
257 setOperationAction(ISD::SMAX
, VT
, Legal
);
258 setOperationAction(ISD::UMIN
, VT
, Legal
);
259 setOperationAction(ISD::UMAX
, VT
, Legal
);
260 setOperationAction(ISD::ABS
, VT
, Legal
);
261 setOperationAction(ISD::SETCC
, VT
, Custom
);
263 // No native support for these.
264 setOperationAction(ISD::UDIV
, VT
, Expand
);
265 setOperationAction(ISD::SDIV
, VT
, Expand
);
266 setOperationAction(ISD::UREM
, VT
, Expand
);
267 setOperationAction(ISD::SREM
, VT
, Expand
);
268 setOperationAction(ISD::CTPOP
, VT
, Expand
);
271 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Legal
);
274 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
275 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
276 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
277 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
280 // Pre and Post inc are supported on loads and stores
281 for (unsigned im
= (unsigned)ISD::PRE_INC
;
282 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
283 setIndexedLoadAction(im
, VT
, Legal
);
284 setIndexedStoreAction(im
, VT
, Legal
);
288 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
289 for (auto VT
: FloatTypes
) {
290 addRegisterClass(VT
, &ARM::MQPRRegClass
);
294 // These are legal or custom whether we have MVE.fp or not
295 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
296 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
297 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
298 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
299 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
300 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
301 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
302 setOperationAction(ISD::SETCC
, VT
, Custom
);
304 // Pre and Post inc are supported on loads and stores
305 for (unsigned im
= (unsigned)ISD::PRE_INC
;
306 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
307 setIndexedLoadAction(im
, VT
, Legal
);
308 setIndexedStoreAction(im
, VT
, Legal
);
312 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
313 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
314 setOperationAction(ISD::FROUND
, VT
, Legal
);
316 // No native support for these.
317 setOperationAction(ISD::FDIV
, VT
, Expand
);
318 setOperationAction(ISD::FREM
, VT
, Expand
);
319 setOperationAction(ISD::FSQRT
, VT
, Expand
);
320 setOperationAction(ISD::FSIN
, VT
, Expand
);
321 setOperationAction(ISD::FCOS
, VT
, Expand
);
322 setOperationAction(ISD::FPOW
, VT
, Expand
);
323 setOperationAction(ISD::FLOG
, VT
, Expand
);
324 setOperationAction(ISD::FLOG2
, VT
, Expand
);
325 setOperationAction(ISD::FLOG10
, VT
, Expand
);
326 setOperationAction(ISD::FEXP
, VT
, Expand
);
327 setOperationAction(ISD::FEXP2
, VT
, Expand
);
328 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
332 // We 'support' these types up to bitcast/load/store level, regardless of
333 // MVE integer-only / float support. Only doing FP data processing on the FP
334 // vector types is inhibited at integer-only level.
335 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
336 for (auto VT
: LongTypes
) {
337 addRegisterClass(VT
, &ARM::MQPRRegClass
);
339 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
340 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
341 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
343 // We can do bitwise operations on v2i64 vectors
344 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
345 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
346 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
348 // It is legal to extload from v4i8 to v4i16 or v4i32.
349 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
350 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
351 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
353 // Some truncating stores are legal too.
354 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
355 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
356 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
358 // Pre and Post inc on these are legal, given the correct extends
359 for (unsigned im
= (unsigned)ISD::PRE_INC
;
360 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
361 setIndexedLoadAction(im
, MVT::v8i8
, Legal
);
362 setIndexedStoreAction(im
, MVT::v8i8
, Legal
);
363 setIndexedLoadAction(im
, MVT::v4i8
, Legal
);
364 setIndexedStoreAction(im
, MVT::v4i8
, Legal
);
365 setIndexedLoadAction(im
, MVT::v4i16
, Legal
);
366 setIndexedStoreAction(im
, MVT::v4i16
, Legal
);
370 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
};
371 for (auto VT
: pTypes
) {
372 addRegisterClass(VT
, &ARM::VCCRRegClass
);
373 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
374 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
375 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
376 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
377 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
378 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
379 setOperationAction(ISD::SETCC
, VT
, Custom
);
380 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
384 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
385 const ARMSubtarget
&STI
)
386 : TargetLowering(TM
), Subtarget(&STI
) {
387 RegInfo
= Subtarget
->getRegisterInfo();
388 Itins
= Subtarget
->getInstrItineraryData();
390 setBooleanContents(ZeroOrOneBooleanContent
);
391 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
393 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
394 !Subtarget
->isTargetWatchOS()) {
395 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
396 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
397 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
398 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
399 : CallingConv::ARM_AAPCS
);
402 if (Subtarget
->isTargetMachO()) {
403 // Uses VFP for Thumb libfuncs if available.
404 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
405 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
406 static const struct {
407 const RTLIB::Libcall Op
;
408 const char * const Name
;
409 const ISD::CondCode Cond
;
411 // Single-precision floating-point arithmetic.
412 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
413 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
414 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
415 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
417 // Double-precision floating-point arithmetic.
418 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
419 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
420 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
421 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
423 // Single-precision comparisons.
424 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
425 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
426 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
427 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
428 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
429 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
430 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
431 { RTLIB::O_F32
, "__unordsf2vfp", ISD::SETEQ
},
433 // Double-precision comparisons.
434 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
435 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
436 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
437 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
438 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
439 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
440 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
441 { RTLIB::O_F64
, "__unorddf2vfp", ISD::SETEQ
},
443 // Floating-point to integer conversions.
444 // i64 conversions are done via library routines even when generating VFP
445 // instructions, so use the same ones.
446 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
447 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
448 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
449 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
451 // Conversions between floating types.
452 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
453 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
455 // Integer to floating-point conversions.
456 // i64 conversions are done via library routines even when generating VFP
457 // instructions, so use the same ones.
458 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
459 // e.g., __floatunsidf vs. __floatunssidfvfp.
460 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
461 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
462 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
463 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
466 for (const auto &LC
: LibraryCalls
) {
467 setLibcallName(LC
.Op
, LC
.Name
);
468 if (LC
.Cond
!= ISD::SETCC_INVALID
)
469 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
474 // These libcalls are not available in 32-bit.
475 setLibcallName(RTLIB::SHL_I128
, nullptr);
476 setLibcallName(RTLIB::SRL_I128
, nullptr);
477 setLibcallName(RTLIB::SRA_I128
, nullptr);
480 if (Subtarget
->isAAPCS_ABI() &&
481 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
482 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
483 static const struct {
484 const RTLIB::Libcall Op
;
485 const char * const Name
;
486 const CallingConv::ID CC
;
487 const ISD::CondCode Cond
;
489 // Double-precision floating-point arithmetic helper functions
490 // RTABI chapter 4.1.2, Table 2
491 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
492 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
493 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
494 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
496 // Double-precision floating-point comparison helper functions
497 // RTABI chapter 4.1.2, Table 3
498 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
499 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
500 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
501 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
502 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
503 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
504 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
505 { RTLIB::O_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
507 // Single-precision floating-point arithmetic helper functions
508 // RTABI chapter 4.1.2, Table 4
509 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
510 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
511 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
512 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
514 // Single-precision floating-point comparison helper functions
515 // RTABI chapter 4.1.2, Table 5
516 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
517 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
518 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
519 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
520 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
521 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
522 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
523 { RTLIB::O_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
525 // Floating-point to integer conversions.
526 // RTABI chapter 4.1.2, Table 6
527 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
528 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
529 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
530 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
531 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
532 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
533 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
534 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
536 // Conversions between floating types.
537 // RTABI chapter 4.1.2, Table 7
538 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
539 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
540 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
542 // Integer to floating-point conversions.
543 // RTABI chapter 4.1.2, Table 8
544 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
545 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
546 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
547 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
548 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
549 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
550 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
551 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
553 // Long long helper functions
554 // RTABI chapter 4.2, Table 9
555 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
556 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
557 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
558 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
560 // Integer division functions
561 // RTABI chapter 4.3.1
562 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
563 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
564 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
565 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
566 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
567 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
568 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
569 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
572 for (const auto &LC
: LibraryCalls
) {
573 setLibcallName(LC
.Op
, LC
.Name
);
574 setLibcallCallingConv(LC
.Op
, LC
.CC
);
575 if (LC
.Cond
!= ISD::SETCC_INVALID
)
576 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
579 // EABI dependent RTLIB
580 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
581 TM
.Options
.EABIVersion
== EABI::EABI5
) {
582 static const struct {
583 const RTLIB::Libcall Op
;
584 const char *const Name
;
585 const CallingConv::ID CC
;
586 const ISD::CondCode Cond
;
587 } MemOpsLibraryCalls
[] = {
589 // RTABI chapter 4.3.4
590 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
591 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
592 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
595 for (const auto &LC
: MemOpsLibraryCalls
) {
596 setLibcallName(LC
.Op
, LC
.Name
);
597 setLibcallCallingConv(LC
.Op
, LC
.CC
);
598 if (LC
.Cond
!= ISD::SETCC_INVALID
)
599 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
604 if (Subtarget
->isTargetWindows()) {
605 static const struct {
606 const RTLIB::Libcall Op
;
607 const char * const Name
;
608 const CallingConv::ID CC
;
610 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
611 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
612 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
613 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
614 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
615 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
616 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
617 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
620 for (const auto &LC
: LibraryCalls
) {
621 setLibcallName(LC
.Op
, LC
.Name
);
622 setLibcallCallingConv(LC
.Op
, LC
.CC
);
626 // Use divmod compiler-rt calls for iOS 5.0 and later.
627 if (Subtarget
->isTargetMachO() &&
628 !(Subtarget
->isTargetIOS() &&
629 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
630 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
631 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
634 // The half <-> float conversion functions are always soft-float on
635 // non-watchos platforms, but are needed for some targets which use a
636 // hard-float calling convention by default.
637 if (!Subtarget
->isTargetWatchABI()) {
638 if (Subtarget
->isAAPCS_ABI()) {
639 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
640 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
641 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
643 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
644 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
645 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
649 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
650 // a __gnu_ prefix (which is the default).
651 if (Subtarget
->isTargetAEABI()) {
652 static const struct {
653 const RTLIB::Libcall Op
;
654 const char * const Name
;
655 const CallingConv::ID CC
;
657 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
658 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
659 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
662 for (const auto &LC
: LibraryCalls
) {
663 setLibcallName(LC
.Op
, LC
.Name
);
664 setLibcallCallingConv(LC
.Op
, LC
.CC
);
668 if (Subtarget
->isThumb1Only())
669 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
671 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
673 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
674 Subtarget
->hasFPRegs()) {
675 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
676 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
677 if (!Subtarget
->hasVFP2Base())
678 setAllExpand(MVT::f32
);
679 if (!Subtarget
->hasFP64())
680 setAllExpand(MVT::f64
);
683 if (Subtarget
->hasFullFP16()) {
684 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
685 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
686 setOperationAction(ISD::BITCAST
, MVT::i32
, Custom
);
687 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
689 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
690 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
693 for (MVT VT
: MVT::vector_valuetypes()) {
694 for (MVT InnerVT
: MVT::vector_valuetypes()) {
695 setTruncStoreAction(VT
, InnerVT
, Expand
);
696 addAllExtLoads(VT
, InnerVT
, Expand
);
699 setOperationAction(ISD::MULHS
, VT
, Expand
);
700 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
701 setOperationAction(ISD::MULHU
, VT
, Expand
);
702 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
704 setOperationAction(ISD::BSWAP
, VT
, Expand
);
707 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
708 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
710 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
711 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
713 if (Subtarget
->hasMVEIntegerOps())
714 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
716 // Combine low-overhead loop intrinsics so that we can lower i1 types.
717 if (Subtarget
->hasLOB()) {
718 setTargetDAGCombine(ISD::BRCOND
);
719 setTargetDAGCombine(ISD::BR_CC
);
722 if (Subtarget
->hasNEON()) {
723 addDRTypeForNEON(MVT::v2f32
);
724 addDRTypeForNEON(MVT::v8i8
);
725 addDRTypeForNEON(MVT::v4i16
);
726 addDRTypeForNEON(MVT::v2i32
);
727 addDRTypeForNEON(MVT::v1i64
);
729 addQRTypeForNEON(MVT::v4f32
);
730 addQRTypeForNEON(MVT::v2f64
);
731 addQRTypeForNEON(MVT::v16i8
);
732 addQRTypeForNEON(MVT::v8i16
);
733 addQRTypeForNEON(MVT::v4i32
);
734 addQRTypeForNEON(MVT::v2i64
);
736 if (Subtarget
->hasFullFP16()) {
737 addQRTypeForNEON(MVT::v8f16
);
738 addDRTypeForNEON(MVT::v4f16
);
742 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
743 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
744 // none of Neon, MVE or VFP supports any arithmetic operations on it.
745 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
746 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
747 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
748 // FIXME: Code duplication: FDIV and FREM are expanded always, see
749 // ARMTargetLowering::addTypeForNEON method for details.
750 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
751 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
752 // FIXME: Create unittest.
753 // In another words, find a way when "copysign" appears in DAG with vector
755 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
756 // FIXME: Code duplication: SETCC has custom operation action, see
757 // ARMTargetLowering::addTypeForNEON method for details.
758 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
759 // FIXME: Create unittest for FNEG and for FABS.
760 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
761 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
762 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
763 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
764 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
765 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
766 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
767 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
768 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
769 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
770 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
771 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
772 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
773 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
774 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
775 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
776 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
777 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
780 if (Subtarget
->hasNEON()) {
781 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
782 // supported for v4f32.
783 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
784 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
785 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
786 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
787 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
788 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
789 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
790 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
791 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
792 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
793 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
794 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
795 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
796 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
798 // Mark v2f32 intrinsics.
799 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
800 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
801 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
802 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
803 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
804 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
805 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
806 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
807 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
808 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
809 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
810 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
811 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
812 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
814 // Neon does not support some operations on v1i64 and v2i64 types.
815 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
816 // Custom handling for some quad-vector types to detect VMULL.
817 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
818 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
819 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
820 // Custom handling for some vector types to avoid expensive expansions
821 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
822 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
823 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
824 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
825 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
826 // a destination type that is wider than the source, and nor does
827 // it have a FP_TO_[SU]INT instruction with a narrower destination than
829 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
830 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
831 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
832 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
833 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
834 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
835 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
836 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
838 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
839 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
841 // NEON does not have single instruction CTPOP for vectors with element
842 // types wider than 8-bits. However, custom lowering can leverage the
843 // v8i8/v16i8 vcnt instruction.
844 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
845 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
846 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
847 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
848 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
849 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
851 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
852 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
854 // NEON does not have single instruction CTTZ for vectors.
855 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
856 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
857 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
858 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
860 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
861 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
862 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
863 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
865 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
866 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
867 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
868 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
870 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
871 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
872 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
873 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
875 // NEON only has FMA instructions as of VFP4.
876 if (!Subtarget
->hasVFP4Base()) {
877 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
878 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
881 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
882 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
883 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
884 setTargetDAGCombine(ISD::SHL
);
885 setTargetDAGCombine(ISD::SRL
);
886 setTargetDAGCombine(ISD::SRA
);
887 setTargetDAGCombine(ISD::SIGN_EXTEND
);
888 setTargetDAGCombine(ISD::ZERO_EXTEND
);
889 setTargetDAGCombine(ISD::ANY_EXTEND
);
890 setTargetDAGCombine(ISD::STORE
);
891 setTargetDAGCombine(ISD::FP_TO_SINT
);
892 setTargetDAGCombine(ISD::FP_TO_UINT
);
893 setTargetDAGCombine(ISD::FDIV
);
894 setTargetDAGCombine(ISD::LOAD
);
896 // It is legal to extload from v4i8 to v4i16 or v4i32.
897 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
899 for (MVT VT
: MVT::integer_vector_valuetypes()) {
900 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
901 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
902 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
907 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
908 setTargetDAGCombine(ISD::BUILD_VECTOR
);
909 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
910 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
913 if (!Subtarget
->hasFP64()) {
914 // When targeting a floating-point unit with only single-precision
915 // operations, f64 is legal for the few double-precision instructions which
916 // are present However, no double-precision operations other than moves,
917 // loads and stores are provided by the hardware.
918 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
919 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
920 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
921 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
922 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
923 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
924 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
925 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
926 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
927 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
928 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
929 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
930 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
931 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
932 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
933 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
934 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
935 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
936 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
937 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
938 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
939 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
940 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
941 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
942 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
943 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
944 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
945 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
946 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
947 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
948 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
951 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) {
952 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
953 if (Subtarget
->hasFullFP16())
954 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
957 if (!Subtarget
->hasFP16())
958 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
960 if (!Subtarget
->hasFP64())
961 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
963 computeRegisterProperties(Subtarget
->getRegisterInfo());
965 // ARM does not have floating-point extending loads.
966 for (MVT VT
: MVT::fp_valuetypes()) {
967 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
968 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
971 // ... or truncating stores
972 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
973 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
974 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
976 // ARM does not have i1 sign extending load.
977 for (MVT VT
: MVT::integer_valuetypes())
978 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
980 // ARM supports all 4 flavors of integer indexed load / store.
981 if (!Subtarget
->isThumb1Only()) {
982 for (unsigned im
= (unsigned)ISD::PRE_INC
;
983 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
984 setIndexedLoadAction(im
, MVT::i1
, Legal
);
985 setIndexedLoadAction(im
, MVT::i8
, Legal
);
986 setIndexedLoadAction(im
, MVT::i16
, Legal
);
987 setIndexedLoadAction(im
, MVT::i32
, Legal
);
988 setIndexedStoreAction(im
, MVT::i1
, Legal
);
989 setIndexedStoreAction(im
, MVT::i8
, Legal
);
990 setIndexedStoreAction(im
, MVT::i16
, Legal
);
991 setIndexedStoreAction(im
, MVT::i32
, Legal
);
994 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
995 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
996 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
999 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
1000 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
1001 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
1002 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
1004 setOperationAction(ISD::ADDCARRY
, MVT::i32
, Custom
);
1005 setOperationAction(ISD::SUBCARRY
, MVT::i32
, Custom
);
1007 // i64 operation support.
1008 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
1009 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
1010 if (Subtarget
->isThumb1Only()) {
1011 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
1012 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
1014 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
1015 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
1016 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
1018 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
1019 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
1020 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
1021 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
1022 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
1023 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
1024 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
1026 // MVE lowers 64 bit shifts to lsll and lsrl
1027 // assuming that ISD::SRL and SRA of i64 are already marked custom
1028 if (Subtarget
->hasMVEIntegerOps())
1029 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1031 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1032 if (Subtarget
->isThumb1Only()) {
1033 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1034 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1035 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1038 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1039 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1041 // ARM does not have ROTL.
1042 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1043 for (MVT VT
: MVT::vector_valuetypes()) {
1044 setOperationAction(ISD::ROTL
, VT
, Expand
);
1045 setOperationAction(ISD::ROTR
, VT
, Expand
);
1047 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1048 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1049 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1050 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1051 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1054 // @llvm.readcyclecounter requires the Performance Monitors extension.
1055 // Default to the 0 expansion on unsupported platforms.
1056 // FIXME: Technically there are older ARM CPUs that have
1057 // implementation-specific ways of obtaining this information.
1058 if (Subtarget
->hasPerfMon())
1059 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1061 // Only ARMv6 has BSWAP.
1062 if (!Subtarget
->hasV6Ops())
1063 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1065 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1066 : Subtarget
->hasDivideInARMMode();
1068 // These are expanded into libcalls if the cpu doesn't have HW divider.
1069 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1070 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1073 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1074 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1075 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1077 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1078 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1081 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1082 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1084 // Register based DivRem for AEABI (RTABI 4.2)
1085 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1086 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1087 Subtarget
->isTargetWindows()) {
1088 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1089 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1090 HasStandaloneRem
= false;
1092 if (Subtarget
->isTargetWindows()) {
1094 const RTLIB::Libcall Op
;
1095 const char * const Name
;
1096 const CallingConv::ID CC
;
1097 } LibraryCalls
[] = {
1098 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1099 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1100 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1101 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1103 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1104 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1105 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1106 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1109 for (const auto &LC
: LibraryCalls
) {
1110 setLibcallName(LC
.Op
, LC
.Name
);
1111 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1115 const RTLIB::Libcall Op
;
1116 const char * const Name
;
1117 const CallingConv::ID CC
;
1118 } LibraryCalls
[] = {
1119 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1120 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1121 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1122 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1124 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1125 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1126 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1127 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1130 for (const auto &LC
: LibraryCalls
) {
1131 setLibcallName(LC
.Op
, LC
.Name
);
1132 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1136 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1137 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1138 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1139 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1141 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1142 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1145 if (Subtarget
->isTargetWindows() && Subtarget
->getTargetTriple().isOSMSVCRT())
1146 for (auto &VT
: {MVT::f32
, MVT::f64
})
1147 setOperationAction(ISD::FPOWI
, VT
, Custom
);
1149 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1150 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1151 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1152 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1154 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1155 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1157 // Use the default implementation.
1158 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1159 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1160 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1161 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1162 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1163 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1165 if (Subtarget
->isTargetWindows())
1166 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1168 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1170 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1171 // the default expansion.
1172 InsertFencesForAtomic
= false;
1173 if (Subtarget
->hasAnyDataBarrier() &&
1174 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1175 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1176 // to ldrex/strex loops already.
1177 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1178 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1179 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1181 // On v8, we have particularly efficient implementations of atomic fences
1182 // if they can be combined with nearby atomic loads and stores.
1183 if (!Subtarget
->hasAcquireRelease() ||
1184 getTargetMachine().getOptLevel() == 0) {
1185 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1186 InsertFencesForAtomic
= true;
1189 // If there's anything we can use as a barrier, go through custom lowering
1190 // for ATOMIC_FENCE.
1191 // If target has DMB in thumb, Fences can be inserted.
1192 if (Subtarget
->hasDataBarrier())
1193 InsertFencesForAtomic
= true;
1195 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1196 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1198 // Set them all for expansion, which will force libcalls.
1199 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Expand
);
1200 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, Expand
);
1201 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, Expand
);
1202 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Expand
);
1203 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Expand
);
1204 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, Expand
);
1205 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, Expand
);
1206 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, Expand
);
1207 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, Expand
);
1208 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, Expand
);
1209 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, Expand
);
1210 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, Expand
);
1211 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1212 // Unordered/Monotonic case.
1213 if (!InsertFencesForAtomic
) {
1214 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1215 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1219 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1221 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1222 if (!Subtarget
->hasV6Ops()) {
1223 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1224 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1226 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1228 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1229 !Subtarget
->isThumb1Only()) {
1230 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1231 // iff target supports vfp2.
1232 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1233 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
1236 // We want to custom lower some of our intrinsics.
1237 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1238 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1239 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1240 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1241 if (Subtarget
->useSjLjEH())
1242 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1244 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1245 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1246 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1247 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1248 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1249 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1250 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1251 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1252 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1253 if (Subtarget
->hasFullFP16()) {
1254 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1255 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1256 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1259 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1261 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1262 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1263 if (Subtarget
->hasFullFP16())
1264 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1265 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1266 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1267 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1269 // We don't support sin/cos/fmod/copysign/pow
1270 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1271 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1272 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1273 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1274 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1275 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1276 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1277 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1278 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1279 !Subtarget
->isThumb1Only()) {
1280 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1281 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1283 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1284 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1286 if (!Subtarget
->hasVFP4Base()) {
1287 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1288 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1291 // Various VFP goodness
1292 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1293 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1294 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1295 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1296 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1299 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1300 if (!Subtarget
->hasFP16()) {
1301 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1302 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1306 // Use __sincos_stret if available.
1307 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1308 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1309 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1310 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1313 // FP-ARMv8 implements a lot of rounding-like FP operations.
1314 if (Subtarget
->hasFPARMv8Base()) {
1315 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1316 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1317 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1318 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1319 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1320 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1321 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1322 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1323 if (Subtarget
->hasNEON()) {
1324 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1325 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1326 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1327 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1330 if (Subtarget
->hasFP64()) {
1331 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1332 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1333 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1334 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1335 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1336 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1337 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1338 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1342 // FP16 often need to be promoted to call lib functions
1343 if (Subtarget
->hasFullFP16()) {
1344 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1345 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1346 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1347 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1348 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1349 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1350 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1351 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1352 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1353 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1354 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1355 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1357 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1360 if (Subtarget
->hasNEON()) {
1361 // vmin and vmax aren't available in a scalar form, so we use
1362 // a NEON instruction with an undef lane instead.
1363 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1364 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1365 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1366 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1367 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1368 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1369 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1370 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1372 if (Subtarget
->hasFullFP16()) {
1373 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1374 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1375 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1376 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1378 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1379 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1380 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1381 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1385 // We have target-specific dag combine patterns for the following nodes:
1386 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1387 setTargetDAGCombine(ISD::ADD
);
1388 setTargetDAGCombine(ISD::SUB
);
1389 setTargetDAGCombine(ISD::MUL
);
1390 setTargetDAGCombine(ISD::AND
);
1391 setTargetDAGCombine(ISD::OR
);
1392 setTargetDAGCombine(ISD::XOR
);
1394 if (Subtarget
->hasV6Ops())
1395 setTargetDAGCombine(ISD::SRL
);
1396 if (Subtarget
->isThumb1Only())
1397 setTargetDAGCombine(ISD::SHL
);
1399 setStackPointerRegisterToSaveRestore(ARM::SP
);
1401 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1402 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1403 setSchedulingPreference(Sched::RegPressure
);
1405 setSchedulingPreference(Sched::Hybrid
);
1407 //// temporary - rewrite interface to use type
1408 MaxStoresPerMemset
= 8;
1409 MaxStoresPerMemsetOptSize
= 4;
1410 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1411 MaxStoresPerMemcpyOptSize
= 2;
1412 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1413 MaxStoresPerMemmoveOptSize
= 2;
1415 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1416 // are at least 4 bytes aligned.
1417 setMinStackArgumentAlignment(4);
1419 // Prefer likely predicted branches to selects on out-of-order cores.
1420 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1422 setPrefLoopLogAlignment(Subtarget
->getPrefLoopLogAlignment());
1424 setMinFunctionAlignment(Subtarget
->isThumb() ? llvm::Align(2)
1427 if (Subtarget
->isThumb() || Subtarget
->isThumb2())
1428 setTargetDAGCombine(ISD::ABS
);
1431 bool ARMTargetLowering::useSoftFloat() const {
1432 return Subtarget
->useSoftFloat();
1435 // FIXME: It might make sense to define the representative register class as the
1436 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1437 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1438 // SPR's representative would be DPR_VFP2. This should work well if register
1439 // pressure tracking were modified such that a register use would increment the
1440 // pressure of the register class's representative and all of it's super
1441 // classes' representatives transitively. We have not implemented this because
1442 // of the difficulty prior to coalescing of modeling operand register classes
1443 // due to the common occurrence of cross class copies and subregister insertions
1445 std::pair
<const TargetRegisterClass
*, uint8_t>
1446 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1448 const TargetRegisterClass
*RRC
= nullptr;
1450 switch (VT
.SimpleTy
) {
1452 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1453 // Use DPR as representative register class for all floating point
1454 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1455 // the cost is 1 for both f32 and f64.
1456 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1457 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1458 RRC
= &ARM::DPRRegClass
;
1459 // When NEON is used for SP, only half of the register file is available
1460 // because operations that define both SP and DP results will be constrained
1461 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1462 // coalescing by double-counting the SP regs. See the FIXME above.
1463 if (Subtarget
->useNEONForSinglePrecisionFP())
1466 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1467 case MVT::v4f32
: case MVT::v2f64
:
1468 RRC
= &ARM::DPRRegClass
;
1472 RRC
= &ARM::DPRRegClass
;
1476 RRC
= &ARM::DPRRegClass
;
1480 return std::make_pair(RRC
, Cost
);
1483 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1484 switch ((ARMISD::NodeType
)Opcode
) {
1485 case ARMISD::FIRST_NUMBER
: break;
1486 case ARMISD::Wrapper
: return "ARMISD::Wrapper";
1487 case ARMISD::WrapperPIC
: return "ARMISD::WrapperPIC";
1488 case ARMISD::WrapperJT
: return "ARMISD::WrapperJT";
1489 case ARMISD::COPY_STRUCT_BYVAL
: return "ARMISD::COPY_STRUCT_BYVAL";
1490 case ARMISD::CALL
: return "ARMISD::CALL";
1491 case ARMISD::CALL_PRED
: return "ARMISD::CALL_PRED";
1492 case ARMISD::CALL_NOLINK
: return "ARMISD::CALL_NOLINK";
1493 case ARMISD::BRCOND
: return "ARMISD::BRCOND";
1494 case ARMISD::BR_JT
: return "ARMISD::BR_JT";
1495 case ARMISD::BR2_JT
: return "ARMISD::BR2_JT";
1496 case ARMISD::RET_FLAG
: return "ARMISD::RET_FLAG";
1497 case ARMISD::INTRET_FLAG
: return "ARMISD::INTRET_FLAG";
1498 case ARMISD::PIC_ADD
: return "ARMISD::PIC_ADD";
1499 case ARMISD::CMP
: return "ARMISD::CMP";
1500 case ARMISD::CMN
: return "ARMISD::CMN";
1501 case ARMISD::CMPZ
: return "ARMISD::CMPZ";
1502 case ARMISD::CMPFP
: return "ARMISD::CMPFP";
1503 case ARMISD::CMPFPw0
: return "ARMISD::CMPFPw0";
1504 case ARMISD::BCC_i64
: return "ARMISD::BCC_i64";
1505 case ARMISD::FMSTAT
: return "ARMISD::FMSTAT";
1507 case ARMISD::CMOV
: return "ARMISD::CMOV";
1508 case ARMISD::SUBS
: return "ARMISD::SUBS";
1510 case ARMISD::SSAT
: return "ARMISD::SSAT";
1511 case ARMISD::USAT
: return "ARMISD::USAT";
1513 case ARMISD::ASRL
: return "ARMISD::ASRL";
1514 case ARMISD::LSRL
: return "ARMISD::LSRL";
1515 case ARMISD::LSLL
: return "ARMISD::LSLL";
1517 case ARMISD::SRL_FLAG
: return "ARMISD::SRL_FLAG";
1518 case ARMISD::SRA_FLAG
: return "ARMISD::SRA_FLAG";
1519 case ARMISD::RRX
: return "ARMISD::RRX";
1521 case ARMISD::ADDC
: return "ARMISD::ADDC";
1522 case ARMISD::ADDE
: return "ARMISD::ADDE";
1523 case ARMISD::SUBC
: return "ARMISD::SUBC";
1524 case ARMISD::SUBE
: return "ARMISD::SUBE";
1525 case ARMISD::LSLS
: return "ARMISD::LSLS";
1527 case ARMISD::VMOVRRD
: return "ARMISD::VMOVRRD";
1528 case ARMISD::VMOVDRR
: return "ARMISD::VMOVDRR";
1529 case ARMISD::VMOVhr
: return "ARMISD::VMOVhr";
1530 case ARMISD::VMOVrh
: return "ARMISD::VMOVrh";
1531 case ARMISD::VMOVSR
: return "ARMISD::VMOVSR";
1533 case ARMISD::EH_SJLJ_SETJMP
: return "ARMISD::EH_SJLJ_SETJMP";
1534 case ARMISD::EH_SJLJ_LONGJMP
: return "ARMISD::EH_SJLJ_LONGJMP";
1535 case ARMISD::EH_SJLJ_SETUP_DISPATCH
: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1537 case ARMISD::TC_RETURN
: return "ARMISD::TC_RETURN";
1539 case ARMISD::THREAD_POINTER
:return "ARMISD::THREAD_POINTER";
1541 case ARMISD::DYN_ALLOC
: return "ARMISD::DYN_ALLOC";
1543 case ARMISD::MEMBARRIER_MCR
: return "ARMISD::MEMBARRIER_MCR";
1545 case ARMISD::PRELOAD
: return "ARMISD::PRELOAD";
1547 case ARMISD::WIN__CHKSTK
: return "ARMISD::WIN__CHKSTK";
1548 case ARMISD::WIN__DBZCHK
: return "ARMISD::WIN__DBZCHK";
1550 case ARMISD::PREDICATE_CAST
: return "ARMISD::PREDICATE_CAST";
1551 case ARMISD::VCMP
: return "ARMISD::VCMP";
1552 case ARMISD::VCMPZ
: return "ARMISD::VCMPZ";
1553 case ARMISD::VTST
: return "ARMISD::VTST";
1555 case ARMISD::VSHLs
: return "ARMISD::VSHLs";
1556 case ARMISD::VSHLu
: return "ARMISD::VSHLu";
1557 case ARMISD::VSHLIMM
: return "ARMISD::VSHLIMM";
1558 case ARMISD::VSHRsIMM
: return "ARMISD::VSHRsIMM";
1559 case ARMISD::VSHRuIMM
: return "ARMISD::VSHRuIMM";
1560 case ARMISD::VRSHRsIMM
: return "ARMISD::VRSHRsIMM";
1561 case ARMISD::VRSHRuIMM
: return "ARMISD::VRSHRuIMM";
1562 case ARMISD::VRSHRNIMM
: return "ARMISD::VRSHRNIMM";
1563 case ARMISD::VQSHLsIMM
: return "ARMISD::VQSHLsIMM";
1564 case ARMISD::VQSHLuIMM
: return "ARMISD::VQSHLuIMM";
1565 case ARMISD::VQSHLsuIMM
: return "ARMISD::VQSHLsuIMM";
1566 case ARMISD::VQSHRNsIMM
: return "ARMISD::VQSHRNsIMM";
1567 case ARMISD::VQSHRNuIMM
: return "ARMISD::VQSHRNuIMM";
1568 case ARMISD::VQSHRNsuIMM
: return "ARMISD::VQSHRNsuIMM";
1569 case ARMISD::VQRSHRNsIMM
: return "ARMISD::VQRSHRNsIMM";
1570 case ARMISD::VQRSHRNuIMM
: return "ARMISD::VQRSHRNuIMM";
1571 case ARMISD::VQRSHRNsuIMM
: return "ARMISD::VQRSHRNsuIMM";
1572 case ARMISD::VSLIIMM
: return "ARMISD::VSLIIMM";
1573 case ARMISD::VSRIIMM
: return "ARMISD::VSRIIMM";
1574 case ARMISD::VGETLANEu
: return "ARMISD::VGETLANEu";
1575 case ARMISD::VGETLANEs
: return "ARMISD::VGETLANEs";
1576 case ARMISD::VMOVIMM
: return "ARMISD::VMOVIMM";
1577 case ARMISD::VMVNIMM
: return "ARMISD::VMVNIMM";
1578 case ARMISD::VMOVFPIMM
: return "ARMISD::VMOVFPIMM";
1579 case ARMISD::VDUP
: return "ARMISD::VDUP";
1580 case ARMISD::VDUPLANE
: return "ARMISD::VDUPLANE";
1581 case ARMISD::VEXT
: return "ARMISD::VEXT";
1582 case ARMISD::VREV64
: return "ARMISD::VREV64";
1583 case ARMISD::VREV32
: return "ARMISD::VREV32";
1584 case ARMISD::VREV16
: return "ARMISD::VREV16";
1585 case ARMISD::VZIP
: return "ARMISD::VZIP";
1586 case ARMISD::VUZP
: return "ARMISD::VUZP";
1587 case ARMISD::VTRN
: return "ARMISD::VTRN";
1588 case ARMISD::VTBL1
: return "ARMISD::VTBL1";
1589 case ARMISD::VTBL2
: return "ARMISD::VTBL2";
1590 case ARMISD::VMULLs
: return "ARMISD::VMULLs";
1591 case ARMISD::VMULLu
: return "ARMISD::VMULLu";
1592 case ARMISD::UMAAL
: return "ARMISD::UMAAL";
1593 case ARMISD::UMLAL
: return "ARMISD::UMLAL";
1594 case ARMISD::SMLAL
: return "ARMISD::SMLAL";
1595 case ARMISD::SMLALBB
: return "ARMISD::SMLALBB";
1596 case ARMISD::SMLALBT
: return "ARMISD::SMLALBT";
1597 case ARMISD::SMLALTB
: return "ARMISD::SMLALTB";
1598 case ARMISD::SMLALTT
: return "ARMISD::SMLALTT";
1599 case ARMISD::SMULWB
: return "ARMISD::SMULWB";
1600 case ARMISD::SMULWT
: return "ARMISD::SMULWT";
1601 case ARMISD::SMLALD
: return "ARMISD::SMLALD";
1602 case ARMISD::SMLALDX
: return "ARMISD::SMLALDX";
1603 case ARMISD::SMLSLD
: return "ARMISD::SMLSLD";
1604 case ARMISD::SMLSLDX
: return "ARMISD::SMLSLDX";
1605 case ARMISD::SMMLAR
: return "ARMISD::SMMLAR";
1606 case ARMISD::SMMLSR
: return "ARMISD::SMMLSR";
1607 case ARMISD::BUILD_VECTOR
: return "ARMISD::BUILD_VECTOR";
1608 case ARMISD::BFI
: return "ARMISD::BFI";
1609 case ARMISD::VORRIMM
: return "ARMISD::VORRIMM";
1610 case ARMISD::VBICIMM
: return "ARMISD::VBICIMM";
1611 case ARMISD::VBSL
: return "ARMISD::VBSL";
1612 case ARMISD::MEMCPY
: return "ARMISD::MEMCPY";
1613 case ARMISD::VLD1DUP
: return "ARMISD::VLD1DUP";
1614 case ARMISD::VLD2DUP
: return "ARMISD::VLD2DUP";
1615 case ARMISD::VLD3DUP
: return "ARMISD::VLD3DUP";
1616 case ARMISD::VLD4DUP
: return "ARMISD::VLD4DUP";
1617 case ARMISD::VLD1_UPD
: return "ARMISD::VLD1_UPD";
1618 case ARMISD::VLD2_UPD
: return "ARMISD::VLD2_UPD";
1619 case ARMISD::VLD3_UPD
: return "ARMISD::VLD3_UPD";
1620 case ARMISD::VLD4_UPD
: return "ARMISD::VLD4_UPD";
1621 case ARMISD::VLD2LN_UPD
: return "ARMISD::VLD2LN_UPD";
1622 case ARMISD::VLD3LN_UPD
: return "ARMISD::VLD3LN_UPD";
1623 case ARMISD::VLD4LN_UPD
: return "ARMISD::VLD4LN_UPD";
1624 case ARMISD::VLD1DUP_UPD
: return "ARMISD::VLD1DUP_UPD";
1625 case ARMISD::VLD2DUP_UPD
: return "ARMISD::VLD2DUP_UPD";
1626 case ARMISD::VLD3DUP_UPD
: return "ARMISD::VLD3DUP_UPD";
1627 case ARMISD::VLD4DUP_UPD
: return "ARMISD::VLD4DUP_UPD";
1628 case ARMISD::VST1_UPD
: return "ARMISD::VST1_UPD";
1629 case ARMISD::VST2_UPD
: return "ARMISD::VST2_UPD";
1630 case ARMISD::VST3_UPD
: return "ARMISD::VST3_UPD";
1631 case ARMISD::VST4_UPD
: return "ARMISD::VST4_UPD";
1632 case ARMISD::VST2LN_UPD
: return "ARMISD::VST2LN_UPD";
1633 case ARMISD::VST3LN_UPD
: return "ARMISD::VST3LN_UPD";
1634 case ARMISD::VST4LN_UPD
: return "ARMISD::VST4LN_UPD";
1635 case ARMISD::WLS
: return "ARMISD::WLS";
1636 case ARMISD::LE
: return "ARMISD::LE";
1637 case ARMISD::LOOP_DEC
: return "ARMISD::LOOP_DEC";
1638 case ARMISD::CSINV
: return "ARMISD::CSINV";
1639 case ARMISD::CSNEG
: return "ARMISD::CSNEG";
1640 case ARMISD::CSINC
: return "ARMISD::CSINC";
1645 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1648 return getPointerTy(DL
);
1650 // MVE has a predicate register.
1651 if (Subtarget
->hasMVEIntegerOps() &&
1652 (VT
== MVT::v4i32
|| VT
== MVT::v8i16
|| VT
== MVT::v16i8
))
1653 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1654 return VT
.changeVectorElementTypeToInteger();
1657 /// getRegClassFor - Return the register class that should be used for the
1658 /// specified value type.
1659 const TargetRegisterClass
*
1660 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1662 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1663 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1664 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1666 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1667 if (VT
== MVT::v4i64
)
1668 return &ARM::QQPRRegClass
;
1669 if (VT
== MVT::v8i64
)
1670 return &ARM::QQQQPRRegClass
;
1672 return TargetLowering::getRegClassFor(VT
);
1675 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1676 // source/dest is aligned and the copy size is large enough. We therefore want
1677 // to align such objects passed to memory intrinsics.
1678 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1679 unsigned &PrefAlign
) const {
1680 if (!isa
<MemIntrinsic
>(CI
))
1683 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1684 // cycle faster than 4-byte aligned LDM.
1685 PrefAlign
= (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? 8 : 4);
1689 // Create a fast isel object.
1691 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1692 const TargetLibraryInfo
*libInfo
) const {
1693 return ARM::createFastISel(funcInfo
, libInfo
);
1696 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1697 unsigned NumVals
= N
->getNumValues();
1699 return Sched::RegPressure
;
1701 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1702 EVT VT
= N
->getValueType(i
);
1703 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1705 if (VT
.isFloatingPoint() || VT
.isVector())
1709 if (!N
->isMachineOpcode())
1710 return Sched::RegPressure
;
1712 // Load are scheduled for latency even if there instruction itinerary
1713 // is not available.
1714 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1715 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
1717 if (MCID
.getNumDefs() == 0)
1718 return Sched::RegPressure
;
1719 if (!Itins
->isEmpty() &&
1720 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2)
1723 return Sched::RegPressure
;
1726 //===----------------------------------------------------------------------===//
1728 //===----------------------------------------------------------------------===//
1730 static bool isSRL16(const SDValue
&Op
) {
1731 if (Op
.getOpcode() != ISD::SRL
)
1733 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1734 return Const
->getZExtValue() == 16;
1738 static bool isSRA16(const SDValue
&Op
) {
1739 if (Op
.getOpcode() != ISD::SRA
)
1741 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1742 return Const
->getZExtValue() == 16;
1746 static bool isSHL16(const SDValue
&Op
) {
1747 if (Op
.getOpcode() != ISD::SHL
)
1749 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1750 return Const
->getZExtValue() == 16;
1754 // Check for a signed 16-bit value. We special case SRA because it makes it
1755 // more simple when also looking for SRAs that aren't sign extending a
1756 // smaller value. Without the check, we'd need to take extra care with
1757 // checking order for some operations.
1758 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
1760 return isSHL16(Op
.getOperand(0));
1761 return DAG
.ComputeNumSignBits(Op
) == 17;
1764 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1765 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
1767 default: llvm_unreachable("Unknown condition code!");
1768 case ISD::SETNE
: return ARMCC::NE
;
1769 case ISD::SETEQ
: return ARMCC::EQ
;
1770 case ISD::SETGT
: return ARMCC::GT
;
1771 case ISD::SETGE
: return ARMCC::GE
;
1772 case ISD::SETLT
: return ARMCC::LT
;
1773 case ISD::SETLE
: return ARMCC::LE
;
1774 case ISD::SETUGT
: return ARMCC::HI
;
1775 case ISD::SETUGE
: return ARMCC::HS
;
1776 case ISD::SETULT
: return ARMCC::LO
;
1777 case ISD::SETULE
: return ARMCC::LS
;
1781 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1782 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
1783 ARMCC::CondCodes
&CondCode2
, bool &InvalidOnQNaN
) {
1784 CondCode2
= ARMCC::AL
;
1785 InvalidOnQNaN
= true;
1787 default: llvm_unreachable("Unknown FP condition!");
1790 CondCode
= ARMCC::EQ
;
1791 InvalidOnQNaN
= false;
1794 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
1796 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
1797 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
1798 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
1800 CondCode
= ARMCC::MI
;
1801 CondCode2
= ARMCC::GT
;
1802 InvalidOnQNaN
= false;
1804 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
1805 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
1807 CondCode
= ARMCC::EQ
;
1808 CondCode2
= ARMCC::VS
;
1809 InvalidOnQNaN
= false;
1811 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
1812 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
1814 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
1816 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
1819 CondCode
= ARMCC::NE
;
1820 InvalidOnQNaN
= false;
1825 //===----------------------------------------------------------------------===//
1826 // Calling Convention Implementation
1827 //===----------------------------------------------------------------------===//
1829 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1830 /// account presence of floating point hardware and calling convention
1831 /// limitations, such as support for variadic functions.
1833 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
1834 bool isVarArg
) const {
1837 report_fatal_error("Unsupported calling convention");
1838 case CallingConv::ARM_AAPCS
:
1839 case CallingConv::ARM_APCS
:
1840 case CallingConv::GHC
:
1842 case CallingConv::PreserveMost
:
1843 return CallingConv::PreserveMost
;
1844 case CallingConv::ARM_AAPCS_VFP
:
1845 case CallingConv::Swift
:
1846 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
1847 case CallingConv::C
:
1848 if (!Subtarget
->isAAPCS_ABI())
1849 return CallingConv::ARM_APCS
;
1850 else if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() &&
1851 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
1853 return CallingConv::ARM_AAPCS_VFP
;
1855 return CallingConv::ARM_AAPCS
;
1856 case CallingConv::Fast
:
1857 case CallingConv::CXX_FAST_TLS
:
1858 if (!Subtarget
->isAAPCS_ABI()) {
1859 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
1860 return CallingConv::Fast
;
1861 return CallingConv::ARM_APCS
;
1862 } else if (Subtarget
->hasVFP2Base() &&
1863 !Subtarget
->isThumb1Only() && !isVarArg
)
1864 return CallingConv::ARM_AAPCS_VFP
;
1866 return CallingConv::ARM_AAPCS
;
1870 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1871 bool isVarArg
) const {
1872 return CCAssignFnForNode(CC
, false, isVarArg
);
1875 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1876 bool isVarArg
) const {
1877 return CCAssignFnForNode(CC
, true, isVarArg
);
1880 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1881 /// CallingConvention.
1882 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
1884 bool isVarArg
) const {
1885 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
1887 report_fatal_error("Unsupported calling convention");
1888 case CallingConv::ARM_APCS
:
1889 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1890 case CallingConv::ARM_AAPCS
:
1891 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1892 case CallingConv::ARM_AAPCS_VFP
:
1893 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1894 case CallingConv::Fast
:
1895 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
1896 case CallingConv::GHC
:
1897 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
1898 case CallingConv::PreserveMost
:
1899 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1903 /// LowerCallResult - Lower the result values of a call into the
1904 /// appropriate copies out of appropriate physical registers.
1905 SDValue
ARMTargetLowering::LowerCallResult(
1906 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
1907 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1908 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
1909 SDValue ThisVal
) const {
1910 // Assign locations to each value returned by this call.
1911 SmallVector
<CCValAssign
, 16> RVLocs
;
1912 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1914 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
1916 // Copy all of the result registers out of their specified physreg.
1917 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1918 CCValAssign VA
= RVLocs
[i
];
1920 // Pass 'this' value directly from the argument to return value, to avoid
1921 // reg unit interference
1922 if (i
== 0 && isThisReturn
) {
1923 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
1924 "unexpected return calling convention register assignment");
1925 InVals
.push_back(ThisVal
);
1930 if (VA
.needsCustom()) {
1931 // Handle f64 or half of a v2f64.
1932 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1934 Chain
= Lo
.getValue(1);
1935 InFlag
= Lo
.getValue(2);
1936 VA
= RVLocs
[++i
]; // skip ahead to next loc
1937 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
1939 Chain
= Hi
.getValue(1);
1940 InFlag
= Hi
.getValue(2);
1941 if (!Subtarget
->isLittle())
1943 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1945 if (VA
.getLocVT() == MVT::v2f64
) {
1946 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
1947 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1948 DAG
.getConstant(0, dl
, MVT::i32
));
1950 VA
= RVLocs
[++i
]; // skip ahead to next loc
1951 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1952 Chain
= Lo
.getValue(1);
1953 InFlag
= Lo
.getValue(2);
1954 VA
= RVLocs
[++i
]; // skip ahead to next loc
1955 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InFlag
);
1956 Chain
= Hi
.getValue(1);
1957 InFlag
= Hi
.getValue(2);
1958 if (!Subtarget
->isLittle())
1960 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
1961 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
1962 DAG
.getConstant(1, dl
, MVT::i32
));
1965 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
1967 Chain
= Val
.getValue(1);
1968 InFlag
= Val
.getValue(2);
1971 switch (VA
.getLocInfo()) {
1972 default: llvm_unreachable("Unknown loc info!");
1973 case CCValAssign::Full
: break;
1974 case CCValAssign::BCvt
:
1975 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
1979 InVals
.push_back(Val
);
1985 /// LowerMemOpCallTo - Store the argument to the stack.
1986 SDValue
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
,
1987 SDValue Arg
, const SDLoc
&dl
,
1989 const CCValAssign
&VA
,
1990 ISD::ArgFlagsTy Flags
) const {
1991 unsigned LocMemOffset
= VA
.getLocMemOffset();
1992 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
1993 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
1995 return DAG
.getStore(
1996 Chain
, dl
, Arg
, PtrOff
,
1997 MachinePointerInfo::getStack(DAG
.getMachineFunction(), LocMemOffset
));
2000 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
2001 SDValue Chain
, SDValue
&Arg
,
2002 RegsToPassVector
&RegsToPass
,
2003 CCValAssign
&VA
, CCValAssign
&NextVA
,
2005 SmallVectorImpl
<SDValue
> &MemOpChains
,
2006 ISD::ArgFlagsTy Flags
) const {
2007 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2008 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2009 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
2010 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
2012 if (NextVA
.isRegLoc())
2013 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
2015 assert(NextVA
.isMemLoc());
2016 if (!StackPtr
.getNode())
2017 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
2018 getPointerTy(DAG
.getDataLayout()));
2020 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, fmrrd
.getValue(1-id
),
2026 /// LowerCall - Lowering a call into a callseq_start <-
2027 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2030 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2031 SmallVectorImpl
<SDValue
> &InVals
) const {
2032 SelectionDAG
&DAG
= CLI
.DAG
;
2034 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2035 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2036 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2037 SDValue Chain
= CLI
.Chain
;
2038 SDValue Callee
= CLI
.Callee
;
2039 bool &isTailCall
= CLI
.IsTailCall
;
2040 CallingConv::ID CallConv
= CLI
.CallConv
;
2041 bool doesNotRet
= CLI
.DoesNotReturn
;
2042 bool isVarArg
= CLI
.IsVarArg
;
2044 MachineFunction
&MF
= DAG
.getMachineFunction();
2045 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2046 bool isThisReturn
= false;
2047 auto Attr
= MF
.getFunction().getFnAttribute("disable-tail-calls");
2048 bool PreferIndirect
= false;
2050 // Disable tail calls if they're not supported.
2051 if (!Subtarget
->supportsTailCall() || Attr
.getValueAsString() == "true")
2054 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2055 // If we're optimizing for minimum size and the function is called three or
2056 // more times in this block, we can improve codesize by calling indirectly
2057 // as BLXr has a 16-bit encoding.
2058 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2060 auto *BB
= CLI
.CS
.getParent();
2061 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2062 count_if(GV
->users(), [&BB
](const User
*U
) {
2063 return isa
<Instruction
>(U
) &&
2064 cast
<Instruction
>(U
)->getParent() == BB
;
2069 // Check if it's really possible to do a tail call.
2070 isTailCall
= IsEligibleForTailCallOptimization(
2071 Callee
, CallConv
, isVarArg
, isStructRet
,
2072 MF
.getFunction().hasStructRetAttr(), Outs
, OutVals
, Ins
, DAG
,
2074 if (!isTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
2075 report_fatal_error("failed to perform tail call elimination on a call "
2076 "site marked musttail");
2077 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2078 // detected sibcalls.
2083 // Analyze operands of the call, assigning locations to each operand.
2084 SmallVector
<CCValAssign
, 16> ArgLocs
;
2085 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2087 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2089 // Get a count of how many bytes are to be pushed on the stack.
2090 unsigned NumBytes
= CCInfo
.getNextStackOffset();
2093 // For tail calls, memory operands are available in our caller's stack.
2096 // Adjust the stack pointer for the new arguments...
2097 // These operations are automatically eliminated by the prolog/epilog pass
2098 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
2102 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2104 RegsToPassVector RegsToPass
;
2105 SmallVector
<SDValue
, 8> MemOpChains
;
2107 // Walk the register/memloc assignments, inserting copies/loads. In the case
2108 // of tail call optimization, arguments are handled later.
2109 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2111 ++i
, ++realArgIdx
) {
2112 CCValAssign
&VA
= ArgLocs
[i
];
2113 SDValue Arg
= OutVals
[realArgIdx
];
2114 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2115 bool isByVal
= Flags
.isByVal();
2117 // Promote the value if needed.
2118 switch (VA
.getLocInfo()) {
2119 default: llvm_unreachable("Unknown loc info!");
2120 case CCValAssign::Full
: break;
2121 case CCValAssign::SExt
:
2122 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2124 case CCValAssign::ZExt
:
2125 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2127 case CCValAssign::AExt
:
2128 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2130 case CCValAssign::BCvt
:
2131 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2135 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2136 if (VA
.needsCustom()) {
2137 if (VA
.getLocVT() == MVT::v2f64
) {
2138 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2139 DAG
.getConstant(0, dl
, MVT::i32
));
2140 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2141 DAG
.getConstant(1, dl
, MVT::i32
));
2143 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
,
2144 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2146 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2147 if (VA
.isRegLoc()) {
2148 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
,
2149 VA
, ArgLocs
[++i
], StackPtr
, MemOpChains
, Flags
);
2151 assert(VA
.isMemLoc());
2153 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Op1
,
2154 dl
, DAG
, VA
, Flags
));
2157 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2158 StackPtr
, MemOpChains
, Flags
);
2160 } else if (VA
.isRegLoc()) {
2161 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2162 Outs
[0].VT
== MVT::i32
) {
2163 assert(VA
.getLocVT() == MVT::i32
&&
2164 "unexpected calling convention register assignment");
2165 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2166 "unexpected use of 'returned'");
2167 isThisReturn
= true;
2169 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2170 } else if (isByVal
) {
2171 assert(VA
.isMemLoc());
2172 unsigned offset
= 0;
2174 // True if this byval aggregate will be split between registers
2176 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2177 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2179 if (CurByValIdx
< ByValArgsCount
) {
2181 unsigned RegBegin
, RegEnd
;
2182 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2185 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2187 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2188 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2189 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
2190 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
2191 MachinePointerInfo(),
2192 DAG
.InferPtrAlignment(AddArg
));
2193 MemOpChains
.push_back(Load
.getValue(1));
2194 RegsToPass
.push_back(std::make_pair(j
, Load
));
2197 // If parameter size outsides register area, "offset" value
2198 // helps us to calculate stack slot for remained part properly.
2199 offset
= RegEnd
- RegBegin
;
2201 CCInfo
.nextInRegsParam();
2204 if (Flags
.getByValSize() > 4*offset
) {
2205 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2206 unsigned LocMemOffset
= VA
.getLocMemOffset();
2207 SDValue StkPtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
2208 SDValue Dst
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, StkPtrOff
);
2209 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2210 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, SrcOffset
);
2211 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2213 SDValue AlignNode
= DAG
.getConstant(Flags
.getByValAlign(), dl
,
2216 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2217 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2218 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2221 } else if (!isTailCall
) {
2222 assert(VA
.isMemLoc());
2224 MemOpChains
.push_back(LowerMemOpCallTo(Chain
, StackPtr
, Arg
,
2225 dl
, DAG
, VA
, Flags
));
2229 if (!MemOpChains
.empty())
2230 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2232 // Build a sequence of copy-to-reg nodes chained together with token chain
2233 // and flag operands which copy the outgoing args into the appropriate regs.
2235 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2236 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2237 RegsToPass
[i
].second
, InFlag
);
2238 InFlag
= Chain
.getValue(1);
2241 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2242 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2243 // node so that legalize doesn't hack it.
2244 bool isDirect
= false;
2246 const TargetMachine
&TM
= getTargetMachine();
2247 const Module
*Mod
= MF
.getFunction().getParent();
2248 const GlobalValue
*GV
= nullptr;
2249 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2250 GV
= G
->getGlobal();
2252 !TM
.shouldAssumeDSOLocal(*Mod
, GV
) && Subtarget
->isTargetMachO();
2254 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2255 bool isLocalARMFunc
= false;
2256 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2257 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2259 if (Subtarget
->genLongCalls()) {
2260 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2261 "long-calls codegen is not position independent!");
2262 // Handle a global address or an external symbol. If it's not one of
2263 // those, the target's already in a register, so we don't need to do
2265 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2266 // Create a constant pool entry for the callee address
2267 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2268 ARMConstantPoolValue
*CPV
=
2269 ARMConstantPoolConstant::Create(GV
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2271 // Get the address of the callee into a register
2272 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2273 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2274 Callee
= DAG
.getLoad(
2275 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2276 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2277 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2278 const char *Sym
= S
->getSymbol();
2280 // Create a constant pool entry for the callee address
2281 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2282 ARMConstantPoolValue
*CPV
=
2283 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2284 ARMPCLabelIndex
, 0);
2285 // Get the address of the callee into a register
2286 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2287 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2288 Callee
= DAG
.getLoad(
2289 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2290 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2292 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2293 if (!PreferIndirect
) {
2295 bool isDef
= GV
->isStrongDefinitionForLinker();
2297 // ARM call to a local ARM function is predicable.
2298 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2299 // tBX takes a register source operand.
2300 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2301 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2302 Callee
= DAG
.getNode(
2303 ARMISD::WrapperPIC
, dl
, PtrVt
,
2304 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2305 Callee
= DAG
.getLoad(
2306 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2307 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
2308 /* Alignment = */ 0, MachineMemOperand::MODereferenceable
|
2309 MachineMemOperand::MOInvariant
);
2310 } else if (Subtarget
->isTargetCOFF()) {
2311 assert(Subtarget
->isTargetWindows() &&
2312 "Windows is the only supported COFF target");
2313 unsigned TargetFlags
= GV
->hasDLLImportStorageClass()
2314 ? ARMII::MO_DLLIMPORT
2315 : ARMII::MO_NO_FLAG
;
2316 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, /*offset=*/0,
2318 if (GV
->hasDLLImportStorageClass())
2320 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2321 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2322 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2324 Callee
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVt
, 0, 0);
2327 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2329 // tBX takes a register source operand.
2330 const char *Sym
= S
->getSymbol();
2331 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2332 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2333 ARMConstantPoolValue
*CPV
=
2334 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2335 ARMPCLabelIndex
, 4);
2336 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, 4);
2337 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2338 Callee
= DAG
.getLoad(
2339 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2340 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2341 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2342 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2344 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2348 // FIXME: handle tail calls differently.
2350 if (Subtarget
->isThumb()) {
2351 if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2352 CallOpc
= ARMISD::CALL_NOLINK
;
2354 CallOpc
= ARMISD::CALL
;
2356 if (!isDirect
&& !Subtarget
->hasV5TOps())
2357 CallOpc
= ARMISD::CALL_NOLINK
;
2358 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2359 // Emit regular call when code size is the priority
2360 !Subtarget
->hasMinSize())
2361 // "mov lr, pc; b _foo" to avoid confusing the RSP
2362 CallOpc
= ARMISD::CALL_NOLINK
;
2364 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2367 std::vector
<SDValue
> Ops
;
2368 Ops
.push_back(Chain
);
2369 Ops
.push_back(Callee
);
2371 // Add argument registers to the end of the list so that they are known live
2373 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2374 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2375 RegsToPass
[i
].second
.getValueType()));
2377 // Add a register mask operand representing the call-preserved registers.
2379 const uint32_t *Mask
;
2380 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2382 // For 'this' returns, use the R0-preserving mask if applicable
2383 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
2385 // Set isThisReturn to false if the calling convention is not one that
2386 // allows 'returned' to be modeled in this way, so LowerCallResult does
2387 // not try to pass 'this' straight through
2388 isThisReturn
= false;
2389 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2392 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
2394 assert(Mask
&& "Missing call preserved mask for calling convention");
2395 Ops
.push_back(DAG
.getRegisterMask(Mask
));
2398 if (InFlag
.getNode())
2399 Ops
.push_back(InFlag
);
2401 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2403 MF
.getFrameInfo().setHasTailCall();
2404 return DAG
.getNode(ARMISD::TC_RETURN
, dl
, NodeTys
, Ops
);
2407 // Returns a chain and a flag for retval copy to use.
2408 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
2409 InFlag
= Chain
.getValue(1);
2411 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
2412 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
2414 InFlag
= Chain
.getValue(1);
2416 // Handle result values, copying them out of physregs into vregs that we
2418 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
2419 InVals
, isThisReturn
,
2420 isThisReturn
? OutVals
[0] : SDValue());
2423 /// HandleByVal - Every parameter *after* a byval parameter is passed
2424 /// on the stack. Remember the next parameter register to allocate,
2425 /// and then confiscate the rest of the parameter registers to insure
2427 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
2428 unsigned Align
) const {
2429 // Byval (as with any stack) slots are always at least 4 byte aligned.
2430 Align
= std::max(Align
, 4U);
2432 unsigned Reg
= State
->AllocateReg(GPRArgRegs
);
2436 unsigned AlignInRegs
= Align
/ 4;
2437 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
2438 for (unsigned i
= 0; i
< Waste
; ++i
)
2439 Reg
= State
->AllocateReg(GPRArgRegs
);
2444 unsigned Excess
= 4 * (ARM::R4
- Reg
);
2446 // Special case when NSAA != SP and parameter size greater than size of
2447 // all remained GPR regs. In that case we can't split parameter, we must
2448 // send it to stack. We also must set NCRN to R4, so waste all
2449 // remained registers.
2450 const unsigned NSAAOffset
= State
->getNextStackOffset();
2451 if (NSAAOffset
!= 0 && Size
> Excess
) {
2452 while (State
->AllocateReg(GPRArgRegs
))
2457 // First register for byval parameter is the first register that wasn't
2458 // allocated before this method call, so it would be "reg".
2459 // If parameter is small enough to be saved in range [reg, r4), then
2460 // the end (first after last) register would be reg + param-size-in-regs,
2461 // else parameter would be splitted between registers and stack,
2462 // end register would be r4 in this case.
2463 unsigned ByValRegBegin
= Reg
;
2464 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
2465 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
2466 // Note, first register is allocated in the beginning of function already,
2467 // allocate remained amount of registers we need.
2468 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
2469 State
->AllocateReg(GPRArgRegs
);
2470 // A byval parameter that is split between registers and memory needs its
2471 // size truncated here.
2472 // In the case where the entire structure fits in registers, we set the
2473 // size in memory to zero.
2474 Size
= std::max
<int>(Size
- Excess
, 0);
2477 /// MatchingStackOffset - Return true if the given stack call argument is
2478 /// already available in the same position (relatively) of the caller's
2479 /// incoming argument stack.
2481 bool MatchingStackOffset(SDValue Arg
, unsigned Offset
, ISD::ArgFlagsTy Flags
,
2482 MachineFrameInfo
&MFI
, const MachineRegisterInfo
*MRI
,
2483 const TargetInstrInfo
*TII
) {
2484 unsigned Bytes
= Arg
.getValueSizeInBits() / 8;
2485 int FI
= std::numeric_limits
<int>::max();
2486 if (Arg
.getOpcode() == ISD::CopyFromReg
) {
2487 unsigned VR
= cast
<RegisterSDNode
>(Arg
.getOperand(1))->getReg();
2488 if (!Register::isVirtualRegister(VR
))
2490 MachineInstr
*Def
= MRI
->getVRegDef(VR
);
2493 if (!Flags
.isByVal()) {
2494 if (!TII
->isLoadFromStackSlot(*Def
, FI
))
2499 } else if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Arg
)) {
2500 if (Flags
.isByVal())
2501 // ByVal argument is passed in as a pointer but it's now being
2502 // dereferenced. e.g.
2503 // define @foo(%struct.X* %A) {
2504 // tail call @bar(%struct.X* byval %A)
2507 SDValue Ptr
= Ld
->getBasePtr();
2508 FrameIndexSDNode
*FINode
= dyn_cast
<FrameIndexSDNode
>(Ptr
);
2511 FI
= FINode
->getIndex();
2515 assert(FI
!= std::numeric_limits
<int>::max());
2516 if (!MFI
.isFixedObjectIndex(FI
))
2518 return Offset
== MFI
.getObjectOffset(FI
) && Bytes
== MFI
.getObjectSize(FI
);
2521 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2522 /// for tail call optimization. Targets which want to do tail call
2523 /// optimization should implement this function.
2524 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2525 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
2526 bool isCalleeStructRet
, bool isCallerStructRet
,
2527 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2528 const SmallVectorImpl
<SDValue
> &OutVals
,
2529 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
,
2530 const bool isIndirect
) const {
2531 MachineFunction
&MF
= DAG
.getMachineFunction();
2532 const Function
&CallerF
= MF
.getFunction();
2533 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
2535 assert(Subtarget
->supportsTailCall());
2537 // Indirect tail calls cannot be optimized for Thumb1 if the args
2538 // to the call take up r0-r3. The reason is that there are no legal registers
2539 // left to hold the pointer to the function to be called.
2540 if (Subtarget
->isThumb1Only() && Outs
.size() >= 4 &&
2541 (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
))
2544 // Look for obvious safe cases to perform tail call optimization that do not
2545 // require ABI changes. This is what gcc calls sibcall.
2547 // Exception-handling functions need a special set of instructions to indicate
2548 // a return to the hardware. Tail-calling another function would probably
2550 if (CallerF
.hasFnAttribute("interrupt"))
2553 // Also avoid sibcall optimization if either caller or callee uses struct
2554 // return semantics.
2555 if (isCalleeStructRet
|| isCallerStructRet
)
2558 // Externally-defined functions with weak linkage should not be
2559 // tail-called on ARM when the OS does not support dynamic
2560 // pre-emption of symbols, as the AAELF spec requires normal calls
2561 // to undefined weak functions to be replaced with a NOP or jump to the
2562 // next instruction. The behaviour of branch instructions in this
2563 // situation (as used for tail calls) is implementation-defined, so we
2564 // cannot rely on the linker replacing the tail call with a return.
2565 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2566 const GlobalValue
*GV
= G
->getGlobal();
2567 const Triple
&TT
= getTargetMachine().getTargetTriple();
2568 if (GV
->hasExternalWeakLinkage() &&
2569 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
2573 // Check that the call results are passed in the same way.
2574 LLVMContext
&C
= *DAG
.getContext();
2575 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
2576 CCAssignFnForReturn(CalleeCC
, isVarArg
),
2577 CCAssignFnForReturn(CallerCC
, isVarArg
)))
2579 // The callee has to preserve all registers the caller needs to preserve.
2580 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2581 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
2582 if (CalleeCC
!= CallerCC
) {
2583 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
2584 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
2588 // If Caller's vararg or byval argument has been split between registers and
2589 // stack, do not perform tail call, since part of the argument is in caller's
2591 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
2592 if (AFI_Caller
->getArgRegsSaveSize())
2595 // If the callee takes no arguments then go on to check the results of the
2597 if (!Outs
.empty()) {
2598 // Check if stack adjustment is needed. For now, do not do this if any
2599 // argument is passed on the stack.
2600 SmallVector
<CCValAssign
, 16> ArgLocs
;
2601 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
2602 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
2603 if (CCInfo
.getNextStackOffset()) {
2604 // Check if the arguments are already laid out in the right way as
2605 // the caller's fixed stack objects.
2606 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2607 const MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
2608 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2609 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2611 ++i
, ++realArgIdx
) {
2612 CCValAssign
&VA
= ArgLocs
[i
];
2613 EVT RegVT
= VA
.getLocVT();
2614 SDValue Arg
= OutVals
[realArgIdx
];
2615 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2616 if (VA
.getLocInfo() == CCValAssign::Indirect
)
2618 if (VA
.needsCustom()) {
2619 // f64 and vector types are split into multiple registers or
2620 // register/stack-slot combinations. The types will not match
2621 // the registers; give up on memory f64 refs until we figure
2622 // out what to do about this.
2625 if (!ArgLocs
[++i
].isRegLoc())
2627 if (RegVT
== MVT::v2f64
) {
2628 if (!ArgLocs
[++i
].isRegLoc())
2630 if (!ArgLocs
[++i
].isRegLoc())
2633 } else if (!VA
.isRegLoc()) {
2634 if (!MatchingStackOffset(Arg
, VA
.getLocMemOffset(), Flags
,
2641 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2642 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
2650 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
2651 MachineFunction
&MF
, bool isVarArg
,
2652 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2653 LLVMContext
&Context
) const {
2654 SmallVector
<CCValAssign
, 16> RVLocs
;
2655 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
2656 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2659 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
2660 const SDLoc
&DL
, SelectionDAG
&DAG
) {
2661 const MachineFunction
&MF
= DAG
.getMachineFunction();
2662 const Function
&F
= MF
.getFunction();
2664 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
2666 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2667 // version of the "preferred return address". These offsets affect the return
2668 // instruction if this is a return from PL1 without hypervisor extensions.
2669 // IRQ/FIQ: +4 "subs pc, lr, #4"
2670 // SWI: 0 "subs pc, lr, #0"
2671 // ABORT: +4 "subs pc, lr, #4"
2672 // UNDEF: +4/+2 "subs pc, lr, #0"
2673 // UNDEF varies depending on where the exception came from ARM or Thumb
2674 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2677 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
2680 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
2683 report_fatal_error("Unsupported interrupt attribute. If present, value "
2684 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2686 RetOps
.insert(RetOps
.begin() + 1,
2687 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
2689 return DAG
.getNode(ARMISD::INTRET_FLAG
, DL
, MVT::Other
, RetOps
);
2693 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
2695 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2696 const SmallVectorImpl
<SDValue
> &OutVals
,
2697 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
2698 // CCValAssign - represent the assignment of the return value to a location.
2699 SmallVector
<CCValAssign
, 16> RVLocs
;
2701 // CCState - Info about the registers and stack slots.
2702 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2705 // Analyze outgoing return values.
2706 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
2709 SmallVector
<SDValue
, 4> RetOps
;
2710 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
2711 bool isLittleEndian
= Subtarget
->isLittle();
2713 MachineFunction
&MF
= DAG
.getMachineFunction();
2714 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2715 AFI
->setReturnRegsCount(RVLocs
.size());
2717 // Copy the result values into the output registers.
2718 for (unsigned i
= 0, realRVLocIdx
= 0;
2720 ++i
, ++realRVLocIdx
) {
2721 CCValAssign
&VA
= RVLocs
[i
];
2722 assert(VA
.isRegLoc() && "Can only return in registers!");
2724 SDValue Arg
= OutVals
[realRVLocIdx
];
2725 bool ReturnF16
= false;
2727 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
2728 // Half-precision return values can be returned like this:
2730 // t11 f16 = fadd ...
2731 // t12: i16 = bitcast t11
2732 // t13: i32 = zero_extend t12
2733 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2735 // to avoid code generation for bitcasts, we simply set Arg to the node
2736 // that produces the f16 value, t11 in this case.
2738 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
2739 SDValue ZE
= Arg
.getOperand(0);
2740 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
2741 SDValue BC
= ZE
.getOperand(0);
2742 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
2743 Arg
= BC
.getOperand(0);
2750 switch (VA
.getLocInfo()) {
2751 default: llvm_unreachable("Unknown loc info!");
2752 case CCValAssign::Full
: break;
2753 case CCValAssign::BCvt
:
2755 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2759 if (VA
.needsCustom()) {
2760 if (VA
.getLocVT() == MVT::v2f64
) {
2761 // Extract the first half and return it in two registers.
2762 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2763 DAG
.getConstant(0, dl
, MVT::i32
));
2764 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2765 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
2767 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2768 HalfGPRs
.getValue(isLittleEndian
? 0 : 1),
2770 Flag
= Chain
.getValue(1);
2771 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2772 VA
= RVLocs
[++i
]; // skip ahead to next loc
2773 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2774 HalfGPRs
.getValue(isLittleEndian
? 1 : 0),
2776 Flag
= Chain
.getValue(1);
2777 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2778 VA
= RVLocs
[++i
]; // skip ahead to next loc
2780 // Extract the 2nd half and fall through to handle it as an f64 value.
2781 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2782 DAG
.getConstant(1, dl
, MVT::i32
));
2784 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2786 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2787 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2788 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2789 fmrrd
.getValue(isLittleEndian
? 0 : 1),
2791 Flag
= Chain
.getValue(1);
2792 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
2793 VA
= RVLocs
[++i
]; // skip ahead to next loc
2794 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
2795 fmrrd
.getValue(isLittleEndian
? 1 : 0),
2798 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
2800 // Guarantee that all emitted copies are
2801 // stuck together, avoiding something bad.
2802 Flag
= Chain
.getValue(1);
2803 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(),
2804 ReturnF16
? MVT::f16
: VA
.getLocVT()));
2806 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
2807 const MCPhysReg
*I
=
2808 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
2811 if (ARM::GPRRegClass
.contains(*I
))
2812 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
2813 else if (ARM::DPRRegClass
.contains(*I
))
2814 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
2816 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2820 // Update chain and glue.
2823 RetOps
.push_back(Flag
);
2825 // CPUs which aren't M-class use a special sequence to return from
2826 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2827 // though we use "subs pc, lr, #N").
2829 // M-class CPUs actually use a normal return sequence with a special
2830 // (hardware-provided) value in LR, so the normal code path works.
2831 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2832 !Subtarget
->isMClass()) {
2833 if (Subtarget
->isThumb1Only())
2834 report_fatal_error("interrupt attribute is not supported in Thumb1");
2835 return LowerInterruptReturn(RetOps
, dl
, DAG
);
2838 return DAG
.getNode(ARMISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
2841 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
2842 if (N
->getNumValues() != 1)
2844 if (!N
->hasNUsesOfValue(1, 0))
2847 SDValue TCChain
= Chain
;
2848 SDNode
*Copy
= *N
->use_begin();
2849 if (Copy
->getOpcode() == ISD::CopyToReg
) {
2850 // If the copy has a glue operand, we conservatively assume it isn't safe to
2851 // perform a tail call.
2852 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2854 TCChain
= Copy
->getOperand(0);
2855 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
2856 SDNode
*VMov
= Copy
;
2857 // f64 returned in a pair of GPRs.
2858 SmallPtrSet
<SDNode
*, 2> Copies
;
2859 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2861 if (UI
->getOpcode() != ISD::CopyToReg
)
2865 if (Copies
.size() > 2)
2868 for (SDNode::use_iterator UI
= VMov
->use_begin(), UE
= VMov
->use_end();
2870 SDValue UseChain
= UI
->getOperand(0);
2871 if (Copies
.count(UseChain
.getNode()))
2875 // We are at the top of this chain.
2876 // If the copy has a glue operand, we conservatively assume it
2877 // isn't safe to perform a tail call.
2878 if (UI
->getOperand(UI
->getNumOperands()-1).getValueType() == MVT::Glue
)
2884 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
2885 // f32 returned in a single GPR.
2886 if (!Copy
->hasOneUse())
2888 Copy
= *Copy
->use_begin();
2889 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
2891 // If the copy has a glue operand, we conservatively assume it isn't safe to
2892 // perform a tail call.
2893 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
2895 TCChain
= Copy
->getOperand(0);
2900 bool HasRet
= false;
2901 for (SDNode::use_iterator UI
= Copy
->use_begin(), UE
= Copy
->use_end();
2903 if (UI
->getOpcode() != ARMISD::RET_FLAG
&&
2904 UI
->getOpcode() != ARMISD::INTRET_FLAG
)
2916 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
2917 if (!Subtarget
->supportsTailCall())
2921 CI
->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2922 if (!CI
->isTailCall() || Attr
.getValueAsString() == "true")
2928 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2929 // and pass the lower and high parts through.
2930 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
2932 SDValue WriteValue
= Op
->getOperand(2);
2934 // This function is only supposed to be called for i64 type argument.
2935 assert(WriteValue
.getValueType() == MVT::i64
2936 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2938 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2939 DAG
.getConstant(0, DL
, MVT::i32
));
2940 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, WriteValue
,
2941 DAG
.getConstant(1, DL
, MVT::i32
));
2942 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
2943 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
2946 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2947 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2948 // one of the above mentioned nodes. It has to be wrapped because otherwise
2949 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2950 // be used to form addressing mode. These wrapped nodes will be selected
2952 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
2953 SelectionDAG
&DAG
) const {
2954 EVT PtrVT
= Op
.getValueType();
2955 // FIXME there is no actual debug info here
2957 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2960 // When generating execute-only code Constant Pools must be promoted to the
2961 // global data section. It's a bit ugly that we can't share them across basic
2962 // blocks, but this way we guarantee that execute-only behaves correct with
2963 // position-independent addressing modes.
2964 if (Subtarget
->genExecuteOnly()) {
2965 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2966 auto T
= const_cast<Type
*>(CP
->getType());
2967 auto C
= const_cast<Constant
*>(CP
->getConstVal());
2968 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
2969 getFunction().getParent());
2970 auto GV
= new GlobalVariable(
2971 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
2972 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2973 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
2974 Twine(AFI
->createPICLabelUId())
2976 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
2978 return LowerGlobalAddress(GA
, DAG
);
2981 if (CP
->isMachineConstantPoolEntry())
2982 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
2983 CP
->getAlignment());
2985 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
,
2986 CP
->getAlignment());
2987 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
2990 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2991 return MachineJumpTableInfo::EK_Inline
;
2994 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
2995 SelectionDAG
&DAG
) const {
2996 MachineFunction
&MF
= DAG
.getMachineFunction();
2997 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2998 unsigned ARMPCLabelIndex
= 0;
3000 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3001 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
3003 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
3004 if (!IsPositionIndependent
) {
3005 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, 4);
3007 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3008 ARMPCLabelIndex
= AFI
->createPICLabelUId();
3009 ARMConstantPoolValue
*CPV
=
3010 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
3011 ARMCP::CPBlockAddress
, PCAdj
);
3012 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3014 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
3015 SDValue Result
= DAG
.getLoad(
3016 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
3017 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3018 if (!IsPositionIndependent
)
3020 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
3021 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
3024 /// Convert a TLS address reference into the correct sequence of loads
3025 /// and calls to compute the variable's address for Darwin, and return an
3026 /// SDValue containing the final node.
3028 /// Darwin only has one TLS scheme which must be capable of dealing with the
3029 /// fully general situation, in the worst case. This means:
3030 /// + "extern __thread" declaration.
3031 /// + Defined in a possibly unknown dynamic library.
3033 /// The general system is that each __thread variable has a [3 x i32] descriptor
3034 /// which contains information used by the runtime to calculate the address. The
3035 /// only part of this the compiler needs to know about is the first word, which
3036 /// contains a function pointer that must be called with the address of the
3037 /// entire descriptor in "r0".
3039 /// Since this descriptor may be in a different unit, in general access must
3040 /// proceed along the usual ARM rules. A common sequence to produce is:
3042 /// movw rT1, :lower16:_var$non_lazy_ptr
3043 /// movt rT1, :upper16:_var$non_lazy_ptr
3047 /// [...address now in r0...]
3049 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3050 SelectionDAG
&DAG
) const {
3051 assert(Subtarget
->isTargetDarwin() &&
3052 "This function expects a Darwin target");
3055 // First step is to get the address of the actua global symbol. This is where
3056 // the TLS descriptor lives.
3057 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3059 // The first entry in the descriptor is a function pointer that we must call
3060 // to obtain the address of the variable.
3061 SDValue Chain
= DAG
.getEntryNode();
3062 SDValue FuncTLVGet
= DAG
.getLoad(
3063 MVT::i32
, DL
, Chain
, DescAddr
,
3064 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
3065 /* Alignment = */ 4,
3066 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3067 MachineMemOperand::MOInvariant
);
3068 Chain
= FuncTLVGet
.getValue(1);
3070 MachineFunction
&F
= DAG
.getMachineFunction();
3071 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3072 MFI
.setAdjustsStack(true);
3074 // TLS calls preserve all registers except those that absolutely must be
3075 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3078 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3079 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3080 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3082 // Finally, we can make the call. This is just a degenerate version of a
3083 // normal AArch64 call node: r0 takes the address of the descriptor, and
3084 // returns the address of the variable in this thread.
3085 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3087 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3088 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3089 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3090 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3094 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3095 SelectionDAG
&DAG
) const {
3096 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3098 SDValue Chain
= DAG
.getEntryNode();
3099 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3102 // Load the current TEB (thread environment block)
3103 SDValue Ops
[] = {Chain
,
3104 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3105 DAG
.getConstant(15, DL
, MVT::i32
),
3106 DAG
.getConstant(0, DL
, MVT::i32
),
3107 DAG
.getConstant(13, DL
, MVT::i32
),
3108 DAG
.getConstant(0, DL
, MVT::i32
),
3109 DAG
.getConstant(2, DL
, MVT::i32
)};
3110 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3111 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3113 SDValue TEB
= CurrentTEB
.getValue(0);
3114 Chain
= CurrentTEB
.getValue(1);
3116 // Load the ThreadLocalStoragePointer from the TEB
3117 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3119 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3120 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3122 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3123 // offset into the TLSArray.
3125 // Load the TLS index from the C runtime
3127 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3128 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3129 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3131 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3132 DAG
.getConstant(2, DL
, MVT::i32
));
3133 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3134 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3135 MachinePointerInfo());
3137 // Get the offset of the start of the .tls section (section base)
3138 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3139 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3140 SDValue Offset
= DAG
.getLoad(
3141 PtrVT
, DL
, Chain
, DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3142 DAG
.getTargetConstantPool(CPV
, PtrVT
, 4)),
3143 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3145 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3148 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3150 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3151 SelectionDAG
&DAG
) const {
3153 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3154 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3155 MachineFunction
&MF
= DAG
.getMachineFunction();
3156 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3157 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3158 ARMConstantPoolValue
*CPV
=
3159 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3160 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3161 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3162 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3163 Argument
= DAG
.getLoad(
3164 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3165 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3166 SDValue Chain
= Argument
.getValue(1);
3168 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3169 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3171 // call __tls_get_addr.
3174 Entry
.Node
= Argument
;
3175 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3176 Args
.push_back(Entry
);
3178 // FIXME: is there useful debug info available here?
3179 TargetLowering::CallLoweringInfo
CLI(DAG
);
3180 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3181 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3182 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3184 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3185 return CallResult
.first
;
3188 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3189 // "local exec" model.
3191 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3193 TLSModel::Model model
) const {
3194 const GlobalValue
*GV
= GA
->getGlobal();
3197 SDValue Chain
= DAG
.getEntryNode();
3198 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3199 // Get the Thread Pointer
3200 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3202 if (model
== TLSModel::InitialExec
) {
3203 MachineFunction
&MF
= DAG
.getMachineFunction();
3204 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3205 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3206 // Initial exec model.
3207 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3208 ARMConstantPoolValue
*CPV
=
3209 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3210 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3212 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3213 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3214 Offset
= DAG
.getLoad(
3215 PtrVT
, dl
, Chain
, Offset
,
3216 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3217 Chain
= Offset
.getValue(1);
3219 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3220 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3222 Offset
= DAG
.getLoad(
3223 PtrVT
, dl
, Chain
, Offset
,
3224 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3227 assert(model
== TLSModel::LocalExec
);
3228 ARMConstantPoolValue
*CPV
=
3229 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3230 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3231 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3232 Offset
= DAG
.getLoad(
3233 PtrVT
, dl
, Chain
, Offset
,
3234 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3237 // The address of the thread local variable is the add of the thread
3238 // pointer with the offset of the variable.
3239 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3243 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3244 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3245 if (DAG
.getTarget().useEmulatedTLS())
3246 return LowerToTLSEmulatedModel(GA
, DAG
);
3248 if (Subtarget
->isTargetDarwin())
3249 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3251 if (Subtarget
->isTargetWindows())
3252 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3254 // TODO: implement the "local dynamic" model
3255 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3256 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3259 case TLSModel::GeneralDynamic
:
3260 case TLSModel::LocalDynamic
:
3261 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3262 case TLSModel::InitialExec
:
3263 case TLSModel::LocalExec
:
3264 return LowerToTLSExecModels(GA
, DAG
, model
);
3266 llvm_unreachable("bogus TLS model");
3269 /// Return true if all users of V are within function F, looking through
3271 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3272 SmallVector
<const User
*,4> Worklist
;
3273 for (auto *U
: V
->users())
3274 Worklist
.push_back(U
);
3275 while (!Worklist
.empty()) {
3276 auto *U
= Worklist
.pop_back_val();
3277 if (isa
<ConstantExpr
>(U
)) {
3278 for (auto *UU
: U
->users())
3279 Worklist
.push_back(UU
);
3283 auto *I
= dyn_cast
<Instruction
>(U
);
3284 if (!I
|| I
->getParent()->getParent() != F
)
3290 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3291 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3292 EVT PtrVT
, const SDLoc
&dl
) {
3293 // If we're creating a pool entry for a constant global with unnamed address,
3294 // and the global is small enough, we can emit it inline into the constant pool
3295 // to save ourselves an indirection.
3297 // This is a win if the constant is only used in one function (so it doesn't
3298 // need to be duplicated) or duplicating the constant wouldn't increase code
3299 // size (implying the constant is no larger than 4 bytes).
3300 const Function
&F
= DAG
.getMachineFunction().getFunction();
3302 // We rely on this decision to inline being idemopotent and unrelated to the
3303 // use-site. We know that if we inline a variable at one use site, we'll
3304 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3305 // doesn't know about this optimization, so bail out if it's enabled else
3306 // we could decide to inline here (and thus never emit the GV) but require
3307 // the GV from fast-isel generated code.
3308 if (!EnableConstpoolPromotion
||
3309 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3312 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3313 if (!GVar
|| !GVar
->hasInitializer() ||
3314 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3315 !GVar
->hasLocalLinkage())
3318 // If we inline a value that contains relocations, we move the relocations
3319 // from .data to .text. This is not allowed in position-independent code.
3320 auto *Init
= GVar
->getInitializer();
3321 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3322 Init
->needsRelocation())
3325 // The constant islands pass can only really deal with alignment requests
3326 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3327 // any type wanting greater alignment requirements than 4 bytes. We also
3328 // can only promote constants that are multiples of 4 bytes in size or
3329 // are paddable to a multiple of 4. Currently we only try and pad constants
3330 // that are strings for simplicity.
3331 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3332 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3333 unsigned Align
= DAG
.getDataLayout().getPreferredAlignment(GVar
);
3334 unsigned RequiredPadding
= 4 - (Size
% 4);
3335 bool PaddingPossible
=
3336 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3337 if (!PaddingPossible
|| Align
> 4 || Size
> ConstpoolPromotionMaxSize
||
3341 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3342 MachineFunction
&MF
= DAG
.getMachineFunction();
3343 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3345 // We can't bloat the constant pool too much, else the ConstantIslands pass
3346 // may fail to converge. If we haven't promoted this global yet (it may have
3347 // multiple uses), and promoting it would increase the constant pool size (Sz
3348 // > 4), ensure we have space to do so up to MaxTotal.
3349 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3350 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3351 ConstpoolPromotionMaxTotal
)
3354 // This is only valid if all users are in a single function; we can't clone
3355 // the constant in general. The LLVM IR unnamed_addr allows merging
3356 // constants, but not cloning them.
3358 // We could potentially allow cloning if we could prove all uses of the
3359 // constant in the current function don't care about the address, like
3360 // printf format strings. But that isn't implemented for now.
3361 if (!allUsersAreInFunction(GVar
, &F
))
3364 // We're going to inline this global. Pad it out if needed.
3365 if (RequiredPadding
!= 4) {
3366 StringRef S
= CDAInit
->getAsString();
3368 SmallVector
<uint8_t,16> V(S
.size());
3369 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3370 while (RequiredPadding
--)
3372 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3375 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3377 DAG
.getTargetConstantPool(CPVal
, PtrVT
, /*Align=*/4);
3378 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3379 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3380 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
3383 ++NumConstpoolPromoted
;
3384 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3387 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
3388 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
3389 if (!(GV
= GA
->getBaseObject()))
3391 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
3392 return V
->isConstant();
3393 return isa
<Function
>(GV
);
3396 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
3397 SelectionDAG
&DAG
) const {
3398 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
3399 default: llvm_unreachable("unknown object format");
3401 return LowerGlobalAddressWindows(Op
, DAG
);
3403 return LowerGlobalAddressELF(Op
, DAG
);
3405 return LowerGlobalAddressDarwin(Op
, DAG
);
3409 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
3410 SelectionDAG
&DAG
) const {
3411 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3413 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3414 const TargetMachine
&TM
= getTargetMachine();
3415 bool IsRO
= isReadOnly(GV
);
3417 // promoteToConstantPool only if not generating XO text section
3418 if (TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
) && !Subtarget
->genExecuteOnly())
3419 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
3422 if (isPositionIndependent()) {
3423 bool UseGOT_PREL
= !TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
);
3424 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
3425 UseGOT_PREL
? ARMII::MO_GOT
: 0);
3426 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3429 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3430 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3432 } else if (Subtarget
->isROPI() && IsRO
) {
3434 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
3435 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
3437 } else if (Subtarget
->isRWPI() && !IsRO
) {
3440 if (Subtarget
->useMovt()) {
3442 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
3443 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
3444 } else { // use literal pool for address constant
3445 ARMConstantPoolValue
*CPV
=
3446 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
3447 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3448 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3449 RelAddr
= DAG
.getLoad(
3450 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3451 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3453 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
3454 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
3458 // If we have T2 ops, we can materialize the address directly via movt/movw
3459 // pair. This is always cheaper.
3460 if (Subtarget
->useMovt()) {
3462 // FIXME: Once remat is capable of dealing with instructions with register
3463 // operands, expand this into two nodes.
3464 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
3465 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
3467 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, 4);
3468 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3470 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3471 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3475 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
3476 SelectionDAG
&DAG
) const {
3477 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3478 "ROPI/RWPI not currently supported for Darwin");
3479 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3481 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3483 if (Subtarget
->useMovt())
3486 // FIXME: Once remat is capable of dealing with instructions with register
3487 // operands, expand this into multiple nodes
3489 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
3491 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
3492 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
3494 if (Subtarget
->isGVIndirectSymbol(GV
))
3495 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
3496 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3500 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
3501 SelectionDAG
&DAG
) const {
3502 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
3503 assert(Subtarget
->useMovt() &&
3504 "Windows on ARM expects to use movw/movt");
3505 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
3506 "ROPI/RWPI not currently supported for Windows");
3508 const TargetMachine
&TM
= getTargetMachine();
3509 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
3510 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
3511 if (GV
->hasDLLImportStorageClass())
3512 TargetFlags
= ARMII::MO_DLLIMPORT
;
3513 else if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
3514 TargetFlags
= ARMII::MO_COFFSTUB
;
3515 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3521 // FIXME: Once remat is capable of dealing with instructions with register
3522 // operands, expand this into two nodes.
3523 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
3524 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
3526 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
3527 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
3528 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
3533 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3535 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
3536 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
3537 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
3538 Op
.getOperand(1), Val
);
3542 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
3544 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
3545 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
3548 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
3549 SelectionDAG
&DAG
) const {
3551 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
3555 SDValue
ARMTargetLowering::LowerINTRINSIC_VOID(
3556 SDValue Op
, SelectionDAG
&DAG
, const ARMSubtarget
*Subtarget
) const {
3558 cast
<ConstantSDNode
>(
3559 Op
.getOperand(Op
.getOperand(0).getValueType() == MVT::Other
))
3563 return SDValue(); // Don't custom lower most intrinsics.
3564 case Intrinsic::arm_gnu_eabi_mcount
: {
3565 MachineFunction
&MF
= DAG
.getMachineFunction();
3566 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3568 SDValue Chain
= Op
.getOperand(0);
3569 // call "\01__gnu_mcount_nc"
3570 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
3571 const uint32_t *Mask
=
3572 ARI
->getCallPreservedMask(DAG
.getMachineFunction(), CallingConv::C
);
3573 assert(Mask
&& "Missing call preserved mask for calling convention");
3574 // Mark LR an implicit live-in.
3575 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
3576 SDValue ReturnAddress
=
3577 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, PtrVT
);
3578 std::vector
<EVT
> ResultTys
= {MVT::Other
, MVT::Glue
};
3580 DAG
.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT
, 0);
3581 SDValue RegisterMask
= DAG
.getRegisterMask(Mask
);
3582 if (Subtarget
->isThumb())
3585 ARM::tBL_PUSHLR
, dl
, ResultTys
,
3586 {ReturnAddress
, DAG
.getTargetConstant(ARMCC::AL
, dl
, PtrVT
),
3587 DAG
.getRegister(0, PtrVT
), Callee
, RegisterMask
, Chain
}),
3590 DAG
.getMachineNode(ARM::BL_PUSHLR
, dl
, ResultTys
,
3591 {ReturnAddress
, Callee
, RegisterMask
, Chain
}),
3598 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
3599 const ARMSubtarget
*Subtarget
) const {
3600 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
3603 default: return SDValue(); // Don't custom lower most intrinsics.
3604 case Intrinsic::thread_pointer
: {
3605 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3606 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3608 case Intrinsic::eh_sjlj_lsda
: {
3609 MachineFunction
&MF
= DAG
.getMachineFunction();
3610 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3611 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3612 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3614 bool IsPositionIndependent
= isPositionIndependent();
3615 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
3616 ARMConstantPoolValue
*CPV
=
3617 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
3618 ARMCP::CPLSDA
, PCAdj
);
3619 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, 4);
3620 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
3621 SDValue Result
= DAG
.getLoad(
3622 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
3623 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3625 if (IsPositionIndependent
) {
3626 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3627 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
3631 case Intrinsic::arm_neon_vabs
:
3632 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
3634 case Intrinsic::arm_neon_vmulls
:
3635 case Intrinsic::arm_neon_vmullu
: {
3636 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
3637 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
3638 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3639 Op
.getOperand(1), Op
.getOperand(2));
3641 case Intrinsic::arm_neon_vminnm
:
3642 case Intrinsic::arm_neon_vmaxnm
: {
3643 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
3644 ? ISD::FMINNUM
: ISD::FMAXNUM
;
3645 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3646 Op
.getOperand(1), Op
.getOperand(2));
3648 case Intrinsic::arm_neon_vminu
:
3649 case Intrinsic::arm_neon_vmaxu
: {
3650 if (Op
.getValueType().isFloatingPoint())
3652 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
3653 ? ISD::UMIN
: ISD::UMAX
;
3654 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3655 Op
.getOperand(1), Op
.getOperand(2));
3657 case Intrinsic::arm_neon_vmins
:
3658 case Intrinsic::arm_neon_vmaxs
: {
3659 // v{min,max}s is overloaded between signed integers and floats.
3660 if (!Op
.getValueType().isFloatingPoint()) {
3661 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3662 ? ISD::SMIN
: ISD::SMAX
;
3663 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3664 Op
.getOperand(1), Op
.getOperand(2));
3666 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
3667 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
3668 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
3669 Op
.getOperand(1), Op
.getOperand(2));
3671 case Intrinsic::arm_neon_vtbl1
:
3672 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
3673 Op
.getOperand(1), Op
.getOperand(2));
3674 case Intrinsic::arm_neon_vtbl2
:
3675 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
3676 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
3680 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
3681 const ARMSubtarget
*Subtarget
) {
3683 ConstantSDNode
*SSIDNode
= cast
<ConstantSDNode
>(Op
.getOperand(2));
3684 auto SSID
= static_cast<SyncScope::ID
>(SSIDNode
->getZExtValue());
3685 if (SSID
== SyncScope::SingleThread
)
3688 if (!Subtarget
->hasDataBarrier()) {
3689 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3690 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3692 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
3693 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3694 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
3695 DAG
.getConstant(0, dl
, MVT::i32
));
3698 ConstantSDNode
*OrdN
= cast
<ConstantSDNode
>(Op
.getOperand(1));
3699 AtomicOrdering Ord
= static_cast<AtomicOrdering
>(OrdN
->getZExtValue());
3700 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
3701 if (Subtarget
->isMClass()) {
3702 // Only a full system barrier exists in the M-class architectures.
3703 Domain
= ARM_MB::SY
;
3704 } else if (Subtarget
->preferISHSTBarriers() &&
3705 Ord
== AtomicOrdering::Release
) {
3706 // Swift happens to implement ISHST barriers in a way that's compatible with
3707 // Release semantics but weaker than ISH so we'd be fools not to use
3708 // it. Beware: other processors probably don't!
3709 Domain
= ARM_MB::ISHST
;
3712 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
3713 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
3714 DAG
.getConstant(Domain
, dl
, MVT::i32
));
3717 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
3718 const ARMSubtarget
*Subtarget
) {
3719 // ARM pre v5TE and Thumb1 does not have preload instructions.
3720 if (!(Subtarget
->isThumb2() ||
3721 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
3722 // Just preserve the chain.
3723 return Op
.getOperand(0);
3726 unsigned isRead
= ~cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() & 1;
3728 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
3729 // ARMv7 with MP extension has PLDW.
3730 return Op
.getOperand(0);
3732 unsigned isData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
3733 if (Subtarget
->isThumb()) {
3735 isRead
= ~isRead
& 1;
3736 isData
= ~isData
& 1;
3739 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
3740 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
3741 DAG
.getConstant(isData
, dl
, MVT::i32
));
3744 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
3745 MachineFunction
&MF
= DAG
.getMachineFunction();
3746 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
3748 // vastart just stores the address of the VarArgsFrameIndex slot into the
3749 // memory location argument.
3751 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
3752 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3753 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3754 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3755 MachinePointerInfo(SV
));
3758 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
3759 CCValAssign
&NextVA
,
3762 const SDLoc
&dl
) const {
3763 MachineFunction
&MF
= DAG
.getMachineFunction();
3764 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3766 const TargetRegisterClass
*RC
;
3767 if (AFI
->isThumb1OnlyFunction())
3768 RC
= &ARM::tGPRRegClass
;
3770 RC
= &ARM::GPRRegClass
;
3772 // Transform the arguments stored in physical registers into virtual ones.
3773 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3774 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3777 if (NextVA
.isMemLoc()) {
3778 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3779 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
3781 // Create load node to retrieve arguments from the stack.
3782 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3783 ArgValue2
= DAG
.getLoad(
3784 MVT::i32
, dl
, Root
, FIN
,
3785 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3787 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
3788 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
3790 if (!Subtarget
->isLittle())
3791 std::swap (ArgValue
, ArgValue2
);
3792 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
3795 // The remaining GPRs hold either the beginning of variable-argument
3796 // data, or the beginning of an aggregate passed by value (usually
3797 // byval). Either way, we allocate stack slots adjacent to the data
3798 // provided by our caller, and store the unallocated registers there.
3799 // If this is a variadic function, the va_list pointer will begin with
3800 // these values; otherwise, this reassembles a (byval) structure that
3801 // was split between registers and memory.
3802 // Return: The frame index registers were stored into.
3803 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
3804 const SDLoc
&dl
, SDValue
&Chain
,
3805 const Value
*OrigArg
,
3806 unsigned InRegsParamRecordIdx
,
3807 int ArgOffset
, unsigned ArgSize
) const {
3808 // Currently, two use-cases possible:
3809 // Case #1. Non-var-args function, and we meet first byval parameter.
3810 // Setup first unallocated register as first byval register;
3811 // eat all remained registers
3812 // (these two actions are performed by HandleByVal method).
3813 // Then, here, we initialize stack frame with
3814 // "store-reg" instructions.
3815 // Case #2. Var-args function, that doesn't contain byval parameters.
3816 // The same: eat all remained unallocated registers,
3817 // initialize stack frame.
3819 MachineFunction
&MF
= DAG
.getMachineFunction();
3820 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3821 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3822 unsigned RBegin
, REnd
;
3823 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
3824 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
3826 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3827 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
3832 ArgOffset
= -4 * (ARM::R4
- RBegin
);
3834 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3835 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
3836 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
3838 SmallVector
<SDValue
, 4> MemOps
;
3839 const TargetRegisterClass
*RC
=
3840 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
3842 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
3843 unsigned VReg
= MF
.addLiveIn(Reg
, RC
);
3844 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
3845 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3846 MachinePointerInfo(OrigArg
, 4 * i
));
3847 MemOps
.push_back(Store
);
3848 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
3851 if (!MemOps
.empty())
3852 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3856 // Setup stack frame, the va_list pointer will start from.
3857 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
3858 const SDLoc
&dl
, SDValue
&Chain
,
3860 unsigned TotalArgRegsSaveSize
,
3861 bool ForceMutable
) const {
3862 MachineFunction
&MF
= DAG
.getMachineFunction();
3863 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3865 // Try to store any remaining integer argument regs
3866 // to their spots on the stack so that they may be loaded by dereferencing
3867 // the result of va_next.
3868 // If there is no regs to be stored, just point address after last
3869 // argument passed via stack.
3870 int FrameIndex
= StoreByValRegs(CCInfo
, DAG
, dl
, Chain
, nullptr,
3871 CCInfo
.getInRegsParamsCount(),
3872 CCInfo
.getNextStackOffset(),
3873 std::max(4U, TotalArgRegsSaveSize
));
3874 AFI
->setVarArgsFrameIndex(FrameIndex
);
3877 SDValue
ARMTargetLowering::LowerFormalArguments(
3878 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3879 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3880 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3881 MachineFunction
&MF
= DAG
.getMachineFunction();
3882 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3884 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3886 // Assign locations to all of the incoming arguments.
3887 SmallVector
<CCValAssign
, 16> ArgLocs
;
3888 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3890 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
3892 SmallVector
<SDValue
, 16> ArgValues
;
3894 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3895 unsigned CurArgIdx
= 0;
3897 // Initially ArgRegsSaveSize is zero.
3898 // Then we increase this value each time we meet byval parameter.
3899 // We also increase this value in case of varargs function.
3900 AFI
->setArgRegsSaveSize(0);
3902 // Calculate the amount of stack space that we need to allocate to store
3903 // byval and variadic arguments that are passed in registers.
3904 // We need to know this before we allocate the first byval or variadic
3905 // argument, as they will be allocated a stack slot below the CFA (Canonical
3906 // Frame Address, the stack pointer at entry to the function).
3907 unsigned ArgRegBegin
= ARM::R4
;
3908 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3909 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
3912 CCValAssign
&VA
= ArgLocs
[i
];
3913 unsigned Index
= VA
.getValNo();
3914 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
3915 if (!Flags
.isByVal())
3918 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
3919 unsigned RBegin
, REnd
;
3920 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
3921 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
3923 CCInfo
.nextInRegsParam();
3925 CCInfo
.rewindByValRegsInfo();
3927 int lastInsIndex
= -1;
3928 if (isVarArg
&& MFI
.hasVAStart()) {
3929 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3930 if (RegIdx
!= array_lengthof(GPRArgRegs
))
3931 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
3934 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
3935 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
3936 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3938 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3939 CCValAssign
&VA
= ArgLocs
[i
];
3940 if (Ins
[VA
.getValNo()].isOrigArg()) {
3941 std::advance(CurOrigArg
,
3942 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
3943 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
3945 // Arguments stored in registers.
3946 if (VA
.isRegLoc()) {
3947 EVT RegVT
= VA
.getLocVT();
3949 if (VA
.needsCustom()) {
3950 // f64 and vector types are split up into multiple registers or
3951 // combinations of registers and stack slots.
3952 if (VA
.getLocVT() == MVT::v2f64
) {
3953 SDValue ArgValue1
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3955 VA
= ArgLocs
[++i
]; // skip ahead to next loc
3957 if (VA
.isMemLoc()) {
3958 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
3959 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3960 ArgValue2
= DAG
.getLoad(MVT::f64
, dl
, Chain
, FIN
,
3961 MachinePointerInfo::getFixedStack(
3962 DAG
.getMachineFunction(), FI
));
3964 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
],
3967 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
3968 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3969 ArgValue
, ArgValue1
,
3970 DAG
.getIntPtrConstant(0, dl
));
3971 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
,
3972 ArgValue
, ArgValue2
,
3973 DAG
.getIntPtrConstant(1, dl
));
3975 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
3977 const TargetRegisterClass
*RC
;
3980 if (RegVT
== MVT::f16
)
3981 RC
= &ARM::HPRRegClass
;
3982 else if (RegVT
== MVT::f32
)
3983 RC
= &ARM::SPRRegClass
;
3984 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
)
3985 RC
= &ARM::DPRRegClass
;
3986 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
)
3987 RC
= &ARM::QPRRegClass
;
3988 else if (RegVT
== MVT::i32
)
3989 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3990 : &ARM::GPRRegClass
;
3992 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3994 // Transform the arguments in physical registers into virtual ones.
3995 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3996 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
3998 // If this value is passed in r0 and has the returned attribute (e.g.
3999 // C++ 'structors), record this fact for later use.
4000 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
4001 AFI
->setPreservesR0();
4005 // If this is an 8 or 16-bit value, it is really passed promoted
4006 // to 32 bits. Insert an assert[sz]ext to capture this, then
4007 // truncate to the right size.
4008 switch (VA
.getLocInfo()) {
4009 default: llvm_unreachable("Unknown loc info!");
4010 case CCValAssign::Full
: break;
4011 case CCValAssign::BCvt
:
4012 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
4014 case CCValAssign::SExt
:
4015 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
4016 DAG
.getValueType(VA
.getValVT()));
4017 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4019 case CCValAssign::ZExt
:
4020 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
4021 DAG
.getValueType(VA
.getValVT()));
4022 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
4026 InVals
.push_back(ArgValue
);
4027 } else { // VA.isRegLoc()
4029 assert(VA
.isMemLoc());
4030 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
4032 int index
= VA
.getValNo();
4034 // Some Ins[] entries become multiple ArgLoc[] entries.
4035 // Process them only once.
4036 if (index
!= lastInsIndex
)
4038 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
4039 // FIXME: For now, all byval parameter objects are marked mutable.
4040 // This can be changed with more analysis.
4041 // In case of tail call optimization mark all arguments mutable.
4042 // Since they could be overwritten by lowering of arguments in case of
4044 if (Flags
.isByVal()) {
4045 assert(Ins
[index
].isOrigArg() &&
4046 "Byval arguments cannot be implicit");
4047 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
4049 int FrameIndex
= StoreByValRegs(
4050 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
4051 VA
.getLocMemOffset(), Flags
.getByValSize());
4052 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
4053 CCInfo
.nextInRegsParam();
4055 unsigned FIOffset
= VA
.getLocMemOffset();
4056 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
4059 // Create load nodes to retrieve arguments from the stack.
4060 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4061 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
4062 MachinePointerInfo::getFixedStack(
4063 DAG
.getMachineFunction(), FI
)));
4065 lastInsIndex
= index
;
4071 if (isVarArg
&& MFI
.hasVAStart())
4072 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
,
4073 CCInfo
.getNextStackOffset(),
4074 TotalArgRegsSaveSize
);
4076 AFI
->setArgumentStackSize(CCInfo
.getNextStackOffset());
4081 /// isFloatingPointZero - Return true if this is +0.0.
4082 static bool isFloatingPointZero(SDValue Op
) {
4083 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4084 return CFP
->getValueAPF().isPosZero();
4085 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4086 // Maybe this has already been legalized into the constant pool?
4087 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4088 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4089 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4090 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4091 return CFP
->getValueAPF().isPosZero();
4093 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4094 Op
->getValueType(0) == MVT::f64
) {
4095 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4096 // created by LowerConstantFP().
4097 SDValue BitcastOp
= Op
->getOperand(0);
4098 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4099 isNullConstant(BitcastOp
->getOperand(0)))
4105 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4106 /// the given operands.
4107 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4108 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4109 const SDLoc
&dl
) const {
4110 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4111 unsigned C
= RHSC
->getZExtValue();
4112 if (!isLegalICmpImmediate((int32_t)C
)) {
4113 // Constant does not fit, try adjusting it by one.
4118 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4119 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4120 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4125 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4126 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4127 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4132 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4133 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4134 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4139 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4140 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4141 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4146 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4147 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4148 // In ARM and Thumb-2, the compare instructions can shift their second
4150 CC
= ISD::getSetCCSwappedOperands(CC
);
4151 std::swap(LHS
, RHS
);
4154 // Thumb1 has very limited immediate modes, so turning an "and" into a
4155 // shift can save multiple instructions.
4157 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4158 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4159 // own. If it's the operand to an unsigned comparison with an immediate,
4160 // we can eliminate one of the shifts: we transform
4161 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4163 // We avoid transforming cases which aren't profitable due to encoding
4166 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4167 // would not; in that case, we're essentially trading one immediate load for
4169 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4170 // 3. C2 is zero; we have other code for this special case.
4172 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4173 // instruction, since the AND is always one instruction anyway, but we could
4174 // use narrow instructions in some cases.
4175 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::AND
&&
4176 LHS
->hasOneUse() && isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4177 LHS
.getValueType() == MVT::i32
&& isa
<ConstantSDNode
>(RHS
) &&
4178 !isSignedIntSetCC(CC
)) {
4179 unsigned Mask
= cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue();
4180 auto *RHSC
= cast
<ConstantSDNode
>(RHS
.getNode());
4181 uint64_t RHSV
= RHSC
->getZExtValue();
4182 if (isMask_32(Mask
) && (RHSV
& ~Mask
) == 0 && Mask
!= 255 && Mask
!= 65535) {
4183 unsigned ShiftBits
= countLeadingZeros(Mask
);
4184 if (RHSV
&& (RHSV
> 255 || (RHSV
<< ShiftBits
) <= 255)) {
4185 SDValue ShiftAmt
= DAG
.getConstant(ShiftBits
, dl
, MVT::i32
);
4186 LHS
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, LHS
.getOperand(0), ShiftAmt
);
4187 RHS
= DAG
.getConstant(RHSV
<< ShiftBits
, dl
, MVT::i32
);
4192 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4193 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4195 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4196 // some tweaks to the heuristics for the previous and->shift transform.
4197 // FIXME: Optimize cases where the LHS isn't a shift.
4198 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::SHL
&&
4199 isa
<ConstantSDNode
>(RHS
) &&
4200 cast
<ConstantSDNode
>(RHS
)->getZExtValue() == 0x80000000U
&&
4201 CC
== ISD::SETUGT
&& isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4202 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() < 31) {
4204 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() + 1;
4205 SDValue Shift
= DAG
.getNode(ARMISD::LSLS
, dl
,
4206 DAG
.getVTList(MVT::i32
, MVT::i32
),
4208 DAG
.getConstant(ShiftAmt
, dl
, MVT::i32
));
4209 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
4210 Shift
.getValue(1), SDValue());
4211 ARMcc
= DAG
.getConstant(ARMCC::HI
, dl
, MVT::i32
);
4212 return Chain
.getValue(1);
4215 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4217 // If the RHS is a constant zero then the V (overflow) flag will never be
4218 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4219 // simpler for other passes (like the peephole optimiser) to deal with.
4220 if (isNullConstant(RHS
)) {
4224 CondCode
= ARMCC::PL
;
4227 CondCode
= ARMCC::MI
;
4232 ARMISD::NodeType CompareType
;
4235 CompareType
= ARMISD::CMP
;
4240 CompareType
= ARMISD::CMPZ
;
4243 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4244 return DAG
.getNode(CompareType
, dl
, MVT::Glue
, LHS
, RHS
);
4247 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4248 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4249 SelectionDAG
&DAG
, const SDLoc
&dl
,
4250 bool InvalidOnQNaN
) const {
4251 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4253 SDValue C
= DAG
.getConstant(InvalidOnQNaN
, dl
, MVT::i32
);
4254 if (!isFloatingPointZero(RHS
))
4255 Cmp
= DAG
.getNode(ARMISD::CMPFP
, dl
, MVT::Glue
, LHS
, RHS
, C
);
4257 Cmp
= DAG
.getNode(ARMISD::CMPFPw0
, dl
, MVT::Glue
, LHS
, C
);
4258 return DAG
.getNode(ARMISD::FMSTAT
, dl
, MVT::Glue
, Cmp
);
4261 /// duplicateCmp - Glue values can have only one use, so this function
4262 /// duplicates a comparison node.
4264 ARMTargetLowering::duplicateCmp(SDValue Cmp
, SelectionDAG
&DAG
) const {
4265 unsigned Opc
= Cmp
.getOpcode();
4267 if (Opc
== ARMISD::CMP
|| Opc
== ARMISD::CMPZ
)
4268 return DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),Cmp
.getOperand(1));
4270 assert(Opc
== ARMISD::FMSTAT
&& "unexpected comparison operation");
4271 Cmp
= Cmp
.getOperand(0);
4272 Opc
= Cmp
.getOpcode();
4273 if (Opc
== ARMISD::CMPFP
)
4274 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4275 Cmp
.getOperand(1), Cmp
.getOperand(2));
4277 assert(Opc
== ARMISD::CMPFPw0
&& "unexpected operand of FMSTAT");
4278 Cmp
= DAG
.getNode(Opc
, DL
, MVT::Glue
, Cmp
.getOperand(0),
4281 return DAG
.getNode(ARMISD::FMSTAT
, DL
, MVT::Glue
, Cmp
);
4284 // This function returns three things: the arithmetic computation itself
4285 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4286 // comparison and the condition code define the case in which the arithmetic
4287 // computation *does not* overflow.
4288 std::pair
<SDValue
, SDValue
>
4289 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4290 SDValue
&ARMcc
) const {
4291 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4293 SDValue Value
, OverflowCmp
;
4294 SDValue LHS
= Op
.getOperand(0);
4295 SDValue RHS
= Op
.getOperand(1);
4298 // FIXME: We are currently always generating CMPs because we don't support
4299 // generating CMN through the backend. This is not as good as the natural
4300 // CMP case because it causes a register dependency and cannot be folded
4303 switch (Op
.getOpcode()) {
4305 llvm_unreachable("Unknown overflow instruction!");
4307 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4308 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
4309 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4312 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4313 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4314 // We do not use it in the USUBO case as Value may not be used.
4315 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
4316 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
4318 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
, LHS
);
4321 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
4322 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4323 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4326 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
4327 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
4328 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, LHS
, RHS
);
4331 // We generate a UMUL_LOHI and then check if the high word is 0.
4332 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4333 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
4334 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4336 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4337 DAG
.getConstant(0, dl
, MVT::i32
));
4338 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4341 // We generate a SMUL_LOHI and then check if all the bits of the high word
4342 // are the same as the sign bit of the low word.
4343 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
4344 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
4345 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
4347 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, MVT::Glue
, Value
.getValue(1),
4348 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
4350 DAG
.getConstant(31, dl
, MVT::i32
)));
4351 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
4355 return std::make_pair(Value
, OverflowCmp
);
4359 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
4360 // Let legalize expand this if it isn't a legal type yet.
4361 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4364 SDValue Value
, OverflowCmp
;
4366 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
4367 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4369 // We use 0 and 1 as false and true values.
4370 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
4371 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
4372 EVT VT
= Op
.getValueType();
4374 SDValue Overflow
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
,
4375 ARMcc
, CCR
, OverflowCmp
);
4377 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
4378 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4381 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
4382 SelectionDAG
&DAG
) {
4383 SDLoc
DL(BoolCarry
);
4384 EVT CarryVT
= BoolCarry
.getValueType();
4386 // This converts the boolean value carry into the carry flag by doing
4387 // ARMISD::SUBC Carry, 1
4388 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
4389 DAG
.getVTList(CarryVT
, MVT::i32
),
4390 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
4391 return Carry
.getValue(1);
4394 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
4395 SelectionDAG
&DAG
) {
4398 // Now convert the carry flag into a boolean carry. We do this
4399 // using ARMISD:ADDE 0, 0, Carry
4400 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
4401 DAG
.getConstant(0, DL
, MVT::i32
),
4402 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
4405 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
4406 SelectionDAG
&DAG
) const {
4407 // Let legalize expand this if it isn't a legal type yet.
4408 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
4411 SDValue LHS
= Op
.getOperand(0);
4412 SDValue RHS
= Op
.getOperand(1);
4415 EVT VT
= Op
.getValueType();
4416 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
4419 switch (Op
.getOpcode()) {
4421 llvm_unreachable("Unknown overflow instruction!");
4423 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
4424 // Convert the carry flag into a boolean value.
4425 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4428 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
4429 // Convert the carry flag into a boolean value.
4430 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
4431 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4432 // value. So compute 1 - C.
4433 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
4434 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
4439 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
4442 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
4443 SDValue Cond
= Op
.getOperand(0);
4444 SDValue SelectTrue
= Op
.getOperand(1);
4445 SDValue SelectFalse
= Op
.getOperand(2);
4447 unsigned Opc
= Cond
.getOpcode();
4449 if (Cond
.getResNo() == 1 &&
4450 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
4451 Opc
== ISD::USUBO
)) {
4452 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
4455 SDValue Value
, OverflowCmp
;
4457 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
4458 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4459 EVT VT
= Op
.getValueType();
4461 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, CCR
,
4467 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4468 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4470 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
4471 const ConstantSDNode
*CMOVTrue
=
4472 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
4473 const ConstantSDNode
*CMOVFalse
=
4474 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
4476 if (CMOVTrue
&& CMOVFalse
) {
4477 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
4478 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
4482 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
4484 False
= SelectFalse
;
4485 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
4490 if (True
.getNode() && False
.getNode()) {
4491 EVT VT
= Op
.getValueType();
4492 SDValue ARMcc
= Cond
.getOperand(2);
4493 SDValue CCR
= Cond
.getOperand(3);
4494 SDValue Cmp
= duplicateCmp(Cond
.getOperand(4), DAG
);
4495 assert(True
.getValueType() == VT
);
4496 return getCMOV(dl
, VT
, True
, False
, ARMcc
, CCR
, Cmp
, DAG
);
4501 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4502 // undefined bits before doing a full-word comparison with zero.
4503 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
4504 DAG
.getConstant(1, dl
, Cond
.getValueType()));
4506 return DAG
.getSelectCC(dl
, Cond
,
4507 DAG
.getConstant(0, dl
, Cond
.getValueType()),
4508 SelectTrue
, SelectFalse
, ISD::SETNE
);
4511 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
4512 bool &swpCmpOps
, bool &swpVselOps
) {
4513 // Start by selecting the GE condition code for opcodes that return true for
4515 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
4516 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
4517 CondCode
= ARMCC::GE
;
4519 // and GT for opcodes that return false for 'equality'.
4520 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
4521 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
4522 CondCode
= ARMCC::GT
;
4524 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4525 // to swap the compare operands.
4526 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
4527 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
4530 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4531 // If we have an unordered opcode, we need to swap the operands to the VSEL
4532 // instruction (effectively negating the condition).
4534 // This also has the effect of swapping which one of 'less' or 'greater'
4535 // returns true, so we also swap the compare operands. It also switches
4536 // whether we return true for 'equality', so we compensate by picking the
4537 // opposite condition code to our original choice.
4538 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
4539 CC
== ISD::SETUGT
) {
4540 swpCmpOps
= !swpCmpOps
;
4541 swpVselOps
= !swpVselOps
;
4542 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
4545 // 'ordered' is 'anything but unordered', so use the VS condition code and
4546 // swap the VSEL operands.
4547 if (CC
== ISD::SETO
) {
4548 CondCode
= ARMCC::VS
;
4552 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4553 // code and swap the VSEL operands. Also do this if we don't care about the
4555 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
4556 CondCode
= ARMCC::EQ
;
4561 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
4562 SDValue TrueVal
, SDValue ARMcc
, SDValue CCR
,
4563 SDValue Cmp
, SelectionDAG
&DAG
) const {
4564 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
4565 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4566 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
4567 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
4568 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
4570 SDValue TrueLow
= TrueVal
.getValue(0);
4571 SDValue TrueHigh
= TrueVal
.getValue(1);
4572 SDValue FalseLow
= FalseVal
.getValue(0);
4573 SDValue FalseHigh
= FalseVal
.getValue(1);
4575 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
4577 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
4578 ARMcc
, CCR
, duplicateCmp(Cmp
, DAG
));
4580 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
4582 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
,
4587 static bool isGTorGE(ISD::CondCode CC
) {
4588 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
4591 static bool isLTorLE(ISD::CondCode CC
) {
4592 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
4595 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4596 // All of these conditions (and their <= and >= counterparts) will do:
4601 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
4602 const SDValue TrueVal
, const SDValue FalseVal
,
4603 const ISD::CondCode CC
, const SDValue K
) {
4604 return (isGTorGE(CC
) &&
4605 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
4607 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
4610 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4611 static bool isUpperSaturate(const SDValue LHS
, const SDValue RHS
,
4612 const SDValue TrueVal
, const SDValue FalseVal
,
4613 const ISD::CondCode CC
, const SDValue K
) {
4614 return (isGTorGE(CC
) &&
4615 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
))) ||
4617 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
)));
4620 // Check if two chained conditionals could be converted into SSAT or USAT.
4622 // SSAT can replace a set of two conditional selectors that bound a number to an
4623 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4625 // x < -k ? -k : (x > k ? k : x)
4626 // x < -k ? -k : (x < k ? x : k)
4627 // x > -k ? (x > k ? k : x) : -k
4628 // x < k ? (x < -k ? -k : x) : k
4631 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4634 // It returns true if the conversion can be done, false otherwise.
4635 // Additionally, the variable is returned in parameter V, the constant in K and
4636 // usat is set to true if the conditional represents an unsigned saturation
4637 static bool isSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4638 uint64_t &K
, bool &usat
) {
4639 SDValue LHS1
= Op
.getOperand(0);
4640 SDValue RHS1
= Op
.getOperand(1);
4641 SDValue TrueVal1
= Op
.getOperand(2);
4642 SDValue FalseVal1
= Op
.getOperand(3);
4643 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4645 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
4646 if (Op2
.getOpcode() != ISD::SELECT_CC
)
4649 SDValue LHS2
= Op2
.getOperand(0);
4650 SDValue RHS2
= Op2
.getOperand(1);
4651 SDValue TrueVal2
= Op2
.getOperand(2);
4652 SDValue FalseVal2
= Op2
.getOperand(3);
4653 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
4655 // Find out which are the constants and which are the variables
4656 // in each conditional
4657 SDValue
*K1
= isa
<ConstantSDNode
>(LHS1
) ? &LHS1
: isa
<ConstantSDNode
>(RHS1
)
4660 SDValue
*K2
= isa
<ConstantSDNode
>(LHS2
) ? &LHS2
: isa
<ConstantSDNode
>(RHS2
)
4663 SDValue K2Tmp
= isa
<ConstantSDNode
>(TrueVal2
) ? TrueVal2
: FalseVal2
;
4664 SDValue V1Tmp
= (K1
&& *K1
== LHS1
) ? RHS1
: LHS1
;
4665 SDValue V2Tmp
= (K2
&& *K2
== LHS2
) ? RHS2
: LHS2
;
4666 SDValue V2
= (K2Tmp
== TrueVal2
) ? FalseVal2
: TrueVal2
;
4668 // We must detect cases where the original operations worked with 16- or
4669 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4670 // must work with sign-extended values but the select operations return
4671 // the original non-extended value.
4672 SDValue V2TmpReg
= V2Tmp
;
4673 if (V2Tmp
->getOpcode() == ISD::SIGN_EXTEND_INREG
)
4674 V2TmpReg
= V2Tmp
->getOperand(0);
4676 // Check that the registers and the constants have the correct values
4677 // in both conditionals
4678 if (!K1
|| !K2
|| *K1
== Op2
|| *K2
!= K2Tmp
|| V1Tmp
!= V2Tmp
||
4682 // Figure out which conditional is saturating the lower/upper bound.
4683 const SDValue
*LowerCheckOp
=
4684 isLowerSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4686 : isLowerSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4689 const SDValue
*UpperCheckOp
=
4690 isUpperSaturate(LHS1
, RHS1
, TrueVal1
, FalseVal1
, CC1
, *K1
)
4692 : isUpperSaturate(LHS2
, RHS2
, TrueVal2
, FalseVal2
, CC2
, *K2
)
4696 if (!UpperCheckOp
|| !LowerCheckOp
|| LowerCheckOp
== UpperCheckOp
)
4699 // Check that the constant in the lower-bound check is
4700 // the opposite of the constant in the upper-bound check
4701 // in 1's complement.
4702 int64_t Val1
= cast
<ConstantSDNode
>(*K1
)->getSExtValue();
4703 int64_t Val2
= cast
<ConstantSDNode
>(*K2
)->getSExtValue();
4704 int64_t PosVal
= std::max(Val1
, Val2
);
4705 int64_t NegVal
= std::min(Val1
, Val2
);
4707 if (((Val1
> Val2
&& UpperCheckOp
== &Op
) ||
4708 (Val1
< Val2
&& UpperCheckOp
== &Op2
)) &&
4709 isPowerOf2_64(PosVal
+ 1)) {
4711 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4714 else if (NegVal
== 0)
4720 K
= (uint64_t)PosVal
; // At this point, PosVal is guaranteed to be positive
4728 // Check if a condition of the type x < k ? k : x can be converted into a
4729 // bit operation instead of conditional moves.
4730 // Currently this is allowed given:
4731 // - The conditions and values match up
4732 // - k is 0 or -1 (all ones)
4733 // This function will not check the last condition, thats up to the caller
4734 // It returns true if the transformation can be made, and in such case
4735 // returns x in V, and k in SatK.
4736 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
4739 SDValue LHS
= Op
.getOperand(0);
4740 SDValue RHS
= Op
.getOperand(1);
4741 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4742 SDValue TrueVal
= Op
.getOperand(2);
4743 SDValue FalseVal
= Op
.getOperand(3);
4745 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
4749 // No constant operation in comparison, early out
4753 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
4754 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
4755 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
4757 // If the constant on left and right side, or variable on left and right,
4758 // does not match, early out
4759 if (*K
!= KTmp
|| V
!= VTmp
)
4762 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
4770 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
4772 return !Subtarget
->hasVFP2Base();
4774 return !Subtarget
->hasFP64();
4776 return !Subtarget
->hasFullFP16();
4780 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4781 EVT VT
= Op
.getValueType();
4784 // Try to convert two saturating conditional selects into a single SSAT
4786 uint64_t SatConstant
;
4788 if (((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2()) &&
4789 isSaturatingConditional(Op
, SatValue
, SatConstant
, SatUSat
)) {
4791 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, SatValue
,
4792 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4794 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, SatValue
,
4795 DAG
.getConstant(countTrailingOnes(SatConstant
), dl
, VT
));
4798 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4799 // into more efficient bit operations, which is possible when k is 0 or -1
4800 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4801 // single instructions. On Thumb the shift and the bit operation will be two
4803 // Only allow this transformation on full-width (32-bit) operations
4804 SDValue LowerSatConstant
;
4805 if (VT
== MVT::i32
&&
4806 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
4807 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
4808 DAG
.getConstant(31, dl
, VT
));
4809 if (isNullConstant(LowerSatConstant
)) {
4810 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
4811 DAG
.getAllOnesConstant(dl
, VT
));
4812 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
4813 } else if (isAllOnesConstant(LowerSatConstant
))
4814 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
4817 SDValue LHS
= Op
.getOperand(0);
4818 SDValue RHS
= Op
.getOperand(1);
4819 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
4820 SDValue TrueVal
= Op
.getOperand(2);
4821 SDValue FalseVal
= Op
.getOperand(3);
4822 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FalseVal
);
4823 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TrueVal
);
4825 if (Subtarget
->hasV8_1MMainlineOps() && CFVal
&& CTVal
&&
4826 LHS
.getValueType() == MVT::i32
&& RHS
.getValueType() == MVT::i32
) {
4827 unsigned TVal
= CTVal
->getZExtValue();
4828 unsigned FVal
= CFVal
->getZExtValue();
4829 unsigned Opcode
= 0;
4831 if (TVal
== ~FVal
) {
4832 Opcode
= ARMISD::CSINV
;
4833 } else if (TVal
== ~FVal
+ 1) {
4834 Opcode
= ARMISD::CSNEG
;
4835 } else if (TVal
+ 1 == FVal
) {
4836 Opcode
= ARMISD::CSINC
;
4837 } else if (TVal
== FVal
+ 1) {
4838 Opcode
= ARMISD::CSINC
;
4839 std::swap(TrueVal
, FalseVal
);
4840 std::swap(TVal
, FVal
);
4841 CC
= ISD::getSetCCInverse(CC
, true);
4845 // If one of the constants is cheaper than another, materialise the
4846 // cheaper one and let the csel generate the other.
4847 if (Opcode
!= ARMISD::CSINC
&&
4848 HasLowerConstantMaterializationCost(FVal
, TVal
, Subtarget
)) {
4849 std::swap(TrueVal
, FalseVal
);
4850 std::swap(TVal
, FVal
);
4851 CC
= ISD::getSetCCInverse(CC
, true);
4854 // Attempt to use ZR checking TVal is 0, possibly inverting the condition
4855 // to get there. CSINC not is invertable like the other two (~(~a) == a,
4856 // -(-a) == a, but (a+1)+1 != a).
4857 if (FVal
== 0 && Opcode
!= ARMISD::CSINC
) {
4858 std::swap(TrueVal
, FalseVal
);
4859 std::swap(TVal
, FVal
);
4860 CC
= ISD::getSetCCInverse(CC
, true);
4863 TrueVal
= DAG
.getRegister(ARM::ZR
, MVT::i32
);
4865 // Drops F's value because we can get it by inverting/negating TVal.
4869 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4870 EVT VT
= TrueVal
.getValueType();
4871 return DAG
.getNode(Opcode
, dl
, VT
, TrueVal
, FalseVal
, ARMcc
, Cmp
);
4875 if (isUnsupportedFloatingType(LHS
.getValueType())) {
4876 DAG
.getTargetLoweringInfo().softenSetCCOperands(
4877 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4879 // If softenSetCCOperands only returned one value, we should compare it to
4881 if (!RHS
.getNode()) {
4882 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4887 if (LHS
.getValueType() == MVT::i32
) {
4888 // Try to generate VSEL on ARMv8.
4889 // The VSEL instruction can't use all the usual ARM condition
4890 // codes: it only has two bits to select the condition code, so it's
4891 // constrained to use only GE, GT, VS and EQ.
4893 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4894 // swap the operands of the previous compare instruction (effectively
4895 // inverting the compare condition, swapping 'less' and 'greater') and
4896 // sometimes need to swap the operands to the VSEL (which inverts the
4897 // condition in the sense of firing whenever the previous condition didn't)
4898 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
4899 TrueVal
.getValueType() == MVT::f32
||
4900 TrueVal
.getValueType() == MVT::f64
)) {
4901 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4902 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
4903 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
4904 CC
= ISD::getSetCCInverse(CC
, true);
4905 std::swap(TrueVal
, FalseVal
);
4910 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4911 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
4912 // Choose GE over PL, which vsel does now support
4913 if (cast
<ConstantSDNode
>(ARMcc
)->getZExtValue() == ARMCC::PL
)
4914 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
4915 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4918 ARMCC::CondCodes CondCode
, CondCode2
;
4920 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
4922 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4923 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4924 // must use VSEL (limited condition codes), due to not having conditional f16
4926 if (Subtarget
->hasFPARMv8Base() &&
4927 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
4928 (TrueVal
.getValueType() == MVT::f16
||
4929 TrueVal
.getValueType() == MVT::f32
||
4930 TrueVal
.getValueType() == MVT::f64
)) {
4931 bool swpCmpOps
= false;
4932 bool swpVselOps
= false;
4933 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
4935 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
4936 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
4938 std::swap(LHS
, RHS
);
4940 std::swap(TrueVal
, FalseVal
);
4944 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4945 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4946 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
4947 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, CCR
, Cmp
, DAG
);
4948 if (CondCode2
!= ARMCC::AL
) {
4949 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
4950 // FIXME: Needs another CMP because flag can have but one use.
4951 SDValue Cmp2
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
4952 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, CCR
, Cmp2
, DAG
);
4957 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4958 /// to morph to an integer compare sequence.
4959 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
4960 const ARMSubtarget
*Subtarget
) {
4961 SDNode
*N
= Op
.getNode();
4962 if (!N
->hasOneUse())
4963 // Otherwise it requires moving the value from fp to integer registers.
4965 if (!N
->getNumValues())
4967 EVT VT
= Op
.getValueType();
4968 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
4969 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4970 // vmrs are very slow, e.g. cortex-a8.
4973 if (isFloatingPointZero(Op
)) {
4977 return ISD::isNormalLoad(N
);
4980 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
4981 if (isFloatingPointZero(Op
))
4982 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
4984 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
4985 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
4986 Ld
->getPointerInfo(), Ld
->getAlignment(),
4987 Ld
->getMemOperand()->getFlags());
4989 llvm_unreachable("Unknown VFP cmp argument!");
4992 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
4993 SDValue
&RetVal1
, SDValue
&RetVal2
) {
4996 if (isFloatingPointZero(Op
)) {
4997 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
4998 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
5002 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
5003 SDValue Ptr
= Ld
->getBasePtr();
5005 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
5006 Ld
->getAlignment(), Ld
->getMemOperand()->getFlags());
5008 EVT PtrType
= Ptr
.getValueType();
5009 unsigned NewAlign
= MinAlign(Ld
->getAlignment(), 4);
5010 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
5011 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
5012 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
5013 Ld
->getPointerInfo().getWithOffset(4), NewAlign
,
5014 Ld
->getMemOperand()->getFlags());
5018 llvm_unreachable("Unknown VFP cmp argument!");
5021 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5022 /// f32 and even f64 comparisons to integer ones.
5024 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
5025 SDValue Chain
= Op
.getOperand(0);
5026 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5027 SDValue LHS
= Op
.getOperand(2);
5028 SDValue RHS
= Op
.getOperand(3);
5029 SDValue Dest
= Op
.getOperand(4);
5032 bool LHSSeenZero
= false;
5033 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
5034 bool RHSSeenZero
= false;
5035 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
5036 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
5037 // If unsafe fp math optimization is enabled and there are no other uses of
5038 // the CMP operands, and the condition code is EQ or NE, we can optimize it
5039 // to an integer comparison.
5040 if (CC
== ISD::SETOEQ
)
5042 else if (CC
== ISD::SETUNE
)
5045 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5047 if (LHS
.getValueType() == MVT::f32
) {
5048 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5049 bitcastf32Toi32(LHS
, DAG
), Mask
);
5050 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5051 bitcastf32Toi32(RHS
, DAG
), Mask
);
5052 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5053 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5054 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5055 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5060 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
5061 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
5062 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
5063 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
5064 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
5065 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5066 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5067 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
5068 return DAG
.getNode(ARMISD::BCC_i64
, dl
, VTList
, Ops
);
5074 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
5075 SDValue Chain
= Op
.getOperand(0);
5076 SDValue Cond
= Op
.getOperand(1);
5077 SDValue Dest
= Op
.getOperand(2);
5080 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5082 unsigned Opc
= Cond
.getOpcode();
5083 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5084 !Subtarget
->isThumb1Only();
5085 if (Cond
.getResNo() == 1 &&
5086 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5087 Opc
== ISD::USUBO
|| OptimizeMul
)) {
5088 // Only lower legal XALUO ops.
5089 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
5092 // The actual operation with overflow check.
5093 SDValue Value
, OverflowCmp
;
5095 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
5097 // Reverse the condition code.
5098 ARMCC::CondCodes CondCode
=
5099 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5100 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5101 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5102 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5104 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5111 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
5112 SDValue Chain
= Op
.getOperand(0);
5113 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5114 SDValue LHS
= Op
.getOperand(2);
5115 SDValue RHS
= Op
.getOperand(3);
5116 SDValue Dest
= Op
.getOperand(4);
5119 if (isUnsupportedFloatingType(LHS
.getValueType())) {
5120 DAG
.getTargetLoweringInfo().softenSetCCOperands(
5121 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5123 // If softenSetCCOperands only returned one value, we should compare it to
5125 if (!RHS
.getNode()) {
5126 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5131 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5133 unsigned Opc
= LHS
.getOpcode();
5134 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5135 !Subtarget
->isThumb1Only();
5136 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
5137 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5138 Opc
== ISD::USUBO
|| OptimizeMul
) &&
5139 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5140 // Only lower legal XALUO ops.
5141 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
5144 // The actual operation with overflow check.
5145 SDValue Value
, OverflowCmp
;
5147 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
5149 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
5150 // Reverse the condition code.
5151 ARMCC::CondCodes CondCode
=
5152 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5153 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5154 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5156 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5158 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, CCR
,
5162 if (LHS
.getValueType() == MVT::i32
) {
5164 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5165 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5166 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
,
5167 Chain
, Dest
, ARMcc
, CCR
, Cmp
);
5170 if (getTargetMachine().Options
.UnsafeFPMath
&&
5171 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
5172 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
5173 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
5177 ARMCC::CondCodes CondCode
, CondCode2
;
5179 FPCCToARMCC(CC
, CondCode
, CondCode2
, InvalidOnQNaN
);
5181 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5182 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, InvalidOnQNaN
);
5183 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5184 SDVTList VTList
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5185 SDValue Ops
[] = { Chain
, Dest
, ARMcc
, CCR
, Cmp
};
5186 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5187 if (CondCode2
!= ARMCC::AL
) {
5188 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5189 SDValue Ops
[] = { Res
, Dest
, ARMcc
, CCR
, Res
.getValue(1) };
5190 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, VTList
, Ops
);
5195 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5196 SDValue Chain
= Op
.getOperand(0);
5197 SDValue Table
= Op
.getOperand(1);
5198 SDValue Index
= Op
.getOperand(2);
5201 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5202 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5203 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5204 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5205 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5206 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5207 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5208 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5209 // which does another jump to the destination. This also makes it easier
5210 // to translate it to TBB / TBH later (Thumb2 only).
5211 // FIXME: This might not work if the function is extremely large.
5212 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5213 Addr
, Op
.getOperand(2), JTI
);
5215 if (isPositionIndependent() || Subtarget
->isROPI()) {
5217 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5218 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5219 Chain
= Addr
.getValue(1);
5220 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5221 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5224 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5225 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5226 Chain
= Addr
.getValue(1);
5227 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5231 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5232 EVT VT
= Op
.getValueType();
5235 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5236 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5238 return DAG
.UnrollVectorOp(Op
.getNode());
5241 const bool HasFullFP16
=
5242 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5245 const EVT OpTy
= Op
.getOperand(0).getValueType();
5246 if (OpTy
== MVT::v4f32
)
5248 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5250 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5253 llvm_unreachable("Invalid type for custom lowering!");
5255 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5256 return DAG
.UnrollVectorOp(Op
.getNode());
5258 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5259 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5262 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5263 EVT VT
= Op
.getValueType();
5265 return LowerVectorFP_TO_INT(Op
, DAG
);
5266 if (isUnsupportedFloatingType(Op
.getOperand(0).getValueType())) {
5268 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
5269 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(),
5272 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(),
5274 MakeLibCallOptions CallOptions
;
5275 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5276 CallOptions
, SDLoc(Op
)).first
;
5282 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
5283 EVT VT
= Op
.getValueType();
5286 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
5287 if (VT
.getVectorElementType() == MVT::f32
)
5289 return DAG
.UnrollVectorOp(Op
.getNode());
5292 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
5293 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
5294 "Invalid type for custom lowering!");
5296 const bool HasFullFP16
=
5297 static_cast<const ARMSubtarget
&>(DAG
.getSubtarget()).hasFullFP16();
5300 if (VT
== MVT::v4f32
)
5301 DestVecType
= MVT::v4i32
;
5302 else if (VT
== MVT::v4f16
&& HasFullFP16
)
5303 DestVecType
= MVT::v4i16
;
5304 else if (VT
== MVT::v8f16
&& HasFullFP16
)
5305 DestVecType
= MVT::v8i16
;
5307 return DAG
.UnrollVectorOp(Op
.getNode());
5311 switch (Op
.getOpcode()) {
5312 default: llvm_unreachable("Invalid opcode!");
5313 case ISD::SINT_TO_FP
:
5314 CastOpc
= ISD::SIGN_EXTEND
;
5315 Opc
= ISD::SINT_TO_FP
;
5317 case ISD::UINT_TO_FP
:
5318 CastOpc
= ISD::ZERO_EXTEND
;
5319 Opc
= ISD::UINT_TO_FP
;
5323 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
5324 return DAG
.getNode(Opc
, dl
, VT
, Op
);
5327 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
5328 EVT VT
= Op
.getValueType();
5330 return LowerVectorINT_TO_FP(Op
, DAG
);
5331 if (isUnsupportedFloatingType(VT
)) {
5333 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
5334 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
5337 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
5339 MakeLibCallOptions CallOptions
;
5340 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
5341 CallOptions
, SDLoc(Op
)).first
;
5347 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
5348 // Implement fcopysign with a fabs and a conditional fneg.
5349 SDValue Tmp0
= Op
.getOperand(0);
5350 SDValue Tmp1
= Op
.getOperand(1);
5352 EVT VT
= Op
.getValueType();
5353 EVT SrcVT
= Tmp1
.getValueType();
5354 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
5355 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
5356 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
5359 // Use VBSL to copy the sign bit.
5360 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
5361 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
5362 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
5363 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
5365 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5366 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
5367 DAG
.getConstant(32, dl
, MVT::i32
));
5368 else /*if (VT == MVT::f32)*/
5369 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
5370 if (SrcVT
== MVT::f32
) {
5371 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
5373 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
5374 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
5375 DAG
.getConstant(32, dl
, MVT::i32
));
5376 } else if (VT
== MVT::f32
)
5377 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
5378 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
5379 DAG
.getConstant(32, dl
, MVT::i32
));
5380 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
5381 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
5383 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5385 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
5386 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
5387 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
5389 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
5390 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
5391 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
5392 if (VT
== MVT::f32
) {
5393 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
5394 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
5395 DAG
.getConstant(0, dl
, MVT::i32
));
5397 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
5403 // Bitcast operand 1 to i32.
5404 if (SrcVT
== MVT::f64
)
5405 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5407 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
5409 // Or in the signbit with integer operations.
5410 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
5411 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5412 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
5413 if (VT
== MVT::f32
) {
5414 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5415 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
5416 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
5417 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
5420 // f64: Or the high part with signbit and then combine two parts.
5421 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
5423 SDValue Lo
= Tmp0
.getValue(0);
5424 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
5425 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
5426 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
5429 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
5430 MachineFunction
&MF
= DAG
.getMachineFunction();
5431 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5432 MFI
.setReturnAddressIsTaken(true);
5434 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
5437 EVT VT
= Op
.getValueType();
5439 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5441 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5442 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
5443 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
5444 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
5445 MachinePointerInfo());
5448 // Return LR, which contains the return address. Mark it an implicit live-in.
5449 unsigned Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
5450 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
5453 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
5454 const ARMBaseRegisterInfo
&ARI
=
5455 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
5456 MachineFunction
&MF
= DAG
.getMachineFunction();
5457 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5458 MFI
.setFrameAddressIsTaken(true);
5460 EVT VT
= Op
.getValueType();
5461 SDLoc
dl(Op
); // FIXME probably not meaningful
5462 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5463 Register FrameReg
= ARI
.getFrameRegister(MF
);
5464 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
5466 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
5467 MachinePointerInfo());
5471 // FIXME? Maybe this could be a TableGen attribute on some registers and
5472 // this table could be generated automatically from RegInfo.
5473 unsigned ARMTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
5474 SelectionDAG
&DAG
) const {
5475 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
5476 .Case("sp", ARM::SP
)
5480 report_fatal_error(Twine("Invalid register name \""
5481 + StringRef(RegName
) + "\"."));
5484 // Result is 64 bit value so split into two 32 bit values and return as a
5486 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
5487 SelectionDAG
&DAG
) {
5490 // This function is only supposed to be called for i64 type destination.
5491 assert(N
->getValueType(0) == MVT::i64
5492 && "ExpandREAD_REGISTER called for non-i64 type result.");
5494 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
5495 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
5499 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
5501 Results
.push_back(Read
.getOperand(0));
5504 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5505 /// When \p DstVT, the destination type of \p BC, is on the vector
5506 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5507 /// it might be possible to combine them, such that everything stays on the
5508 /// vector register bank.
5509 /// \p return The node that would replace \p BT, if the combine
5511 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
5512 SelectionDAG
&DAG
) {
5513 SDValue Op
= BC
->getOperand(0);
5514 EVT DstVT
= BC
->getValueType(0);
5516 // The only vector instruction that can produce a scalar (remember,
5517 // since the bitcast was about to be turned into VMOVDRR, the source
5518 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5519 // Moreover, we can do this combine only if there is one use.
5520 // Finally, if the destination type is not a vector, there is not
5521 // much point on forcing everything on the vector bank.
5522 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
5526 // If the index is not constant, we will introduce an additional
5527 // multiply that will stick.
5528 // Give up in that case.
5529 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5532 unsigned DstNumElt
= DstVT
.getVectorNumElements();
5534 // Compute the new index.
5535 const APInt
&APIntIndex
= Index
->getAPIntValue();
5536 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
5537 NewIndex
*= APIntIndex
;
5538 // Check if the new constant index fits into i32.
5539 if (NewIndex
.getBitWidth() > 32)
5542 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5543 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5545 SDValue ExtractSrc
= Op
.getOperand(0);
5546 EVT VecVT
= EVT::getVectorVT(
5547 *DAG
.getContext(), DstVT
.getScalarType(),
5548 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
5549 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
5550 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
5551 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
5554 /// ExpandBITCAST - If the target supports VFP, this function is called to
5555 /// expand a bit convert where either the source or destination type is i64 to
5556 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5557 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5558 /// vectors), since the legalizer won't know what to do with that.
5559 static SDValue
ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
5560 const ARMSubtarget
*Subtarget
) {
5561 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5563 SDValue Op
= N
->getOperand(0);
5565 // This function is only supposed to be called for i64 types, either as the
5566 // source or destination of the bit convert.
5567 EVT SrcVT
= Op
.getValueType();
5568 EVT DstVT
= N
->getValueType(0);
5569 const bool HasFullFP16
= Subtarget
->hasFullFP16();
5571 if (SrcVT
== MVT::f32
&& DstVT
== MVT::i32
) {
5572 // FullFP16: half values are passed in S-registers, and we don't
5573 // need any of the bitcast and moves:
5575 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5576 // t5: i32 = bitcast t2
5577 // t18: f16 = ARMISD::VMOVhr t5
5578 if (Op
.getOpcode() != ISD::CopyFromReg
||
5579 Op
.getValueType() != MVT::f32
)
5582 auto Move
= N
->use_begin();
5583 if (Move
->getOpcode() != ARMISD::VMOVhr
)
5586 SDValue Ops
[] = { Op
.getOperand(0), Op
.getOperand(1) };
5587 SDValue Copy
= DAG
.getNode(ISD::CopyFromReg
, SDLoc(Op
), MVT::f16
, Ops
);
5588 DAG
.ReplaceAllUsesWith(*Move
, &Copy
);
5592 if (SrcVT
== MVT::i16
&& DstVT
== MVT::f16
) {
5595 // SoftFP: read half-precision arguments:
5598 // t7: i16 = truncate t2 <~~~~ Op
5599 // t8: f16 = bitcast t7 <~~~~ N
5601 if (Op
.getOperand(0).getValueType() == MVT::i32
)
5602 return DAG
.getNode(ARMISD::VMOVhr
, SDLoc(Op
),
5603 MVT::f16
, Op
.getOperand(0));
5608 // Half-precision return values
5609 if (SrcVT
== MVT::f16
&& DstVT
== MVT::i16
) {
5613 // t11: f16 = fadd t8, t10
5614 // t12: i16 = bitcast t11 <~~~ SDNode N
5615 // t13: i32 = zero_extend t12
5616 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5617 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5619 // transform this into:
5621 // t20: i32 = ARMISD::VMOVrh t11
5622 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5624 auto ZeroExtend
= N
->use_begin();
5625 if (N
->use_size() != 1 || ZeroExtend
->getOpcode() != ISD::ZERO_EXTEND
||
5626 ZeroExtend
->getValueType(0) != MVT::i32
)
5629 auto Copy
= ZeroExtend
->use_begin();
5630 if (Copy
->getOpcode() == ISD::CopyToReg
&&
5631 Copy
->use_begin()->getOpcode() == ARMISD::RET_FLAG
) {
5632 SDValue Cvt
= DAG
.getNode(ARMISD::VMOVrh
, SDLoc(Op
), MVT::i32
, Op
);
5633 DAG
.ReplaceAllUsesWith(*ZeroExtend
, &Cvt
);
5639 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
5642 // Turn i64->f64 into VMOVDRR.
5643 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
5644 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5645 // if we can combine the bitcast with its source.
5646 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
5649 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5650 DAG
.getConstant(0, dl
, MVT::i32
));
5651 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, Op
,
5652 DAG
.getConstant(1, dl
, MVT::i32
));
5653 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
5654 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
5657 // Turn f64->i64 into VMOVRRD.
5658 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
5660 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
5661 SrcVT
.getVectorNumElements() > 1)
5662 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5663 DAG
.getVTList(MVT::i32
, MVT::i32
),
5664 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
5666 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5667 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
5668 // Merge the pieces into a single i64 value.
5669 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
5675 /// getZeroVector - Returns a vector of specified type with all zero elements.
5676 /// Zero vectors are used to represent vector negation and in those cases
5677 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5678 /// not support i64 elements, so sometimes the zero vectors will need to be
5679 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5681 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
5682 assert(VT
.isVector() && "Expected a vector type");
5683 // The canonical modified immediate encoding of a zero vector is....0!
5684 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
5685 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
5686 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
5687 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
5690 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5691 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5692 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
5693 SelectionDAG
&DAG
) const {
5694 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5695 EVT VT
= Op
.getValueType();
5696 unsigned VTBits
= VT
.getSizeInBits();
5698 SDValue ShOpLo
= Op
.getOperand(0);
5699 SDValue ShOpHi
= Op
.getOperand(1);
5700 SDValue ShAmt
= Op
.getOperand(2);
5702 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5703 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5705 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5707 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5708 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5709 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5710 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5711 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5712 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5713 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5714 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5715 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5716 ISD::SETGE
, ARMcc
, DAG
, dl
);
5717 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
,
5720 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5721 SDValue HiBigShift
= Opc
== ISD::SRA
5722 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5723 DAG
.getConstant(VTBits
- 1, dl
, VT
))
5724 : DAG
.getConstant(0, dl
, VT
);
5725 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5726 ISD::SETGE
, ARMcc
, DAG
, dl
);
5727 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5730 SDValue Ops
[2] = { Lo
, Hi
};
5731 return DAG
.getMergeValues(Ops
, dl
);
5734 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5735 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5736 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
5737 SelectionDAG
&DAG
) const {
5738 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5739 EVT VT
= Op
.getValueType();
5740 unsigned VTBits
= VT
.getSizeInBits();
5742 SDValue ShOpLo
= Op
.getOperand(0);
5743 SDValue ShOpHi
= Op
.getOperand(1);
5744 SDValue ShAmt
= Op
.getOperand(2);
5746 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
5748 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5749 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5750 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
5751 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5752 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5753 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
5755 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
5756 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
5757 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5758 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5759 ISD::SETGE
, ARMcc
, DAG
, dl
);
5760 SDValue Hi
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
,
5763 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
5764 ISD::SETGE
, ARMcc
, DAG
, dl
);
5765 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5766 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
5767 DAG
.getConstant(0, dl
, VT
), ARMcc
, CCR
, CmpLo
);
5769 SDValue Ops
[2] = { Lo
, Hi
};
5770 return DAG
.getMergeValues(Ops
, dl
);
5773 SDValue
ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
5774 SelectionDAG
&DAG
) const {
5775 // The rounding mode is in bits 23:22 of the FPSCR.
5776 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5777 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5778 // so that the shift + and get folded into a bitfield extract.
5780 SDValue Ops
[] = { DAG
.getEntryNode(),
5781 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
) };
5783 SDValue FPSCR
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, MVT::i32
, Ops
);
5784 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
5785 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
5786 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
5787 DAG
.getConstant(22, dl
, MVT::i32
));
5788 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
5789 DAG
.getConstant(3, dl
, MVT::i32
));
5792 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
5793 const ARMSubtarget
*ST
) {
5795 EVT VT
= N
->getValueType(0);
5796 if (VT
.isVector()) {
5797 assert(ST
->hasNEON());
5799 // Compute the least significant set bit: LSB = X & -X
5800 SDValue X
= N
->getOperand(0);
5801 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
5802 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
5804 EVT ElemTy
= VT
.getVectorElementType();
5806 if (ElemTy
== MVT::i8
) {
5807 // Compute with: cttz(x) = ctpop(lsb - 1)
5808 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5809 DAG
.getTargetConstant(1, dl
, ElemTy
));
5810 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5811 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5814 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
5815 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
5816 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5817 unsigned NumBits
= ElemTy
.getSizeInBits();
5818 SDValue WidthMinus1
=
5819 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5820 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
5821 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
5822 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
5825 // Compute with: cttz(x) = ctpop(lsb - 1)
5829 if (ElemTy
== MVT::i64
) {
5830 // Load constant 0xffff'ffff'ffff'ffff to register.
5831 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5832 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
5833 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
5835 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
5836 DAG
.getTargetConstant(1, dl
, ElemTy
));
5837 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
5839 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
5842 if (!ST
->hasV6T2Ops())
5845 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
5846 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
5849 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
5850 const ARMSubtarget
*ST
) {
5851 EVT VT
= N
->getValueType(0);
5854 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
5855 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
5856 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
5857 "Unexpected type for custom ctpop lowering");
5859 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5860 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
5861 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
5862 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
5864 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5865 unsigned EltSize
= 8;
5866 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
5867 while (EltSize
!= VT
.getScalarSizeInBits()) {
5868 SmallVector
<SDValue
, 8> Ops
;
5869 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
5870 TLI
.getPointerTy(DAG
.getDataLayout())));
5875 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
5876 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
5882 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5883 /// operand of a vector shift operation, where all the elements of the
5884 /// build_vector must have the same constant integer value.
5885 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
5886 // Ignore bit_converts.
5887 while (Op
.getOpcode() == ISD::BITCAST
)
5888 Op
= Op
.getOperand(0);
5889 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
5890 APInt SplatBits
, SplatUndef
;
5891 unsigned SplatBitSize
;
5894 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
5896 SplatBitSize
> ElementBits
)
5898 Cnt
= SplatBits
.getSExtValue();
5902 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5903 /// operand of a vector shift left operation. That value must be in the range:
5904 /// 0 <= Value < ElementBits for a left shift; or
5905 /// 0 <= Value <= ElementBits for a long left shift.
5906 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
5907 assert(VT
.isVector() && "vector shift count is not a vector type");
5908 int64_t ElementBits
= VT
.getScalarSizeInBits();
5909 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5911 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
5914 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5915 /// operand of a vector shift right operation. For a shift opcode, the value
5916 /// is positive, but for an intrinsic the value count must be negative. The
5917 /// absolute value must be in the range:
5918 /// 1 <= |Value| <= ElementBits for a right shift; or
5919 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5920 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
5922 assert(VT
.isVector() && "vector shift count is not a vector type");
5923 int64_t ElementBits
= VT
.getScalarSizeInBits();
5924 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
5927 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
5928 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
5935 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
5936 const ARMSubtarget
*ST
) {
5937 EVT VT
= N
->getValueType(0);
5944 // We essentially have two forms here. Shift by an immediate and shift by a
5945 // vector register (there are also shift by a gpr, but that is just handled
5946 // with a tablegen pattern). We cannot easily match shift by an immediate in
5947 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5948 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5949 // signed or unsigned, and a negative shift indicates a shift right).
5950 if (N
->getOpcode() == ISD::SHL
) {
5951 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
5952 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
5953 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5954 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
5958 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
5959 "unexpected vector shift opcode");
5961 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
5962 unsigned VShiftOpc
=
5963 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
5964 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
5965 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
5968 // Other right shifts we don't have operations for (we use a shift left by a
5969 // negative number).
5970 EVT ShiftVT
= N
->getOperand(1).getValueType();
5971 SDValue NegatedCount
= DAG
.getNode(
5972 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
5973 unsigned VShiftOpc
=
5974 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
5975 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
5978 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
5979 const ARMSubtarget
*ST
) {
5980 EVT VT
= N
->getValueType(0);
5983 // We can get here for a node like i32 = ISD::SHL i32, i64
5987 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
5988 N
->getOpcode() == ISD::SHL
) &&
5989 "Unknown shift to lower!");
5991 unsigned ShOpc
= N
->getOpcode();
5992 if (ST
->hasMVEIntegerOps()) {
5993 SDValue ShAmt
= N
->getOperand(1);
5994 unsigned ShPartsOpc
= ARMISD::LSLL
;
5995 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
5997 // If the shift amount is greater than 32 or has a greater bitwidth than 64
5998 // then do the default optimisation
5999 if (ShAmt
->getValueType(0).getSizeInBits() > 64 ||
6000 (Con
&& Con
->getZExtValue() >= 32))
6003 // Extract the lower 32 bits of the shift amount if it's not an i32
6004 if (ShAmt
->getValueType(0) != MVT::i32
)
6005 ShAmt
= DAG
.getZExtOrTrunc(ShAmt
, dl
, MVT::i32
);
6007 if (ShOpc
== ISD::SRL
) {
6009 // There is no t2LSRLr instruction so negate and perform an lsll if the
6010 // shift amount is in a register, emulating a right shift.
6011 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
6012 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
6014 // Else generate an lsrl on the immediate shift amount
6015 ShPartsOpc
= ARMISD::LSRL
;
6016 } else if (ShOpc
== ISD::SRA
)
6017 ShPartsOpc
= ARMISD::ASRL
;
6019 // Lower 32 bits of the destination/source
6020 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6021 DAG
.getConstant(0, dl
, MVT::i32
));
6022 // Upper 32 bits of the destination/source
6023 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6024 DAG
.getConstant(1, dl
, MVT::i32
));
6026 // Generate the shift operation as computed above
6027 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
6029 // The upper 32 bits come from the second return value of lsll
6030 Hi
= SDValue(Lo
.getNode(), 1);
6031 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6034 // We only lower SRA, SRL of 1 here, all others use generic lowering.
6035 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
6038 // If we are in thumb mode, we don't have RRX.
6039 if (ST
->isThumb1Only())
6042 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
6043 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6044 DAG
.getConstant(0, dl
, MVT::i32
));
6045 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(0),
6046 DAG
.getConstant(1, dl
, MVT::i32
));
6048 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6049 // captures the result into a carry flag.
6050 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::SRL_FLAG
:ARMISD::SRA_FLAG
;
6051 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, MVT::Glue
), Hi
);
6053 // The low part is an ARMISD::RRX operand, which shifts the carry in.
6054 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
6056 // Merge the pieces into a single i64 value.
6057 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6060 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
6061 const ARMSubtarget
*ST
) {
6062 bool Invert
= false;
6064 unsigned Opc
= ARMCC::AL
;
6066 SDValue Op0
= Op
.getOperand(0);
6067 SDValue Op1
= Op
.getOperand(1);
6068 SDValue CC
= Op
.getOperand(2);
6069 EVT VT
= Op
.getValueType();
6070 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
6075 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
6077 assert(ST
->hasMVEIntegerOps() &&
6078 "No hardware support for integer vector comparison!");
6080 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
6083 // Make sure we expand floating point setcc to scalar if we do not have
6084 // mve.fp, so that we can handle them from there.
6085 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
6091 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
6092 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
6093 // Special-case integer 64-bit equality comparisons. They aren't legal,
6094 // but they can be lowered with a few vector instructions.
6095 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
6096 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
6097 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
6098 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
6099 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
6100 DAG
.getCondCode(ISD::SETEQ
));
6101 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
6102 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
6103 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
6104 if (SetCCOpcode
== ISD::SETNE
)
6105 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
6106 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
6110 if (CmpVT
.getVectorElementType() == MVT::i64
)
6111 // 64-bit comparisons are not legal in general.
6114 if (Op1
.getValueType().isFloatingPoint()) {
6115 switch (SetCCOpcode
) {
6116 default: llvm_unreachable("Illegal FP comparison");
6119 if (ST
->hasMVEFloatOps()) {
6120 Opc
= ARMCC::NE
; break;
6122 Invert
= true; LLVM_FALLTHROUGH
;
6125 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6127 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6129 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6131 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6133 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6134 case ISD::SETUGE
: Swap
= true; LLVM_FALLTHROUGH
;
6135 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
6136 case ISD::SETUGT
: Swap
= true; LLVM_FALLTHROUGH
;
6137 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
6138 case ISD::SETUEQ
: Invert
= true; LLVM_FALLTHROUGH
;
6140 // Expand this to (OLT | OGT).
6141 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6142 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6143 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6144 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6145 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6147 Result
= DAG
.getNOT(dl
, Result
, VT
);
6150 case ISD::SETUO
: Invert
= true; LLVM_FALLTHROUGH
;
6152 // Expand this to (OLT | OGE).
6153 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6154 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6155 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6156 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
6157 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6159 Result
= DAG
.getNOT(dl
, Result
, VT
);
6164 // Integer comparisons.
6165 switch (SetCCOpcode
) {
6166 default: llvm_unreachable("Illegal integer comparison");
6168 if (ST
->hasMVEIntegerOps()) {
6169 Opc
= ARMCC::NE
; break;
6171 Invert
= true; LLVM_FALLTHROUGH
;
6173 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6174 case ISD::SETLT
: Swap
= true; LLVM_FALLTHROUGH
;
6175 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6176 case ISD::SETLE
: Swap
= true; LLVM_FALLTHROUGH
;
6177 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6178 case ISD::SETULT
: Swap
= true; LLVM_FALLTHROUGH
;
6179 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
6180 case ISD::SETULE
: Swap
= true; LLVM_FALLTHROUGH
;
6181 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
6184 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6185 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
6187 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6189 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6192 // Ignore bitconvert.
6193 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6194 AndOp
= AndOp
.getOperand(0);
6196 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6197 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6198 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6199 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6201 Result
= DAG
.getNOT(dl
, Result
, VT
);
6208 std::swap(Op0
, Op1
);
6210 // If one of the operands is a constant vector zero, attempt to fold the
6211 // comparison to a specialized compare-against-zero form.
6213 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6215 else if (ISD::isBuildVectorAllZeros(Op0
.getNode())) {
6216 if (Opc
== ARMCC::GE
)
6218 else if (Opc
== ARMCC::GT
)
6224 if (SingleOp
.getNode()) {
6225 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, SingleOp
,
6226 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6228 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6229 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6232 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
6235 Result
= DAG
.getNOT(dl
, Result
, VT
);
6240 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
6241 SDValue LHS
= Op
.getOperand(0);
6242 SDValue RHS
= Op
.getOperand(1);
6243 SDValue Carry
= Op
.getOperand(2);
6244 SDValue Cond
= Op
.getOperand(3);
6247 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6249 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6250 // have to invert the carry first.
6251 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
6252 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
6253 // This converts the boolean value carry into the carry flag.
6254 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
6256 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
6257 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
6259 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
6260 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
6261 SDValue ARMcc
= DAG
.getConstant(
6262 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
6263 SDValue CCR
= DAG
.getRegister(ARM::CPSR
, MVT::i32
);
6264 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, ARM::CPSR
,
6265 Cmp
.getValue(1), SDValue());
6266 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
6267 CCR
, Chain
.getValue(1));
6270 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6271 /// valid vector constant for a NEON or MVE instruction with a "modified
6272 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6273 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
6274 unsigned SplatBitSize
, SelectionDAG
&DAG
,
6275 const SDLoc
&dl
, EVT
&VT
, bool is128Bits
,
6276 VMOVModImmType type
) {
6277 unsigned OpCmode
, Imm
;
6279 // SplatBitSize is set to the smallest size that splats the vector, so a
6280 // zero vector will always have SplatBitSize == 8. However, NEON modified
6281 // immediate instructions others than VMOV do not support the 8-bit encoding
6282 // of a zero vector, and the default encoding of zero is supposed to be the
6287 switch (SplatBitSize
) {
6289 if (type
!= VMOVModImm
)
6291 // Any 1-byte value is OK. Op=0, Cmode=1110.
6292 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
6295 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
6299 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6300 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
6301 if ((SplatBits
& ~0xff) == 0) {
6302 // Value = 0x00nn: Op=x, Cmode=100x.
6307 if ((SplatBits
& ~0xff00) == 0) {
6308 // Value = 0xnn00: Op=x, Cmode=101x.
6310 Imm
= SplatBits
>> 8;
6316 // NEON's 32-bit VMOV supports splat values where:
6317 // * only one byte is nonzero, or
6318 // * the least significant byte is 0xff and the second byte is nonzero, or
6319 // * the least significant 2 bytes are 0xff and the third is nonzero.
6320 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
6321 if ((SplatBits
& ~0xff) == 0) {
6322 // Value = 0x000000nn: Op=x, Cmode=000x.
6327 if ((SplatBits
& ~0xff00) == 0) {
6328 // Value = 0x0000nn00: Op=x, Cmode=001x.
6330 Imm
= SplatBits
>> 8;
6333 if ((SplatBits
& ~0xff0000) == 0) {
6334 // Value = 0x00nn0000: Op=x, Cmode=010x.
6336 Imm
= SplatBits
>> 16;
6339 if ((SplatBits
& ~0xff000000) == 0) {
6340 // Value = 0xnn000000: Op=x, Cmode=011x.
6342 Imm
= SplatBits
>> 24;
6346 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6347 if (type
== OtherModImm
) return SDValue();
6349 if ((SplatBits
& ~0xffff) == 0 &&
6350 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
6351 // Value = 0x0000nnff: Op=x, Cmode=1100.
6353 Imm
= SplatBits
>> 8;
6357 // cmode == 0b1101 is not supported for MVE VMVN
6358 if (type
== MVEVMVNModImm
)
6361 if ((SplatBits
& ~0xffffff) == 0 &&
6362 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
6363 // Value = 0x00nnffff: Op=x, Cmode=1101.
6365 Imm
= SplatBits
>> 16;
6369 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6370 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6371 // VMOV.I32. A (very) minor optimization would be to replicate the value
6372 // and fall through here to test for a valid 64-bit splat. But, then the
6373 // caller would also need to check and handle the change in size.
6377 if (type
!= VMOVModImm
)
6379 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6380 uint64_t BitMask
= 0xff;
6382 unsigned ImmMask
= 1;
6384 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
6385 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
6388 } else if ((SplatBits
& BitMask
) != 0) {
6395 if (DAG
.getDataLayout().isBigEndian())
6396 // swap higher and lower 32 bit word
6397 Imm
= ((Imm
& 0xf) << 4) | ((Imm
& 0xf0) >> 4);
6399 // Op=1, Cmode=1110.
6401 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
6406 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6409 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
6410 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
6413 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
6414 const ARMSubtarget
*ST
) const {
6415 EVT VT
= Op
.getValueType();
6416 bool IsDouble
= (VT
== MVT::f64
);
6417 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
6418 const APFloat
&FPVal
= CFP
->getValueAPF();
6420 // Prevent floating-point constants from using literal loads
6421 // when execute-only is enabled.
6422 if (ST
->genExecuteOnly()) {
6423 // If we can represent the constant as an immediate, don't lower it
6424 if (isFPImmLegal(FPVal
, VT
))
6426 // Otherwise, construct as integer, and move to float register
6427 APInt INTVal
= FPVal
.bitcastToAPInt();
6429 switch (VT
.getSimpleVT().SimpleTy
) {
6431 llvm_unreachable("Unknown floating point type!");
6434 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
6435 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
6436 if (!ST
->isLittle())
6438 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
6441 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
6442 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
6446 if (!ST
->hasVFP3Base())
6449 // Use the default (constant pool) lowering for double constants when we have
6451 if (IsDouble
&& !Subtarget
->hasFP64())
6454 // Try splatting with a VMOV.f32...
6455 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
6458 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
6459 // We have code in place to select a valid ConstantFP already, no need to
6464 // It's a float and we are trying to use NEON operations where
6465 // possible. Lower it to a splat followed by an extract.
6467 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
6468 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
6470 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
6471 DAG
.getConstant(0, DL
, MVT::i32
));
6474 // The rest of our options are NEON only, make sure that's allowed before
6476 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
6480 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
6482 // It wouldn't really be worth bothering for doubles except for one very
6483 // important value, which does happen to match: 0.0. So make sure we don't do
6485 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
6488 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6489 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
6490 VMovVT
, false, VMOVModImm
);
6491 if (NewVal
!= SDValue()) {
6493 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
6496 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6498 // It's a float: cast and extract a vector element.
6499 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6501 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6502 DAG
.getConstant(0, DL
, MVT::i32
));
6505 // Finally, try a VMVN.i32
6506 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
6508 if (NewVal
!= SDValue()) {
6510 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
6513 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
6515 // It's a float: cast and extract a vector element.
6516 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
6518 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
6519 DAG
.getConstant(0, DL
, MVT::i32
));
6525 // check if an VEXT instruction can handle the shuffle mask when the
6526 // vector sources of the shuffle are the same.
6527 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6528 unsigned NumElts
= VT
.getVectorNumElements();
6530 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6536 // If this is a VEXT shuffle, the immediate value is the index of the first
6537 // element. The other shuffle indices must be the successive elements after
6539 unsigned ExpectedElt
= Imm
;
6540 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6541 // Increment the expected index. If it wraps around, just follow it
6542 // back to index zero and keep going.
6544 if (ExpectedElt
== NumElts
)
6547 if (M
[i
] < 0) continue; // ignore UNDEF indices
6548 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6555 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
6556 bool &ReverseVEXT
, unsigned &Imm
) {
6557 unsigned NumElts
= VT
.getVectorNumElements();
6558 ReverseVEXT
= false;
6560 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6566 // If this is a VEXT shuffle, the immediate value is the index of the first
6567 // element. The other shuffle indices must be the successive elements after
6569 unsigned ExpectedElt
= Imm
;
6570 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6571 // Increment the expected index. If it wraps around, it may still be
6572 // a VEXT but the source vectors must be swapped.
6574 if (ExpectedElt
== NumElts
* 2) {
6579 if (M
[i
] < 0) continue; // ignore UNDEF indices
6580 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6584 // Adjust the index value if the source operands will be swapped.
6591 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6592 /// instruction with the specified blocksize. (The order of the elements
6593 /// within each block of the vector is reversed.)
6594 static bool isVREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6595 assert((BlockSize
==16 || BlockSize
==32 || BlockSize
==64) &&
6596 "Only possible block sizes for VREV are: 16, 32, 64");
6598 unsigned EltSz
= VT
.getScalarSizeInBits();
6602 unsigned NumElts
= VT
.getVectorNumElements();
6603 unsigned BlockElts
= M
[0] + 1;
6604 // If the first shuffle index is UNDEF, be optimistic.
6606 BlockElts
= BlockSize
/ EltSz
;
6608 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6611 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6612 if (M
[i
] < 0) continue; // ignore UNDEF indices
6613 if ((unsigned) M
[i
] != (i
- i
%BlockElts
) + (BlockElts
- 1 - i
%BlockElts
))
6620 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
6621 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6622 // range, then 0 is placed into the resulting vector. So pretty much any mask
6623 // of 8 elements can work here.
6624 return VT
== MVT::v8i8
&& M
.size() == 8;
6627 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
6629 if (Mask
.size() == Elements
* 2)
6630 return Index
/ Elements
;
6631 return Mask
[Index
] == 0 ? 0 : 1;
6634 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6635 // checking that pairs of elements in the shuffle mask represent the same index
6636 // in each vector, incrementing the expected index by 2 at each step.
6637 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6638 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6640 // WhichResult gives the offset for each element in the mask based on which
6641 // of the two results it belongs to.
6643 // The transpose can be represented either as:
6644 // result1 = shufflevector v1, v2, result1_shuffle_mask
6645 // result2 = shufflevector v1, v2, result2_shuffle_mask
6646 // where v1/v2 and the shuffle masks have the same number of elements
6647 // (here WhichResult (see below) indicates which result is being checked)
6650 // results = shufflevector v1, v2, shuffle_mask
6651 // where both results are returned in one vector and the shuffle mask has twice
6652 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6653 // want to check the low half and high half of the shuffle mask as if it were
6655 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6656 unsigned EltSz
= VT
.getScalarSizeInBits();
6660 unsigned NumElts
= VT
.getVectorNumElements();
6661 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6664 // If the mask is twice as long as the input vector then we need to check the
6665 // upper and lower parts of the mask with a matching value for WhichResult
6666 // FIXME: A mask with only even values will be rejected in case the first
6667 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6668 // M[0] is used to determine WhichResult
6669 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6670 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6671 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6672 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6673 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
6678 if (M
.size() == NumElts
*2)
6684 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6685 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6686 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6687 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6688 unsigned EltSz
= VT
.getScalarSizeInBits();
6692 unsigned NumElts
= VT
.getVectorNumElements();
6693 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6696 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6697 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6698 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6699 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
6700 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
6705 if (M
.size() == NumElts
*2)
6711 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6712 // that the mask elements are either all even and in steps of size 2 or all odd
6713 // and in steps of size 2.
6714 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6715 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6717 // Requires similar checks to that of isVTRNMask with
6718 // respect the how results are returned.
6719 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6720 unsigned EltSz
= VT
.getScalarSizeInBits();
6724 unsigned NumElts
= VT
.getVectorNumElements();
6725 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6728 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6729 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6730 for (unsigned j
= 0; j
< NumElts
; ++j
) {
6731 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
6736 if (M
.size() == NumElts
*2)
6739 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6740 if (VT
.is64BitVector() && EltSz
== 32)
6746 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6747 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6748 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6749 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6750 unsigned EltSz
= VT
.getScalarSizeInBits();
6754 unsigned NumElts
= VT
.getVectorNumElements();
6755 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6758 unsigned Half
= NumElts
/ 2;
6759 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6760 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6761 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
6762 unsigned Idx
= WhichResult
;
6763 for (unsigned k
= 0; k
< Half
; ++k
) {
6764 int MIdx
= M
[i
+ j
+ k
];
6765 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
6772 if (M
.size() == NumElts
*2)
6775 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6776 if (VT
.is64BitVector() && EltSz
== 32)
6782 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6783 // that pairs of elements of the shufflemask represent the same index in each
6784 // vector incrementing sequentially through the vectors.
6785 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6786 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6788 // Requires similar checks to that of isVTRNMask with respect the how results
6790 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6791 unsigned EltSz
= VT
.getScalarSizeInBits();
6795 unsigned NumElts
= VT
.getVectorNumElements();
6796 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6799 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6800 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6801 unsigned Idx
= WhichResult
* NumElts
/ 2;
6802 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6803 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6804 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
6810 if (M
.size() == NumElts
*2)
6813 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6814 if (VT
.is64BitVector() && EltSz
== 32)
6820 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6821 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6822 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6823 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
6824 unsigned EltSz
= VT
.getScalarSizeInBits();
6828 unsigned NumElts
= VT
.getVectorNumElements();
6829 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
6832 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
6833 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
6834 unsigned Idx
= WhichResult
* NumElts
/ 2;
6835 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
6836 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
6837 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
6843 if (M
.size() == NumElts
*2)
6846 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6847 if (VT
.is64BitVector() && EltSz
== 32)
6853 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6854 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6855 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
6856 unsigned &WhichResult
,
6859 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
6860 return ARMISD::VTRN
;
6861 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
6862 return ARMISD::VUZP
;
6863 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
6864 return ARMISD::VZIP
;
6867 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6868 return ARMISD::VTRN
;
6869 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6870 return ARMISD::VUZP
;
6871 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
6872 return ARMISD::VZIP
;
6877 /// \return true if this is a reverse operation on an vector.
6878 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
6879 unsigned NumElts
= VT
.getVectorNumElements();
6880 // Make sure the mask has the right size.
6881 if (NumElts
!= M
.size())
6884 // Look for <15, ..., 3, -1, 1, 0>.
6885 for (unsigned i
= 0; i
!= NumElts
; ++i
)
6886 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
6892 // If N is an integer constant that can be moved into a register in one
6893 // instruction, return an SDValue of such a constant (will become a MOV
6894 // instruction). Otherwise return null.
6895 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
6896 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
6898 if (!isa
<ConstantSDNode
>(N
))
6900 Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
6902 if (ST
->isThumb1Only()) {
6903 if (Val
<= 255 || ~Val
<= 255)
6904 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6906 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
6907 return DAG
.getConstant(Val
, dl
, MVT::i32
);
6912 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
6913 const ARMSubtarget
*ST
) {
6915 EVT VT
= Op
.getValueType();
6917 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6919 unsigned NumElts
= VT
.getVectorNumElements();
6921 unsigned BitsPerBool
;
6925 } else if (NumElts
== 8) {
6928 } else if (NumElts
== 16) {
6934 // First create base with bits set where known
6935 unsigned Bits32
= 0;
6936 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6937 SDValue V
= Op
.getOperand(i
);
6938 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
6940 bool BitSet
= V
.isUndef() ? false : cast
<ConstantSDNode
>(V
)->getZExtValue();
6942 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
6945 // Add in unknown nodes
6946 // FIXME: Handle splats of the same value better.
6947 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
6948 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
6949 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6950 SDValue V
= Op
.getOperand(i
);
6951 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
6953 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
6954 DAG
.getConstant(i
, dl
, MVT::i32
));
6960 // If this is a case we can't handle, return null and let the default
6961 // expansion code take care of it.
6962 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
6963 const ARMSubtarget
*ST
) const {
6964 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
6966 EVT VT
= Op
.getValueType();
6968 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
6969 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
6971 APInt SplatBits
, SplatUndef
;
6972 unsigned SplatBitSize
;
6974 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
6975 if (SplatUndef
.isAllOnesValue())
6976 return DAG
.getUNDEF(VT
);
6978 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
6979 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 32)) {
6980 // Check if an immediate VMOV works.
6982 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
6983 SplatUndef
.getZExtValue(), SplatBitSize
,
6984 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6987 if (Val
.getNode()) {
6988 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
6989 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6992 // Try an immediate VMVN.
6993 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
6994 Val
= isVMOVModifiedImm(
6995 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
,
6996 DAG
, dl
, VmovVT
, VT
.is128BitVector(),
6997 ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
6998 if (Val
.getNode()) {
6999 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
7000 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
7003 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7004 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
7005 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
7007 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
7008 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
7014 // Scan through the operands to see if only one value is used.
7016 // As an optimisation, even if more than one value is used it may be more
7017 // profitable to splat with one value then change some lanes.
7019 // Heuristically we decide to do this if the vector has a "dominant" value,
7020 // defined as splatted to more than half of the lanes.
7021 unsigned NumElts
= VT
.getVectorNumElements();
7022 bool isOnlyLowElement
= true;
7023 bool usesOnlyOneValue
= true;
7024 bool hasDominantValue
= false;
7025 bool isConstant
= true;
7027 // Map of the number of times a particular SDValue appears in the
7029 DenseMap
<SDValue
, unsigned> ValueCounts
;
7031 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7032 SDValue V
= Op
.getOperand(i
);
7036 isOnlyLowElement
= false;
7037 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
7040 ValueCounts
.insert(std::make_pair(V
, 0));
7041 unsigned &Count
= ValueCounts
[V
];
7043 // Is this value dominant? (takes up more than half of the lanes)
7044 if (++Count
> (NumElts
/ 2)) {
7045 hasDominantValue
= true;
7049 if (ValueCounts
.size() != 1)
7050 usesOnlyOneValue
= false;
7051 if (!Value
.getNode() && !ValueCounts
.empty())
7052 Value
= ValueCounts
.begin()->first
;
7054 if (ValueCounts
.empty())
7055 return DAG
.getUNDEF(VT
);
7057 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7058 // Keep going if we are hitting this case.
7059 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
7060 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
7062 unsigned EltSize
= VT
.getScalarSizeInBits();
7064 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
7065 // i32 and try again.
7066 if (hasDominantValue
&& EltSize
<= 32) {
7070 // If we are VDUPing a value that comes directly from a vector, that will
7071 // cause an unnecessary move to and from a GPR, where instead we could
7072 // just use VDUPLANE. We can only do this if the lane being extracted
7073 // is at a constant index, as the VDUP from lane instructions only have
7074 // constant-index forms.
7075 ConstantSDNode
*constIndex
;
7076 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
7077 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
7078 // We need to create a new undef vector to use for the VDUPLANE if the
7079 // size of the vector from which we get the value is different than the
7080 // size of the vector that we need to create. We will insert the element
7081 // such that the register coalescer will remove unnecessary copies.
7082 if (VT
!= Value
->getOperand(0).getValueType()) {
7083 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
7084 VT
.getVectorNumElements();
7085 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7086 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
7087 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
7088 DAG
.getConstant(index
, dl
, MVT::i32
));
7090 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7091 Value
->getOperand(0), Value
->getOperand(1));
7093 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
7095 if (!usesOnlyOneValue
) {
7096 // The dominant value was splatted as 'N', but we now have to insert
7097 // all differing elements.
7098 for (unsigned I
= 0; I
< NumElts
; ++I
) {
7099 if (Op
.getOperand(I
) == Value
)
7101 SmallVector
<SDValue
, 3> Ops
;
7103 Ops
.push_back(Op
.getOperand(I
));
7104 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
7105 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
7110 if (VT
.getVectorElementType().isFloatingPoint()) {
7111 SmallVector
<SDValue
, 8> Ops
;
7112 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
7113 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
7114 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
7115 for (unsigned i
= 0; i
< NumElts
; ++i
)
7116 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
7118 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
7119 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
7120 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
7122 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7124 if (usesOnlyOneValue
) {
7125 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
7126 if (isConstant
&& Val
.getNode())
7127 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
7131 // If all elements are constants and the case above didn't get hit, fall back
7132 // to the default expansion, which will generate a load from the constant
7137 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7139 SDValue shuffle
= ReconstructShuffle(Op
, DAG
);
7140 if (shuffle
!= SDValue())
7144 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
7145 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7146 // into two 64-bit vectors; we might discover a better way to lower it.
7147 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
7148 EVT ExtVT
= VT
.getVectorElementType();
7149 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
7151 DAG
.getBuildVector(HVT
, dl
, makeArrayRef(&Ops
[0], NumElts
/ 2));
7152 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
7153 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
7154 SDValue Upper
= DAG
.getBuildVector(
7155 HVT
, dl
, makeArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
7156 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
7157 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
7159 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
7162 // Vectors with 32- or 64-bit elements can be built by directly assigning
7163 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7164 // will be legalized.
7165 if (EltSize
>= 32) {
7166 // Do the expansion with floating-point types, since that is what the VFP
7167 // registers are defined to use, and since i64 is not legal.
7168 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7169 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7170 SmallVector
<SDValue
, 8> Ops
;
7171 for (unsigned i
= 0; i
< NumElts
; ++i
)
7172 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
7173 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7174 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7177 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7178 // know the default expansion would otherwise fall back on something even
7179 // worse. For a vector with one or two non-undef values, that's
7180 // scalar_to_vector for the elements followed by a shuffle (provided the
7181 // shuffle is valid for the target) and materialization element by element
7182 // on the stack followed by a load for everything else.
7183 if (!isConstant
&& !usesOnlyOneValue
) {
7184 SDValue Vec
= DAG
.getUNDEF(VT
);
7185 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
7186 SDValue V
= Op
.getOperand(i
);
7189 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
7190 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7198 // Gather data to see if the operation can be modelled as a
7199 // shuffle in combination with VEXTs.
7200 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
7201 SelectionDAG
&DAG
) const {
7202 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7204 EVT VT
= Op
.getValueType();
7205 unsigned NumElts
= VT
.getVectorNumElements();
7207 struct ShuffleSourceInfo
{
7209 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
7210 unsigned MaxElt
= 0;
7212 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7213 // be compatible with the shuffle we intend to construct. As a result
7214 // ShuffleVec will be some sliding window into the original Vec.
7217 // Code should guarantee that element i in Vec starts at element "WindowBase
7218 // + i * WindowScale in ShuffleVec".
7220 int WindowScale
= 1;
7222 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
7224 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
7227 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7229 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
7230 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7231 SDValue V
= Op
.getOperand(i
);
7234 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
7235 // A shuffle can only come from building a vector from various
7236 // elements of other vectors.
7238 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
7239 // Furthermore, shuffles require a constant mask, whereas extractelts
7240 // accept variable indices.
7244 // Add this element source to the list if it's not already there.
7245 SDValue SourceVec
= V
.getOperand(0);
7246 auto Source
= llvm::find(Sources
, SourceVec
);
7247 if (Source
== Sources
.end())
7248 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
7250 // Update the minimum and maximum lane number seen.
7251 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
7252 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
7253 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
7256 // Currently only do something sane when at most two source vectors
7258 if (Sources
.size() > 2)
7261 // Find out the smallest element size among result and two sources, and use
7262 // it as element size to build the shuffle_vector.
7263 EVT SmallestEltTy
= VT
.getVectorElementType();
7264 for (auto &Source
: Sources
) {
7265 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
7266 if (SrcEltTy
.bitsLT(SmallestEltTy
))
7267 SmallestEltTy
= SrcEltTy
;
7269 unsigned ResMultiplier
=
7270 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
7271 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7272 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
7274 // If the source vector is too wide or too narrow, we may nevertheless be able
7275 // to construct a compatible shuffle either by concatenating it with UNDEF or
7276 // extracting a suitable range of elements.
7277 for (auto &Src
: Sources
) {
7278 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
7280 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
7283 // This stage of the search produces a source with the same element type as
7284 // the original, but with a total width matching the BUILD_VECTOR output.
7285 EVT EltVT
= SrcVT
.getVectorElementType();
7286 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
7287 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
7289 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
7290 if (2 * SrcVT
.getSizeInBits() != VT
.getSizeInBits())
7292 // We can pad out the smaller vector for free, so if it's part of a
7295 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
7296 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
7300 if (SrcVT
.getSizeInBits() != 2 * VT
.getSizeInBits())
7303 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
7304 // Span too large for a VEXT to cope
7308 if (Src
.MinElt
>= NumSrcElts
) {
7309 // The extraction can just take the second half
7311 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7312 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7313 Src
.WindowBase
= -NumSrcElts
;
7314 } else if (Src
.MaxElt
< NumSrcElts
) {
7315 // The extraction can just take the first half
7317 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7318 DAG
.getConstant(0, dl
, MVT::i32
));
7320 // An actual VEXT is needed
7322 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7323 DAG
.getConstant(0, dl
, MVT::i32
));
7325 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
7326 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
7328 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
7330 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
7331 Src
.WindowBase
= -Src
.MinElt
;
7335 // Another possible incompatibility occurs from the vector element types. We
7336 // can fix this by bitcasting the source vectors to the same type we intend
7338 for (auto &Src
: Sources
) {
7339 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
7340 if (SrcEltTy
== SmallestEltTy
)
7342 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
7343 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
7344 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
7345 Src
.WindowBase
*= Src
.WindowScale
;
7348 // Final sanity check before we try to actually produce a shuffle.
7349 LLVM_DEBUG(for (auto Src
7351 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
7353 // The stars all align, our next step is to produce the mask for the shuffle.
7354 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
7355 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
7356 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
7357 SDValue Entry
= Op
.getOperand(i
);
7358 if (Entry
.isUndef())
7361 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
7362 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
7364 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7365 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7367 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
7368 int BitsDefined
= std::min(OrigEltTy
.getSizeInBits(),
7369 VT
.getScalarSizeInBits());
7370 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
7372 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7373 // starting at the appropriate offset.
7374 int *LaneMask
= &Mask
[i
* ResMultiplier
];
7376 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
7377 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
7378 for (int j
= 0; j
< LanesDefined
; ++j
)
7379 LaneMask
[j
] = ExtractBase
+ j
;
7383 // We can't handle more than two sources. This should have already
7384 // been checked before this point.
7385 assert(Sources
.size() <= 2 && "Too many sources!");
7387 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
7388 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
7389 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
7391 SDValue Shuffle
= buildLegalVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
7392 ShuffleOps
[1], Mask
, DAG
);
7395 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
7398 enum ShuffleOpCodes
{
7399 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7408 OP_VUZPL
, // VUZP, left result
7409 OP_VUZPR
, // VUZP, right result
7410 OP_VZIPL
, // VZIP, left result
7411 OP_VZIPR
, // VZIP, right result
7412 OP_VTRNL
, // VTRN, left result
7413 OP_VTRNR
// VTRN, right result
7416 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
7417 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7430 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7431 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7432 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7433 /// are assumed to be legal.
7434 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7435 if (VT
.getVectorNumElements() == 4 &&
7436 (VT
.is128BitVector() || VT
.is64BitVector())) {
7437 unsigned PFIndexes
[4];
7438 for (unsigned i
= 0; i
!= 4; ++i
) {
7442 PFIndexes
[i
] = M
[i
];
7445 // Compute the index in the perfect shuffle table.
7446 unsigned PFTableIndex
=
7447 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7448 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7449 unsigned Cost
= (PFEntry
>> 30);
7451 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
7455 bool ReverseVEXT
, isV_UNDEF
;
7456 unsigned Imm
, WhichResult
;
7458 unsigned EltSize
= VT
.getScalarSizeInBits();
7459 if (EltSize
>= 32 ||
7460 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7461 isVREVMask(M
, VT
, 64) ||
7462 isVREVMask(M
, VT
, 32) ||
7463 isVREVMask(M
, VT
, 16))
7465 else if (Subtarget
->hasNEON() &&
7466 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
7467 isVTBLMask(M
, VT
) ||
7468 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
7470 else if (Subtarget
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7471 isReverseMask(M
, VT
))
7477 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7478 /// the specified operations to build the shuffle.
7479 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
7480 SDValue RHS
, SelectionDAG
&DAG
,
7482 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
7483 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7484 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7486 if (OpNum
== OP_COPY
) {
7487 if (LHSID
== (1*9+2)*9+3) return LHS
;
7488 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7492 SDValue OpLHS
, OpRHS
;
7493 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
7494 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
7495 EVT VT
= OpLHS
.getValueType();
7498 default: llvm_unreachable("Unknown shuffle opcode!");
7500 // VREV divides the vector in half and swaps within the half.
7501 if (VT
.getVectorElementType() == MVT::i32
||
7502 VT
.getVectorElementType() == MVT::f32
)
7503 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
7504 // vrev <4 x i16> -> VREV32
7505 if (VT
.getVectorElementType() == MVT::i16
)
7506 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
7507 // vrev <4 x i8> -> VREV16
7508 assert(VT
.getVectorElementType() == MVT::i8
);
7509 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
7514 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
7515 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
7519 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
7521 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
7524 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
7525 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
7528 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
7529 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
7532 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
7533 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
7537 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
7538 ArrayRef
<int> ShuffleMask
,
7539 SelectionDAG
&DAG
) {
7540 // Check to see if we can use the VTBL instruction.
7541 SDValue V1
= Op
.getOperand(0);
7542 SDValue V2
= Op
.getOperand(1);
7545 SmallVector
<SDValue
, 8> VTBLMask
;
7546 for (ArrayRef
<int>::iterator
7547 I
= ShuffleMask
.begin(), E
= ShuffleMask
.end(); I
!= E
; ++I
)
7548 VTBLMask
.push_back(DAG
.getConstant(*I
, DL
, MVT::i32
));
7550 if (V2
.getNode()->isUndef())
7551 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
7552 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7554 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
7555 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
7558 static SDValue
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op
,
7559 SelectionDAG
&DAG
) {
7561 SDValue OpLHS
= Op
.getOperand(0);
7562 EVT VT
= OpLHS
.getValueType();
7564 assert((VT
== MVT::v8i16
|| VT
== MVT::v16i8
) &&
7565 "Expect an v8i16/v16i8 type");
7566 OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, OpLHS
);
7567 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7568 // extract the first 8 bytes into the top double word and the last 8 bytes
7569 // into the bottom double word. The v8i16 case is similar.
7570 unsigned ExtractNum
= (VT
== MVT::v16i8
) ? 8 : 4;
7571 return DAG
.getNode(ARMISD::VEXT
, DL
, VT
, OpLHS
, OpLHS
,
7572 DAG
.getConstant(ExtractNum
, DL
, MVT::i32
));
7575 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
7576 switch (VT
.getSimpleVT().SimpleTy
) {
7584 llvm_unreachable("Unexpected vector predicate type");
7588 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
7589 SelectionDAG
&DAG
) {
7590 // Converting from boolean predicates to integers involves creating a vector
7591 // of all ones or all zeroes and selecting the lanes based upon the real
7594 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
7595 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
7598 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
7599 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
7601 // Get full vector type from predicate type
7602 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
7605 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7606 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7607 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7608 // since we know in hardware the sizes are really the same.
7609 if (VT
!= MVT::v16i1
)
7610 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
7614 // Select either all ones or zeroes depending upon the real predicate bits.
7615 SDValue PredAsVector
=
7616 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
7618 // Recast our new predicate-as-integer v16i8 vector into something
7619 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7620 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
7623 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
7624 const ARMSubtarget
*ST
) {
7625 EVT VT
= Op
.getValueType();
7626 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7627 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7629 assert(ST
->hasMVEIntegerOps() &&
7630 "No support for vector shuffle of boolean predicates");
7632 SDValue V1
= Op
.getOperand(0);
7634 if (isReverseMask(ShuffleMask
, VT
)) {
7635 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
7636 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
7637 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
7638 DAG
.getConstant(16, dl
, MVT::i32
));
7639 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
7642 // Until we can come up with optimised cases for every single vector
7643 // shuffle in existence we have chosen the least painful strategy. This is
7644 // to essentially promote the boolean predicate to a 8-bit integer, where
7645 // each predicate represents a byte. Then we fall back on a normal integer
7646 // vector shuffle and convert the result back into a predicate vector. In
7647 // many cases the generated code might be even better than scalar code
7648 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7649 // fields in a register into 8 other arbitrary 2-bit fields!
7650 SDValue PredAsVector
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
7651 EVT NewVT
= PredAsVector
.getValueType();
7654 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector
,
7655 DAG
.getUNDEF(NewVT
), ShuffleMask
);
7657 // Now return the result of comparing the shuffled vector with zero,
7658 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7659 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
7660 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
7663 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
7664 const ARMSubtarget
*ST
) {
7665 SDValue V1
= Op
.getOperand(0);
7666 SDValue V2
= Op
.getOperand(1);
7668 EVT VT
= Op
.getValueType();
7669 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
7670 unsigned EltSize
= VT
.getScalarSizeInBits();
7672 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
7673 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
7675 // Convert shuffles that are directly supported on NEON to target-specific
7676 // DAG nodes, instead of keeping them as shuffles and matching them again
7677 // during code selection. This is more efficient and avoids the possibility
7678 // of inconsistencies between legalization and selection.
7679 // FIXME: floating-point vectors should be canonicalized to integer vectors
7680 // of the same time so that they get CSEd properly.
7681 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
7683 if (EltSize
<= 32) {
7684 if (SVN
->isSplat()) {
7685 int Lane
= SVN
->getSplatIndex();
7686 // If this is undef splat, generate it via "just" vdup, if possible.
7687 if (Lane
== -1) Lane
= 0;
7689 // Test if V1 is a SCALAR_TO_VECTOR.
7690 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
7691 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7693 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7694 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7696 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
7697 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
7698 bool IsScalarToVector
= true;
7699 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
7700 if (!V1
.getOperand(i
).isUndef()) {
7701 IsScalarToVector
= false;
7704 if (IsScalarToVector
)
7705 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
7707 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
7708 DAG
.getConstant(Lane
, dl
, MVT::i32
));
7711 bool ReverseVEXT
= false;
7713 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
7716 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
7717 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7720 if (isVREVMask(ShuffleMask
, VT
, 64))
7721 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
7722 if (isVREVMask(ShuffleMask
, VT
, 32))
7723 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
7724 if (isVREVMask(ShuffleMask
, VT
, 16))
7725 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
7727 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
7728 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
7729 DAG
.getConstant(Imm
, dl
, MVT::i32
));
7732 // Check for Neon shuffles that modify both input vectors in place.
7733 // If both results are used, i.e., if there are two shuffles with the same
7734 // source operands and with masks corresponding to both results of one of
7735 // these operations, DAG memoization will ensure that a single node is
7736 // used for both shuffles.
7737 unsigned WhichResult
= 0;
7738 bool isV_UNDEF
= false;
7739 if (ST
->hasNEON()) {
7740 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7741 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
7744 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
7745 .getValue(WhichResult
);
7749 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7750 // shuffles that produce a result larger than their operands with:
7751 // shuffle(concat(v1, undef), concat(v2, undef))
7753 // shuffle(concat(v1, v2), undef)
7754 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7756 // This is useful in the general case, but there are special cases where
7757 // native shuffles produce larger results: the two-result ops.
7759 // Look through the concat when lowering them:
7760 // shuffle(concat(v1, v2), undef)
7762 // concat(VZIP(v1, v2):0, :1)
7764 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
7765 SDValue SubV1
= V1
->getOperand(0);
7766 SDValue SubV2
= V1
->getOperand(1);
7767 EVT SubVT
= SubV1
.getValueType();
7769 // We expect these to have been canonicalized to -1.
7770 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
7771 return i
< (int)VT
.getVectorNumElements();
7772 }) && "Unexpected shuffle index into UNDEF operand!");
7774 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
7775 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
7778 assert((WhichResult
== 0) &&
7779 "In-place shuffle of concat can only have one result!");
7780 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
7782 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
7788 // If the shuffle is not directly supported and it has 4 elements, use
7789 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7790 unsigned NumElts
= VT
.getVectorNumElements();
7792 unsigned PFIndexes
[4];
7793 for (unsigned i
= 0; i
!= 4; ++i
) {
7794 if (ShuffleMask
[i
] < 0)
7797 PFIndexes
[i
] = ShuffleMask
[i
];
7800 // Compute the index in the perfect shuffle table.
7801 unsigned PFTableIndex
=
7802 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
7803 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7804 unsigned Cost
= (PFEntry
>> 30);
7808 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7809 else if (isLegalMVEShuffleOp(PFEntry
)) {
7810 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
7811 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
7812 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
7813 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
7814 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
7815 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7820 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7821 if (EltSize
>= 32) {
7822 // Do the expansion with floating-point types, since that is what the VFP
7823 // registers are defined to use, and since i64 is not legal.
7824 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
7825 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
7826 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
7827 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
7828 SmallVector
<SDValue
, 8> Ops
;
7829 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7830 if (ShuffleMask
[i
] < 0)
7831 Ops
.push_back(DAG
.getUNDEF(EltVT
));
7833 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
7834 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
7835 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
7838 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
7839 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7842 if (ST
->hasNEON() && (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) && isReverseMask(ShuffleMask
, VT
))
7843 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op
, DAG
);
7845 if (ST
->hasNEON() && VT
== MVT::v8i8
)
7846 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
7852 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7853 const ARMSubtarget
*ST
) {
7854 EVT VecVT
= Op
.getOperand(0).getValueType();
7857 assert(ST
->hasMVEIntegerOps() &&
7858 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7861 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7862 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
7863 unsigned LaneWidth
=
7864 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7865 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
7866 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
7867 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
7868 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
7869 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
7870 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
7873 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7874 SelectionDAG
&DAG
) const {
7875 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7876 SDValue Lane
= Op
.getOperand(2);
7877 if (!isa
<ConstantSDNode
>(Lane
))
7880 SDValue Elt
= Op
.getOperand(1);
7881 EVT EltVT
= Elt
.getValueType();
7883 if (Subtarget
->hasMVEIntegerOps() &&
7884 Op
.getValueType().getScalarSizeInBits() == 1)
7885 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
7887 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
7888 TargetLowering::TypePromoteFloat
) {
7889 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7890 // but the type system will try to do that if we don't intervene.
7891 // Reinterpret any such vector-element insertion as one with the
7892 // corresponding integer types.
7896 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
7897 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
7898 TargetLowering::TypePromoteFloat
);
7900 SDValue VecIn
= Op
.getOperand(0);
7901 EVT VecVT
= VecIn
.getValueType();
7902 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
7903 VecVT
.getVectorNumElements());
7905 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
7906 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
7907 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
7908 IVecIn
, IElt
, Lane
);
7909 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
7915 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
7916 const ARMSubtarget
*ST
) {
7917 EVT VecVT
= Op
.getOperand(0).getValueType();
7920 assert(ST
->hasMVEIntegerOps() &&
7921 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7924 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
7925 unsigned Lane
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
7926 unsigned LaneWidth
=
7927 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
7928 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
7929 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
7933 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
7934 const ARMSubtarget
*ST
) {
7935 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7936 SDValue Lane
= Op
.getOperand(1);
7937 if (!isa
<ConstantSDNode
>(Lane
))
7940 SDValue Vec
= Op
.getOperand(0);
7941 EVT VT
= Vec
.getValueType();
7943 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7944 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
7946 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
7948 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
7954 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
7955 const ARMSubtarget
*ST
) {
7956 SDValue V1
= Op
.getOperand(0);
7957 SDValue V2
= Op
.getOperand(1);
7959 EVT VT
= Op
.getValueType();
7960 EVT Op1VT
= V1
.getValueType();
7961 EVT Op2VT
= V2
.getValueType();
7962 unsigned NumElts
= VT
.getVectorNumElements();
7964 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
7965 assert(VT
.getScalarSizeInBits() == 1 &&
7966 "Unexpected custom CONCAT_VECTORS lowering");
7967 assert(ST
->hasMVEIntegerOps() &&
7968 "CONCAT_VECTORS lowering only supported for MVE");
7970 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
7971 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
7973 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7974 // promoted to v8i16, etc.
7976 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
7978 // Extract the vector elements from Op1 and Op2 one by one and truncate them
7979 // to be the right size for the destination. For example, if Op1 is v4i1 then
7980 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
7981 // which when promoted is v8i16. That means each i32 element from Op1 needs
7982 // truncating to i16 and inserting in the result.
7983 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
7984 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
7985 auto ExractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
7986 EVT NewVT
= NewV
.getValueType();
7987 EVT ConcatVT
= ConVec
.getValueType();
7988 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
7989 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
7990 DAG
.getIntPtrConstant(i
, dl
));
7991 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
7992 DAG
.getConstant(j
, dl
, MVT::i32
));
7997 ConVec
= ExractInto(NewV1
, ConVec
, j
);
7998 ConVec
= ExractInto(NewV2
, ConVec
, j
);
8000 // Now return the result of comparing the subvector with zero,
8001 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8002 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
8003 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8006 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
8007 const ARMSubtarget
*ST
) {
8008 EVT VT
= Op
->getValueType(0);
8009 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
8010 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
8012 // The only time a CONCAT_VECTORS operation can have legal types is when
8013 // two 64-bit vectors are concatenated to a 128-bit vector.
8014 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
8015 "unexpected CONCAT_VECTORS");
8017 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
8018 SDValue Op0
= Op
.getOperand(0);
8019 SDValue Op1
= Op
.getOperand(1);
8021 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8022 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
8023 DAG
.getIntPtrConstant(0, dl
));
8025 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
8026 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
8027 DAG
.getIntPtrConstant(1, dl
));
8028 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
8031 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
8032 const ARMSubtarget
*ST
) {
8033 SDValue V1
= Op
.getOperand(0);
8034 SDValue V2
= Op
.getOperand(1);
8036 EVT VT
= Op
.getValueType();
8037 EVT Op1VT
= V1
.getValueType();
8038 unsigned NumElts
= VT
.getVectorNumElements();
8039 unsigned Index
= cast
<ConstantSDNode
>(V2
)->getZExtValue();
8041 assert(VT
.getScalarSizeInBits() == 1 &&
8042 "Unexpected custom EXTRACT_SUBVECTOR lowering");
8043 assert(ST
->hasMVEIntegerOps() &&
8044 "EXTRACT_SUBVECTOR lowering only supported for MVE");
8046 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
8048 // We now have Op1 promoted to a vector of integers, where v8i1 gets
8049 // promoted to v8i16, etc.
8051 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
8053 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
8054 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
8055 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
8056 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
8057 DAG
.getIntPtrConstant(i
, dl
));
8058 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
8059 DAG
.getConstant(j
, dl
, MVT::i32
));
8062 // Now return the result of comparing the subvector with zero,
8063 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8064 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
8065 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8068 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8069 /// element has been zero/sign-extended, depending on the isSigned parameter,
8070 /// from an integer type half its size.
8071 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
8073 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8074 EVT VT
= N
->getValueType(0);
8075 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
8076 SDNode
*BVN
= N
->getOperand(0).getNode();
8077 if (BVN
->getValueType(0) != MVT::v4i32
||
8078 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
8080 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8081 unsigned HiElt
= 1 - LoElt
;
8082 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
8083 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
8084 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
8085 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
8086 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
8089 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
8090 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
8093 if (Hi0
->isNullValue() && Hi1
->isNullValue())
8099 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
8102 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
8103 SDNode
*Elt
= N
->getOperand(i
).getNode();
8104 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
8105 unsigned EltSize
= VT
.getScalarSizeInBits();
8106 unsigned HalfSize
= EltSize
/ 2;
8108 if (!isIntN(HalfSize
, C
->getSExtValue()))
8111 if (!isUIntN(HalfSize
, C
->getZExtValue()))
8122 /// isSignExtended - Check if a node is a vector value that is sign-extended
8123 /// or a constant BUILD_VECTOR with sign-extended elements.
8124 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8125 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
8127 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
8132 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8133 /// or a constant BUILD_VECTOR with zero-extended elements.
8134 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
8135 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| ISD::isZEXTLoad(N
))
8137 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
8142 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
8143 if (OrigVT
.getSizeInBits() >= 64)
8146 assert(OrigVT
.isSimple() && "Expecting a simple value type");
8148 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
8149 switch (OrigSimpleTy
) {
8150 default: llvm_unreachable("Unexpected Vector Type");
8159 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8160 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8161 /// We insert the required extension here to get the vector to fill a D register.
8162 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
8165 unsigned ExtOpcode
) {
8166 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8167 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8168 // 64-bits we need to insert a new extension so that it will be 64-bits.
8169 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
8170 if (OrigTy
.getSizeInBits() >= 64)
8173 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8174 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
8176 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
8179 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8180 /// does not do any sign/zero extension. If the original vector is less
8181 /// than 64 bits, an appropriate extension will be added after the load to
8182 /// reach a total size of 64 bits. We have to add the extension separately
8183 /// because ARM does not have a sign/zero extending load for vectors.
8184 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
8185 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
8187 // The load already has the right type.
8188 if (ExtendedTy
== LD
->getMemoryVT())
8189 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
8190 LD
->getBasePtr(), LD
->getPointerInfo(),
8191 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
8193 // We need to create a zextload/sextload. We cannot just create a load
8194 // followed by a zext/zext node because LowerMUL is also run during normal
8195 // operation legalization where we can't create illegal types.
8196 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
8197 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
8198 LD
->getMemoryVT(), LD
->getAlignment(),
8199 LD
->getMemOperand()->getFlags());
8202 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8203 /// extending load, or BUILD_VECTOR with extended elements, return the
8204 /// unextended value. The unextended vector should be 64 bits so that it can
8205 /// be used as an operand to a VMULL instruction. If the original vector size
8206 /// before extension is less than 64 bits we add a an extension to resize
8207 /// the vector to 64 bits.
8208 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
8209 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
8210 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
8211 N
->getOperand(0)->getValueType(0),
8215 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
8216 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
8217 "Expected extending load");
8219 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
8220 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
8221 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
8223 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
8224 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
8229 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8230 // have been legalized as a BITCAST from v4i32.
8231 if (N
->getOpcode() == ISD::BITCAST
) {
8232 SDNode
*BVN
= N
->getOperand(0).getNode();
8233 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
8234 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
8235 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
8236 return DAG
.getBuildVector(
8237 MVT::v2i32
, SDLoc(N
),
8238 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
8240 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8241 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
8242 EVT VT
= N
->getValueType(0);
8243 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
8244 unsigned NumElts
= VT
.getVectorNumElements();
8245 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
8246 SmallVector
<SDValue
, 8> Ops
;
8248 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
8249 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
8250 const APInt
&CInt
= C
->getAPIntValue();
8251 // Element types smaller than 32 bits are not legal, so use i32 elements.
8252 // The values are implicitly truncated so sext vs. zext doesn't matter.
8253 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
8255 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
8258 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
8259 unsigned Opcode
= N
->getOpcode();
8260 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8261 SDNode
*N0
= N
->getOperand(0).getNode();
8262 SDNode
*N1
= N
->getOperand(1).getNode();
8263 return N0
->hasOneUse() && N1
->hasOneUse() &&
8264 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
8269 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
8270 unsigned Opcode
= N
->getOpcode();
8271 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
8272 SDNode
*N0
= N
->getOperand(0).getNode();
8273 SDNode
*N1
= N
->getOperand(1).getNode();
8274 return N0
->hasOneUse() && N1
->hasOneUse() &&
8275 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
8280 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
8281 // Multiplications are only custom-lowered for 128-bit vectors so that
8282 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8283 EVT VT
= Op
.getValueType();
8284 assert(VT
.is128BitVector() && VT
.isInteger() &&
8285 "unexpected type for custom-lowering ISD::MUL");
8286 SDNode
*N0
= Op
.getOperand(0).getNode();
8287 SDNode
*N1
= Op
.getOperand(1).getNode();
8288 unsigned NewOpc
= 0;
8290 bool isN0SExt
= isSignExtended(N0
, DAG
);
8291 bool isN1SExt
= isSignExtended(N1
, DAG
);
8292 if (isN0SExt
&& isN1SExt
)
8293 NewOpc
= ARMISD::VMULLs
;
8295 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
8296 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
8297 if (isN0ZExt
&& isN1ZExt
)
8298 NewOpc
= ARMISD::VMULLu
;
8299 else if (isN1SExt
|| isN1ZExt
) {
8300 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8301 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8302 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
8303 NewOpc
= ARMISD::VMULLs
;
8305 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
8306 NewOpc
= ARMISD::VMULLu
;
8308 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
8310 NewOpc
= ARMISD::VMULLu
;
8316 if (VT
== MVT::v2i64
)
8317 // Fall through to expand this. It is not legal.
8320 // Other vector multiplications are legal.
8325 // Legalize to a VMULL instruction.
8328 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
8330 Op0
= SkipExtensionForVMULL(N0
, DAG
);
8331 assert(Op0
.getValueType().is64BitVector() &&
8332 Op1
.getValueType().is64BitVector() &&
8333 "unexpected types for extended operands to VMULL");
8334 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
8337 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8338 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8345 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
8346 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
8347 EVT Op1VT
= Op1
.getValueType();
8348 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
8349 DAG
.getNode(NewOpc
, DL
, VT
,
8350 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
8351 DAG
.getNode(NewOpc
, DL
, VT
,
8352 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
8355 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
8356 SelectionDAG
&DAG
) {
8357 // TODO: Should this propagate fast-math-flags?
8360 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8361 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8362 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
8363 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
8364 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
8365 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
8366 // Get reciprocal estimate.
8367 // float4 recip = vrecpeq_f32(yf);
8368 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8369 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8371 // Because char has a smaller range than uchar, we can actually get away
8372 // without any newton steps. This requires that we use a weird bias
8373 // of 0xb000, however (again, this has been exhaustively tested).
8374 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8375 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
8376 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
8377 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
8378 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
8379 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
8380 // Convert back to short.
8381 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
8382 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
8386 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
8387 SelectionDAG
&DAG
) {
8388 // TODO: Should this propagate fast-math-flags?
8391 // Convert to float.
8392 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8393 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8394 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
8395 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
8396 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8397 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8399 // Use reciprocal estimate and one refinement step.
8400 // float4 recip = vrecpeq_f32(yf);
8401 // recip *= vrecpsq_f32(yf, recip);
8402 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8403 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8405 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8406 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8408 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8409 // Because short has a smaller range than ushort, we can actually get away
8410 // with only a single newton step. This requires that we use a weird bias
8411 // of 89, however (again, this has been exhaustively tested).
8412 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8413 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8414 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8415 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
8416 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8417 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8418 // Convert back to integer and return.
8419 // return vmovn_s32(vcvt_s32_f32(result));
8420 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8421 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8425 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
8426 const ARMSubtarget
*ST
) {
8427 EVT VT
= Op
.getValueType();
8428 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8429 "unexpected type for custom-lowering ISD::SDIV");
8432 SDValue N0
= Op
.getOperand(0);
8433 SDValue N1
= Op
.getOperand(1);
8436 if (VT
== MVT::v8i8
) {
8437 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
8438 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
8440 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8441 DAG
.getIntPtrConstant(4, dl
));
8442 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8443 DAG
.getIntPtrConstant(4, dl
));
8444 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8445 DAG
.getIntPtrConstant(0, dl
));
8446 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8447 DAG
.getIntPtrConstant(0, dl
));
8449 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
8450 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
8452 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8453 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8455 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
8458 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
8461 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
8462 const ARMSubtarget
*ST
) {
8463 // TODO: Should this propagate fast-math-flags?
8464 EVT VT
= Op
.getValueType();
8465 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
8466 "unexpected type for custom-lowering ISD::UDIV");
8469 SDValue N0
= Op
.getOperand(0);
8470 SDValue N1
= Op
.getOperand(1);
8473 if (VT
== MVT::v8i8
) {
8474 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
8475 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
8477 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8478 DAG
.getIntPtrConstant(4, dl
));
8479 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8480 DAG
.getIntPtrConstant(4, dl
));
8481 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
8482 DAG
.getIntPtrConstant(0, dl
));
8483 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
8484 DAG
.getIntPtrConstant(0, dl
));
8486 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
8487 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
8489 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
8490 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
8492 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
8493 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
8499 // v4i16 sdiv ... Convert to float.
8500 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8501 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8502 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
8503 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
8504 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
8505 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
8507 // Use reciprocal estimate and two refinement steps.
8508 // float4 recip = vrecpeq_f32(yf);
8509 // recip *= vrecpsq_f32(yf, recip);
8510 // recip *= vrecpsq_f32(yf, recip);
8511 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8512 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
8514 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8515 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8517 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8518 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
8519 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
8521 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
8522 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8523 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8524 // and that it will never cause us to return an answer too large).
8525 // float4 result = as_float4(as_int4(xf*recip) + 2);
8526 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
8527 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
8528 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
8529 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
8530 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
8531 // Convert back to integer and return.
8532 // return vmovn_u32(vcvt_s32_f32(result));
8533 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
8534 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
8538 static SDValue
LowerADDSUBCARRY(SDValue Op
, SelectionDAG
&DAG
) {
8539 SDNode
*N
= Op
.getNode();
8540 EVT VT
= N
->getValueType(0);
8541 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
8543 SDValue Carry
= Op
.getOperand(2);
8548 if (Op
.getOpcode() == ISD::ADDCARRY
) {
8549 // This converts the boolean value carry into the carry flag.
8550 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8552 // Do the addition proper using the carry flag we wanted.
8553 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
8554 Op
.getOperand(1), Carry
);
8556 // Now convert the carry flag into a boolean value.
8557 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8559 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8560 // have to invert the carry first.
8561 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8562 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8563 // This converts the boolean value carry into the carry flag.
8564 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
8566 // Do the subtraction proper using the carry flag we wanted.
8567 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
8568 Op
.getOperand(1), Carry
);
8570 // Now convert the carry flag into a boolean value.
8571 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
8572 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8573 // by ISD::SUBCARRY, so compute 1 - C.
8574 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
8575 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
8578 // Return both values.
8579 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
8582 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
8583 assert(Subtarget
->isTargetDarwin());
8585 // For iOS, we want to call an alternative entry point: __sincos_stret,
8586 // return values are passed via sret.
8588 SDValue Arg
= Op
.getOperand(0);
8589 EVT ArgVT
= Arg
.getValueType();
8590 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
8591 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
8593 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8594 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8596 // Pair of floats / doubles used to pass the result.
8597 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
8598 auto &DL
= DAG
.getDataLayout();
8601 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
8603 if (ShouldUseSRet
) {
8604 // Create stack object for sret.
8605 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
8606 const unsigned StackAlign
= DL
.getPrefTypeAlignment(RetTy
);
8607 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
8608 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
8612 Entry
.Ty
= RetTy
->getPointerTo();
8613 Entry
.IsSExt
= false;
8614 Entry
.IsZExt
= false;
8615 Entry
.IsSRet
= true;
8616 Args
.push_back(Entry
);
8617 RetTy
= Type::getVoidTy(*DAG
.getContext());
8623 Entry
.IsSExt
= false;
8624 Entry
.IsZExt
= false;
8625 Args
.push_back(Entry
);
8628 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
8629 const char *LibcallName
= getLibcallName(LC
);
8630 CallingConv::ID CC
= getLibcallCallingConv(LC
);
8631 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
8633 TargetLowering::CallLoweringInfo
CLI(DAG
);
8635 .setChain(DAG
.getEntryNode())
8636 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
8637 .setDiscardResult(ShouldUseSRet
);
8638 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
8641 return CallResult
.first
;
8644 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
8646 // Address of cos field.
8647 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
8648 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
8650 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
8652 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
8653 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
8654 LoadSin
.getValue(0), LoadCos
.getValue(0));
8657 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
8659 SDValue
&Chain
) const {
8660 EVT VT
= Op
.getValueType();
8661 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
8662 "unexpected type for custom lowering DIV");
8665 const auto &DL
= DAG
.getDataLayout();
8666 const auto &TLI
= DAG
.getTargetLoweringInfo();
8668 const char *Name
= nullptr;
8670 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
8672 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
8674 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
8676 ARMTargetLowering::ArgListTy Args
;
8678 for (auto AI
: {1, 0}) {
8680 Arg
.Node
= Op
.getOperand(AI
);
8681 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
8682 Args
.push_back(Arg
);
8685 CallLoweringInfo
CLI(DAG
);
8688 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
8689 ES
, std::move(Args
));
8691 return LowerCallTo(CLI
).first
;
8694 // This is a code size optimisation: return the original SDIV node to
8695 // DAGCombiner when we don't want to expand SDIV into a sequence of
8696 // instructions, and an empty node otherwise which will cause the
8697 // SDIV to be expanded in DAGCombine.
8699 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
8701 SmallVectorImpl
<SDNode
*> &Created
) const {
8702 // TODO: Support SREM
8703 if (N
->getOpcode() != ISD::SDIV
)
8706 const auto &ST
= static_cast<const ARMSubtarget
&>(DAG
.getSubtarget());
8707 const bool MinSize
= ST
.hasMinSize();
8708 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
8709 : ST
.hasDivideInARMMode();
8711 // Don't touch vector types; rewriting this may lead to scalarizing
8713 if (N
->getOperand(0).getValueType().isVector())
8716 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8717 // hwdiv support for this to be really profitable.
8718 if (!(MinSize
&& HasDivide
))
8721 // ARM mode is a bit simpler than Thumb: we can handle large power
8722 // of 2 immediates with 1 mov instruction; no further checks required,
8723 // just return the sdiv node.
8725 return SDValue(N
, 0);
8727 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8728 // and thus lose the code size benefits of a MOVS that requires only 2.
8729 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8730 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8731 if (Divisor
.sgt(128))
8734 return SDValue(N
, 0);
8737 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
8738 bool Signed
) const {
8739 assert(Op
.getValueType() == MVT::i32
&&
8740 "unexpected type for custom lowering DIV");
8743 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
8744 DAG
.getEntryNode(), Op
.getOperand(1));
8746 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8749 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
8751 SDValue Op
= N
->getOperand(1);
8752 if (N
->getValueType(0) == MVT::i32
)
8753 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
8754 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8755 DAG
.getConstant(0, DL
, MVT::i32
));
8756 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, Op
,
8757 DAG
.getConstant(1, DL
, MVT::i32
));
8758 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
8759 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
8762 void ARMTargetLowering::ExpandDIV_Windows(
8763 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
8764 SmallVectorImpl
<SDValue
> &Results
) const {
8765 const auto &DL
= DAG
.getDataLayout();
8766 const auto &TLI
= DAG
.getTargetLoweringInfo();
8768 assert(Op
.getValueType() == MVT::i64
&&
8769 "unexpected type for custom lowering DIV");
8772 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
8774 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
8776 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
8777 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
8778 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
8779 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
8781 Results
.push_back(Lower
);
8782 Results
.push_back(Upper
);
8785 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
8786 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getOrdering()))
8787 // Acquire/Release load/store is not legal for targets without a dmb or
8788 // equivalent available.
8791 // Monotonic load/store is legal for all targets.
8795 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
8796 SmallVectorImpl
<SDValue
> &Results
,
8798 const ARMSubtarget
*Subtarget
) {
8800 // Under Power Management extensions, the cycle-count is:
8801 // mrc p15, #0, <Rt>, c9, c13, #0
8802 SDValue Ops
[] = { N
->getOperand(0), // Chain
8803 DAG
.getConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
8804 DAG
.getConstant(15, DL
, MVT::i32
),
8805 DAG
.getConstant(0, DL
, MVT::i32
),
8806 DAG
.getConstant(9, DL
, MVT::i32
),
8807 DAG
.getConstant(13, DL
, MVT::i32
),
8808 DAG
.getConstant(0, DL
, MVT::i32
)
8811 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
8812 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
8813 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
8814 DAG
.getConstant(0, DL
, MVT::i32
)));
8815 Results
.push_back(Cycles32
.getValue(1));
8818 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
8819 SDLoc
dl(V
.getNode());
8820 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i32
);
8821 SDValue VHi
= DAG
.getAnyExtOrTrunc(
8822 DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, V
, DAG
.getConstant(32, dl
, MVT::i32
)),
8824 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8826 std::swap (VLo
, VHi
);
8828 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
8829 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
8830 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
8831 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
8833 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
8836 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
8837 SmallVectorImpl
<SDValue
> & Results
,
8838 SelectionDAG
&DAG
) {
8839 assert(N
->getValueType(0) == MVT::i64
&&
8840 "AtomicCmpSwap on types less than 64 should be legal");
8841 SDValue Ops
[] = {N
->getOperand(1),
8842 createGPRPairNode(DAG
, N
->getOperand(2)),
8843 createGPRPairNode(DAG
, N
->getOperand(3)),
8845 SDNode
*CmpSwap
= DAG
.getMachineNode(
8846 ARM::CMP_SWAP_64
, SDLoc(N
),
8847 DAG
.getVTList(MVT::Untyped
, MVT::i32
, MVT::Other
), Ops
);
8849 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
8850 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
8852 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
8855 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
8856 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8858 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
8859 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0)));
8860 Results
.push_back(SDValue(CmpSwap
, 2));
8863 static SDValue
LowerFPOWI(SDValue Op
, const ARMSubtarget
&Subtarget
,
8864 SelectionDAG
&DAG
) {
8865 const auto &TLI
= DAG
.getTargetLoweringInfo();
8867 assert(Subtarget
.getTargetTriple().isOSMSVCRT() &&
8868 "Custom lowering is MSVCRT specific!");
8871 SDValue Val
= Op
.getOperand(0);
8872 MVT Ty
= Val
->getSimpleValueType(0);
8873 SDValue Exponent
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, Ty
, Op
.getOperand(1));
8874 SDValue Callee
= DAG
.getExternalSymbol(Ty
== MVT::f32
? "powf" : "pow",
8875 TLI
.getPointerTy(DAG
.getDataLayout()));
8877 TargetLowering::ArgListTy Args
;
8878 TargetLowering::ArgListEntry Entry
;
8881 Entry
.Ty
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8882 Entry
.IsZExt
= true;
8883 Args
.push_back(Entry
);
8885 Entry
.Node
= Exponent
;
8886 Entry
.Ty
= Exponent
.getValueType().getTypeForEVT(*DAG
.getContext());
8887 Entry
.IsZExt
= true;
8888 Args
.push_back(Entry
);
8890 Type
*LCRTy
= Val
.getValueType().getTypeForEVT(*DAG
.getContext());
8892 // In the in-chain to the call is the entry node If we are emitting a
8893 // tailcall, the chain will be mutated if the node has a non-entry input
8895 SDValue InChain
= DAG
.getEntryNode();
8896 SDValue TCChain
= InChain
;
8898 const Function
&F
= DAG
.getMachineFunction().getFunction();
8899 bool IsTC
= TLI
.isInTailCallPosition(DAG
, Op
.getNode(), TCChain
) &&
8900 F
.getReturnType() == LCRTy
;
8904 TargetLowering::CallLoweringInfo
CLI(DAG
);
8907 .setCallee(CallingConv::ARM_AAPCS_VFP
, LCRTy
, Callee
, std::move(Args
))
8909 std::pair
<SDValue
, SDValue
> CI
= TLI
.LowerCallTo(CLI
);
8911 // Return the chain (the DAG root) if it is a tail call
8912 return !CI
.second
.getNode() ? DAG
.getRoot() : CI
.first
;
8915 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
8916 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
8917 switch (Op
.getOpcode()) {
8918 default: llvm_unreachable("Don't know how to custom lower this!");
8919 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
8920 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
8921 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
8922 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
8923 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
8924 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
8925 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
8926 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
8927 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
8928 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
8929 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
8930 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
8931 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
8932 case ISD::SINT_TO_FP
:
8933 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
8934 case ISD::FP_TO_SINT
:
8935 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
8936 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
8937 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
8938 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
8939 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
8940 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
8941 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
8942 case ISD::INTRINSIC_VOID
: return LowerINTRINSIC_VOID(Op
, DAG
, Subtarget
);
8943 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
8945 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
8948 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
8949 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
8950 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
8951 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
8952 case ISD::SRL_PARTS
:
8953 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
8955 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
8956 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
8957 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
8958 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
8959 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
8960 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
8961 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
8962 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
8963 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
8964 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
8965 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
8966 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
8967 case ISD::MUL
: return LowerMUL(Op
, DAG
);
8969 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8970 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
8971 return LowerSDIV(Op
, DAG
, Subtarget
);
8973 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
8974 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
8975 return LowerUDIV(Op
, DAG
, Subtarget
);
8977 case ISD::SUBCARRY
: return LowerADDSUBCARRY(Op
, DAG
);
8980 return LowerSignedALUO(Op
, DAG
);
8983 return LowerUnsignedALUO(Op
, DAG
);
8984 case ISD::ATOMIC_LOAD
:
8985 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
8986 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
8988 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
8989 case ISD::DYNAMIC_STACKALLOC
:
8990 if (Subtarget
->isTargetWindows())
8991 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
8992 llvm_unreachable("Don't know how to custom lower this!");
8993 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
8994 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
8995 case ISD::FPOWI
: return LowerFPOWI(Op
, *Subtarget
, DAG
);
8996 case ARMISD::WIN__DBZCHK
: return SDValue();
9000 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
9001 SelectionDAG
&DAG
) {
9002 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
9004 if (IntNo
== Intrinsic::arm_smlald
)
9005 Opc
= ARMISD::SMLALD
;
9006 else if (IntNo
== Intrinsic::arm_smlaldx
)
9007 Opc
= ARMISD::SMLALDX
;
9008 else if (IntNo
== Intrinsic::arm_smlsld
)
9009 Opc
= ARMISD::SMLSLD
;
9010 else if (IntNo
== Intrinsic::arm_smlsldx
)
9011 Opc
= ARMISD::SMLSLDX
;
9016 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9018 DAG
.getConstant(0, dl
, MVT::i32
));
9019 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
9021 DAG
.getConstant(1, dl
, MVT::i32
));
9023 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
9024 DAG
.getVTList(MVT::i32
, MVT::i32
),
9025 N
->getOperand(1), N
->getOperand(2),
9027 Results
.push_back(LongMul
.getValue(0));
9028 Results
.push_back(LongMul
.getValue(1));
9031 /// ReplaceNodeResults - Replace the results of node with an illegal result
9032 /// type with new values built out of custom code.
9033 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
9034 SmallVectorImpl
<SDValue
> &Results
,
9035 SelectionDAG
&DAG
) const {
9037 switch (N
->getOpcode()) {
9039 llvm_unreachable("Don't know how to custom expand this!");
9040 case ISD::READ_REGISTER
:
9041 ExpandREAD_REGISTER(N
, Results
, DAG
);
9044 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
9049 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
9053 Res
= LowerREM(N
, DAG
);
9057 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
9058 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
9059 Results
.push_back(Res
.getValue(0));
9060 Results
.push_back(Res
.getValue(1));
9062 case ISD::READCYCLECOUNTER
:
9063 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
9067 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
9068 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
9070 case ISD::ATOMIC_CMP_SWAP
:
9071 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
9073 case ISD::INTRINSIC_WO_CHAIN
:
9074 return ReplaceLongIntrinsic(N
, Results
, DAG
);
9076 lowerABS(N
, Results
, DAG
);
9081 Results
.push_back(Res
);
9084 //===----------------------------------------------------------------------===//
9085 // ARM Scheduler Hooks
9086 //===----------------------------------------------------------------------===//
9088 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9089 /// registers the function context.
9090 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
9091 MachineBasicBlock
*MBB
,
9092 MachineBasicBlock
*DispatchBB
,
9094 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
9095 "ROPI/RWPI not currently supported with SjLj");
9096 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9097 DebugLoc dl
= MI
.getDebugLoc();
9098 MachineFunction
*MF
= MBB
->getParent();
9099 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9100 MachineConstantPool
*MCP
= MF
->getConstantPool();
9101 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
9102 const Function
&F
= MF
->getFunction();
9104 bool isThumb
= Subtarget
->isThumb();
9105 bool isThumb2
= Subtarget
->isThumb2();
9107 unsigned PCLabelId
= AFI
->createPICLabelUId();
9108 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
9109 ARMConstantPoolValue
*CPV
=
9110 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
9111 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, 4);
9113 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
9114 : &ARM::GPRRegClass
;
9116 // Grab constant pool and fixed stack memory operands.
9117 MachineMemOperand
*CPMMO
=
9118 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9119 MachineMemOperand::MOLoad
, 4, 4);
9121 MachineMemOperand
*FIMMOSt
=
9122 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
9123 MachineMemOperand::MOStore
, 4, 4);
9125 // Load the address of the dispatch MBB into the jump buffer.
9127 // Incoming value: jbuf
9128 // ldr.n r5, LCPI1_1
9131 // str r5, [$jbuf, #+4] ; &jbuf[1]
9132 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9133 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
9134 .addConstantPoolIndex(CPI
)
9135 .addMemOperand(CPMMO
)
9136 .add(predOps(ARMCC::AL
));
9137 // Set the low bit because of thumb mode.
9138 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9139 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
9140 .addReg(NewVReg1
, RegState::Kill
)
9142 .add(predOps(ARMCC::AL
))
9144 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9145 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
9146 .addReg(NewVReg2
, RegState::Kill
)
9148 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
9149 .addReg(NewVReg3
, RegState::Kill
)
9151 .addImm(36) // &jbuf[1] :: pc
9152 .addMemOperand(FIMMOSt
)
9153 .add(predOps(ARMCC::AL
));
9154 } else if (isThumb
) {
9155 // Incoming value: jbuf
9156 // ldr.n r1, LCPI1_4
9160 // add r2, $jbuf, #+4 ; &jbuf[1]
9162 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9163 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
9164 .addConstantPoolIndex(CPI
)
9165 .addMemOperand(CPMMO
)
9166 .add(predOps(ARMCC::AL
));
9167 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9168 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
9169 .addReg(NewVReg1
, RegState::Kill
)
9171 // Set the low bit because of thumb mode.
9172 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9173 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
9174 .addReg(ARM::CPSR
, RegState::Define
)
9176 .add(predOps(ARMCC::AL
));
9177 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9178 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
9179 .addReg(ARM::CPSR
, RegState::Define
)
9180 .addReg(NewVReg2
, RegState::Kill
)
9181 .addReg(NewVReg3
, RegState::Kill
)
9182 .add(predOps(ARMCC::AL
));
9183 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9184 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
9186 .addImm(36); // &jbuf[1] :: pc
9187 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
9188 .addReg(NewVReg4
, RegState::Kill
)
9189 .addReg(NewVReg5
, RegState::Kill
)
9191 .addMemOperand(FIMMOSt
)
9192 .add(predOps(ARMCC::AL
));
9194 // Incoming value: jbuf
9197 // str r1, [$jbuf, #+4] ; &jbuf[1]
9198 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9199 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9200 .addConstantPoolIndex(CPI
)
9202 .addMemOperand(CPMMO
)
9203 .add(predOps(ARMCC::AL
));
9204 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9205 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
9206 .addReg(NewVReg1
, RegState::Kill
)
9208 .add(predOps(ARMCC::AL
));
9209 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
9210 .addReg(NewVReg2
, RegState::Kill
)
9212 .addImm(36) // &jbuf[1] :: pc
9213 .addMemOperand(FIMMOSt
)
9214 .add(predOps(ARMCC::AL
));
9218 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
9219 MachineBasicBlock
*MBB
) const {
9220 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9221 DebugLoc dl
= MI
.getDebugLoc();
9222 MachineFunction
*MF
= MBB
->getParent();
9223 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
9224 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
9225 int FI
= MFI
.getFunctionContextIndex();
9227 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
9228 : &ARM::GPRnopcRegClass
;
9230 // Get a mapping of the call site numbers to all of the landing pads they're
9232 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
9233 unsigned MaxCSNum
= 0;
9234 for (MachineFunction::iterator BB
= MF
->begin(), E
= MF
->end(); BB
!= E
;
9236 if (!BB
->isEHPad()) continue;
9238 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9240 for (MachineBasicBlock::iterator
9241 II
= BB
->begin(), IE
= BB
->end(); II
!= IE
; ++II
) {
9242 if (!II
->isEHLabel()) continue;
9244 MCSymbol
*Sym
= II
->getOperand(0).getMCSymbol();
9245 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
9247 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
9248 for (SmallVectorImpl
<unsigned>::iterator
9249 CSI
= CallSiteIdxs
.begin(), CSE
= CallSiteIdxs
.end();
9250 CSI
!= CSE
; ++CSI
) {
9251 CallSiteNumToLPad
[*CSI
].push_back(&*BB
);
9252 MaxCSNum
= std::max(MaxCSNum
, *CSI
);
9258 // Get an ordered list of the machine basic blocks for the jump table.
9259 std::vector
<MachineBasicBlock
*> LPadList
;
9260 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
9261 LPadList
.reserve(CallSiteNumToLPad
.size());
9262 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
9263 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
9264 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9265 II
= MBBList
.begin(), IE
= MBBList
.end(); II
!= IE
; ++II
) {
9266 LPadList
.push_back(*II
);
9267 InvokeBBs
.insert((*II
)->pred_begin(), (*II
)->pred_end());
9271 assert(!LPadList
.empty() &&
9272 "No landing pad destinations for the dispatch jump table!");
9274 // Create the jump table and associated information.
9275 MachineJumpTableInfo
*JTI
=
9276 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
9277 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
9279 // Create the MBBs for the dispatch code.
9281 // Shove the dispatch's address into the return slot in the function context.
9282 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
9283 DispatchBB
->setIsEHPad();
9285 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
9286 unsigned trap_opcode
;
9287 if (Subtarget
->isThumb())
9288 trap_opcode
= ARM::tTRAP
;
9290 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
9292 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
9293 DispatchBB
->addSuccessor(TrapBB
);
9295 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
9296 DispatchBB
->addSuccessor(DispContBB
);
9299 MF
->insert(MF
->end(), DispatchBB
);
9300 MF
->insert(MF
->end(), DispContBB
);
9301 MF
->insert(MF
->end(), TrapBB
);
9303 // Insert code into the entry block that creates and registers the function
9305 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
9307 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
9308 MachinePointerInfo::getFixedStack(*MF
, FI
),
9309 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, 4);
9311 MachineInstrBuilder MIB
;
9312 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
9314 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
9315 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
9317 // Add a register mask with no preserved registers. This results in all
9318 // registers being marked as clobbered. This can't work if the dispatch block
9319 // is in a Thumb1 function and is linked with ARM code which uses the FP
9320 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9321 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
9323 bool IsPositionIndependent
= isPositionIndependent();
9324 unsigned NumLPads
= LPadList
.size();
9325 if (Subtarget
->isThumb2()) {
9326 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9327 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
9330 .addMemOperand(FIMMOLd
)
9331 .add(predOps(ARMCC::AL
));
9333 if (NumLPads
< 256) {
9334 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
9336 .addImm(LPadList
.size())
9337 .add(predOps(ARMCC::AL
));
9339 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9340 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
9341 .addImm(NumLPads
& 0xFFFF)
9342 .add(predOps(ARMCC::AL
));
9344 unsigned VReg2
= VReg1
;
9345 if ((NumLPads
& 0xFFFF0000) != 0) {
9346 VReg2
= MRI
->createVirtualRegister(TRC
);
9347 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
9349 .addImm(NumLPads
>> 16)
9350 .add(predOps(ARMCC::AL
));
9353 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
9356 .add(predOps(ARMCC::AL
));
9359 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
9364 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9365 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
9366 .addJumpTableIndex(MJTI
)
9367 .add(predOps(ARMCC::AL
));
9369 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9370 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
9371 .addReg(NewVReg3
, RegState::Kill
)
9373 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9374 .add(predOps(ARMCC::AL
))
9377 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
9378 .addReg(NewVReg4
, RegState::Kill
)
9380 .addJumpTableIndex(MJTI
);
9381 } else if (Subtarget
->isThumb()) {
9382 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9383 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
9386 .addMemOperand(FIMMOLd
)
9387 .add(predOps(ARMCC::AL
));
9389 if (NumLPads
< 256) {
9390 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
9393 .add(predOps(ARMCC::AL
));
9395 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9396 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9397 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9399 // MachineConstantPool wants an explicit alignment.
9400 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9402 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9403 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9405 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9406 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
9407 .addReg(VReg1
, RegState::Define
)
9408 .addConstantPoolIndex(Idx
)
9409 .add(predOps(ARMCC::AL
));
9410 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
9413 .add(predOps(ARMCC::AL
));
9416 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
9421 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
9422 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
9423 .addReg(ARM::CPSR
, RegState::Define
)
9426 .add(predOps(ARMCC::AL
));
9428 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9429 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
9430 .addJumpTableIndex(MJTI
)
9431 .add(predOps(ARMCC::AL
));
9433 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9434 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
9435 .addReg(ARM::CPSR
, RegState::Define
)
9436 .addReg(NewVReg2
, RegState::Kill
)
9438 .add(predOps(ARMCC::AL
));
9440 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9441 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9443 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9444 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
9445 .addReg(NewVReg4
, RegState::Kill
)
9447 .addMemOperand(JTMMOLd
)
9448 .add(predOps(ARMCC::AL
));
9450 unsigned NewVReg6
= NewVReg5
;
9451 if (IsPositionIndependent
) {
9452 NewVReg6
= MRI
->createVirtualRegister(TRC
);
9453 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
9454 .addReg(ARM::CPSR
, RegState::Define
)
9455 .addReg(NewVReg5
, RegState::Kill
)
9457 .add(predOps(ARMCC::AL
));
9460 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
9461 .addReg(NewVReg6
, RegState::Kill
)
9462 .addJumpTableIndex(MJTI
);
9464 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
9465 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
9468 .addMemOperand(FIMMOLd
)
9469 .add(predOps(ARMCC::AL
));
9471 if (NumLPads
< 256) {
9472 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
9475 .add(predOps(ARMCC::AL
));
9476 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
9477 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9478 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
9479 .addImm(NumLPads
& 0xFFFF)
9480 .add(predOps(ARMCC::AL
));
9482 unsigned VReg2
= VReg1
;
9483 if ((NumLPads
& 0xFFFF0000) != 0) {
9484 VReg2
= MRI
->createVirtualRegister(TRC
);
9485 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
9487 .addImm(NumLPads
>> 16)
9488 .add(predOps(ARMCC::AL
));
9491 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9494 .add(predOps(ARMCC::AL
));
9496 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9497 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9498 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
9500 // MachineConstantPool wants an explicit alignment.
9501 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9503 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9504 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9506 Register VReg1
= MRI
->createVirtualRegister(TRC
);
9507 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
9508 .addReg(VReg1
, RegState::Define
)
9509 .addConstantPoolIndex(Idx
)
9511 .add(predOps(ARMCC::AL
));
9512 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
9514 .addReg(VReg1
, RegState::Kill
)
9515 .add(predOps(ARMCC::AL
));
9518 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
9523 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
9524 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
9526 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
9527 .add(predOps(ARMCC::AL
))
9529 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
9530 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
9531 .addJumpTableIndex(MJTI
)
9532 .add(predOps(ARMCC::AL
));
9534 MachineMemOperand
*JTMMOLd
= MF
->getMachineMemOperand(
9535 MachinePointerInfo::getJumpTable(*MF
), MachineMemOperand::MOLoad
, 4, 4);
9536 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
9537 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
9538 .addReg(NewVReg3
, RegState::Kill
)
9541 .addMemOperand(JTMMOLd
)
9542 .add(predOps(ARMCC::AL
));
9544 if (IsPositionIndependent
) {
9545 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
9546 .addReg(NewVReg5
, RegState::Kill
)
9548 .addJumpTableIndex(MJTI
);
9550 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
9551 .addReg(NewVReg5
, RegState::Kill
)
9552 .addJumpTableIndex(MJTI
);
9556 // Add the jump table entries as successors to the MBB.
9557 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
9558 for (std::vector
<MachineBasicBlock
*>::iterator
9559 I
= LPadList
.begin(), E
= LPadList
.end(); I
!= E
; ++I
) {
9560 MachineBasicBlock
*CurMBB
= *I
;
9561 if (SeenMBBs
.insert(CurMBB
).second
)
9562 DispContBB
->addSuccessor(CurMBB
);
9565 // N.B. the order the invoke BBs are processed in doesn't matter here.
9566 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
9567 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
9568 for (MachineBasicBlock
*BB
: InvokeBBs
) {
9570 // Remove the landing pad successor from the invoke block and replace it
9571 // with the new dispatch block.
9572 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
9574 while (!Successors
.empty()) {
9575 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
9576 if (SMBB
->isEHPad()) {
9577 BB
->removeSuccessor(SMBB
);
9578 MBBLPads
.push_back(SMBB
);
9582 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
9583 BB
->normalizeSuccProbs();
9585 // Find the invoke call and mark all of the callee-saved registers as
9586 // 'implicit defined' so that they're spilled. This prevents code from
9587 // moving instructions to before the EH block, where they will never be
9589 for (MachineBasicBlock::reverse_iterator
9590 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
9591 if (!II
->isCall()) continue;
9593 DenseMap
<unsigned, bool> DefRegs
;
9594 for (MachineInstr::mop_iterator
9595 OI
= II
->operands_begin(), OE
= II
->operands_end();
9597 if (!OI
->isReg()) continue;
9598 DefRegs
[OI
->getReg()] = true;
9601 MachineInstrBuilder
MIB(*MF
, &*II
);
9603 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
9604 unsigned Reg
= SavedRegs
[i
];
9605 if (Subtarget
->isThumb2() &&
9606 !ARM::tGPRRegClass
.contains(Reg
) &&
9607 !ARM::hGPRRegClass
.contains(Reg
))
9609 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
9611 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
9614 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
9621 // Mark all former landing pads as non-landing pads. The dispatch is the only
9623 for (SmallVectorImpl
<MachineBasicBlock
*>::iterator
9624 I
= MBBLPads
.begin(), E
= MBBLPads
.end(); I
!= E
; ++I
)
9625 (*I
)->setIsEHPad(false);
9627 // The instruction is gone now.
9628 MI
.eraseFromParent();
9632 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
9633 for (MachineBasicBlock::succ_iterator I
= MBB
->succ_begin(),
9634 E
= MBB
->succ_end(); I
!= E
; ++I
)
9637 llvm_unreachable("Expecting a BB with two successors!");
9640 /// Return the load opcode for a given load size. If load size >= 8,
9641 /// neon opcode will be returned.
9642 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
9644 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
9645 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
9647 return LdSize
== 4 ? ARM::tLDRi
9648 : LdSize
== 2 ? ARM::tLDRHi
9649 : LdSize
== 1 ? ARM::tLDRBi
: 0;
9651 return LdSize
== 4 ? ARM::t2LDR_POST
9652 : LdSize
== 2 ? ARM::t2LDRH_POST
9653 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
9654 return LdSize
== 4 ? ARM::LDR_POST_IMM
9655 : LdSize
== 2 ? ARM::LDRH_POST
9656 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
9659 /// Return the store opcode for a given store size. If store size >= 8,
9660 /// neon opcode will be returned.
9661 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
9663 return StSize
== 16 ? ARM::VST1q32wb_fixed
9664 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
9666 return StSize
== 4 ? ARM::tSTRi
9667 : StSize
== 2 ? ARM::tSTRHi
9668 : StSize
== 1 ? ARM::tSTRBi
: 0;
9670 return StSize
== 4 ? ARM::t2STR_POST
9671 : StSize
== 2 ? ARM::t2STRH_POST
9672 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
9673 return StSize
== 4 ? ARM::STR_POST_IMM
9674 : StSize
== 2 ? ARM::STRH_POST
9675 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
9678 /// Emit a post-increment load operation with given size. The instructions
9679 /// will be added to BB at Pos.
9680 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9681 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9682 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
9683 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9684 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
9685 assert(LdOpc
!= 0 && "Should have a load opcode");
9687 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9688 .addReg(AddrOut
, RegState::Define
)
9691 .add(predOps(ARMCC::AL
));
9692 } else if (IsThumb1
) {
9693 // load + update AddrIn
9694 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9697 .add(predOps(ARMCC::AL
));
9698 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9699 .add(t1CondCodeOp())
9702 .add(predOps(ARMCC::AL
));
9703 } else if (IsThumb2
) {
9704 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9705 .addReg(AddrOut
, RegState::Define
)
9708 .add(predOps(ARMCC::AL
));
9710 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
9711 .addReg(AddrOut
, RegState::Define
)
9715 .add(predOps(ARMCC::AL
));
9719 /// Emit a post-increment store operation with given size. The instructions
9720 /// will be added to BB at Pos.
9721 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
9722 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
9723 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
9724 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
9725 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
9726 assert(StOpc
!= 0 && "Should have a store opcode");
9728 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9732 .add(predOps(ARMCC::AL
));
9733 } else if (IsThumb1
) {
9734 // store + update AddrIn
9735 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
9739 .add(predOps(ARMCC::AL
));
9740 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
9741 .add(t1CondCodeOp())
9744 .add(predOps(ARMCC::AL
));
9745 } else if (IsThumb2
) {
9746 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9750 .add(predOps(ARMCC::AL
));
9752 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
9757 .add(predOps(ARMCC::AL
));
9762 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
9763 MachineBasicBlock
*BB
) const {
9764 // This pseudo instruction has 3 operands: dst, src, size
9765 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9766 // Otherwise, we will generate unrolled scalar copies.
9767 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
9768 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
9769 MachineFunction::iterator It
= ++BB
->getIterator();
9771 Register dest
= MI
.getOperand(0).getReg();
9772 Register src
= MI
.getOperand(1).getReg();
9773 unsigned SizeVal
= MI
.getOperand(2).getImm();
9774 unsigned Align
= MI
.getOperand(3).getImm();
9775 DebugLoc dl
= MI
.getDebugLoc();
9777 MachineFunction
*MF
= BB
->getParent();
9778 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
9779 unsigned UnitSize
= 0;
9780 const TargetRegisterClass
*TRC
= nullptr;
9781 const TargetRegisterClass
*VecTRC
= nullptr;
9783 bool IsThumb1
= Subtarget
->isThumb1Only();
9784 bool IsThumb2
= Subtarget
->isThumb2();
9785 bool IsThumb
= Subtarget
->isThumb();
9789 } else if (Align
& 2) {
9792 // Check whether we can use NEON instructions.
9793 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
9794 Subtarget
->hasNEON()) {
9795 if ((Align
% 16 == 0) && SizeVal
>= 16)
9797 else if ((Align
% 8 == 0) && SizeVal
>= 8)
9800 // Can't use NEON instructions.
9805 // Select the correct opcode and register class for unit size load/store
9806 bool IsNeon
= UnitSize
>= 8;
9807 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
9809 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
9810 : UnitSize
== 8 ? &ARM::DPRRegClass
9813 unsigned BytesLeft
= SizeVal
% UnitSize
;
9814 unsigned LoopSize
= SizeVal
- BytesLeft
;
9816 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
9817 // Use LDR and STR to copy.
9818 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9819 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9820 unsigned srcIn
= src
;
9821 unsigned destIn
= dest
;
9822 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
9823 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9824 Register destOut
= MRI
.createVirtualRegister(TRC
);
9825 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9826 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
9827 IsThumb1
, IsThumb2
);
9828 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
9829 IsThumb1
, IsThumb2
);
9834 // Handle the leftover bytes with LDRB and STRB.
9835 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9836 // [destOut] = STRB_POST(scratch, destIn, 1)
9837 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9838 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9839 Register destOut
= MRI
.createVirtualRegister(TRC
);
9840 Register scratch
= MRI
.createVirtualRegister(TRC
);
9841 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9842 IsThumb1
, IsThumb2
);
9843 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9844 IsThumb1
, IsThumb2
);
9848 MI
.eraseFromParent(); // The instruction is gone now.
9852 // Expand the pseudo op to a loop.
9855 // movw varEnd, # --> with thumb2
9857 // ldrcp varEnd, idx --> without thumb2
9858 // fallthrough --> loopMBB
9860 // PHI varPhi, varEnd, varLoop
9861 // PHI srcPhi, src, srcLoop
9862 // PHI destPhi, dst, destLoop
9863 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9864 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9865 // subs varLoop, varPhi, #UnitSize
9867 // fallthrough --> exitMBB
9869 // epilogue to handle left-over bytes
9870 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9871 // [destOut] = STRB_POST(scratch, destLoop, 1)
9872 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9873 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
9874 MF
->insert(It
, loopMBB
);
9875 MF
->insert(It
, exitMBB
);
9877 // Transfer the remainder of BB and its successor edges to exitMBB.
9878 exitMBB
->splice(exitMBB
->begin(), BB
,
9879 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
9880 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
9882 // Load an immediate to varEnd.
9883 Register varEnd
= MRI
.createVirtualRegister(TRC
);
9884 if (Subtarget
->useMovt()) {
9885 unsigned Vtmp
= varEnd
;
9886 if ((LoopSize
& 0xFFFF0000) != 0)
9887 Vtmp
= MRI
.createVirtualRegister(TRC
);
9888 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi16
: ARM::MOVi16
), Vtmp
)
9889 .addImm(LoopSize
& 0xFFFF)
9890 .add(predOps(ARMCC::AL
));
9892 if ((LoopSize
& 0xFFFF0000) != 0)
9893 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVTi16
: ARM::MOVTi16
), varEnd
)
9895 .addImm(LoopSize
>> 16)
9896 .add(predOps(ARMCC::AL
));
9898 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
9899 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
9900 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
9902 // MachineConstantPool wants an explicit alignment.
9903 unsigned Align
= MF
->getDataLayout().getPrefTypeAlignment(Int32Ty
);
9905 Align
= MF
->getDataLayout().getTypeAllocSize(C
->getType());
9906 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Align
);
9907 MachineMemOperand
*CPMMO
=
9908 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
9909 MachineMemOperand::MOLoad
, 4, 4);
9912 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
9913 .addReg(varEnd
, RegState::Define
)
9914 .addConstantPoolIndex(Idx
)
9915 .add(predOps(ARMCC::AL
))
9916 .addMemOperand(CPMMO
);
9918 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
9919 .addReg(varEnd
, RegState::Define
)
9920 .addConstantPoolIndex(Idx
)
9922 .add(predOps(ARMCC::AL
))
9923 .addMemOperand(CPMMO
);
9925 BB
->addSuccessor(loopMBB
);
9927 // Generate the loop body:
9928 // varPhi = PHI(varLoop, varEnd)
9929 // srcPhi = PHI(srcLoop, src)
9930 // destPhi = PHI(destLoop, dst)
9931 MachineBasicBlock
*entryBB
= BB
;
9933 Register varLoop
= MRI
.createVirtualRegister(TRC
);
9934 Register varPhi
= MRI
.createVirtualRegister(TRC
);
9935 Register srcLoop
= MRI
.createVirtualRegister(TRC
);
9936 Register srcPhi
= MRI
.createVirtualRegister(TRC
);
9937 Register destLoop
= MRI
.createVirtualRegister(TRC
);
9938 Register destPhi
= MRI
.createVirtualRegister(TRC
);
9940 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
9941 .addReg(varLoop
).addMBB(loopMBB
)
9942 .addReg(varEnd
).addMBB(entryBB
);
9943 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
9944 .addReg(srcLoop
).addMBB(loopMBB
)
9945 .addReg(src
).addMBB(entryBB
);
9946 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
9947 .addReg(destLoop
).addMBB(loopMBB
)
9948 .addReg(dest
).addMBB(entryBB
);
9950 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9951 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9952 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
9953 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
9954 IsThumb1
, IsThumb2
);
9955 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
9956 IsThumb1
, IsThumb2
);
9958 // Decrement loop variable by UnitSize.
9960 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
9961 .add(t1CondCodeOp())
9964 .add(predOps(ARMCC::AL
));
9966 MachineInstrBuilder MIB
=
9967 BuildMI(*BB
, BB
->end(), dl
,
9968 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
9971 .add(predOps(ARMCC::AL
))
9973 MIB
->getOperand(5).setReg(ARM::CPSR
);
9974 MIB
->getOperand(5).setIsDef(true);
9976 BuildMI(*BB
, BB
->end(), dl
,
9977 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
9978 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
9980 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9981 BB
->addSuccessor(loopMBB
);
9982 BB
->addSuccessor(exitMBB
);
9984 // Add epilogue to handle BytesLeft.
9986 auto StartOfExit
= exitMBB
->begin();
9988 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9989 // [destOut] = STRB_POST(scratch, destLoop, 1)
9990 unsigned srcIn
= srcLoop
;
9991 unsigned destIn
= destLoop
;
9992 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
9993 Register srcOut
= MRI
.createVirtualRegister(TRC
);
9994 Register destOut
= MRI
.createVirtualRegister(TRC
);
9995 Register scratch
= MRI
.createVirtualRegister(TRC
);
9996 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
9997 IsThumb1
, IsThumb2
);
9998 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
9999 IsThumb1
, IsThumb2
);
10004 MI
.eraseFromParent(); // The instruction is gone now.
10008 MachineBasicBlock
*
10009 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
10010 MachineBasicBlock
*MBB
) const {
10011 const TargetMachine
&TM
= getTargetMachine();
10012 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
10013 DebugLoc DL
= MI
.getDebugLoc();
10015 assert(Subtarget
->isTargetWindows() &&
10016 "__chkstk is only supported on Windows");
10017 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10019 // __chkstk takes the number of words to allocate on the stack in R4, and
10020 // returns the stack adjustment in number of bytes in R4. This will not
10021 // clober any other registers (other than the obvious lr).
10023 // Although, technically, IP should be considered a register which may be
10024 // clobbered, the call itself will not touch it. Windows on ARM is a pure
10025 // thumb-2 environment, so there is no interworking required. As a result, we
10026 // do not expect a veneer to be emitted by the linker, clobbering IP.
10028 // Each module receives its own copy of __chkstk, so no import thunk is
10029 // required, again, ensuring that IP is not clobbered.
10031 // Finally, although some linkers may theoretically provide a trampoline for
10032 // out of range calls (which is quite common due to a 32M range limitation of
10033 // branches for Thumb), we can generate the long-call version via
10034 // -mcmodel=large, alleviating the need for the trampoline which may clobber
10037 switch (TM
.getCodeModel()) {
10038 case CodeModel::Tiny
:
10039 llvm_unreachable("Tiny code model not available on ARM.");
10040 case CodeModel::Small
:
10041 case CodeModel::Medium
:
10042 case CodeModel::Kernel
:
10043 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
10044 .add(predOps(ARMCC::AL
))
10045 .addExternalSymbol("__chkstk")
10046 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10047 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10049 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10051 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10053 case CodeModel::Large
: {
10054 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
10055 Register Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
10057 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
10058 .addExternalSymbol("__chkstk");
10059 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBLXr
))
10060 .add(predOps(ARMCC::AL
))
10061 .addReg(Reg
, RegState::Kill
)
10062 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
10063 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
10065 RegState::Implicit
| RegState::Define
| RegState::Dead
)
10067 RegState::Implicit
| RegState::Define
| RegState::Dead
);
10072 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
10073 .addReg(ARM::SP
, RegState::Kill
)
10074 .addReg(ARM::R4
, RegState::Kill
)
10075 .setMIFlags(MachineInstr::FrameSetup
)
10076 .add(predOps(ARMCC::AL
))
10077 .add(condCodeOp());
10079 MI
.eraseFromParent();
10083 MachineBasicBlock
*
10084 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
10085 MachineBasicBlock
*MBB
) const {
10086 DebugLoc DL
= MI
.getDebugLoc();
10087 MachineFunction
*MF
= MBB
->getParent();
10088 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10090 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
10091 MF
->insert(++MBB
->getIterator(), ContBB
);
10092 ContBB
->splice(ContBB
->begin(), MBB
,
10093 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
10094 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
10095 MBB
->addSuccessor(ContBB
);
10097 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
10098 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
10099 MF
->push_back(TrapBB
);
10100 MBB
->addSuccessor(TrapBB
);
10102 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
10103 .addReg(MI
.getOperand(0).getReg())
10105 .add(predOps(ARMCC::AL
));
10106 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
10109 .addReg(ARM::CPSR
);
10111 MI
.eraseFromParent();
10115 // The CPSR operand of SelectItr might be missing a kill marker
10116 // because there were multiple uses of CPSR, and ISel didn't know
10117 // which to mark. Figure out whether SelectItr should have had a
10118 // kill marker, and set it if it should. Returns the correct kill
10120 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
10121 MachineBasicBlock
* BB
,
10122 const TargetRegisterInfo
* TRI
) {
10123 // Scan forward through BB for a use/def of CPSR.
10124 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
10125 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
10126 const MachineInstr
& mi
= *miI
;
10127 if (mi
.readsRegister(ARM::CPSR
))
10129 if (mi
.definesRegister(ARM::CPSR
))
10130 break; // Should have kill-flag - update below.
10133 // If we hit the end of the block, check whether CPSR is live into a
10135 if (miI
== BB
->end()) {
10136 for (MachineBasicBlock::succ_iterator sItr
= BB
->succ_begin(),
10137 sEnd
= BB
->succ_end();
10138 sItr
!= sEnd
; ++sItr
) {
10139 MachineBasicBlock
* succ
= *sItr
;
10140 if (succ
->isLiveIn(ARM::CPSR
))
10145 // We found a def, or hit the end of the basic block and CPSR wasn't live
10146 // out. SelectMI should have a kill flag on CPSR.
10147 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
10151 MachineBasicBlock
*
10152 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
10153 MachineBasicBlock
*BB
) const {
10154 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10155 DebugLoc dl
= MI
.getDebugLoc();
10156 bool isThumb2
= Subtarget
->isThumb2();
10157 switch (MI
.getOpcode()) {
10160 llvm_unreachable("Unexpected instr type to insert");
10163 // Thumb1 post-indexed loads are really just single-register LDMs.
10164 case ARM::tLDR_postidx
: {
10165 MachineOperand
Def(MI
.getOperand(1));
10166 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
10168 .add(MI
.getOperand(2)) // Rn
10169 .add(MI
.getOperand(3)) // PredImm
10170 .add(MI
.getOperand(4)) // PredReg
10171 .add(MI
.getOperand(0)) // Rt
10173 MI
.eraseFromParent();
10177 // The Thumb2 pre-indexed stores have the same MI operands, they just
10178 // define them differently in the .td files from the isel patterns, so
10179 // they need pseudos.
10180 case ARM::t2STR_preidx
:
10181 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
10183 case ARM::t2STRB_preidx
:
10184 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
10186 case ARM::t2STRH_preidx
:
10187 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
10190 case ARM::STRi_preidx
:
10191 case ARM::STRBi_preidx
: {
10192 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
10193 : ARM::STRB_PRE_IMM
;
10194 // Decode the offset.
10195 unsigned Offset
= MI
.getOperand(4).getImm();
10196 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
10197 Offset
= ARM_AM::getAM2Offset(Offset
);
10201 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
10202 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
10203 .add(MI
.getOperand(0)) // Rn_wb
10204 .add(MI
.getOperand(1)) // Rt
10205 .add(MI
.getOperand(2)) // Rn
10206 .addImm(Offset
) // offset (skip GPR==zero_reg)
10207 .add(MI
.getOperand(5)) // pred
10208 .add(MI
.getOperand(6))
10209 .addMemOperand(MMO
);
10210 MI
.eraseFromParent();
10213 case ARM::STRr_preidx
:
10214 case ARM::STRBr_preidx
:
10215 case ARM::STRH_preidx
: {
10217 switch (MI
.getOpcode()) {
10218 default: llvm_unreachable("unexpected opcode!");
10219 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
10220 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
10221 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
10223 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
10224 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
)
10225 MIB
.add(MI
.getOperand(i
));
10226 MI
.eraseFromParent();
10230 case ARM::tMOVCCr_pseudo
: {
10231 // To "insert" a SELECT_CC instruction, we actually have to insert the
10232 // diamond control-flow pattern. The incoming instruction knows the
10233 // destination vreg to set, the condition code register to branch on, the
10234 // true/false values to select between, and a branch opcode to use.
10235 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10236 MachineFunction::iterator It
= ++BB
->getIterator();
10241 // cmpTY ccX, r1, r2
10243 // fallthrough --> copy0MBB
10244 MachineBasicBlock
*thisMBB
= BB
;
10245 MachineFunction
*F
= BB
->getParent();
10246 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10247 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10248 F
->insert(It
, copy0MBB
);
10249 F
->insert(It
, sinkMBB
);
10251 // Check whether CPSR is live past the tMOVCCr_pseudo.
10252 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
10253 if (!MI
.killsRegister(ARM::CPSR
) &&
10254 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
10255 copy0MBB
->addLiveIn(ARM::CPSR
);
10256 sinkMBB
->addLiveIn(ARM::CPSR
);
10259 // Transfer the remainder of BB and its successor edges to sinkMBB.
10260 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10261 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10262 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10264 BB
->addSuccessor(copy0MBB
);
10265 BB
->addSuccessor(sinkMBB
);
10267 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
10269 .addImm(MI
.getOperand(3).getImm())
10270 .addReg(MI
.getOperand(4).getReg());
10273 // %FalseValue = ...
10274 // # fallthrough to sinkMBB
10277 // Update machine-CFG edges
10278 BB
->addSuccessor(sinkMBB
);
10281 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10284 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
10285 .addReg(MI
.getOperand(1).getReg())
10287 .addReg(MI
.getOperand(2).getReg())
10290 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10295 case ARM::BCCZi64
: {
10296 // If there is an unconditional branch to the other successor, remove it.
10297 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10299 // Compare both parts that make up the double comparison separately for
10301 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
10303 Register LHS1
= MI
.getOperand(1).getReg();
10304 Register LHS2
= MI
.getOperand(2).getReg();
10306 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10309 .add(predOps(ARMCC::AL
));
10310 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10311 .addReg(LHS2
).addImm(0)
10312 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10314 Register RHS1
= MI
.getOperand(3).getReg();
10315 Register RHS2
= MI
.getOperand(4).getReg();
10316 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10319 .add(predOps(ARMCC::AL
));
10320 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
10321 .addReg(LHS2
).addReg(RHS2
)
10322 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10325 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
10326 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
10327 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
10328 std::swap(destMBB
, exitMBB
);
10330 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
10331 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
10333 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
10335 .add(predOps(ARMCC::AL
));
10337 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
10339 MI
.eraseFromParent(); // The pseudo instruction is gone now.
10343 case ARM::Int_eh_sjlj_setjmp
:
10344 case ARM::Int_eh_sjlj_setjmp_nofp
:
10345 case ARM::tInt_eh_sjlj_setjmp
:
10346 case ARM::t2Int_eh_sjlj_setjmp
:
10347 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
10350 case ARM::Int_eh_sjlj_setup_dispatch
:
10351 EmitSjLjDispatchBlock(MI
, BB
);
10356 // To insert an ABS instruction, we have to insert the
10357 // diamond control-flow pattern. The incoming instruction knows the
10358 // source vreg to test against 0, the destination vreg to set,
10359 // the condition code register to branch on, the
10360 // true/false values to select between, and a branch opcode to use.
10365 // BCC (branch to SinkBB if V0 >= 0)
10366 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10367 // SinkBB: V1 = PHI(V2, V3)
10368 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10369 MachineFunction::iterator BBI
= ++BB
->getIterator();
10370 MachineFunction
*Fn
= BB
->getParent();
10371 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10372 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
10373 Fn
->insert(BBI
, RSBBB
);
10374 Fn
->insert(BBI
, SinkBB
);
10376 Register ABSSrcReg
= MI
.getOperand(1).getReg();
10377 Register ABSDstReg
= MI
.getOperand(0).getReg();
10378 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
10379 bool isThumb2
= Subtarget
->isThumb2();
10380 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
10381 // In Thumb mode S must not be specified if source register is the SP or
10382 // PC and if destination register is the SP, so restrict register class
10383 Register NewRsbDstReg
= MRI
.createVirtualRegister(
10384 isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
10386 // Transfer the remainder of BB and its successor edges to sinkMBB.
10387 SinkBB
->splice(SinkBB
->begin(), BB
,
10388 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10389 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
10391 BB
->addSuccessor(RSBBB
);
10392 BB
->addSuccessor(SinkBB
);
10394 // fall through to SinkMBB
10395 RSBBB
->addSuccessor(SinkBB
);
10397 // insert a cmp at the end of BB
10398 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
10401 .add(predOps(ARMCC::AL
));
10403 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10405 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
10406 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
10408 // insert rsbri in RSBBB
10409 // Note: BCC and rsbri will be converted into predicated rsbmi
10410 // by if-conversion pass
10411 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
10412 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
10413 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
10415 .add(predOps(ARMCC::AL
))
10416 .add(condCodeOp());
10418 // insert PHI in SinkBB,
10419 // reuse ABSDstReg to not change uses of ABS instruction
10420 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
10421 TII
->get(ARM::PHI
), ABSDstReg
)
10422 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
10423 .addReg(ABSSrcReg
).addMBB(BB
);
10425 // remove ABS instruction
10426 MI
.eraseFromParent();
10428 // return last added BB
10431 case ARM::COPY_STRUCT_BYVAL_I32
:
10433 return EmitStructByval(MI
, BB
);
10434 case ARM::WIN__CHKSTK
:
10435 return EmitLowered__chkstk(MI
, BB
);
10436 case ARM::WIN__DBZCHK
:
10437 return EmitLowered__dbzchk(MI
, BB
);
10441 /// Attaches vregs to MEMCPY that it will use as scratch registers
10442 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10443 /// instead of as a custom inserter because we need the use list from the SDNode.
10444 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
10445 MachineInstr
&MI
, const SDNode
*Node
) {
10446 bool isThumb1
= Subtarget
->isThumb1Only();
10448 DebugLoc DL
= MI
.getDebugLoc();
10449 MachineFunction
*MF
= MI
.getParent()->getParent();
10450 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10451 MachineInstrBuilder
MIB(*MF
, MI
);
10453 // If the new dst/src is unused mark it as dead.
10454 if (!Node
->hasAnyUseOfValue(0)) {
10455 MI
.getOperand(0).setIsDead(true);
10457 if (!Node
->hasAnyUseOfValue(1)) {
10458 MI
.getOperand(1).setIsDead(true);
10461 // The MEMCPY both defines and kills the scratch registers.
10462 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
10463 Register TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
10464 : &ARM::GPRRegClass
);
10465 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
10469 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
10470 SDNode
*Node
) const {
10471 if (MI
.getOpcode() == ARM::MEMCPY
) {
10472 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
10476 const MCInstrDesc
*MCID
= &MI
.getDesc();
10477 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10478 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10479 // operand is still set to noreg. If needed, set the optional operand's
10480 // register to CPSR, and remove the redundant implicit def.
10482 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10484 // Rename pseudo opcodes.
10485 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
10488 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
10489 MCID
= &TII
->get(NewOpc
);
10491 assert(MCID
->getNumOperands() ==
10492 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
10493 && "converted opcode should be the same except for cc_out"
10494 " (and, on Thumb1, pred)");
10498 // Add the optional cc_out operand
10499 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10501 // On Thumb1, move all input operands to the end, then add the predicate
10502 if (Subtarget
->isThumb1Only()) {
10503 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
10504 MI
.addOperand(MI
.getOperand(1));
10505 MI
.RemoveOperand(1);
10508 // Restore the ties
10509 for (unsigned i
= MI
.getNumOperands(); i
--;) {
10510 const MachineOperand
& op
= MI
.getOperand(i
);
10511 if (op
.isReg() && op
.isUse()) {
10512 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
10514 MI
.tieOperands(DefIdx
, i
);
10518 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
10519 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10522 ccOutIdx
= MCID
->getNumOperands() - 1;
10524 ccOutIdx
= MCID
->getNumOperands() - 1;
10526 // Any ARM instruction that sets the 's' bit should specify an optional
10527 // "cc_out" operand in the last operand position.
10528 if (!MI
.hasOptionalDef() || !MCID
->OpInfo
[ccOutIdx
].isOptionalDef()) {
10529 assert(!NewOpc
&& "Optional cc_out operand required");
10532 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10533 // since we already have an optional CPSR def.
10534 bool definesCPSR
= false;
10535 bool deadCPSR
= false;
10536 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
10538 const MachineOperand
&MO
= MI
.getOperand(i
);
10539 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
10540 definesCPSR
= true;
10543 MI
.RemoveOperand(i
);
10547 if (!definesCPSR
) {
10548 assert(!NewOpc
&& "Optional cc_out operand required");
10551 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
10553 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
10554 "expect uninitialized optional cc_out operand");
10555 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10556 if (!Subtarget
->isThumb1Only())
10560 // If this instruction was defined with an optional CPSR def and its dag node
10561 // had a live implicit CPSR def, then activate the optional CPSR def.
10562 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
10563 MO
.setReg(ARM::CPSR
);
10567 //===----------------------------------------------------------------------===//
10568 // ARM Optimization Hooks
10569 //===----------------------------------------------------------------------===//
10571 // Helper function that checks if N is a null or all ones constant.
10572 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
10573 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
10576 // Return true if N is conditionally 0 or all ones.
10577 // Detects these expressions where cc is an i1 value:
10579 // (select cc 0, y) [AllOnes=0]
10580 // (select cc y, 0) [AllOnes=0]
10581 // (zext cc) [AllOnes=0]
10582 // (sext cc) [AllOnes=0/1]
10583 // (select cc -1, y) [AllOnes=1]
10584 // (select cc y, -1) [AllOnes=1]
10586 // Invert is set when N is the null/all ones constant when CC is false.
10587 // OtherOp is set to the alternative value of N.
10588 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
10589 SDValue
&CC
, bool &Invert
,
10591 SelectionDAG
&DAG
) {
10592 switch (N
->getOpcode()) {
10593 default: return false;
10594 case ISD::SELECT
: {
10595 CC
= N
->getOperand(0);
10596 SDValue N1
= N
->getOperand(1);
10597 SDValue N2
= N
->getOperand(2);
10598 if (isZeroOrAllOnes(N1
, AllOnes
)) {
10603 if (isZeroOrAllOnes(N2
, AllOnes
)) {
10610 case ISD::ZERO_EXTEND
:
10611 // (zext cc) can never be the all ones value.
10615 case ISD::SIGN_EXTEND
: {
10617 EVT VT
= N
->getValueType(0);
10618 CC
= N
->getOperand(0);
10619 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
10623 // When looking for an AllOnes constant, N is an sext, and the 'other'
10625 OtherOp
= DAG
.getConstant(0, dl
, VT
);
10626 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
10627 // When looking for a 0 constant, N can be zext or sext.
10628 OtherOp
= DAG
.getConstant(1, dl
, VT
);
10630 OtherOp
= DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
10637 // Combine a constant select operand into its use:
10639 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10640 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10641 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10642 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10643 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10645 // The transform is rejected if the select doesn't have a constant operand that
10646 // is null, or all ones when AllOnes is set.
10648 // Also recognize sext/zext from i1:
10650 // (add (zext cc), x) -> (select cc (add x, 1), x)
10651 // (add (sext cc), x) -> (select cc (add x, -1), x)
10653 // These transformations eventually create predicated instructions.
10655 // @param N The node to transform.
10656 // @param Slct The N operand that is a select.
10657 // @param OtherOp The other N operand (x above).
10658 // @param DCI Context.
10659 // @param AllOnes Require the select constant to be all ones instead of null.
10660 // @returns The new node, or SDValue() on failure.
10662 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
10663 TargetLowering::DAGCombinerInfo
&DCI
,
10664 bool AllOnes
= false) {
10665 SelectionDAG
&DAG
= DCI
.DAG
;
10666 EVT VT
= N
->getValueType(0);
10667 SDValue NonConstantVal
;
10669 bool SwapSelectOps
;
10670 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
10671 NonConstantVal
, DAG
))
10674 // Slct is now know to be the desired identity constant when CC is true.
10675 SDValue TrueVal
= OtherOp
;
10676 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
10677 OtherOp
, NonConstantVal
);
10678 // Unless SwapSelectOps says CC should be false.
10680 std::swap(TrueVal
, FalseVal
);
10682 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
10683 CCOp
, TrueVal
, FalseVal
);
10686 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10688 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
10689 TargetLowering::DAGCombinerInfo
&DCI
) {
10690 SDValue N0
= N
->getOperand(0);
10691 SDValue N1
= N
->getOperand(1);
10692 if (N0
.getNode()->hasOneUse())
10693 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
10695 if (N1
.getNode()->hasOneUse())
10696 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
10701 static bool IsVUZPShuffleNode(SDNode
*N
) {
10702 // VUZP shuffle node.
10703 if (N
->getOpcode() == ARMISD::VUZP
)
10706 // "VUZP" on i32 is an alias for VTRN.
10707 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
10713 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
10714 TargetLowering::DAGCombinerInfo
&DCI
,
10715 const ARMSubtarget
*Subtarget
) {
10716 // Look for ADD(VUZP.0, VUZP.1).
10717 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
10721 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10722 if (!N
->getValueType(0).is64BitVector())
10726 SelectionDAG
&DAG
= DCI
.DAG
;
10727 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10729 SDNode
*Unzip
= N0
.getNode();
10730 EVT VT
= N
->getValueType(0);
10732 SmallVector
<SDValue
, 8> Ops
;
10733 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
10734 TLI
.getPointerTy(DAG
.getDataLayout())));
10735 Ops
.push_back(Unzip
->getOperand(0));
10736 Ops
.push_back(Unzip
->getOperand(1));
10738 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10741 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10742 TargetLowering::DAGCombinerInfo
&DCI
,
10743 const ARMSubtarget
*Subtarget
) {
10744 // Check for two extended operands.
10745 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
10746 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
10747 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
10748 N1
.getOpcode() == ISD::ZERO_EXTEND
))
10751 SDValue N00
= N0
.getOperand(0);
10752 SDValue N10
= N1
.getOperand(0);
10754 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10755 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
10759 // We only recognize Q register paddl here; this can't be reached until
10760 // after type legalization.
10761 if (!N00
.getValueType().is64BitVector() ||
10762 !N0
.getValueType().is128BitVector())
10765 // Generate vpaddl.
10766 SelectionDAG
&DAG
= DCI
.DAG
;
10767 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10769 EVT VT
= N
->getValueType(0);
10771 SmallVector
<SDValue
, 8> Ops
;
10772 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10774 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
10775 Opcode
= Intrinsic::arm_neon_vpaddls
;
10777 Opcode
= Intrinsic::arm_neon_vpaddlu
;
10778 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
10779 TLI
.getPointerTy(DAG
.getDataLayout())));
10780 EVT ElemTy
= N00
.getValueType().getVectorElementType();
10781 unsigned NumElts
= VT
.getVectorNumElements();
10782 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
10783 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
10784 N00
.getOperand(0), N00
.getOperand(1));
10785 Ops
.push_back(Concat
);
10787 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
10790 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10791 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10792 // much easier to match.
10794 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
10795 TargetLowering::DAGCombinerInfo
&DCI
,
10796 const ARMSubtarget
*Subtarget
) {
10797 // Only perform optimization if after legalize, and if NEON is available. We
10798 // also expected both operands to be BUILD_VECTORs.
10799 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
10800 || N0
.getOpcode() != ISD::BUILD_VECTOR
10801 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
10804 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10805 EVT VT
= N
->getValueType(0);
10806 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
10809 // Check that the vector operands are of the right form.
10810 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10811 // operands, where N is the size of the formed vector.
10812 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10813 // index such that we have a pair wise add pattern.
10815 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10816 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
10818 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
10819 SDNode
*V
= Vec
.getNode();
10820 unsigned nextIndex
= 0;
10822 // For each operands to the ADD which are BUILD_VECTORs,
10823 // check to see if each of their operands are an EXTRACT_VECTOR with
10824 // the same vector and appropriate index.
10825 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
10826 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10827 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10829 SDValue ExtVec0
= N0
->getOperand(i
);
10830 SDValue ExtVec1
= N1
->getOperand(i
);
10832 // First operand is the vector, verify its the same.
10833 if (V
!= ExtVec0
->getOperand(0).getNode() ||
10834 V
!= ExtVec1
->getOperand(0).getNode())
10837 // Second is the constant, verify its correct.
10838 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
10839 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
10841 // For the constant, we want to see all the even or all the odd.
10842 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
10843 || C1
->getZExtValue() != nextIndex
+1)
10846 // Increment index.
10852 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10853 // we're using the entire input vector, otherwise there's a size/legality
10854 // mismatch somewhere.
10855 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
10856 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
10859 // Create VPADDL node.
10860 SelectionDAG
&DAG
= DCI
.DAG
;
10861 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10865 // Build operand list.
10866 SmallVector
<SDValue
, 8> Ops
;
10867 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
10868 TLI
.getPointerTy(DAG
.getDataLayout())));
10870 // Input is the vector.
10871 Ops
.push_back(Vec
);
10873 // Get widened type and narrowed type.
10875 unsigned numElem
= VT
.getVectorNumElements();
10877 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
10878 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
10879 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
10880 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
10881 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
10883 llvm_unreachable("Invalid vector element type for padd optimization.");
10886 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
10887 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
10888 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
10891 static SDValue
findMUL_LOHI(SDValue V
) {
10892 if (V
->getOpcode() == ISD::UMUL_LOHI
||
10893 V
->getOpcode() == ISD::SMUL_LOHI
)
10898 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
10899 TargetLowering::DAGCombinerInfo
&DCI
,
10900 const ARMSubtarget
*Subtarget
) {
10901 if (Subtarget
->isThumb()) {
10902 if (!Subtarget
->hasDSP())
10904 } else if (!Subtarget
->hasV5TEOps())
10907 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10908 // accumulates the product into a 64-bit value. The 16-bit values will
10909 // be sign extended somehow or SRA'd into 32-bit values
10910 // (addc (adde (mul 16bit, 16bit), lo), hi)
10911 SDValue Mul
= AddcNode
->getOperand(0);
10912 SDValue Lo
= AddcNode
->getOperand(1);
10913 if (Mul
.getOpcode() != ISD::MUL
) {
10914 Lo
= AddcNode
->getOperand(0);
10915 Mul
= AddcNode
->getOperand(1);
10916 if (Mul
.getOpcode() != ISD::MUL
)
10920 SDValue SRA
= AddeNode
->getOperand(0);
10921 SDValue Hi
= AddeNode
->getOperand(1);
10922 if (SRA
.getOpcode() != ISD::SRA
) {
10923 SRA
= AddeNode
->getOperand(1);
10924 Hi
= AddeNode
->getOperand(0);
10925 if (SRA
.getOpcode() != ISD::SRA
)
10928 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
10929 if (Const
->getZExtValue() != 31)
10934 if (SRA
.getOperand(0) != Mul
)
10937 SelectionDAG
&DAG
= DCI
.DAG
;
10938 SDLoc
dl(AddcNode
);
10939 unsigned Opcode
= 0;
10943 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
10944 Opcode
= ARMISD::SMLALBB
;
10945 Op0
= Mul
.getOperand(0);
10946 Op1
= Mul
.getOperand(1);
10947 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
10948 Opcode
= ARMISD::SMLALBT
;
10949 Op0
= Mul
.getOperand(0);
10950 Op1
= Mul
.getOperand(1).getOperand(0);
10951 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
10952 Opcode
= ARMISD::SMLALTB
;
10953 Op0
= Mul
.getOperand(0).getOperand(0);
10954 Op1
= Mul
.getOperand(1);
10955 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
10956 Opcode
= ARMISD::SMLALTT
;
10957 Op0
= Mul
->getOperand(0).getOperand(0);
10958 Op1
= Mul
->getOperand(1).getOperand(0);
10964 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
10966 // Replace the ADDs' nodes uses by the MLA node's values.
10967 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
10968 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
10970 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
10971 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
10973 // Return original node to notify the driver to stop replacing.
10974 SDValue
resNode(AddcNode
, 0);
10978 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
10979 TargetLowering::DAGCombinerInfo
&DCI
,
10980 const ARMSubtarget
*Subtarget
) {
10981 // Look for multiply add opportunities.
10982 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10983 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10984 // a glue link from the first add to the second add.
10985 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10986 // a S/UMLAL instruction.
10989 // V \ [no multiline comment]
10995 // In the special case where only the higher part of a signed result is used
10996 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10997 // a constant with the exact value of 0x80000000, we recognize we are dealing
10998 // with a "rounded multiply and add" (or subtract) and transform it into
10999 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
11001 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
11002 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
11003 "Expect an ADDE or SUBE");
11005 assert(AddeSubeNode
->getNumOperands() == 3 &&
11006 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
11007 "ADDE node has the wrong inputs");
11009 // Check that we are chained to the right ADDC or SUBC node.
11010 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
11011 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11012 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
11013 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
11014 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
11017 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
11018 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
11020 // Check if the two operands are from the same mul_lohi node.
11021 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
11024 assert(AddcSubcNode
->getNumValues() == 2 &&
11025 AddcSubcNode
->getValueType(0) == MVT::i32
&&
11026 "Expect ADDC with two result values. First: i32");
11028 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
11029 // maybe a SMLAL which multiplies two 16-bit values.
11030 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
11031 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
11032 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
11033 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
11034 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
11035 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
11037 // Check for the triangle shape.
11038 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
11039 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
11041 // Make sure that the ADDE/SUBE operands are not coming from the same node.
11042 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
11045 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
11046 bool IsLeftOperandMUL
= false;
11047 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
11048 if (MULOp
== SDValue())
11049 MULOp
= findMUL_LOHI(AddeSubeOp1
);
11051 IsLeftOperandMUL
= true;
11052 if (MULOp
== SDValue())
11055 // Figure out the right opcode.
11056 unsigned Opc
= MULOp
->getOpcode();
11057 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
11059 // Figure out the high and low input values to the MLAL node.
11060 SDValue
*HiAddSub
= nullptr;
11061 SDValue
*LoMul
= nullptr;
11062 SDValue
*LowAddSub
= nullptr;
11064 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11065 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
11068 if (IsLeftOperandMUL
)
11069 HiAddSub
= &AddeSubeOp1
;
11071 HiAddSub
= &AddeSubeOp0
;
11073 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11074 // whose low result is fed to the ADDC/SUBC we are checking.
11076 if (AddcSubcOp0
== MULOp
.getValue(0)) {
11077 LoMul
= &AddcSubcOp0
;
11078 LowAddSub
= &AddcSubcOp1
;
11080 if (AddcSubcOp1
== MULOp
.getValue(0)) {
11081 LoMul
= &AddcSubcOp1
;
11082 LowAddSub
= &AddcSubcOp0
;
11088 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11089 // the replacement below will create a cycle.
11090 if (AddcSubcNode
== HiAddSub
->getNode() ||
11091 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
11094 // Create the merged node.
11095 SelectionDAG
&DAG
= DCI
.DAG
;
11097 // Start building operand list.
11098 SmallVector
<SDValue
, 8> Ops
;
11099 Ops
.push_back(LoMul
->getOperand(0));
11100 Ops
.push_back(LoMul
->getOperand(1));
11102 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
11103 // the case, we must be doing signed multiplication and only use the higher
11104 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11105 // addition or subtraction with the value of 0x800000.
11106 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
11107 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
11108 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
11109 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
11111 Ops
.push_back(*HiAddSub
);
11112 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
11113 FinalOpc
= ARMISD::SMMLSR
;
11115 FinalOpc
= ARMISD::SMMLAR
;
11117 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
11118 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
11120 return SDValue(AddeSubeNode
, 0);
11121 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
11122 // SMMLS is generated during instruction selection and the rest of this
11123 // function can not handle the case where AddcSubcNode is a SUBC.
11126 // Finish building the operand list for {U/S}MLAL
11127 Ops
.push_back(*LowAddSub
);
11128 Ops
.push_back(*HiAddSub
);
11130 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
11131 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11133 // Replace the ADDs' nodes uses by the MLA node's values.
11134 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
11135 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
11137 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
11138 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
11140 // Return original node to notify the driver to stop replacing.
11141 return SDValue(AddeSubeNode
, 0);
11144 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
11145 TargetLowering::DAGCombinerInfo
&DCI
,
11146 const ARMSubtarget
*Subtarget
) {
11147 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11148 // While trying to combine for the other MLAL nodes, first search for the
11149 // chance to use UMAAL. Check if Addc uses a node which has already
11150 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11151 // as the addend, and it's handled in PerformUMLALCombine.
11153 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11154 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11156 // Check that we have a glued ADDC node.
11157 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
11158 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
11161 // Find the converted UMAAL or quit if it doesn't exist.
11162 SDNode
*UmlalNode
= nullptr;
11164 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
11165 UmlalNode
= AddcNode
->getOperand(0).getNode();
11166 AddHi
= AddcNode
->getOperand(1);
11167 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
11168 UmlalNode
= AddcNode
->getOperand(1).getNode();
11169 AddHi
= AddcNode
->getOperand(0);
11171 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
11174 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11175 // the ADDC as well as Zero.
11176 if (!isNullConstant(UmlalNode
->getOperand(3)))
11179 if ((isNullConstant(AddeNode
->getOperand(0)) &&
11180 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
11181 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
11182 isNullConstant(AddeNode
->getOperand(1)))) {
11183 SelectionDAG
&DAG
= DCI
.DAG
;
11184 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
11185 UmlalNode
->getOperand(2), AddHi
};
11186 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
11187 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
11189 // Replace the ADDs' nodes uses by the UMAAL node's values.
11190 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
11191 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
11193 // Return original node to notify the driver to stop replacing.
11194 return SDValue(AddeNode
, 0);
11199 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
11200 const ARMSubtarget
*Subtarget
) {
11201 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
11204 // Check that we have a pair of ADDC and ADDE as operands.
11205 // Both addends of the ADDE must be zero.
11206 SDNode
* AddcNode
= N
->getOperand(2).getNode();
11207 SDNode
* AddeNode
= N
->getOperand(3).getNode();
11208 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
11209 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
11210 isNullConstant(AddeNode
->getOperand(0)) &&
11211 isNullConstant(AddeNode
->getOperand(1)) &&
11212 (AddeNode
->getOperand(2).getNode() == AddcNode
))
11213 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
11214 DAG
.getVTList(MVT::i32
, MVT::i32
),
11215 {N
->getOperand(0), N
->getOperand(1),
11216 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
11221 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
11222 TargetLowering::DAGCombinerInfo
&DCI
,
11223 const ARMSubtarget
*Subtarget
) {
11224 SelectionDAG
&DAG(DCI
.DAG
);
11226 if (N
->getOpcode() == ARMISD::SUBC
) {
11227 // (SUBC (ADDE 0, 0, C), 1) -> C
11228 SDValue LHS
= N
->getOperand(0);
11229 SDValue RHS
= N
->getOperand(1);
11230 if (LHS
->getOpcode() == ARMISD::ADDE
&&
11231 isNullConstant(LHS
->getOperand(0)) &&
11232 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
11233 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
11237 if (Subtarget
->isThumb1Only()) {
11238 SDValue RHS
= N
->getOperand(1);
11239 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11240 int32_t imm
= C
->getSExtValue();
11241 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
11243 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
11244 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
11246 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
11254 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
11255 TargetLowering::DAGCombinerInfo
&DCI
,
11256 const ARMSubtarget
*Subtarget
) {
11257 if (Subtarget
->isThumb1Only()) {
11258 SelectionDAG
&DAG
= DCI
.DAG
;
11259 SDValue RHS
= N
->getOperand(1);
11260 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
11261 int64_t imm
= C
->getSExtValue();
11265 // The with-carry-in form matches bitwise not instead of the negation.
11266 // Effectively, the inverse interpretation of the carry flag already
11267 // accounts for part of the negation.
11268 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
11270 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
11272 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
11273 N
->getOperand(0), RHS
, N
->getOperand(2));
11276 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
11277 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
11282 static SDValue
PerformABSCombine(SDNode
*N
,
11283 TargetLowering::DAGCombinerInfo
&DCI
,
11284 const ARMSubtarget
*Subtarget
) {
11286 SelectionDAG
&DAG
= DCI
.DAG
;
11287 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11289 if (TLI
.isOperationLegal(N
->getOpcode(), N
->getValueType(0)))
11292 if (!TLI
.expandABS(N
, res
, DAG
))
11298 /// PerformADDECombine - Target-specific dag combine transform from
11299 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11300 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11301 static SDValue
PerformADDECombine(SDNode
*N
,
11302 TargetLowering::DAGCombinerInfo
&DCI
,
11303 const ARMSubtarget
*Subtarget
) {
11304 // Only ARM and Thumb2 support UMLAL/SMLAL.
11305 if (Subtarget
->isThumb1Only())
11306 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
11308 // Only perform the checks after legalize when the pattern is available.
11309 if (DCI
.isBeforeLegalize()) return SDValue();
11311 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
11314 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11315 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11316 /// called with the default operands, and if that fails, with commuted
11318 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
11319 TargetLowering::DAGCombinerInfo
&DCI
,
11320 const ARMSubtarget
*Subtarget
){
11321 // Attempt to create vpadd for this add.
11322 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
11325 // Attempt to create vpaddl for this add.
11326 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
11328 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
11332 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11333 if (N0
.getNode()->hasOneUse())
11334 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
11340 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
11341 CombineLevel Level
) const {
11342 if (Level
== BeforeLegalizeTypes
)
11345 if (N
->getOpcode() != ISD::SHL
)
11348 if (Subtarget
->isThumb1Only()) {
11349 // Avoid making expensive immediates by commuting shifts. (This logic
11350 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11352 if (N
->getOpcode() != ISD::SHL
)
11354 SDValue N1
= N
->getOperand(0);
11355 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
11356 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
11358 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
11359 if (Const
->getAPIntValue().ult(256))
11361 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
11362 Const
->getAPIntValue().sgt(-256))
11368 // Turn off commute-with-shift transform after legalization, so it doesn't
11369 // conflict with PerformSHLSimplify. (We could try to detect when
11370 // PerformSHLSimplify would trigger more precisely, but it isn't
11371 // really necessary.)
11375 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11376 const SDNode
*N
, CombineLevel Level
) const {
11377 if (!Subtarget
->isThumb1Only())
11380 if (Level
== BeforeLegalizeTypes
)
11386 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
11387 if (!Subtarget
->hasNEON()) {
11388 if (Subtarget
->isThumb1Only())
11389 return VT
.getScalarSizeInBits() <= 32;
11392 return VT
.isScalarInteger();
11395 static SDValue
PerformSHLSimplify(SDNode
*N
,
11396 TargetLowering::DAGCombinerInfo
&DCI
,
11397 const ARMSubtarget
*ST
) {
11398 // Allow the generic combiner to identify potential bswaps.
11399 if (DCI
.isBeforeLegalize())
11402 // DAG combiner will fold:
11403 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11404 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11405 // Other code patterns that can be also be modified have the following form:
11406 // b + ((a << 1) | 510)
11407 // b + ((a << 1) & 510)
11408 // b + ((a << 1) ^ 510)
11409 // b + ((a << 1) + 510)
11411 // Many instructions can perform the shift for free, but it requires both
11412 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11413 // instruction will needed. So, unfold back to the original pattern if:
11414 // - if c1 and c2 are small enough that they don't require mov imms.
11415 // - the user(s) of the node can perform an shl
11417 // No shifted operands for 16-bit instructions.
11418 if (ST
->isThumb() && ST
->isThumb1Only())
11421 // Check that all the users could perform the shl themselves.
11422 for (auto U
: N
->uses()) {
11423 switch(U
->getOpcode()) {
11433 // Check that the user isn't already using a constant because there
11434 // aren't any instructions that support an immediate operand and a
11435 // shifted operand.
11436 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
11437 isa
<ConstantSDNode
>(U
->getOperand(1)))
11440 // Check that it's not already using a shift.
11441 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
11442 U
->getOperand(1).getOpcode() == ISD::SHL
)
11448 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
11449 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
11452 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
11455 SDValue SHL
= N
->getOperand(0);
11457 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11458 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
11459 if (!C1ShlC2
|| !C2
)
11462 APInt C2Int
= C2
->getAPIntValue();
11463 APInt C1Int
= C1ShlC2
->getAPIntValue();
11465 // Check that performing a lshr will not lose any information.
11466 APInt Mask
= APInt::getHighBitsSet(C2Int
.getBitWidth(),
11467 C2Int
.getBitWidth() - C2
->getZExtValue());
11468 if ((C1Int
& Mask
) != C1Int
)
11471 // Shift the first constant.
11472 C1Int
.lshrInPlace(C2Int
);
11474 // The immediates are encoded as an 8-bit value that can be rotated.
11475 auto LargeImm
= [](const APInt
&Imm
) {
11476 unsigned Zeros
= Imm
.countLeadingZeros() + Imm
.countTrailingZeros();
11477 return Imm
.getBitWidth() - Zeros
> 8;
11480 if (LargeImm(C1Int
) || LargeImm(C2Int
))
11483 SelectionDAG
&DAG
= DCI
.DAG
;
11485 SDValue X
= SHL
.getOperand(0);
11486 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
11487 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
11488 // Shift left to compensate for the lshr of C1Int.
11489 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
11491 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
11492 SHL
.dump(); N
->dump());
11493 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
11498 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11500 static SDValue
PerformADDCombine(SDNode
*N
,
11501 TargetLowering::DAGCombinerInfo
&DCI
,
11502 const ARMSubtarget
*Subtarget
) {
11503 SDValue N0
= N
->getOperand(0);
11504 SDValue N1
= N
->getOperand(1);
11506 // Only works one way, because it needs an immediate operand.
11507 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11510 // First try with the default operand order.
11511 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
11514 // If that didn't work, try again with the operands commuted.
11515 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
11518 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11520 static SDValue
PerformSUBCombine(SDNode
*N
,
11521 TargetLowering::DAGCombinerInfo
&DCI
) {
11522 SDValue N0
= N
->getOperand(0);
11523 SDValue N1
= N
->getOperand(1);
11525 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11526 if (N1
.getNode()->hasOneUse())
11527 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
11533 /// PerformVMULCombine
11534 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11535 /// special multiplier accumulator forwarding.
11536 /// vmul d3, d0, d2
11537 /// vmla d3, d1, d2
11539 /// vadd d3, d0, d1
11540 /// vmul d3, d3, d2
11541 // However, for (A + B) * (A + B),
11548 static SDValue
PerformVMULCombine(SDNode
*N
,
11549 TargetLowering::DAGCombinerInfo
&DCI
,
11550 const ARMSubtarget
*Subtarget
) {
11551 if (!Subtarget
->hasVMLxForwarding())
11554 SelectionDAG
&DAG
= DCI
.DAG
;
11555 SDValue N0
= N
->getOperand(0);
11556 SDValue N1
= N
->getOperand(1);
11557 unsigned Opcode
= N0
.getOpcode();
11558 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11559 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
11560 Opcode
= N1
.getOpcode();
11561 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
11562 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
11570 EVT VT
= N
->getValueType(0);
11572 SDValue N00
= N0
->getOperand(0);
11573 SDValue N01
= N0
->getOperand(1);
11574 return DAG
.getNode(Opcode
, DL
, VT
,
11575 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
11576 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
11579 static SDValue
PerformMULCombine(SDNode
*N
,
11580 TargetLowering::DAGCombinerInfo
&DCI
,
11581 const ARMSubtarget
*Subtarget
) {
11582 SelectionDAG
&DAG
= DCI
.DAG
;
11584 if (Subtarget
->isThumb1Only())
11587 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11590 EVT VT
= N
->getValueType(0);
11591 if (VT
.is64BitVector() || VT
.is128BitVector())
11592 return PerformVMULCombine(N
, DCI
, Subtarget
);
11593 if (VT
!= MVT::i32
)
11596 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11600 int64_t MulAmt
= C
->getSExtValue();
11601 unsigned ShiftAmt
= countTrailingZeros
<uint64_t>(MulAmt
);
11603 ShiftAmt
= ShiftAmt
& (32 - 1);
11604 SDValue V
= N
->getOperand(0);
11608 MulAmt
>>= ShiftAmt
;
11611 if (isPowerOf2_32(MulAmt
- 1)) {
11612 // (mul x, 2^N + 1) => (add (shl x, N), x)
11613 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11615 DAG
.getNode(ISD::SHL
, DL
, VT
,
11617 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
11619 } else if (isPowerOf2_32(MulAmt
+ 1)) {
11620 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11621 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11622 DAG
.getNode(ISD::SHL
, DL
, VT
,
11624 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
11630 uint64_t MulAmtAbs
= -MulAmt
;
11631 if (isPowerOf2_32(MulAmtAbs
+ 1)) {
11632 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11633 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11635 DAG
.getNode(ISD::SHL
, DL
, VT
,
11637 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
11639 } else if (isPowerOf2_32(MulAmtAbs
- 1)) {
11640 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11641 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
11643 DAG
.getNode(ISD::SHL
, DL
, VT
,
11645 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
11647 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
11648 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
11654 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
11655 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
11657 // Do not add new nodes to DAG combiner worklist.
11658 DCI
.CombineTo(N
, Res
, false);
11662 static SDValue
CombineANDShift(SDNode
*N
,
11663 TargetLowering::DAGCombinerInfo
&DCI
,
11664 const ARMSubtarget
*Subtarget
) {
11665 // Allow DAGCombine to pattern-match before we touch the canonical form.
11666 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
11669 if (N
->getValueType(0) != MVT::i32
)
11672 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11676 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
11677 // Don't transform uxtb/uxth.
11678 if (C1
== 255 || C1
== 65535)
11681 SDNode
*N0
= N
->getOperand(0).getNode();
11682 if (!N0
->hasOneUse())
11685 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
11688 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
11690 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
11694 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
11695 if (!C2
|| C2
>= 32)
11698 // Clear irrelevant bits in the mask.
11704 SelectionDAG
&DAG
= DCI
.DAG
;
11707 // We have a pattern of the form "(and (shl x, c2) c1)" or
11708 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11709 // transform to a pair of shifts, to save materializing c1.
11711 // First pattern: right shift, then mask off leading bits.
11712 // FIXME: Use demanded bits?
11713 if (!LeftShift
&& isMask_32(C1
)) {
11714 uint32_t C3
= countLeadingZeros(C1
);
11716 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11717 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11718 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11719 DAG
.getConstant(C3
, DL
, MVT::i32
));
11723 // First pattern, reversed: left shift, then mask off trailing bits.
11724 if (LeftShift
&& isMask_32(~C1
)) {
11725 uint32_t C3
= countTrailingZeros(C1
);
11727 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11728 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
11729 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11730 DAG
.getConstant(C3
, DL
, MVT::i32
));
11734 // Second pattern: left shift, then mask off leading bits.
11735 // FIXME: Use demanded bits?
11736 if (LeftShift
&& isShiftedMask_32(C1
)) {
11737 uint32_t Trailing
= countTrailingZeros(C1
);
11738 uint32_t C3
= countLeadingZeros(C1
);
11739 if (Trailing
== C2
&& C2
+ C3
< 32) {
11740 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
11741 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11742 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
11743 DAG
.getConstant(C3
, DL
, MVT::i32
));
11747 // Second pattern, reversed: right shift, then mask off trailing bits.
11748 // FIXME: Handle other patterns of known/demanded bits.
11749 if (!LeftShift
&& isShiftedMask_32(C1
)) {
11750 uint32_t Leading
= countLeadingZeros(C1
);
11751 uint32_t C3
= countTrailingZeros(C1
);
11752 if (Leading
== C2
&& C2
+ C3
< 32) {
11753 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
11754 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
11755 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
11756 DAG
.getConstant(C3
, DL
, MVT::i32
));
11760 // FIXME: Transform "(and (shl x, c2) c1)" ->
11761 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11766 static SDValue
PerformANDCombine(SDNode
*N
,
11767 TargetLowering::DAGCombinerInfo
&DCI
,
11768 const ARMSubtarget
*Subtarget
) {
11769 // Attempt to use immediate-form VBIC
11770 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
11772 EVT VT
= N
->getValueType(0);
11773 SelectionDAG
&DAG
= DCI
.DAG
;
11775 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
11778 APInt SplatBits
, SplatUndef
;
11779 unsigned SplatBitSize
;
11781 if (BVN
&& Subtarget
->hasNEON() &&
11782 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
11783 if (SplatBitSize
<= 64) {
11785 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
11786 SplatUndef
.getZExtValue(), SplatBitSize
,
11787 DAG
, dl
, VbicVT
, VT
.is128BitVector(),
11789 if (Val
.getNode()) {
11791 DAG
.getNode(ISD::BITCAST
, dl
, VbicVT
, N
->getOperand(0));
11792 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
11793 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vbic
);
11798 if (!Subtarget
->isThumb1Only()) {
11799 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11800 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
11803 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
11807 if (Subtarget
->isThumb1Only())
11808 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
11814 // Try combining OR nodes to SMULWB, SMULWT.
11815 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
11816 TargetLowering::DAGCombinerInfo
&DCI
,
11817 const ARMSubtarget
*Subtarget
) {
11818 if (!Subtarget
->hasV6Ops() ||
11819 (Subtarget
->isThumb() &&
11820 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
11823 SDValue SRL
= OR
->getOperand(0);
11824 SDValue SHL
= OR
->getOperand(1);
11826 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
11827 SRL
= OR
->getOperand(1);
11828 SHL
= OR
->getOperand(0);
11830 if (!isSRL16(SRL
) || !isSHL16(SHL
))
11833 // The first operands to the shifts need to be the two results from the
11834 // same smul_lohi node.
11835 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
11836 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
11839 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
11840 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
11841 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
11845 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11846 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11847 // For SMUWB the 16-bit value will signed extended somehow.
11848 // For SMULWT only the SRA is required.
11849 // Check both sides of SMUL_LOHI
11850 SDValue OpS16
= SMULLOHI
->getOperand(0);
11851 SDValue OpS32
= SMULLOHI
->getOperand(1);
11853 SelectionDAG
&DAG
= DCI
.DAG
;
11854 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
11856 OpS32
= SMULLOHI
->getOperand(0);
11860 unsigned Opcode
= 0;
11861 if (isS16(OpS16
, DAG
))
11862 Opcode
= ARMISD::SMULWB
;
11863 else if (isSRA16(OpS16
)) {
11864 Opcode
= ARMISD::SMULWT
;
11865 OpS16
= OpS16
->getOperand(0);
11870 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
11871 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
11872 return SDValue(OR
, 0);
11875 static SDValue
PerformORCombineToBFI(SDNode
*N
,
11876 TargetLowering::DAGCombinerInfo
&DCI
,
11877 const ARMSubtarget
*Subtarget
) {
11878 // BFI is only available on V6T2+
11879 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
11882 EVT VT
= N
->getValueType(0);
11883 SDValue N0
= N
->getOperand(0);
11884 SDValue N1
= N
->getOperand(1);
11885 SelectionDAG
&DAG
= DCI
.DAG
;
11887 // 1) or (and A, mask), val => ARMbfi A, val, mask
11888 // iff (val & mask) == val
11890 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11891 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11892 // && mask == ~mask2
11893 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11894 // && ~mask == mask2
11895 // (i.e., copy a bitfield value into another bitfield of the same width)
11897 if (VT
!= MVT::i32
)
11900 SDValue N00
= N0
.getOperand(0);
11902 // The value and the mask need to be constants so we can verify this is
11903 // actually a bitfield set. If the mask is 0xffff, we can do better
11904 // via a movt instruction, so don't use BFI in that case.
11905 SDValue MaskOp
= N0
.getOperand(1);
11906 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
11909 unsigned Mask
= MaskC
->getZExtValue();
11910 if (Mask
== 0xffff)
11913 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11914 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
11916 unsigned Val
= N1C
->getZExtValue();
11917 if ((Val
& ~Mask
) != Val
)
11920 if (ARM::isBitFieldInvertedMask(Mask
)) {
11921 Val
>>= countTrailingZeros(~Mask
);
11923 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
11924 DAG
.getConstant(Val
, DL
, MVT::i32
),
11925 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11927 DCI
.CombineTo(N
, Res
, false);
11928 // Return value from the original node to inform the combiner than N is
11930 return SDValue(N
, 0);
11932 } else if (N1
.getOpcode() == ISD::AND
) {
11933 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11934 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
11937 unsigned Mask2
= N11C
->getZExtValue();
11939 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11941 if (ARM::isBitFieldInvertedMask(Mask
) &&
11942 (Mask
== ~Mask2
)) {
11943 // The pack halfword instruction works better for masks that fit it,
11944 // so use that when it's available.
11945 if (Subtarget
->hasDSP() &&
11946 (Mask
== 0xffff || Mask
== 0xffff0000))
11949 unsigned amt
= countTrailingZeros(Mask2
);
11950 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
11951 DAG
.getConstant(amt
, DL
, MVT::i32
));
11952 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
11953 DAG
.getConstant(Mask
, DL
, MVT::i32
));
11954 DCI
.CombineTo(N
, Res
, false);
11955 // Return value from the original node to inform the combiner than N is
11957 return SDValue(N
, 0);
11958 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
11959 (~Mask
== Mask2
)) {
11960 // The pack halfword instruction works better for masks that fit it,
11961 // so use that when it's available.
11962 if (Subtarget
->hasDSP() &&
11963 (Mask2
== 0xffff || Mask2
== 0xffff0000))
11966 unsigned lsb
= countTrailingZeros(Mask
);
11967 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
11968 DAG
.getConstant(lsb
, DL
, MVT::i32
));
11969 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
11970 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
11971 DCI
.CombineTo(N
, Res
, false);
11972 // Return value from the original node to inform the combiner than N is
11974 return SDValue(N
, 0);
11978 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
11979 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
11980 ARM::isBitFieldInvertedMask(~Mask
)) {
11981 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11982 // where lsb(mask) == #shamt and masked bits of B are known zero.
11983 SDValue ShAmt
= N00
.getOperand(1);
11984 unsigned ShAmtC
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
11985 unsigned LSB
= countTrailingZeros(Mask
);
11989 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
11990 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
11992 DCI
.CombineTo(N
, Res
, false);
11993 // Return value from the original node to inform the combiner than N is
11995 return SDValue(N
, 0);
12001 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
12018 static SDValue
PerformORCombine_i1(SDNode
*N
,
12019 TargetLowering::DAGCombinerInfo
&DCI
,
12020 const ARMSubtarget
*Subtarget
) {
12021 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
12022 // together with predicates
12023 EVT VT
= N
->getValueType(0);
12024 SDValue N0
= N
->getOperand(0);
12025 SDValue N1
= N
->getOperand(1);
12027 ARMCC::CondCodes CondCode0
= ARMCC::AL
;
12028 ARMCC::CondCodes CondCode1
= ARMCC::AL
;
12029 if (N0
->getOpcode() == ARMISD::VCMP
)
12030 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(2))
12032 else if (N0
->getOpcode() == ARMISD::VCMPZ
)
12033 CondCode0
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N0
->getOperand(1))
12035 if (N1
->getOpcode() == ARMISD::VCMP
)
12036 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(2))
12038 else if (N1
->getOpcode() == ARMISD::VCMPZ
)
12039 CondCode1
= (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(N1
->getOperand(1))
12042 if (CondCode0
== ARMCC::AL
|| CondCode1
== ARMCC::AL
)
12045 unsigned Opposite0
= ARMCC::getOppositeCondition(CondCode0
);
12046 unsigned Opposite1
= ARMCC::getOppositeCondition(CondCode1
);
12048 if (!isValidMVECond(Opposite0
,
12049 N0
->getOperand(0)->getValueType(0).isFloatingPoint()) ||
12050 !isValidMVECond(Opposite1
,
12051 N1
->getOperand(0)->getValueType(0).isFloatingPoint()))
12054 SmallVector
<SDValue
, 4> Ops0
;
12055 Ops0
.push_back(N0
->getOperand(0));
12056 if (N0
->getOpcode() == ARMISD::VCMP
)
12057 Ops0
.push_back(N0
->getOperand(1));
12058 Ops0
.push_back(DCI
.DAG
.getConstant(Opposite0
, SDLoc(N0
), MVT::i32
));
12059 SmallVector
<SDValue
, 4> Ops1
;
12060 Ops1
.push_back(N1
->getOperand(0));
12061 if (N1
->getOpcode() == ARMISD::VCMP
)
12062 Ops1
.push_back(N1
->getOperand(1));
12063 Ops1
.push_back(DCI
.DAG
.getConstant(Opposite1
, SDLoc(N1
), MVT::i32
));
12065 SDValue NewN0
= DCI
.DAG
.getNode(N0
->getOpcode(), SDLoc(N0
), VT
, Ops0
);
12066 SDValue NewN1
= DCI
.DAG
.getNode(N1
->getOpcode(), SDLoc(N1
), VT
, Ops1
);
12067 SDValue And
= DCI
.DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NewN0
, NewN1
);
12068 return DCI
.DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, And
,
12069 DCI
.DAG
.getAllOnesConstant(SDLoc(N
), VT
));
12072 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
12073 static SDValue
PerformORCombine(SDNode
*N
,
12074 TargetLowering::DAGCombinerInfo
&DCI
,
12075 const ARMSubtarget
*Subtarget
) {
12076 // Attempt to use immediate-form VORR
12077 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
12079 EVT VT
= N
->getValueType(0);
12080 SelectionDAG
&DAG
= DCI
.DAG
;
12082 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12085 APInt SplatBits
, SplatUndef
;
12086 unsigned SplatBitSize
;
12088 if (BVN
&& Subtarget
->hasNEON() &&
12089 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
12090 if (SplatBitSize
<= 64) {
12092 SDValue Val
= isVMOVModifiedImm(SplatBits
.getZExtValue(),
12093 SplatUndef
.getZExtValue(), SplatBitSize
,
12094 DAG
, dl
, VorrVT
, VT
.is128BitVector(),
12096 if (Val
.getNode()) {
12098 DAG
.getNode(ISD::BITCAST
, dl
, VorrVT
, N
->getOperand(0));
12099 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
12100 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vorr
);
12105 if (!Subtarget
->isThumb1Only()) {
12106 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12107 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12109 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
12113 SDValue N0
= N
->getOperand(0);
12114 SDValue N1
= N
->getOperand(1);
12116 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12117 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
12118 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
12120 // The code below optimizes (or (and X, Y), Z).
12121 // The AND operand needs to have a single user to make these optimizations
12123 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
12127 unsigned SplatBitSize
;
12130 APInt SplatBits0
, SplatBits1
;
12131 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
12132 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
12133 // Ensure that the second operand of both ands are constants
12134 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
12135 HasAnyUndefs
) && !HasAnyUndefs
) {
12136 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
12137 HasAnyUndefs
) && !HasAnyUndefs
) {
12138 // Ensure that the bit width of the constants are the same and that
12139 // the splat arguments are logical inverses as per the pattern we
12140 // are trying to simplify.
12141 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
12142 SplatBits0
== ~SplatBits1
) {
12143 // Canonicalize the vector type to make instruction selection
12145 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
12146 SDValue Result
= DAG
.getNode(ARMISD::VBSL
, dl
, CanonicalVT
,
12149 N1
->getOperand(0));
12150 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Result
);
12156 if (Subtarget
->hasMVEIntegerOps() &&
12157 (VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
12158 return PerformORCombine_i1(N
, DCI
, Subtarget
);
12160 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12162 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
12163 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
12167 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12173 static SDValue
PerformXORCombine(SDNode
*N
,
12174 TargetLowering::DAGCombinerInfo
&DCI
,
12175 const ARMSubtarget
*Subtarget
) {
12176 EVT VT
= N
->getValueType(0);
12177 SelectionDAG
&DAG
= DCI
.DAG
;
12179 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12182 if (!Subtarget
->isThumb1Only()) {
12183 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12184 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
12187 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
12194 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12195 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12196 // their position in "to" (Rd).
12197 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
12198 assert(N
->getOpcode() == ARMISD::BFI
);
12200 SDValue From
= N
->getOperand(1);
12201 ToMask
= ~cast
<ConstantSDNode
>(N
->getOperand(2))->getAPIntValue();
12202 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.countPopulation());
12204 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12205 // #C in the base of the SHR.
12206 if (From
->getOpcode() == ISD::SRL
&&
12207 isa
<ConstantSDNode
>(From
->getOperand(1))) {
12208 APInt Shift
= cast
<ConstantSDNode
>(From
->getOperand(1))->getAPIntValue();
12209 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
12210 FromMask
<<= Shift
.getLimitedValue(31);
12211 From
= From
->getOperand(0);
12217 // If A and B contain one contiguous set of bits, does A | B == A . B?
12219 // Neither A nor B must be zero.
12220 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
12221 unsigned LastActiveBitInA
= A
.countTrailingZeros();
12222 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countLeadingZeros() - 1;
12223 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
12226 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
12227 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12229 APInt ToMask
, FromMask
;
12230 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
12231 SDValue To
= N
->getOperand(0);
12233 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12234 // aren't compatible, but not if they set the same bit in their destination as
12235 // we do (or that of any BFI we're going to combine with).
12237 APInt CombinedToMask
= ToMask
;
12238 while (V
.getOpcode() == ARMISD::BFI
) {
12239 APInt NewToMask
, NewFromMask
;
12240 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
12241 if (NewFrom
!= From
) {
12242 // This BFI has a different base. Keep going.
12243 CombinedToMask
|= NewToMask
;
12244 V
= V
.getOperand(0);
12248 // Do the written bits conflict with any we've seen so far?
12249 if ((NewToMask
& CombinedToMask
).getBoolValue())
12250 // Conflicting bits - bail out because going further is unsafe.
12253 // Are the new bits contiguous when combined with the old bits?
12254 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
12255 BitsProperlyConcatenate(FromMask
, NewFromMask
))
12257 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
12258 BitsProperlyConcatenate(NewFromMask
, FromMask
))
12261 // We've seen a write to some bits, so track it.
12262 CombinedToMask
|= NewToMask
;
12264 V
= V
.getOperand(0);
12270 static SDValue
PerformBFICombine(SDNode
*N
,
12271 TargetLowering::DAGCombinerInfo
&DCI
) {
12272 SDValue N1
= N
->getOperand(1);
12273 if (N1
.getOpcode() == ISD::AND
) {
12274 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12275 // the bits being cleared by the AND are not demanded by the BFI.
12276 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
12279 unsigned InvMask
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
12280 unsigned LSB
= countTrailingZeros(~InvMask
);
12281 unsigned Width
= (32 - countLeadingZeros(~InvMask
)) - LSB
;
12283 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
12284 "undefined behavior");
12285 unsigned Mask
= (1u << Width
) - 1;
12286 unsigned Mask2
= N11C
->getZExtValue();
12287 if ((Mask
& (~Mask2
)) == 0)
12288 return DCI
.DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
12289 N
->getOperand(0), N1
.getOperand(0),
12291 } else if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
12292 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12293 // Keep track of any consecutive bits set that all come from the same base
12294 // value. We can combine these together into a single BFI.
12295 SDValue CombineBFI
= FindBFIToCombineWith(N
);
12296 if (CombineBFI
== SDValue())
12299 // We've found a BFI.
12300 APInt ToMask1
, FromMask1
;
12301 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
12303 APInt ToMask2
, FromMask2
;
12304 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
12305 assert(From1
== From2
);
12308 // First, unlink CombineBFI.
12309 DCI
.DAG
.ReplaceAllUsesWith(CombineBFI
, CombineBFI
.getOperand(0));
12310 // Then create a new BFI, combining the two together.
12311 APInt NewFromMask
= FromMask1
| FromMask2
;
12312 APInt NewToMask
= ToMask1
| ToMask2
;
12314 EVT VT
= N
->getValueType(0);
12317 if (NewFromMask
[0] == 0)
12318 From1
= DCI
.DAG
.getNode(
12319 ISD::SRL
, dl
, VT
, From1
,
12320 DCI
.DAG
.getConstant(NewFromMask
.countTrailingZeros(), dl
, VT
));
12321 return DCI
.DAG
.getNode(ARMISD::BFI
, dl
, VT
, N
->getOperand(0), From1
,
12322 DCI
.DAG
.getConstant(~NewToMask
, dl
, VT
));
12327 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12328 /// ARMISD::VMOVRRD.
12329 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
12330 TargetLowering::DAGCombinerInfo
&DCI
,
12331 const ARMSubtarget
*Subtarget
) {
12332 // vmovrrd(vmovdrr x, y) -> x,y
12333 SDValue InDouble
= N
->getOperand(0);
12334 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
12335 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
12337 // vmovrrd(load f64) -> (load i32), (load i32)
12338 SDNode
*InNode
= InDouble
.getNode();
12339 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
12340 InNode
->getValueType(0) == MVT::f64
&&
12341 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
12342 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
12343 // TODO: Should this be done for non-FrameIndex operands?
12344 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
12346 SelectionDAG
&DAG
= DCI
.DAG
;
12348 SDValue BasePtr
= LD
->getBasePtr();
12350 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
12351 LD
->getAlignment(), LD
->getMemOperand()->getFlags());
12353 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
12354 DAG
.getConstant(4, DL
, MVT::i32
));
12356 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
12357 LD
->getPointerInfo().getWithOffset(4),
12358 std::min(4U, LD
->getAlignment()),
12359 LD
->getMemOperand()->getFlags());
12361 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
12362 if (DCI
.DAG
.getDataLayout().isBigEndian())
12363 std::swap (NewLD1
, NewLD2
);
12364 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
12371 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12372 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12373 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
12374 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12375 SDValue Op0
= N
->getOperand(0);
12376 SDValue Op1
= N
->getOperand(1);
12377 if (Op0
.getOpcode() == ISD::BITCAST
)
12378 Op0
= Op0
.getOperand(0);
12379 if (Op1
.getOpcode() == ISD::BITCAST
)
12380 Op1
= Op1
.getOperand(0);
12381 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
12382 Op0
.getNode() == Op1
.getNode() &&
12383 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
12384 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
12385 N
->getValueType(0), Op0
.getOperand(0));
12389 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12390 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12391 /// i64 vector to have f64 elements, since the value can then be loaded
12392 /// directly into a VFP register.
12393 static bool hasNormalLoadOperand(SDNode
*N
) {
12394 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
12395 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12396 SDNode
*Elt
= N
->getOperand(i
).getNode();
12397 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
12403 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12404 /// ISD::BUILD_VECTOR.
12405 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
12406 TargetLowering::DAGCombinerInfo
&DCI
,
12407 const ARMSubtarget
*Subtarget
) {
12408 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12409 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12410 // into a pair of GPRs, which is fine when the value is used as a scalar,
12411 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12412 SelectionDAG
&DAG
= DCI
.DAG
;
12413 if (N
->getNumOperands() == 2)
12414 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
12417 // Load i64 elements as f64 values so that type legalization does not split
12418 // them up into i32 values.
12419 EVT VT
= N
->getValueType(0);
12420 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
12423 SmallVector
<SDValue
, 8> Ops
;
12424 unsigned NumElts
= VT
.getVectorNumElements();
12425 for (unsigned i
= 0; i
< NumElts
; ++i
) {
12426 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
12428 // Make the DAGCombiner fold the bitcast.
12429 DCI
.AddToWorklist(V
.getNode());
12431 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
12432 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
12433 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
12436 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12438 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12439 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12440 // At that time, we may have inserted bitcasts from integer to float.
12441 // If these bitcasts have survived DAGCombine, change the lowering of this
12442 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12443 // force to use floating point types.
12445 // Make sure we can change the type of the vector.
12446 // This is possible iff:
12447 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12448 // 1.1. Vector is used only once.
12449 // 1.2. Use is a bit convert to an integer type.
12450 // 2. The size of its operands are 32-bits (64-bits are not legal).
12451 EVT VT
= N
->getValueType(0);
12452 EVT EltVT
= VT
.getVectorElementType();
12454 // Check 1.1. and 2.
12455 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
12458 // By construction, the input type must be float.
12459 assert(EltVT
== MVT::f32
&& "Unexpected type!");
12462 SDNode
*Use
= *N
->use_begin();
12463 if (Use
->getOpcode() != ISD::BITCAST
||
12464 Use
->getValueType(0).isFloatingPoint())
12467 // Check profitability.
12468 // Model is, if more than half of the relevant operands are bitcast from
12469 // i32, turn the build_vector into a sequence of insert_vector_elt.
12470 // Relevant operands are everything that is not statically
12471 // (i.e., at compile time) bitcasted.
12472 unsigned NumOfBitCastedElts
= 0;
12473 unsigned NumElts
= VT
.getVectorNumElements();
12474 unsigned NumOfRelevantElts
= NumElts
;
12475 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
12476 SDValue Elt
= N
->getOperand(Idx
);
12477 if (Elt
->getOpcode() == ISD::BITCAST
) {
12478 // Assume only bit cast to i32 will go away.
12479 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
12480 ++NumOfBitCastedElts
;
12481 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
12482 // Constants are statically casted, thus do not count them as
12483 // relevant operands.
12484 --NumOfRelevantElts
;
12487 // Check if more than half of the elements require a non-free bitcast.
12488 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
12491 SelectionDAG
&DAG
= DCI
.DAG
;
12492 // Create the new vector type.
12493 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
12494 // Check if the type is legal.
12495 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12496 if (!TLI
.isTypeLegal(VecVT
))
12500 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12501 // => BITCAST INSERT_VECTOR_ELT
12502 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12503 // (BITCAST EN), N.
12504 SDValue Vec
= DAG
.getUNDEF(VecVT
);
12506 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
12507 SDValue V
= N
->getOperand(Idx
);
12510 if (V
.getOpcode() == ISD::BITCAST
&&
12511 V
->getOperand(0).getValueType() == MVT::i32
)
12512 // Fold obvious case.
12513 V
= V
.getOperand(0);
12515 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
12516 // Make the DAGCombiner fold the bitcasts.
12517 DCI
.AddToWorklist(V
.getNode());
12519 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
12520 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
12522 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
12523 // Make the DAGCombiner fold the bitcasts.
12524 DCI
.AddToWorklist(Vec
.getNode());
12528 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12529 /// ISD::INSERT_VECTOR_ELT.
12530 static SDValue
PerformInsertEltCombine(SDNode
*N
,
12531 TargetLowering::DAGCombinerInfo
&DCI
) {
12532 // Bitcast an i64 load inserted into a vector to f64.
12533 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12534 EVT VT
= N
->getValueType(0);
12535 SDNode
*Elt
= N
->getOperand(1).getNode();
12536 if (VT
.getVectorElementType() != MVT::i64
||
12537 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
12540 SelectionDAG
&DAG
= DCI
.DAG
;
12542 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
12543 VT
.getVectorNumElements());
12544 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
12545 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
12546 // Make the DAGCombiner fold the bitcasts.
12547 DCI
.AddToWorklist(Vec
.getNode());
12548 DCI
.AddToWorklist(V
.getNode());
12549 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
12550 Vec
, V
, N
->getOperand(2));
12551 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
12554 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12555 /// ISD::VECTOR_SHUFFLE.
12556 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
12557 // The LLVM shufflevector instruction does not require the shuffle mask
12558 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12559 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12560 // operands do not match the mask length, they are extended by concatenating
12561 // them with undef vectors. That is probably the right thing for other
12562 // targets, but for NEON it is better to concatenate two double-register
12563 // size vector operands into a single quad-register size vector. Do that
12564 // transformation here:
12565 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12566 // shuffle(concat(v1, v2), undef)
12567 SDValue Op0
= N
->getOperand(0);
12568 SDValue Op1
= N
->getOperand(1);
12569 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
12570 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
12571 Op0
.getNumOperands() != 2 ||
12572 Op1
.getNumOperands() != 2)
12574 SDValue Concat0Op1
= Op0
.getOperand(1);
12575 SDValue Concat1Op1
= Op1
.getOperand(1);
12576 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
12578 // Skip the transformation if any of the types are illegal.
12579 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12580 EVT VT
= N
->getValueType(0);
12581 if (!TLI
.isTypeLegal(VT
) ||
12582 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
12583 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
12586 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
12587 Op0
.getOperand(0), Op1
.getOperand(0));
12588 // Translate the shuffle mask.
12589 SmallVector
<int, 16> NewMask
;
12590 unsigned NumElts
= VT
.getVectorNumElements();
12591 unsigned HalfElts
= NumElts
/2;
12592 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
12593 for (unsigned n
= 0; n
< NumElts
; ++n
) {
12594 int MaskElt
= SVN
->getMaskElt(n
);
12596 if (MaskElt
< (int)HalfElts
)
12598 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
12599 NewElt
= HalfElts
+ MaskElt
- NumElts
;
12600 NewMask
.push_back(NewElt
);
12602 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
12603 DAG
.getUNDEF(VT
), NewMask
);
12606 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12607 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12608 /// base address updates.
12609 /// For generic load/stores, the memory type is assumed to be a vector.
12610 /// The caller is assumed to have checked legality.
12611 static SDValue
CombineBaseUpdate(SDNode
*N
,
12612 TargetLowering::DAGCombinerInfo
&DCI
) {
12613 SelectionDAG
&DAG
= DCI
.DAG
;
12614 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
12615 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
12616 const bool isStore
= N
->getOpcode() == ISD::STORE
;
12617 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
12618 SDValue Addr
= N
->getOperand(AddrOpIdx
);
12619 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
12622 // Search for a use of the address operand that is an increment.
12623 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
12624 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
12625 SDNode
*User
= *UI
;
12626 if (User
->getOpcode() != ISD::ADD
||
12627 UI
.getUse().getResNo() != Addr
.getResNo())
12630 // Check that the add is independent of the load/store. Otherwise, folding
12631 // it would create a cycle. We can avoid searching through Addr as it's a
12632 // predecessor to both.
12633 SmallPtrSet
<const SDNode
*, 32> Visited
;
12634 SmallVector
<const SDNode
*, 16> Worklist
;
12635 Visited
.insert(Addr
.getNode());
12636 Worklist
.push_back(N
);
12637 Worklist
.push_back(User
);
12638 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
12639 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
12642 // Find the new opcode for the updating load/store.
12643 bool isLoadOp
= true;
12644 bool isLaneOp
= false;
12645 unsigned NewOpc
= 0;
12646 unsigned NumVecs
= 0;
12648 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
12650 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12651 case Intrinsic::arm_neon_vld1
: NewOpc
= ARMISD::VLD1_UPD
;
12652 NumVecs
= 1; break;
12653 case Intrinsic::arm_neon_vld2
: NewOpc
= ARMISD::VLD2_UPD
;
12654 NumVecs
= 2; break;
12655 case Intrinsic::arm_neon_vld3
: NewOpc
= ARMISD::VLD3_UPD
;
12656 NumVecs
= 3; break;
12657 case Intrinsic::arm_neon_vld4
: NewOpc
= ARMISD::VLD4_UPD
;
12658 NumVecs
= 4; break;
12659 case Intrinsic::arm_neon_vld2dup
:
12660 case Intrinsic::arm_neon_vld3dup
:
12661 case Intrinsic::arm_neon_vld4dup
:
12662 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12663 // combining base updates for such intrinsics.
12665 case Intrinsic::arm_neon_vld2lane
: NewOpc
= ARMISD::VLD2LN_UPD
;
12666 NumVecs
= 2; isLaneOp
= true; break;
12667 case Intrinsic::arm_neon_vld3lane
: NewOpc
= ARMISD::VLD3LN_UPD
;
12668 NumVecs
= 3; isLaneOp
= true; break;
12669 case Intrinsic::arm_neon_vld4lane
: NewOpc
= ARMISD::VLD4LN_UPD
;
12670 NumVecs
= 4; isLaneOp
= true; break;
12671 case Intrinsic::arm_neon_vst1
: NewOpc
= ARMISD::VST1_UPD
;
12672 NumVecs
= 1; isLoadOp
= false; break;
12673 case Intrinsic::arm_neon_vst2
: NewOpc
= ARMISD::VST2_UPD
;
12674 NumVecs
= 2; isLoadOp
= false; break;
12675 case Intrinsic::arm_neon_vst3
: NewOpc
= ARMISD::VST3_UPD
;
12676 NumVecs
= 3; isLoadOp
= false; break;
12677 case Intrinsic::arm_neon_vst4
: NewOpc
= ARMISD::VST4_UPD
;
12678 NumVecs
= 4; isLoadOp
= false; break;
12679 case Intrinsic::arm_neon_vst2lane
: NewOpc
= ARMISD::VST2LN_UPD
;
12680 NumVecs
= 2; isLoadOp
= false; isLaneOp
= true; break;
12681 case Intrinsic::arm_neon_vst3lane
: NewOpc
= ARMISD::VST3LN_UPD
;
12682 NumVecs
= 3; isLoadOp
= false; isLaneOp
= true; break;
12683 case Intrinsic::arm_neon_vst4lane
: NewOpc
= ARMISD::VST4LN_UPD
;
12684 NumVecs
= 4; isLoadOp
= false; isLaneOp
= true; break;
12688 switch (N
->getOpcode()) {
12689 default: llvm_unreachable("unexpected opcode for Neon base update");
12690 case ARMISD::VLD1DUP
: NewOpc
= ARMISD::VLD1DUP_UPD
; NumVecs
= 1; break;
12691 case ARMISD::VLD2DUP
: NewOpc
= ARMISD::VLD2DUP_UPD
; NumVecs
= 2; break;
12692 case ARMISD::VLD3DUP
: NewOpc
= ARMISD::VLD3DUP_UPD
; NumVecs
= 3; break;
12693 case ARMISD::VLD4DUP
: NewOpc
= ARMISD::VLD4DUP_UPD
; NumVecs
= 4; break;
12694 case ISD::LOAD
: NewOpc
= ARMISD::VLD1_UPD
;
12695 NumVecs
= 1; isLaneOp
= false; break;
12696 case ISD::STORE
: NewOpc
= ARMISD::VST1_UPD
;
12697 NumVecs
= 1; isLaneOp
= false; isLoadOp
= false; break;
12701 // Find the size of memory referenced by the load/store.
12704 VecTy
= N
->getValueType(0);
12705 } else if (isIntrinsic
) {
12706 VecTy
= N
->getOperand(AddrOpIdx
+1).getValueType();
12708 assert(isStore
&& "Node has to be a load, a store, or an intrinsic!");
12709 VecTy
= N
->getOperand(1).getValueType();
12712 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
12714 NumBytes
/= VecTy
.getVectorNumElements();
12716 // If the increment is a constant, it must match the memory ref size.
12717 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
12718 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
12719 if (NumBytes
>= 3 * 16 && (!CInc
|| CInc
->getZExtValue() != NumBytes
)) {
12720 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12721 // separate instructions that make it harder to use a non-constant update.
12725 // OK, we found an ADD we can fold into the base update.
12726 // Now, create a _UPD node, taking care of not breaking alignment.
12728 EVT AlignedVecTy
= VecTy
;
12729 unsigned Alignment
= MemN
->getAlignment();
12731 // If this is a less-than-standard-aligned load/store, change the type to
12732 // match the standard alignment.
12733 // The alignment is overlooked when selecting _UPD variants; and it's
12734 // easier to introduce bitcasts here than fix that.
12735 // There are 3 ways to get to this base-update combine:
12736 // - intrinsics: they are assumed to be properly aligned (to the standard
12737 // alignment of the memory type), so we don't need to do anything.
12738 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12739 // intrinsics, so, likewise, there's nothing to do.
12740 // - generic load/store instructions: the alignment is specified as an
12741 // explicit operand, rather than implicitly as the standard alignment
12742 // of the memory type (like the intrisics). We need to change the
12743 // memory type to match the explicit alignment. That way, we don't
12744 // generate non-standard-aligned ARMISD::VLDx nodes.
12745 if (isa
<LSBaseSDNode
>(N
)) {
12746 if (Alignment
== 0)
12748 if (Alignment
< VecTy
.getScalarSizeInBits() / 8) {
12749 MVT EltTy
= MVT::getIntegerVT(Alignment
* 8);
12750 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
12751 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
12752 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
12753 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
12755 // Don't set an explicit alignment on regular load/stores that we want
12756 // to transform to VLD/VST 1_UPD nodes.
12757 // This matches the behavior of regular load/stores, which only get an
12758 // explicit alignment if the MMO alignment is larger than the standard
12759 // alignment of the memory type.
12760 // Intrinsics, however, always get an explicit alignment, set to the
12761 // alignment of the MMO.
12765 // Create the new updating load/store node.
12766 // First, create an SDVTList for the new updating node's results.
12768 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
12770 for (n
= 0; n
< NumResultVecs
; ++n
)
12771 Tys
[n
] = AlignedVecTy
;
12772 Tys
[n
++] = MVT::i32
;
12773 Tys
[n
] = MVT::Other
;
12774 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+2));
12776 // Then, gather the new node's operands.
12777 SmallVector
<SDValue
, 8> Ops
;
12778 Ops
.push_back(N
->getOperand(0)); // incoming chain
12779 Ops
.push_back(N
->getOperand(AddrOpIdx
));
12780 Ops
.push_back(Inc
);
12782 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
12783 // Try to match the intrinsic's signature
12784 Ops
.push_back(StN
->getValue());
12786 // Loads (and of course intrinsics) match the intrinsics' signature,
12787 // so just add all but the alignment operand.
12788 for (unsigned i
= AddrOpIdx
+ 1; i
< N
->getNumOperands() - 1; ++i
)
12789 Ops
.push_back(N
->getOperand(i
));
12792 // For all node types, the alignment operand is always the last one.
12793 Ops
.push_back(DAG
.getConstant(Alignment
, dl
, MVT::i32
));
12795 // If this is a non-standard-aligned STORE, the penultimate operand is the
12796 // stored value. Bitcast it to the aligned type.
12797 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
12798 SDValue
&StVal
= Ops
[Ops
.size()-2];
12799 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
12802 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
12803 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
12804 MemN
->getMemOperand());
12806 // Update the uses.
12807 SmallVector
<SDValue
, 5> NewResults
;
12808 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
12809 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
12811 // If this is an non-standard-aligned LOAD, the first result is the loaded
12812 // value. Bitcast it to the expected result type.
12813 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
12814 SDValue
&LdVal
= NewResults
[0];
12815 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
12818 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+1)); // chain
12819 DCI
.CombineTo(N
, NewResults
);
12820 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
12827 static SDValue
PerformVLDCombine(SDNode
*N
,
12828 TargetLowering::DAGCombinerInfo
&DCI
) {
12829 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
12832 return CombineBaseUpdate(N
, DCI
);
12835 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12836 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12837 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12839 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
12840 SelectionDAG
&DAG
= DCI
.DAG
;
12841 EVT VT
= N
->getValueType(0);
12842 // vldN-dup instructions only support 64-bit vectors for N > 1.
12843 if (!VT
.is64BitVector())
12846 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12847 SDNode
*VLD
= N
->getOperand(0).getNode();
12848 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
12850 unsigned NumVecs
= 0;
12851 unsigned NewOpc
= 0;
12852 unsigned IntNo
= cast
<ConstantSDNode
>(VLD
->getOperand(1))->getZExtValue();
12853 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
12855 NewOpc
= ARMISD::VLD2DUP
;
12856 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
12858 NewOpc
= ARMISD::VLD3DUP
;
12859 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
12861 NewOpc
= ARMISD::VLD4DUP
;
12866 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12867 // numbers match the load.
12868 unsigned VLDLaneNo
=
12869 cast
<ConstantSDNode
>(VLD
->getOperand(NumVecs
+3))->getZExtValue();
12870 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12872 // Ignore uses of the chain result.
12873 if (UI
.getUse().getResNo() == NumVecs
)
12875 SDNode
*User
= *UI
;
12876 if (User
->getOpcode() != ARMISD::VDUPLANE
||
12877 VLDLaneNo
!= cast
<ConstantSDNode
>(User
->getOperand(1))->getZExtValue())
12881 // Create the vldN-dup node.
12884 for (n
= 0; n
< NumVecs
; ++n
)
12886 Tys
[n
] = MVT::Other
;
12887 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumVecs
+1));
12888 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
12889 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
12890 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
12891 Ops
, VLDMemInt
->getMemoryVT(),
12892 VLDMemInt
->getMemOperand());
12894 // Update the uses.
12895 for (SDNode::use_iterator UI
= VLD
->use_begin(), UE
= VLD
->use_end();
12897 unsigned ResNo
= UI
.getUse().getResNo();
12898 // Ignore uses of the chain result.
12899 if (ResNo
== NumVecs
)
12901 SDNode
*User
= *UI
;
12902 DCI
.CombineTo(User
, SDValue(VLDDup
.getNode(), ResNo
));
12905 // Now the vldN-lane intrinsic is dead except for its chain result.
12906 // Update uses of the chain.
12907 std::vector
<SDValue
> VLDDupResults
;
12908 for (unsigned n
= 0; n
< NumVecs
; ++n
)
12909 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
12910 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
12911 DCI
.CombineTo(VLD
, VLDDupResults
);
12916 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12917 /// ARMISD::VDUPLANE.
12918 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
12919 TargetLowering::DAGCombinerInfo
&DCI
) {
12920 SDValue Op
= N
->getOperand(0);
12922 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12923 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12924 if (CombineVLDDUP(N
, DCI
))
12925 return SDValue(N
, 0);
12927 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12928 // redundant. Ignore bit_converts for now; element sizes are checked below.
12929 while (Op
.getOpcode() == ISD::BITCAST
)
12930 Op
= Op
.getOperand(0);
12931 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
12934 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
12935 unsigned EltSize
= Op
.getScalarValueSizeInBits();
12936 // The canonical VMOV for a zero vector uses a 32-bit element size.
12937 unsigned Imm
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
12939 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
12941 EVT VT
= N
->getValueType(0);
12942 if (EltSize
> VT
.getScalarSizeInBits())
12945 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
12948 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
12949 static SDValue
PerformVDUPCombine(SDNode
*N
,
12950 TargetLowering::DAGCombinerInfo
&DCI
,
12951 const ARMSubtarget
*Subtarget
) {
12952 SelectionDAG
&DAG
= DCI
.DAG
;
12953 SDValue Op
= N
->getOperand(0);
12955 if (!Subtarget
->hasNEON())
12958 // Match VDUP(LOAD) -> VLD1DUP.
12959 // We match this pattern here rather than waiting for isel because the
12960 // transform is only legal for unindexed loads.
12961 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
12962 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
12963 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
12964 SDValue Ops
[] = { LD
->getOperand(0), LD
->getOperand(1),
12965 DAG
.getConstant(LD
->getAlignment(), SDLoc(N
), MVT::i32
) };
12966 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
12967 SDValue VLDDup
= DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
,
12968 Ops
, LD
->getMemoryVT(),
12969 LD
->getMemOperand());
12970 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
12977 static SDValue
PerformLOADCombine(SDNode
*N
,
12978 TargetLowering::DAGCombinerInfo
&DCI
) {
12979 EVT VT
= N
->getValueType(0);
12981 // If this is a legal vector load, try to combine it into a VLD1_UPD.
12982 if (ISD::isNormalLoad(N
) && VT
.isVector() &&
12983 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
12984 return CombineBaseUpdate(N
, DCI
);
12989 /// PerformSTORECombine - Target-specific dag combine xforms for
12991 static SDValue
PerformSTORECombine(SDNode
*N
,
12992 TargetLowering::DAGCombinerInfo
&DCI
) {
12993 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
12994 if (St
->isVolatile())
12997 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
12998 // pack all of the elements in one place. Next, store to memory in fewer
13000 SDValue StVal
= St
->getValue();
13001 EVT VT
= StVal
.getValueType();
13002 if (St
->isTruncatingStore() && VT
.isVector()) {
13003 SelectionDAG
&DAG
= DCI
.DAG
;
13004 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13005 EVT StVT
= St
->getMemoryVT();
13006 unsigned NumElems
= VT
.getVectorNumElements();
13007 assert(StVT
!= VT
&& "Cannot truncate to the same type");
13008 unsigned FromEltSz
= VT
.getScalarSizeInBits();
13009 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
13011 // From, To sizes and ElemCount must be pow of two
13012 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
)) return SDValue();
13014 // We are going to use the original vector elt for storing.
13015 // Accumulated smaller vector elements must be a multiple of the store size.
13016 if (0 != (NumElems
* FromEltSz
) % ToEltSz
) return SDValue();
13018 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
13019 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
13021 // Create a type on which we perform the shuffle.
13022 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
13023 NumElems
*SizeRatio
);
13024 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
13027 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
13028 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
13029 for (unsigned i
= 0; i
< NumElems
; ++i
)
13030 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian()
13031 ? (i
+ 1) * SizeRatio
- 1
13034 // Can't shuffle using an illegal type.
13035 if (!TLI
.isTypeLegal(WideVecVT
)) return SDValue();
13037 SDValue Shuff
= DAG
.getVectorShuffle(WideVecVT
, DL
, WideVec
,
13038 DAG
.getUNDEF(WideVec
.getValueType()),
13040 // At this point all of the data is stored at the bottom of the
13041 // register. We now need to save it to mem.
13043 // Find the largest store unit
13044 MVT StoreType
= MVT::i8
;
13045 for (MVT Tp
: MVT::integer_valuetypes()) {
13046 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
13049 // Didn't find a legal store type.
13050 if (!TLI
.isTypeLegal(StoreType
))
13053 // Bitcast the original vector into a vector of store-size units
13054 EVT StoreVecVT
= EVT::getVectorVT(*DAG
.getContext(),
13055 StoreType
, VT
.getSizeInBits()/EVT(StoreType
).getSizeInBits());
13056 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
13057 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
13058 SmallVector
<SDValue
, 8> Chains
;
13059 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
13060 TLI
.getPointerTy(DAG
.getDataLayout()));
13061 SDValue BasePtr
= St
->getBasePtr();
13063 // Perform one or more big stores into memory.
13064 unsigned E
= (ToEltSz
*NumElems
)/StoreType
.getSizeInBits();
13065 for (unsigned I
= 0; I
< E
; I
++) {
13066 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
13067 StoreType
, ShuffWide
,
13068 DAG
.getIntPtrConstant(I
, DL
));
13069 SDValue Ch
= DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
,
13070 St
->getPointerInfo(), St
->getAlignment(),
13071 St
->getMemOperand()->getFlags());
13072 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
13074 Chains
.push_back(Ch
);
13076 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
13079 if (!ISD::isNormalStore(St
))
13082 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
13083 // ARM stores of arguments in the same cache line.
13084 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
13085 StVal
.getNode()->hasOneUse()) {
13086 SelectionDAG
&DAG
= DCI
.DAG
;
13087 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
13089 SDValue BasePtr
= St
->getBasePtr();
13090 SDValue NewST1
= DAG
.getStore(
13091 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
13092 BasePtr
, St
->getPointerInfo(), St
->getAlignment(),
13093 St
->getMemOperand()->getFlags());
13095 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
13096 DAG
.getConstant(4, DL
, MVT::i32
));
13097 return DAG
.getStore(NewST1
.getValue(0), DL
,
13098 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
13099 OffsetPtr
, St
->getPointerInfo(),
13100 std::min(4U, St
->getAlignment() / 2),
13101 St
->getMemOperand()->getFlags());
13104 if (StVal
.getValueType() == MVT::i64
&&
13105 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13107 // Bitcast an i64 store extracted from a vector to f64.
13108 // Otherwise, the i64 value will be legalized to a pair of i32 values.
13109 SelectionDAG
&DAG
= DCI
.DAG
;
13111 SDValue IntVec
= StVal
.getOperand(0);
13112 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
13113 IntVec
.getValueType().getVectorNumElements());
13114 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
13115 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
13116 Vec
, StVal
.getOperand(1));
13118 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
13119 // Make the DAGCombiner fold the bitcasts.
13120 DCI
.AddToWorklist(Vec
.getNode());
13121 DCI
.AddToWorklist(ExtElt
.getNode());
13122 DCI
.AddToWorklist(V
.getNode());
13123 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
13124 St
->getPointerInfo(), St
->getAlignment(),
13125 St
->getMemOperand()->getFlags(), St
->getAAInfo());
13128 // If this is a legal vector store, try to combine it into a VST1_UPD.
13129 if (ISD::isNormalStore(N
) && VT
.isVector() &&
13130 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13131 return CombineBaseUpdate(N
, DCI
);
13136 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13137 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13138 /// when the VMUL has a constant operand that is a power of 2.
13140 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13141 /// vmul.f32 d16, d17, d16
13142 /// vcvt.s32.f32 d16, d16
13144 /// vcvt.s32.f32 d16, d16, #3
13145 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
13146 const ARMSubtarget
*Subtarget
) {
13147 if (!Subtarget
->hasNEON())
13150 SDValue Op
= N
->getOperand(0);
13151 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
13152 Op
.getOpcode() != ISD::FMUL
)
13155 SDValue ConstVec
= Op
->getOperand(1);
13156 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13159 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
13160 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13161 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
13162 uint32_t IntBits
= IntTy
.getSizeInBits();
13163 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13164 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13165 // These instructions only exist converting from f32 to i32. We can handle
13166 // smaller integers by generating an extra truncate, but larger ones would
13167 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13168 // these intructions only support v2i32/v4i32 types.
13172 BitVector UndefElements
;
13173 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13174 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13175 if (C
== -1 || C
== 0 || C
> 32)
13179 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
13180 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
13181 Intrinsic::arm_neon_vcvtfp2fxu
;
13182 SDValue FixConv
= DAG
.getNode(
13183 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13184 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
13185 DAG
.getConstant(C
, dl
, MVT::i32
));
13187 if (IntBits
< FloatBits
)
13188 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
13193 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13194 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13195 /// when the VDIV has a constant operand that is a power of 2.
13197 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13198 /// vcvt.f32.s32 d16, d16
13199 /// vdiv.f32 d16, d17, d16
13201 /// vcvt.f32.s32 d16, d16, #3
13202 static SDValue
PerformVDIVCombine(SDNode
*N
, SelectionDAG
&DAG
,
13203 const ARMSubtarget
*Subtarget
) {
13204 if (!Subtarget
->hasNEON())
13207 SDValue Op
= N
->getOperand(0);
13208 unsigned OpOpcode
= Op
.getNode()->getOpcode();
13209 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
13210 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
13213 SDValue ConstVec
= N
->getOperand(1);
13214 if (!isa
<BuildVectorSDNode
>(ConstVec
))
13217 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
13218 uint32_t FloatBits
= FloatTy
.getSizeInBits();
13219 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
13220 uint32_t IntBits
= IntTy
.getSizeInBits();
13221 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
13222 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
13223 // These instructions only exist converting from i32 to f32. We can handle
13224 // smaller integers by generating an extra extend, but larger ones would
13225 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13226 // these intructions only support v2i32/v4i32 types.
13230 BitVector UndefElements
;
13231 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
13232 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
13233 if (C
== -1 || C
== 0 || C
> 32)
13237 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
13238 SDValue ConvInput
= Op
.getOperand(0);
13239 if (IntBits
< FloatBits
)
13240 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
13241 dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
13244 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
:
13245 Intrinsic::arm_neon_vcvtfxu2fp
;
13246 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
,
13248 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
),
13249 ConvInput
, DAG
.getConstant(C
, dl
, MVT::i32
));
13252 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13253 static SDValue
PerformIntrinsicCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13254 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13257 // Don't do anything for most intrinsics.
13260 // Vector shifts: check for immediate versions and lower them.
13261 // Note: This is done during DAG combining instead of DAG legalizing because
13262 // the build_vectors for 64-bit vector element shift counts are generally
13263 // not legal, and it is hard to see their values after they get legalized to
13264 // loads from a constant pool.
13265 case Intrinsic::arm_neon_vshifts
:
13266 case Intrinsic::arm_neon_vshiftu
:
13267 case Intrinsic::arm_neon_vrshifts
:
13268 case Intrinsic::arm_neon_vrshiftu
:
13269 case Intrinsic::arm_neon_vrshiftn
:
13270 case Intrinsic::arm_neon_vqshifts
:
13271 case Intrinsic::arm_neon_vqshiftu
:
13272 case Intrinsic::arm_neon_vqshiftsu
:
13273 case Intrinsic::arm_neon_vqshiftns
:
13274 case Intrinsic::arm_neon_vqshiftnu
:
13275 case Intrinsic::arm_neon_vqshiftnsu
:
13276 case Intrinsic::arm_neon_vqrshiftns
:
13277 case Intrinsic::arm_neon_vqrshiftnu
:
13278 case Intrinsic::arm_neon_vqrshiftnsu
: {
13279 EVT VT
= N
->getOperand(1).getValueType();
13281 unsigned VShiftOpc
= 0;
13284 case Intrinsic::arm_neon_vshifts
:
13285 case Intrinsic::arm_neon_vshiftu
:
13286 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
13287 VShiftOpc
= ARMISD::VSHLIMM
;
13290 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
13291 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
13292 : ARMISD::VSHRuIMM
);
13297 case Intrinsic::arm_neon_vrshifts
:
13298 case Intrinsic::arm_neon_vrshiftu
:
13299 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
13303 case Intrinsic::arm_neon_vqshifts
:
13304 case Intrinsic::arm_neon_vqshiftu
:
13305 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13309 case Intrinsic::arm_neon_vqshiftsu
:
13310 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
13312 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13314 case Intrinsic::arm_neon_vrshiftn
:
13315 case Intrinsic::arm_neon_vqshiftns
:
13316 case Intrinsic::arm_neon_vqshiftnu
:
13317 case Intrinsic::arm_neon_vqshiftnsu
:
13318 case Intrinsic::arm_neon_vqrshiftns
:
13319 case Intrinsic::arm_neon_vqrshiftnu
:
13320 case Intrinsic::arm_neon_vqrshiftnsu
:
13321 // Narrowing shifts require an immediate right shift.
13322 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
13324 llvm_unreachable("invalid shift count for narrowing vector shift "
13328 llvm_unreachable("unhandled vector shift");
13332 case Intrinsic::arm_neon_vshifts
:
13333 case Intrinsic::arm_neon_vshiftu
:
13334 // Opcode already set above.
13336 case Intrinsic::arm_neon_vrshifts
:
13337 VShiftOpc
= ARMISD::VRSHRsIMM
;
13339 case Intrinsic::arm_neon_vrshiftu
:
13340 VShiftOpc
= ARMISD::VRSHRuIMM
;
13342 case Intrinsic::arm_neon_vrshiftn
:
13343 VShiftOpc
= ARMISD::VRSHRNIMM
;
13345 case Intrinsic::arm_neon_vqshifts
:
13346 VShiftOpc
= ARMISD::VQSHLsIMM
;
13348 case Intrinsic::arm_neon_vqshiftu
:
13349 VShiftOpc
= ARMISD::VQSHLuIMM
;
13351 case Intrinsic::arm_neon_vqshiftsu
:
13352 VShiftOpc
= ARMISD::VQSHLsuIMM
;
13354 case Intrinsic::arm_neon_vqshiftns
:
13355 VShiftOpc
= ARMISD::VQSHRNsIMM
;
13357 case Intrinsic::arm_neon_vqshiftnu
:
13358 VShiftOpc
= ARMISD::VQSHRNuIMM
;
13360 case Intrinsic::arm_neon_vqshiftnsu
:
13361 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
13363 case Intrinsic::arm_neon_vqrshiftns
:
13364 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
13366 case Intrinsic::arm_neon_vqrshiftnu
:
13367 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
13369 case Intrinsic::arm_neon_vqrshiftnsu
:
13370 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
13375 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13376 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13379 case Intrinsic::arm_neon_vshiftins
: {
13380 EVT VT
= N
->getOperand(1).getValueType();
13382 unsigned VShiftOpc
= 0;
13384 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
13385 VShiftOpc
= ARMISD::VSLIIMM
;
13386 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
13387 VShiftOpc
= ARMISD::VSRIIMM
;
13389 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13393 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
13394 N
->getOperand(1), N
->getOperand(2),
13395 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13398 case Intrinsic::arm_neon_vqrshifts
:
13399 case Intrinsic::arm_neon_vqrshiftu
:
13400 // No immediate versions of these to check for.
13407 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13408 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13409 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13410 /// vector element shift counts are generally not legal, and it is hard to see
13411 /// their values after they get legalized to loads from a constant pool.
13412 static SDValue
PerformShiftCombine(SDNode
*N
,
13413 TargetLowering::DAGCombinerInfo
&DCI
,
13414 const ARMSubtarget
*ST
) {
13415 SelectionDAG
&DAG
= DCI
.DAG
;
13416 EVT VT
= N
->getValueType(0);
13417 if (N
->getOpcode() == ISD::SRL
&& VT
== MVT::i32
&& ST
->hasV6Ops()) {
13418 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13419 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13420 SDValue N1
= N
->getOperand(1);
13421 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
13422 SDValue N0
= N
->getOperand(0);
13423 if (C
->getZExtValue() == 16 && N0
.getOpcode() == ISD::BSWAP
&&
13424 DAG
.MaskedValueIsZero(N0
.getOperand(0),
13425 APInt::getHighBitsSet(32, 16)))
13426 return DAG
.getNode(ISD::ROTR
, SDLoc(N
), VT
, N0
, N1
);
13430 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
13431 N
->getOperand(0)->getOpcode() == ISD::AND
&&
13432 N
->getOperand(0)->hasOneUse()) {
13433 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
13435 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13436 // usually show up because instcombine prefers to canonicalize it to
13437 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13438 // out of GEP lowering in some cases.
13439 SDValue N0
= N
->getOperand(0);
13440 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13443 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
13444 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
13447 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
13448 // Don't transform uxtb/uxth.
13449 if (AndMask
== 255 || AndMask
== 65535)
13451 if (isMask_32(AndMask
)) {
13452 uint32_t MaskedBits
= countLeadingZeros(AndMask
);
13453 if (MaskedBits
> ShiftAmt
) {
13455 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
13456 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
13457 return DAG
.getNode(
13458 ISD::SRL
, DL
, MVT::i32
, SHL
,
13459 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
13464 // Nothing to be done for scalar shifts.
13465 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13466 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
13468 if (ST
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
13473 switch (N
->getOpcode()) {
13474 default: llvm_unreachable("unexpected shift opcode");
13477 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
13479 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
13480 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13486 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
13487 unsigned VShiftOpc
=
13488 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
13490 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
13491 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
13497 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13498 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13499 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
13500 const ARMSubtarget
*ST
) {
13501 SDValue N0
= N
->getOperand(0);
13503 // Check for sign- and zero-extensions of vector extract operations of 8-
13504 // and 16-bit vector elements. NEON supports these directly. They are
13505 // handled during DAG combining because type legalization will promote them
13506 // to 32-bit types and it is messy to recognize the operations after that.
13507 if (ST
->hasNEON() && N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
13508 SDValue Vec
= N0
.getOperand(0);
13509 SDValue Lane
= N0
.getOperand(1);
13510 EVT VT
= N
->getValueType(0);
13511 EVT EltVT
= N0
.getValueType();
13512 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
13514 if (VT
== MVT::i32
&&
13515 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
13516 TLI
.isTypeLegal(Vec
.getValueType()) &&
13517 isa
<ConstantSDNode
>(Lane
)) {
13520 switch (N
->getOpcode()) {
13521 default: llvm_unreachable("unexpected opcode");
13522 case ISD::SIGN_EXTEND
:
13523 Opc
= ARMISD::VGETLANEs
;
13525 case ISD::ZERO_EXTEND
:
13526 case ISD::ANY_EXTEND
:
13527 Opc
= ARMISD::VGETLANEu
;
13530 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
13537 static const APInt
*isPowerOf2Constant(SDValue V
) {
13538 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
13541 const APInt
*CV
= &C
->getAPIntValue();
13542 return CV
->isPowerOf2() ? CV
: nullptr;
13545 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
13546 // If we have a CMOV, OR and AND combination such as:
13551 // * CN is a single bit;
13552 // * All bits covered by CM are known zero in y
13554 // Then we can convert this into a sequence of BFI instructions. This will
13555 // always be a win if CM is a single bit, will always be no worse than the
13556 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13557 // three bits (due to the extra IT instruction).
13559 SDValue Op0
= CMOV
->getOperand(0);
13560 SDValue Op1
= CMOV
->getOperand(1);
13561 auto CCNode
= cast
<ConstantSDNode
>(CMOV
->getOperand(2));
13562 auto CC
= CCNode
->getAPIntValue().getLimitedValue();
13563 SDValue CmpZ
= CMOV
->getOperand(4);
13565 // The compare must be against zero.
13566 if (!isNullConstant(CmpZ
->getOperand(1)))
13569 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
13570 SDValue And
= CmpZ
->getOperand(0);
13571 if (And
->getOpcode() != ISD::AND
)
13573 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
13576 SDValue X
= And
->getOperand(0);
13578 if (CC
== ARMCC::EQ
) {
13579 // We're performing an "equal to zero" compare. Swap the operands so we
13580 // canonicalize on a "not equal to zero" compare.
13581 std::swap(Op0
, Op1
);
13583 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
13586 if (Op1
->getOpcode() != ISD::OR
)
13589 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
13592 SDValue Y
= Op1
->getOperand(0);
13597 // Now, is it profitable to continue?
13598 APInt OrCI
= OrC
->getAPIntValue();
13599 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
13600 if (OrCI
.countPopulation() > Heuristic
)
13603 // Lastly, can we determine that the bits defined by OrCI
13605 KnownBits Known
= DAG
.computeKnownBits(Y
);
13606 if ((OrCI
& Known
.Zero
) != OrCI
)
13609 // OK, we can do the combine.
13612 EVT VT
= X
.getValueType();
13613 unsigned BitInX
= AndC
->logBase2();
13616 // We must shift X first.
13617 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
13618 DAG
.getConstant(BitInX
, dl
, VT
));
13621 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
13622 BitInY
< NumActiveBits
; ++BitInY
) {
13623 if (OrCI
[BitInY
] == 0)
13625 APInt
Mask(VT
.getSizeInBits(), 0);
13626 Mask
.setBit(BitInY
);
13627 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
13628 // Confusingly, the operand is an *inverted* mask.
13629 DAG
.getConstant(~Mask
, dl
, VT
));
13635 // Given N, the value controlling the conditional branch, search for the loop
13636 // intrinsic, returning it, along with how the value is used. We need to handle
13637 // patterns such as the following:
13638 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13639 // (brcond (setcc (loop.decrement), 0, eq), exit)
13640 // (brcond (setcc (loop.decrement), 0, ne), header)
13641 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
13643 switch (N
->getOpcode()) {
13647 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
13649 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
13652 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
13655 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
13658 if (Const
->isNullValue())
13660 else if (Const
->isOne())
13664 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
13665 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
13667 case ISD::INTRINSIC_W_CHAIN
: {
13668 unsigned IntOp
= cast
<ConstantSDNode
>(N
.getOperand(1))->getZExtValue();
13669 if (IntOp
!= Intrinsic::test_set_loop_iterations
&&
13670 IntOp
!= Intrinsic::loop_decrement_reg
)
13678 static SDValue
PerformHWLoopCombine(SDNode
*N
,
13679 TargetLowering::DAGCombinerInfo
&DCI
,
13680 const ARMSubtarget
*ST
) {
13682 // The hwloop intrinsics that we're interested are used for control-flow,
13683 // either for entering or exiting the loop:
13684 // - test.set.loop.iterations will test whether its operand is zero. If it
13685 // is zero, the proceeding branch should not enter the loop.
13686 // - loop.decrement.reg also tests whether its operand is zero. If it is
13687 // zero, the proceeding branch should not branch back to the beginning of
13689 // So here, we need to check that how the brcond is using the result of each
13690 // of the intrinsics to ensure that we're branching to the right place at the
13696 bool Negate
= false;
13697 SDValue Chain
= N
->getOperand(0);
13700 if (N
->getOpcode() == ISD::BRCOND
) {
13702 Cond
= N
->getOperand(1);
13703 Dest
= N
->getOperand(2);
13705 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
13706 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
13707 Cond
= N
->getOperand(2);
13708 Dest
= N
->getOperand(4);
13709 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
13710 if (!Const
->isOne() && !Const
->isNullValue())
13712 Imm
= Const
->getZExtValue();
13717 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
13722 CC
= ISD::getSetCCInverse(CC
, true);
13724 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
13725 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
13726 (CC
== ISD::SETNE
&& Imm
== 1) ||
13727 (CC
== ISD::SETLT
&& Imm
== 1) ||
13728 (CC
== ISD::SETULT
&& Imm
== 1);
13731 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
13732 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
13733 (CC
== ISD::SETNE
&& Imm
== 0) ||
13734 (CC
== ISD::SETGT
&& Imm
== 0) ||
13735 (CC
== ISD::SETUGT
&& Imm
== 0) ||
13736 (CC
== ISD::SETGE
&& Imm
== 1) ||
13737 (CC
== ISD::SETUGE
&& Imm
== 1);
13740 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
13741 "unsupported condition");
13744 SelectionDAG
&DAG
= DCI
.DAG
;
13745 SDValue Elements
= Int
.getOperand(2);
13746 unsigned IntOp
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
13747 assert((N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BR
)
13748 && "expected single br user");
13749 SDNode
*Br
= *N
->use_begin();
13750 SDValue OtherTarget
= Br
->getOperand(1);
13752 // Update the unconditional branch to branch to the given Dest.
13753 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
13754 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
13755 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
13756 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
13759 if (IntOp
== Intrinsic::test_set_loop_iterations
) {
13761 // We expect this 'instruction' to branch when the counter is zero.
13762 if (IsTrueIfZero(CC
, Imm
)) {
13763 SDValue Ops
[] = { Chain
, Elements
, Dest
};
13764 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13766 // The logic is the reverse of what we need for WLS, so find the other
13767 // basic block target: the target of the proceeding br.
13768 UpdateUncondBr(Br
, Dest
, DAG
);
13770 SDValue Ops
[] = { Chain
, Elements
, OtherTarget
};
13771 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
13773 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(1), Int
.getOperand(0));
13776 SDValue Size
= DAG
.getTargetConstant(
13777 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
, MVT::i32
);
13778 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
13779 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
13780 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
13781 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
13783 // We expect this instruction to branch when the count is not zero.
13784 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
13786 // Update the unconditional branch to target the loop preheader if we've
13787 // found the condition has been reversed.
13788 if (Target
== OtherTarget
)
13789 UpdateUncondBr(Br
, Dest
, DAG
);
13791 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
13792 SDValue(LoopDec
.getNode(), 1), Chain
);
13794 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
13795 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
13800 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
13802 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13803 SDValue Cmp
= N
->getOperand(4);
13804 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13805 // Only looking at NE cases.
13808 EVT VT
= N
->getValueType(0);
13810 SDValue LHS
= Cmp
.getOperand(0);
13811 SDValue RHS
= Cmp
.getOperand(1);
13812 SDValue Chain
= N
->getOperand(0);
13813 SDValue BB
= N
->getOperand(1);
13814 SDValue ARMcc
= N
->getOperand(2);
13815 ARMCC::CondCodes CC
=
13816 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13818 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13819 // -> (brcond Chain BB CC CPSR Cmp)
13820 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
13821 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
13822 LHS
->getOperand(0)->hasOneUse()) {
13823 auto *LHS00C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(0));
13824 auto *LHS01C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0)->getOperand(1));
13825 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13826 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13827 if ((LHS00C
&& LHS00C
->getZExtValue() == 0) &&
13828 (LHS01C
&& LHS01C
->getZExtValue() == 1) &&
13829 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13830 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13831 return DAG
.getNode(
13832 ARMISD::BRCOND
, dl
, VT
, Chain
, BB
, LHS
->getOperand(0)->getOperand(2),
13833 LHS
->getOperand(0)->getOperand(3), LHS
->getOperand(0)->getOperand(4));
13840 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13842 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
13843 SDValue Cmp
= N
->getOperand(4);
13844 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
13845 // Only looking at EQ and NE cases.
13848 EVT VT
= N
->getValueType(0);
13850 SDValue LHS
= Cmp
.getOperand(0);
13851 SDValue RHS
= Cmp
.getOperand(1);
13852 SDValue FalseVal
= N
->getOperand(0);
13853 SDValue TrueVal
= N
->getOperand(1);
13854 SDValue ARMcc
= N
->getOperand(2);
13855 ARMCC::CondCodes CC
=
13856 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
13858 // BFI is only available on V6T2+.
13859 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
13860 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
13881 /// FIXME: Turn this into a target neutral optimization?
13883 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
13884 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
,
13885 N
->getOperand(3), Cmp
);
13886 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
13888 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
13889 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
,
13890 N
->getOperand(3), NewCmp
);
13893 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13894 // -> (cmov F T CC CPSR Cmp)
13895 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse()) {
13896 auto *LHS0C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(0));
13897 auto *LHS1C
= dyn_cast
<ConstantSDNode
>(LHS
->getOperand(1));
13898 auto *RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
13899 if ((LHS0C
&& LHS0C
->getZExtValue() == 0) &&
13900 (LHS1C
&& LHS1C
->getZExtValue() == 1) &&
13901 (RHSC
&& RHSC
->getZExtValue() == 0)) {
13902 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
13903 LHS
->getOperand(2), LHS
->getOperand(3),
13904 LHS
->getOperand(4));
13908 if (!VT
.isInteger())
13911 // Materialize a boolean comparison for integers so we can avoid branching.
13912 if (isNullConstant(FalseVal
)) {
13913 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
13914 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
13915 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13916 // right 5 bits will make that 32 be 1, otherwise it will be 0.
13917 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13918 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13919 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
13920 DAG
.getConstant(5, dl
, MVT::i32
));
13922 // CMOV 0, 1, ==, (CMPZ x, y) ->
13923 // (ADDCARRY (SUB x, y), t:0, t:1)
13924 // where t = (SUBCARRY 0, (SUB x, y), 0)
13926 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13927 // x != y. In other words, a carry C == 1 when x == y, C == 0
13929 // The final ADDCARRY computes
13930 // x - y + (0 - (x - y)) + C == C
13931 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
13932 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13933 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
13934 // ISD::SUBCARRY returns a borrow but we want the carry here
13937 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
13938 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
13939 Res
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
13941 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
13942 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
13943 // This seems pointless but will allow us to combine it further below.
13944 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13946 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13947 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13948 Sub
.getValue(1), SDValue());
13949 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
13950 N
->getOperand(3), CPSRGlue
.getValue(1));
13953 } else if (isNullConstant(TrueVal
)) {
13954 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
13955 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
13956 // This seems pointless but will allow us to combine it further below
13957 // Note that we change == for != as this is the dual for the case above.
13958 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13960 DAG
.getNode(ARMISD::SUBS
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
13961 SDValue CPSRGlue
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, ARM::CPSR
,
13962 Sub
.getValue(1), SDValue());
13963 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
13964 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
13965 N
->getOperand(3), CPSRGlue
.getValue(1));
13970 // On Thumb1, the DAG above may be further combined if z is a power of 2
13972 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
13973 // t1 = (USUBO (SUB x, y), 1)
13974 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
13975 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13977 // This also handles the special case of comparing against zero; it's
13978 // essentially, the same pattern, except there's no SUBS:
13979 // CMOV x, z, !=, (CMPZ x, 0) ->
13980 // t1 = (USUBO x, 1)
13981 // t2 = (SUBCARRY x, t1:0, t1:1)
13982 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13983 const APInt
*TrueConst
;
13984 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
13985 ((FalseVal
.getOpcode() == ARMISD::SUBS
&&
13986 FalseVal
.getOperand(0) == LHS
&& FalseVal
.getOperand(1) == RHS
) ||
13987 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
13988 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
13989 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
13990 unsigned ShiftAmount
= TrueConst
->logBase2();
13992 TrueVal
= DAG
.getConstant(1, dl
, VT
);
13993 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
13994 Res
= DAG
.getNode(ISD::SUBCARRY
, dl
, VTs
, FalseVal
, Subc
, Subc
.getValue(1));
13997 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
13998 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
14001 if (Res
.getNode()) {
14002 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
14003 // Capture demanded bits information that would be otherwise lost.
14004 if (Known
.Zero
== 0xfffffffe)
14005 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14006 DAG
.getValueType(MVT::i1
));
14007 else if (Known
.Zero
== 0xffffff00)
14008 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14009 DAG
.getValueType(MVT::i8
));
14010 else if (Known
.Zero
== 0xffff0000)
14011 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
14012 DAG
.getValueType(MVT::i16
));
14018 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
14019 DAGCombinerInfo
&DCI
) const {
14020 switch (N
->getOpcode()) {
14022 case ISD::ABS
: return PerformABSCombine(N
, DCI
, Subtarget
);
14023 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
14024 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
14025 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
14026 case ISD::SUB
: return PerformSUBCombine(N
, DCI
);
14027 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
14028 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
14029 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
14030 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
14032 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
14034 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
14035 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
14036 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
);
14037 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
14038 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
14039 case ISD::STORE
: return PerformSTORECombine(N
, DCI
);
14040 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
14041 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
14042 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
14043 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
);
14044 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
, Subtarget
);
14045 case ISD::FP_TO_SINT
:
14046 case ISD::FP_TO_UINT
:
14047 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
14049 return PerformVDIVCombine(N
, DCI
.DAG
, Subtarget
);
14050 case ISD::INTRINSIC_WO_CHAIN
: return PerformIntrinsicCombine(N
, DCI
.DAG
);
14054 return PerformShiftCombine(N
, DCI
, Subtarget
);
14055 case ISD::SIGN_EXTEND
:
14056 case ISD::ZERO_EXTEND
:
14057 case ISD::ANY_EXTEND
: return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
14058 case ARMISD::CMOV
: return PerformCMOVCombine(N
, DCI
.DAG
);
14059 case ARMISD::BRCOND
: return PerformBRCONDCombine(N
, DCI
.DAG
);
14060 case ISD::LOAD
: return PerformLOADCombine(N
, DCI
);
14061 case ARMISD::VLD1DUP
:
14062 case ARMISD::VLD2DUP
:
14063 case ARMISD::VLD3DUP
:
14064 case ARMISD::VLD4DUP
:
14065 return PerformVLDCombine(N
, DCI
);
14066 case ARMISD::BUILD_VECTOR
:
14067 return PerformARMBUILD_VECTORCombine(N
, DCI
);
14068 case ARMISD::SMULWB
: {
14069 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14070 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14071 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14075 case ARMISD::SMULWT
: {
14076 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14077 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14078 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
14082 case ARMISD::SMLALBB
: {
14083 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14084 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
14085 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14086 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14090 case ARMISD::SMLALBT
: {
14091 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14092 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14093 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14094 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14095 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
14096 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
14100 case ARMISD::SMLALTB
: {
14101 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
14102 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
14103 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
14104 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
14105 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
14106 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
14110 case ARMISD::SMLALTT
: {
14111 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
14112 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
14113 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
14114 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
14118 case ISD::INTRINSIC_VOID
:
14119 case ISD::INTRINSIC_W_CHAIN
:
14120 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
14121 case Intrinsic::arm_neon_vld1
:
14122 case Intrinsic::arm_neon_vld1x2
:
14123 case Intrinsic::arm_neon_vld1x3
:
14124 case Intrinsic::arm_neon_vld1x4
:
14125 case Intrinsic::arm_neon_vld2
:
14126 case Intrinsic::arm_neon_vld3
:
14127 case Intrinsic::arm_neon_vld4
:
14128 case Intrinsic::arm_neon_vld2lane
:
14129 case Intrinsic::arm_neon_vld3lane
:
14130 case Intrinsic::arm_neon_vld4lane
:
14131 case Intrinsic::arm_neon_vld2dup
:
14132 case Intrinsic::arm_neon_vld3dup
:
14133 case Intrinsic::arm_neon_vld4dup
:
14134 case Intrinsic::arm_neon_vst1
:
14135 case Intrinsic::arm_neon_vst1x2
:
14136 case Intrinsic::arm_neon_vst1x3
:
14137 case Intrinsic::arm_neon_vst1x4
:
14138 case Intrinsic::arm_neon_vst2
:
14139 case Intrinsic::arm_neon_vst3
:
14140 case Intrinsic::arm_neon_vst4
:
14141 case Intrinsic::arm_neon_vst2lane
:
14142 case Intrinsic::arm_neon_vst3lane
:
14143 case Intrinsic::arm_neon_vst4lane
:
14144 return PerformVLDCombine(N
, DCI
);
14152 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
14154 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
14157 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
14158 unsigned Alignment
,
14159 MachineMemOperand::Flags
,
14160 bool *Fast
) const {
14161 // Depends what it gets converted into if the type is weird.
14162 if (!VT
.isSimple())
14165 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14166 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
14167 auto Ty
= VT
.getSimpleVT().SimpleTy
;
14169 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
14170 // Unaligned access can use (for example) LRDB, LRDH, LDR
14171 if (AllowsUnaligned
) {
14173 *Fast
= Subtarget
->hasV7Ops();
14178 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
14179 // For any little-endian targets with neon, we can support unaligned ld/st
14180 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14181 // A big-endian target may also explicitly support unaligned accesses
14182 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
14189 if (!Subtarget
->hasMVEIntegerOps())
14192 // These are for predicates
14193 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
)) {
14199 // These are for truncated stores/narrowing loads. They are fine so long as
14200 // the alignment is at least the size of the item being loaded
14201 if ((Ty
== MVT::v4i8
|| Ty
== MVT::v8i8
|| Ty
== MVT::v4i16
) &&
14202 Alignment
>= VT
.getScalarSizeInBits() / 8) {
14208 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14209 // VSTRW.U32 all store the vector register in exactly the same format, and
14210 // differ only in the range of their immediate offset field and the required
14211 // alignment. So there is always a store that can be used, regardless of
14214 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14215 // VREV64.8) pair and get the same effect. This will likely be better than
14216 // aligning the vector through the stack.
14217 if (Ty
== MVT::v16i8
|| Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
||
14218 Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
|| Ty
== MVT::v2i64
||
14219 Ty
== MVT::v2f64
) {
14228 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
14229 unsigned AlignCheck
) {
14230 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
14231 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
14234 EVT
ARMTargetLowering::getOptimalMemOpType(
14235 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14236 bool ZeroMemset
, bool MemcpyStrSrc
,
14237 const AttributeList
&FuncAttributes
) const {
14238 // See if we can use NEON instructions for this...
14239 if ((!IsMemset
|| ZeroMemset
) && Subtarget
->hasNEON() &&
14240 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14243 (memOpAlign(SrcAlign
, DstAlign
, 16) ||
14244 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, 1,
14245 MachineMemOperand::MONone
, &Fast
) &&
14248 } else if (Size
>= 8 &&
14249 (memOpAlign(SrcAlign
, DstAlign
, 8) ||
14250 (allowsMisalignedMemoryAccesses(
14251 MVT::f64
, 0, 1, MachineMemOperand::MONone
, &Fast
) &&
14257 // Let the target-independent logic figure it out.
14261 // 64-bit integers are split into their high and low parts and held in two
14262 // different registers, so the trunc is free since the low register can just
14264 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
14265 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
14267 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
14268 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
14269 return (SrcBits
== 64 && DestBits
== 32);
14272 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
14273 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
14274 !DstVT
.isInteger())
14276 unsigned SrcBits
= SrcVT
.getSizeInBits();
14277 unsigned DestBits
= DstVT
.getSizeInBits();
14278 return (SrcBits
== 64 && DestBits
== 32);
14281 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14282 if (Val
.getOpcode() != ISD::LOAD
)
14285 EVT VT1
= Val
.getValueType();
14286 if (!VT1
.isSimple() || !VT1
.isInteger() ||
14287 !VT2
.isSimple() || !VT2
.isInteger())
14290 switch (VT1
.getSimpleVT().SimpleTy
) {
14295 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14302 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
14303 if (!VT
.isSimple())
14306 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14307 // negate values directly (fneg is free). So, we don't want to let the DAG
14308 // combiner rewrite fneg into xors and some other instructions. For f16 and
14309 // FullFP16 argument passing, some bitcast nodes may be introduced,
14310 // triggering this DAG combine rewrite, so we are avoiding that with this.
14311 switch (VT
.getSimpleVT().SimpleTy
) {
14314 return Subtarget
->hasFullFP16();
14320 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14321 /// of the vector elements.
14322 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
14323 auto areExtDoubled
= [](Instruction
*Ext
) {
14324 return Ext
->getType()->getScalarSizeInBits() ==
14325 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
14328 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
14329 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
14330 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
14331 !areExtDoubled(cast
<Instruction
>(Ext2
)))
14337 /// Check if sinking \p I's operands to I's basic block is profitable, because
14338 /// the operands can be folded into a target instruction, e.g.
14339 /// sext/zext can be folded into vsubl.
14340 bool ARMTargetLowering::shouldSinkOperands(Instruction
*I
,
14341 SmallVectorImpl
<Use
*> &Ops
) const {
14342 if (!Subtarget
->hasNEON() || !I
->getType()->isVectorTy())
14345 switch (I
->getOpcode()) {
14346 case Instruction::Sub
:
14347 case Instruction::Add
: {
14348 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
14350 Ops
.push_back(&I
->getOperandUse(0));
14351 Ops
.push_back(&I
->getOperandUse(1));
14360 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
14361 EVT VT
= ExtVal
.getValueType();
14363 if (!isTypeLegal(VT
))
14366 // Don't create a loadext if we can fold the extension into a wide/long
14368 // If there's more than one user instruction, the loadext is desirable no
14369 // matter what. There can be two uses by the same instruction.
14370 if (ExtVal
->use_empty() ||
14371 !ExtVal
->use_begin()->isOnlyUserOf(ExtVal
.getNode()))
14374 SDNode
*U
= *ExtVal
->use_begin();
14375 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
14376 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
14382 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
14383 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14386 if (!isTypeLegal(EVT::getEVT(Ty1
)))
14389 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14391 // Assuming the caller doesn't have a zeroext or signext return parameter,
14392 // truncation all the way down to i1 is valid.
14396 int ARMTargetLowering::getScalingFactorCost(const DataLayout
&DL
,
14397 const AddrMode
&AM
, Type
*Ty
,
14398 unsigned AS
) const {
14399 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
)) {
14400 if (Subtarget
->hasFPAO())
14401 return AM
.Scale
< 0 ? 1 : 0; // positive offsets execute faster
14407 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
14411 unsigned Scale
= 1;
14412 switch (VT
.getSimpleVT().SimpleTy
) {
14422 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14428 if ((V
& (Scale
- 1)) != 0)
14430 return isUInt
<5>(V
/ Scale
);
14433 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
14434 const ARMSubtarget
*Subtarget
) {
14435 if (!VT
.isInteger() && !VT
.isFloatingPoint())
14437 if (VT
.isVector() && Subtarget
->hasNEON())
14439 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
14440 !Subtarget
->hasMVEFloatOps())
14443 bool IsNeg
= false;
14449 unsigned NumBytes
= std::max(VT
.getSizeInBits() / 8, 1U);
14451 // MVE: size * imm7
14452 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
14453 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
14456 return isShiftedUInt
<7,2>(V
);
14459 return isShiftedUInt
<7,1>(V
);
14461 return isUInt
<7>(V
);
14467 // half VLDR: 2 * imm8
14468 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
14469 return isShiftedUInt
<8, 1>(V
);
14470 // VLDR and LDRD: 4 * imm8
14471 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
14472 return isShiftedUInt
<8, 2>(V
);
14474 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
14475 // + imm12 or - imm8
14477 return isUInt
<8>(V
);
14478 return isUInt
<12>(V
);
14484 /// isLegalAddressImmediate - Return true if the integer value can be used
14485 /// as the offset of the target addressing mode for load / store of the
14487 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
14488 const ARMSubtarget
*Subtarget
) {
14492 if (!VT
.isSimple())
14495 if (Subtarget
->isThumb1Only())
14496 return isLegalT1AddressImmediate(V
, VT
);
14497 else if (Subtarget
->isThumb2())
14498 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
14503 switch (VT
.getSimpleVT().SimpleTy
) {
14504 default: return false;
14509 return isUInt
<12>(V
);
14512 return isUInt
<8>(V
);
14515 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
14517 return isShiftedUInt
<8, 2>(V
);
14521 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
14523 int Scale
= AM
.Scale
;
14527 switch (VT
.getSimpleVT().SimpleTy
) {
14528 default: return false;
14536 Scale
= Scale
& ~1;
14537 return Scale
== 2 || Scale
== 4 || Scale
== 8;
14539 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14540 // version in Thumb mode.
14544 // r * 2 (this can be lowered to r + r).
14545 if (!AM
.HasBaseReg
&& Scale
== 2)
14549 // Note, we allow "void" uses (basically, uses that aren't loads or
14550 // stores), because arm allows folding a scale into many arithmetic
14551 // operations. This should be made more precise and revisited later.
14553 // Allow r << imm, but the imm has to be a multiple of two.
14554 if (Scale
& 1) return false;
14555 return isPowerOf2_32(Scale
);
14559 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
14561 const int Scale
= AM
.Scale
;
14563 // Negative scales are not supported in Thumb1.
14567 // Thumb1 addressing modes do not support register scaling excepting the
14568 // following cases:
14569 // 1. Scale == 1 means no scaling.
14570 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14571 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
14574 /// isLegalAddressingMode - Return true if the addressing mode represented
14575 /// by AM is legal for this target, for a load/store of the specified type.
14576 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14577 const AddrMode
&AM
, Type
*Ty
,
14578 unsigned AS
, Instruction
*I
) const {
14579 EVT VT
= getValueType(DL
, Ty
, true);
14580 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
14583 // Can never fold addr of global into load/store.
14587 switch (AM
.Scale
) {
14588 case 0: // no scale reg, must be "r+i" or "r", or "i".
14591 // ARM doesn't support any R+R*scale+imm addr modes.
14595 if (!VT
.isSimple())
14598 if (Subtarget
->isThumb1Only())
14599 return isLegalT1ScaledAddressingMode(AM
, VT
);
14601 if (Subtarget
->isThumb2())
14602 return isLegalT2ScaledAddressingMode(AM
, VT
);
14604 int Scale
= AM
.Scale
;
14605 switch (VT
.getSimpleVT().SimpleTy
) {
14606 default: return false;
14610 if (Scale
< 0) Scale
= -Scale
;
14614 return isPowerOf2_32(Scale
& ~1);
14618 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
14620 // r * 2 (this can be lowered to r + r).
14621 if (!AM
.HasBaseReg
&& Scale
== 2)
14626 // Note, we allow "void" uses (basically, uses that aren't loads or
14627 // stores), because arm allows folding a scale into many arithmetic
14628 // operations. This should be made more precise and revisited later.
14630 // Allow r << imm, but the imm has to be a multiple of two.
14631 if (Scale
& 1) return false;
14632 return isPowerOf2_32(Scale
);
14638 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14639 /// icmp immediate, that is the target has icmp instructions which can compare
14640 /// a register against the immediate without having to materialize the
14641 /// immediate into a register.
14642 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
14643 // Thumb2 and ARM modes can use cmn for negative immediates.
14644 if (!Subtarget
->isThumb())
14645 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
14646 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
14647 if (Subtarget
->isThumb2())
14648 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
14649 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
14650 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14651 return Imm
>= 0 && Imm
<= 255;
14654 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14655 /// *or sub* immediate, that is the target has add or sub instructions which can
14656 /// add a register with the immediate without having to materialize the
14657 /// immediate into a register.
14658 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
14659 // Same encoding for add/sub, just flip the sign.
14660 int64_t AbsImm
= std::abs(Imm
);
14661 if (!Subtarget
->isThumb())
14662 return ARM_AM::getSOImmVal(AbsImm
) != -1;
14663 if (Subtarget
->isThumb2())
14664 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
14665 // Thumb1 only has 8-bit unsigned immediate.
14666 return AbsImm
>= 0 && AbsImm
<= 255;
14669 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14670 bool isSEXTLoad
, SDValue
&Base
,
14671 SDValue
&Offset
, bool &isInc
,
14672 SelectionDAG
&DAG
) {
14673 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14676 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
14677 // AddressingMode 3
14678 Base
= Ptr
->getOperand(0);
14679 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14680 int RHSC
= (int)RHS
->getZExtValue();
14681 if (RHSC
< 0 && RHSC
> -256) {
14682 assert(Ptr
->getOpcode() == ISD::ADD
);
14684 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14688 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14689 Offset
= Ptr
->getOperand(1);
14691 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
14692 // AddressingMode 2
14693 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14694 int RHSC
= (int)RHS
->getZExtValue();
14695 if (RHSC
< 0 && RHSC
> -0x1000) {
14696 assert(Ptr
->getOpcode() == ISD::ADD
);
14698 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14699 Base
= Ptr
->getOperand(0);
14704 if (Ptr
->getOpcode() == ISD::ADD
) {
14706 ARM_AM::ShiftOpc ShOpcVal
=
14707 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
14708 if (ShOpcVal
!= ARM_AM::no_shift
) {
14709 Base
= Ptr
->getOperand(1);
14710 Offset
= Ptr
->getOperand(0);
14712 Base
= Ptr
->getOperand(0);
14713 Offset
= Ptr
->getOperand(1);
14718 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
14719 Base
= Ptr
->getOperand(0);
14720 Offset
= Ptr
->getOperand(1);
14724 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
14728 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
14729 bool isSEXTLoad
, SDValue
&Base
,
14730 SDValue
&Offset
, bool &isInc
,
14731 SelectionDAG
&DAG
) {
14732 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14735 Base
= Ptr
->getOperand(0);
14736 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
14737 int RHSC
= (int)RHS
->getZExtValue();
14738 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
14739 assert(Ptr
->getOpcode() == ISD::ADD
);
14741 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14743 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
14744 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14745 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14753 static bool getMVEIndexedAddressParts(SDNode
*Ptr
, EVT VT
, unsigned Align
,
14754 bool isSEXTLoad
, bool isLE
, SDValue
&Base
,
14755 SDValue
&Offset
, bool &isInc
,
14756 SelectionDAG
&DAG
) {
14757 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
14759 if (!isa
<ConstantSDNode
>(Ptr
->getOperand(1)))
14762 ConstantSDNode
*RHS
= cast
<ConstantSDNode
>(Ptr
->getOperand(1));
14763 int RHSC
= (int)RHS
->getZExtValue();
14765 auto IsInRange
= [&](int RHSC
, int Limit
, int Scale
) {
14766 if (RHSC
< 0 && RHSC
> -Limit
* Scale
&& RHSC
% Scale
== 0) {
14767 assert(Ptr
->getOpcode() == ISD::ADD
);
14769 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14771 } else if (RHSC
> 0 && RHSC
< Limit
* Scale
&& RHSC
% Scale
== 0) {
14772 isInc
= Ptr
->getOpcode() == ISD::ADD
;
14773 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
14779 // Try to find a matching instruction based on s/zext, Alignment, Offset and
14781 Base
= Ptr
->getOperand(0);
14782 if (VT
== MVT::v4i16
) {
14783 if (Align
>= 2 && IsInRange(RHSC
, 0x80, 2))
14785 } else if (VT
== MVT::v4i8
|| VT
== MVT::v8i8
) {
14786 if (IsInRange(RHSC
, 0x80, 1))
14788 } else if (Align
>= 4 && (isLE
|| VT
== MVT::v4i32
|| VT
== MVT::v4f32
) &&
14789 IsInRange(RHSC
, 0x80, 4))
14791 else if (Align
>= 2 && (isLE
|| VT
== MVT::v8i16
|| VT
== MVT::v8f16
) &&
14792 IsInRange(RHSC
, 0x80, 2))
14794 else if ((isLE
|| VT
== MVT::v16i8
) && IsInRange(RHSC
, 0x80, 1))
14799 /// getPreIndexedAddressParts - returns true by value, base pointer and
14800 /// offset pointer and addressing mode by reference if the node's address
14801 /// can be legally represented as pre-indexed load / store address.
14803 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
14805 ISD::MemIndexedMode
&AM
,
14806 SelectionDAG
&DAG
) const {
14807 if (Subtarget
->isThumb1Only())
14813 bool isSEXTLoad
= false;
14814 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14815 Ptr
= LD
->getBasePtr();
14816 VT
= LD
->getMemoryVT();
14817 Align
= LD
->getAlignment();
14818 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14819 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14820 Ptr
= ST
->getBasePtr();
14821 VT
= ST
->getMemoryVT();
14822 Align
= ST
->getAlignment();
14827 bool isLegal
= false;
14829 isLegal
= Subtarget
->hasMVEIntegerOps() &&
14830 getMVEIndexedAddressParts(Ptr
.getNode(), VT
, Align
, isSEXTLoad
,
14831 Subtarget
->isLittle(), Base
, Offset
,
14834 if (Subtarget
->isThumb2())
14835 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14836 Offset
, isInc
, DAG
);
14838 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
14839 Offset
, isInc
, DAG
);
14844 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
14848 /// getPostIndexedAddressParts - returns true by value, base pointer and
14849 /// offset pointer and addressing mode by reference if this node can be
14850 /// combined with a load / store to form a post-indexed load / store.
14851 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
14854 ISD::MemIndexedMode
&AM
,
14855 SelectionDAG
&DAG
) const {
14859 bool isSEXTLoad
= false, isNonExt
;
14860 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
14861 VT
= LD
->getMemoryVT();
14862 Ptr
= LD
->getBasePtr();
14863 Align
= LD
->getAlignment();
14864 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
14865 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
14866 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
14867 VT
= ST
->getMemoryVT();
14868 Ptr
= ST
->getBasePtr();
14869 Align
= ST
->getAlignment();
14870 isNonExt
= !ST
->isTruncatingStore();
14874 if (Subtarget
->isThumb1Only()) {
14875 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14876 // must be non-extending/truncating, i32, with an offset of 4.
14877 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
14878 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
14880 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
14881 if (!RHS
|| RHS
->getZExtValue() != 4)
14884 Offset
= Op
->getOperand(1);
14885 Base
= Op
->getOperand(0);
14886 AM
= ISD::POST_INC
;
14891 bool isLegal
= false;
14893 isLegal
= Subtarget
->hasMVEIntegerOps() &&
14894 getMVEIndexedAddressParts(Op
, VT
, Align
, isSEXTLoad
,
14895 Subtarget
->isLittle(), Base
, Offset
,
14898 if (Subtarget
->isThumb2())
14899 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14902 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
14909 // Swap base ptr and offset to catch more post-index load / store when
14910 // it's legal. In Thumb2 mode, offset must be an immediate.
14911 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
14912 !Subtarget
->isThumb2())
14913 std::swap(Base
, Offset
);
14915 // Post-indexed load / store update the base pointer.
14920 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
14924 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
14926 const APInt
&DemandedElts
,
14927 const SelectionDAG
&DAG
,
14928 unsigned Depth
) const {
14929 unsigned BitWidth
= Known
.getBitWidth();
14931 switch (Op
.getOpcode()) {
14937 // Special cases when we convert a carry to a boolean.
14938 if (Op
.getResNo() == 0) {
14939 SDValue LHS
= Op
.getOperand(0);
14940 SDValue RHS
= Op
.getOperand(1);
14941 // (ADDE 0, 0, C) will give us a single bit.
14942 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
14943 isNullConstant(RHS
)) {
14944 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
14949 case ARMISD::CMOV
: {
14950 // Bits are known zero/one if known on the LHS and RHS.
14951 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
14952 if (Known
.isUnknown())
14955 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
14956 Known
.Zero
&= KnownRHS
.Zero
;
14957 Known
.One
&= KnownRHS
.One
;
14960 case ISD::INTRINSIC_W_CHAIN
: {
14961 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
14962 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
14965 case Intrinsic::arm_ldaex
:
14966 case Intrinsic::arm_ldrex
: {
14967 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
14968 unsigned MemBits
= VT
.getScalarSizeInBits();
14969 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
14974 case ARMISD::BFI
: {
14975 // Conservatively, we can recurse down the first operand
14976 // and just mask out all affected bits.
14977 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
14979 // The operand to BFI is already a mask suitable for removing the bits it
14981 ConstantSDNode
*CI
= cast
<ConstantSDNode
>(Op
.getOperand(2));
14982 const APInt
&Mask
= CI
->getAPIntValue();
14983 Known
.Zero
&= Mask
;
14987 case ARMISD::VGETLANEs
:
14988 case ARMISD::VGETLANEu
: {
14989 const SDValue
&SrcSV
= Op
.getOperand(0);
14990 EVT VecVT
= SrcSV
.getValueType();
14991 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
14992 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
14993 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
14994 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
14995 "VGETLANE index out of bounds");
14996 unsigned Idx
= Pos
->getZExtValue();
14997 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
14998 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
15000 EVT VT
= Op
.getValueType();
15001 const unsigned DstSz
= VT
.getScalarSizeInBits();
15002 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
15004 assert(SrcSz
== Known
.getBitWidth());
15005 assert(DstSz
> SrcSz
);
15006 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
15007 Known
= Known
.sext(DstSz
);
15009 Known
= Known
.zext(DstSz
, true /* extended bits are known zero */);
15011 assert(DstSz
== Known
.getBitWidth());
15018 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op
,
15019 const APInt
&DemandedAPInt
,
15020 TargetLoweringOpt
&TLO
) const {
15021 // Delay optimization, so we don't have to deal with illegal types, or block
15026 // Only optimize AND for now.
15027 if (Op
.getOpcode() != ISD::AND
)
15030 EVT VT
= Op
.getValueType();
15036 assert(VT
== MVT::i32
&& "Unexpected integer type");
15038 // Make sure the RHS really is a constant.
15039 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
15043 unsigned Mask
= C
->getZExtValue();
15045 unsigned Demanded
= DemandedAPInt
.getZExtValue();
15046 unsigned ShrunkMask
= Mask
& Demanded
;
15047 unsigned ExpandedMask
= Mask
| ~Demanded
;
15049 // If the mask is all zeros, let the target-independent code replace the
15050 // result with zero.
15051 if (ShrunkMask
== 0)
15054 // If the mask is all ones, erase the AND. (Currently, the target-independent
15055 // code won't do this, so we have to do it explicitly to avoid an infinite
15056 // loop in obscure cases.)
15057 if (ExpandedMask
== ~0U)
15058 return TLO
.CombineTo(Op
, Op
.getOperand(0));
15060 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
15061 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
15063 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
15064 if (NewMask
== Mask
)
15067 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
15068 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
15069 return TLO
.CombineTo(Op
, NewOp
);
15072 // Prefer uxtb mask.
15073 if (IsLegalMask(0xFF))
15074 return UseMask(0xFF);
15076 // Prefer uxth mask.
15077 if (IsLegalMask(0xFFFF))
15078 return UseMask(0xFFFF);
15080 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
15081 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15082 if (ShrunkMask
< 256)
15083 return UseMask(ShrunkMask
);
15085 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
15086 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15087 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
15088 return UseMask(ExpandedMask
);
15090 // Potential improvements:
15092 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
15093 // We could try to prefer Thumb1 immediates which can be lowered to a
15094 // two-instruction sequence.
15095 // We could try to recognize more legal ARM/Thumb2 immediates here.
15101 //===----------------------------------------------------------------------===//
15102 // ARM Inline Assembly Support
15103 //===----------------------------------------------------------------------===//
15105 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
15106 // Looking for "rev" which is V6+.
15107 if (!Subtarget
->hasV6Ops())
15110 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledValue());
15111 std::string AsmStr
= IA
->getAsmString();
15112 SmallVector
<StringRef
, 4> AsmPieces
;
15113 SplitString(AsmStr
, AsmPieces
, ";\n");
15115 switch (AsmPieces
.size()) {
15116 default: return false;
15118 AsmStr
= AsmPieces
[0];
15120 SplitString(AsmStr
, AsmPieces
, " \t,");
15123 if (AsmPieces
.size() == 3 &&
15124 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
15125 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
15126 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
15127 if (Ty
&& Ty
->getBitWidth() == 32)
15128 return IntrinsicLowering::LowerToByteSwap(CI
);
15136 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
15137 // At this point, we have to lower this constraint to something else, so we
15138 // lower it to an "r" or "w". However, by doing this we will force the result
15139 // to be in register, while the X constraint is much more permissive.
15141 // Although we are correct (we are free to emit anything, without
15142 // constraints), we might break use cases that would expect us to be more
15143 // efficient and emit something else.
15144 if (!Subtarget
->hasVFP2Base())
15146 if (ConstraintVT
.isFloatingPoint())
15148 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
15149 (ConstraintVT
.getSizeInBits() == 64 ||
15150 ConstraintVT
.getSizeInBits() == 128))
15156 /// getConstraintType - Given a constraint letter, return the type of
15157 /// constraint it is for this target.
15158 ARMTargetLowering::ConstraintType
15159 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
15160 unsigned S
= Constraint
.size();
15162 switch (Constraint
[0]) {
15164 case 'l': return C_RegisterClass
;
15165 case 'w': return C_RegisterClass
;
15166 case 'h': return C_RegisterClass
;
15167 case 'x': return C_RegisterClass
;
15168 case 't': return C_RegisterClass
;
15169 case 'j': return C_Immediate
; // Constant for movw.
15170 // An address with a single base register. Due to the way we
15171 // currently handle addresses it is the same as an 'r' memory constraint.
15172 case 'Q': return C_Memory
;
15174 } else if (S
== 2) {
15175 switch (Constraint
[0]) {
15177 case 'T': return C_RegisterClass
;
15178 // All 'U+' constraints are addresses.
15179 case 'U': return C_Memory
;
15182 return TargetLowering::getConstraintType(Constraint
);
15185 /// Examine constraint type and operand type and determine a weight value.
15186 /// This object must already have been set up with the operand type
15187 /// and the current alternative constraint selected.
15188 TargetLowering::ConstraintWeight
15189 ARMTargetLowering::getSingleConstraintMatchWeight(
15190 AsmOperandInfo
&info
, const char *constraint
) const {
15191 ConstraintWeight weight
= CW_Invalid
;
15192 Value
*CallOperandVal
= info
.CallOperandVal
;
15193 // If we don't have a value, we can't do a match,
15194 // but allow it at the lowest weight.
15195 if (!CallOperandVal
)
15197 Type
*type
= CallOperandVal
->getType();
15198 // Look at the constraint type.
15199 switch (*constraint
) {
15201 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
15204 if (type
->isIntegerTy()) {
15205 if (Subtarget
->isThumb())
15206 weight
= CW_SpecificReg
;
15208 weight
= CW_Register
;
15212 if (type
->isFloatingPointTy())
15213 weight
= CW_Register
;
15219 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
15221 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
15222 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
15223 switch (Constraint
.size()) {
15225 // GCC ARM Constraint Letters
15226 switch (Constraint
[0]) {
15227 case 'l': // Low regs or general regs.
15228 if (Subtarget
->isThumb())
15229 return RCPair(0U, &ARM::tGPRRegClass
);
15230 return RCPair(0U, &ARM::GPRRegClass
);
15231 case 'h': // High regs or no regs.
15232 if (Subtarget
->isThumb())
15233 return RCPair(0U, &ARM::hGPRRegClass
);
15236 if (Subtarget
->isThumb1Only())
15237 return RCPair(0U, &ARM::tGPRRegClass
);
15238 return RCPair(0U, &ARM::GPRRegClass
);
15240 if (VT
== MVT::Other
)
15242 if (VT
== MVT::f32
)
15243 return RCPair(0U, &ARM::SPRRegClass
);
15244 if (VT
.getSizeInBits() == 64)
15245 return RCPair(0U, &ARM::DPRRegClass
);
15246 if (VT
.getSizeInBits() == 128)
15247 return RCPair(0U, &ARM::QPRRegClass
);
15250 if (VT
== MVT::Other
)
15252 if (VT
== MVT::f32
)
15253 return RCPair(0U, &ARM::SPR_8RegClass
);
15254 if (VT
.getSizeInBits() == 64)
15255 return RCPair(0U, &ARM::DPR_8RegClass
);
15256 if (VT
.getSizeInBits() == 128)
15257 return RCPair(0U, &ARM::QPR_8RegClass
);
15260 if (VT
== MVT::Other
)
15262 if (VT
== MVT::f32
|| VT
== MVT::i32
)
15263 return RCPair(0U, &ARM::SPRRegClass
);
15264 if (VT
.getSizeInBits() == 64)
15265 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
15266 if (VT
.getSizeInBits() == 128)
15267 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
15273 if (Constraint
[0] == 'T') {
15274 switch (Constraint
[1]) {
15278 return RCPair(0U, &ARM::tGPREvenRegClass
);
15280 return RCPair(0U, &ARM::tGPROddRegClass
);
15289 if (StringRef("{cc}").equals_lower(Constraint
))
15290 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
15292 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
15295 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15296 /// vector. If it is invalid, don't add anything to Ops.
15297 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
15298 std::string
&Constraint
,
15299 std::vector
<SDValue
>&Ops
,
15300 SelectionDAG
&DAG
) const {
15303 // Currently only support length 1 constraints.
15304 if (Constraint
.length() != 1) return;
15306 char ConstraintLetter
= Constraint
[0];
15307 switch (ConstraintLetter
) {
15310 case 'I': case 'J': case 'K': case 'L':
15311 case 'M': case 'N': case 'O':
15312 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
15316 int64_t CVal64
= C
->getSExtValue();
15317 int CVal
= (int) CVal64
;
15318 // None of these constraints allow values larger than 32 bits. Check
15319 // that the value fits in an int.
15320 if (CVal
!= CVal64
)
15323 switch (ConstraintLetter
) {
15325 // Constant suitable for movw, must be between 0 and
15327 if (Subtarget
->hasV6T2Ops() || (Subtarget
->hasV8MBaselineOps()))
15328 if (CVal
>= 0 && CVal
<= 65535)
15332 if (Subtarget
->isThumb1Only()) {
15333 // This must be a constant between 0 and 255, for ADD
15335 if (CVal
>= 0 && CVal
<= 255)
15337 } else if (Subtarget
->isThumb2()) {
15338 // A constant that can be used as an immediate value in a
15339 // data-processing instruction.
15340 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
15343 // A constant that can be used as an immediate value in a
15344 // data-processing instruction.
15345 if (ARM_AM::getSOImmVal(CVal
) != -1)
15351 if (Subtarget
->isThumb1Only()) {
15352 // This must be a constant between -255 and -1, for negated ADD
15353 // immediates. This can be used in GCC with an "n" modifier that
15354 // prints the negated value, for use with SUB instructions. It is
15355 // not useful otherwise but is implemented for compatibility.
15356 if (CVal
>= -255 && CVal
<= -1)
15359 // This must be a constant between -4095 and 4095. It is not clear
15360 // what this constraint is intended for. Implemented for
15361 // compatibility with GCC.
15362 if (CVal
>= -4095 && CVal
<= 4095)
15368 if (Subtarget
->isThumb1Only()) {
15369 // A 32-bit value where only one byte has a nonzero value. Exclude
15370 // zero to match GCC. This constraint is used by GCC internally for
15371 // constants that can be loaded with a move/shift combination.
15372 // It is not useful otherwise but is implemented for compatibility.
15373 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
15375 } else if (Subtarget
->isThumb2()) {
15376 // A constant whose bitwise inverse can be used as an immediate
15377 // value in a data-processing instruction. This can be used in GCC
15378 // with a "B" modifier that prints the inverted value, for use with
15379 // BIC and MVN instructions. It is not useful otherwise but is
15380 // implemented for compatibility.
15381 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
15384 // A constant whose bitwise inverse can be used as an immediate
15385 // value in a data-processing instruction. This can be used in GCC
15386 // with a "B" modifier that prints the inverted value, for use with
15387 // BIC and MVN instructions. It is not useful otherwise but is
15388 // implemented for compatibility.
15389 if (ARM_AM::getSOImmVal(~CVal
) != -1)
15395 if (Subtarget
->isThumb1Only()) {
15396 // This must be a constant between -7 and 7,
15397 // for 3-operand ADD/SUB immediate instructions.
15398 if (CVal
>= -7 && CVal
< 7)
15400 } else if (Subtarget
->isThumb2()) {
15401 // A constant whose negation can be used as an immediate value in a
15402 // data-processing instruction. This can be used in GCC with an "n"
15403 // modifier that prints the negated value, for use with SUB
15404 // instructions. It is not useful otherwise but is implemented for
15406 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
15409 // A constant whose negation can be used as an immediate value in a
15410 // data-processing instruction. This can be used in GCC with an "n"
15411 // modifier that prints the negated value, for use with SUB
15412 // instructions. It is not useful otherwise but is implemented for
15414 if (ARM_AM::getSOImmVal(-CVal
) != -1)
15420 if (Subtarget
->isThumb1Only()) {
15421 // This must be a multiple of 4 between 0 and 1020, for
15422 // ADD sp + immediate.
15423 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
15426 // A power of two or a constant between 0 and 32. This is used in
15427 // GCC for the shift amount on shifted register operands, but it is
15428 // useful in general for any shift amounts.
15429 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
15435 if (Subtarget
->isThumb1Only()) {
15436 // This must be a constant between 0 and 31, for shift amounts.
15437 if (CVal
>= 0 && CVal
<= 31)
15443 if (Subtarget
->isThumb1Only()) {
15444 // This must be a multiple of 4 between -508 and 508, for
15445 // ADD/SUB sp = sp + immediate.
15446 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
15451 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
15455 if (Result
.getNode()) {
15456 Ops
.push_back(Result
);
15459 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
15462 static RTLIB::Libcall
getDivRemLibcall(
15463 const SDNode
*N
, MVT::SimpleValueType SVT
) {
15464 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15465 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15466 "Unhandled Opcode in getDivRemLibcall");
15467 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15468 N
->getOpcode() == ISD::SREM
;
15471 default: llvm_unreachable("Unexpected request for libcall!");
15472 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
15473 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
15474 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
15475 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
15480 static TargetLowering::ArgListTy
getDivRemArgList(
15481 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
15482 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
15483 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
15484 "Unhandled Opcode in getDivRemArgList");
15485 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
15486 N
->getOpcode() == ISD::SREM
;
15487 TargetLowering::ArgListTy Args
;
15488 TargetLowering::ArgListEntry Entry
;
15489 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15490 EVT ArgVT
= N
->getOperand(i
).getValueType();
15491 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
15492 Entry
.Node
= N
->getOperand(i
);
15494 Entry
.IsSExt
= isSigned
;
15495 Entry
.IsZExt
= !isSigned
;
15496 Args
.push_back(Entry
);
15498 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
15499 std::swap(Args
[0], Args
[1]);
15503 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
15504 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
15505 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
15506 Subtarget
->isTargetWindows()) &&
15507 "Register-based DivRem lowering only");
15508 unsigned Opcode
= Op
->getOpcode();
15509 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
15510 "Invalid opcode for Div/Rem lowering");
15511 bool isSigned
= (Opcode
== ISD::SDIVREM
);
15512 EVT VT
= Op
->getValueType(0);
15513 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
15516 // If the target has hardware divide, use divide + multiply + subtract:
15518 // rem = a - b * div
15519 // return {div, rem}
15520 // This should be lowered into UDIV/SDIV + MLS later on.
15521 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
15522 : Subtarget
->hasDivideInARMMode();
15523 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
15524 Op
->getSimpleValueType(0) == MVT::i32
) {
15525 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
15526 const SDValue Dividend
= Op
->getOperand(0);
15527 const SDValue Divisor
= Op
->getOperand(1);
15528 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
15529 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
15530 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
15532 SDValue Values
[2] = {Div
, Rem
};
15533 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
15536 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
15537 VT
.getSimpleVT().SimpleTy
);
15538 SDValue InChain
= DAG
.getEntryNode();
15540 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
15544 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15545 getPointerTy(DAG
.getDataLayout()));
15547 Type
*RetTy
= StructType::get(Ty
, Ty
);
15549 if (Subtarget
->isTargetWindows())
15550 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
15552 TargetLowering::CallLoweringInfo
CLI(DAG
);
15553 CLI
.setDebugLoc(dl
).setChain(InChain
)
15554 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
15555 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
15557 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
15558 return CallInfo
.first
;
15561 // Lowers REM using divmod helpers
15562 // see RTABI section 4.2/4.3
15563 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
15564 // Build return types (div and rem)
15565 std::vector
<Type
*> RetTyParams
;
15566 Type
*RetTyElement
;
15568 switch (N
->getValueType(0).getSimpleVT().SimpleTy
) {
15569 default: llvm_unreachable("Unexpected request for libcall!");
15570 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
15571 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
15572 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
15573 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
15576 RetTyParams
.push_back(RetTyElement
);
15577 RetTyParams
.push_back(RetTyElement
);
15578 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
15579 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
15581 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
15583 SDValue InChain
= DAG
.getEntryNode();
15584 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
15586 bool isSigned
= N
->getOpcode() == ISD::SREM
;
15587 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
15588 getPointerTy(DAG
.getDataLayout()));
15590 if (Subtarget
->isTargetWindows())
15591 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
15594 CallLoweringInfo
CLI(DAG
);
15595 CLI
.setChain(InChain
)
15596 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
15597 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
15598 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
15600 // Return second (rem) result operand (first contains div)
15601 SDNode
*ResNode
= CallResult
.first
.getNode();
15602 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
15603 return ResNode
->getOperand(1);
15607 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
15608 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
15612 SDValue Chain
= Op
.getOperand(0);
15613 SDValue Size
= Op
.getOperand(1);
15615 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
15616 "no-stack-arg-probe")) {
15617 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
15618 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15619 Chain
= SP
.getValue(1);
15620 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
15622 SP
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
15623 DAG
.getConstant(-(uint64_t)Align
, DL
, MVT::i32
));
15624 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
15625 SDValue Ops
[2] = { SP
, Chain
};
15626 return DAG
.getMergeValues(Ops
, DL
);
15629 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
15630 DAG
.getConstant(2, DL
, MVT::i32
));
15633 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Flag
);
15634 Flag
= Chain
.getValue(1);
15636 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
15637 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Flag
);
15639 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
15640 Chain
= NewSP
.getValue(1);
15642 SDValue Ops
[2] = { NewSP
, Chain
};
15643 return DAG
.getMergeValues(Ops
, DL
);
15646 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
15647 SDValue SrcVal
= Op
.getOperand(0);
15648 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15649 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
15650 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
15651 "Unexpected type for custom-lowering FP_EXTEND");
15653 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15654 "With both FP DP and 16, any FP conversion is legal!");
15656 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
15657 "With FP16, 16 to 32 conversion is legal!");
15659 // Either we are converting from 16 -> 64, without FP16 and/or
15660 // FP.double-precision or without Armv8-fp. So we must do it in two
15662 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15663 // without FP16. So we must do a function call.
15666 MakeLibCallOptions CallOptions
;
15668 // Instruction from 16 -> 32
15669 if (Subtarget
->hasFP16())
15670 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f32
, SrcVal
);
15671 // Lib call from 16 -> 32
15673 LC
= RTLIB::getFPEXT(MVT::f16
, MVT::f32
);
15674 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15675 "Unexpected type for custom-lowering FP_EXTEND");
15677 makeLibCall(DAG
, LC
, MVT::f32
, SrcVal
, CallOptions
, Loc
).first
;
15683 // For sure now SrcVal is 32 bits
15684 if (Subtarget
->hasFP64()) // Instruction from 32 -> 64
15685 return DAG
.getNode(ISD::FP_EXTEND
, Loc
, MVT::f64
, SrcVal
);
15687 LC
= RTLIB::getFPEXT(MVT::f32
, MVT::f64
);
15688 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15689 "Unexpected type for custom-lowering FP_EXTEND");
15690 return makeLibCall(DAG
, LC
, MVT::f64
, SrcVal
, CallOptions
, Loc
).first
;
15693 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
15694 SDValue SrcVal
= Op
.getOperand(0);
15695 EVT SrcVT
= SrcVal
.getValueType();
15696 EVT DstVT
= Op
.getValueType();
15697 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
15698 const unsigned SrcSz
= SrcVT
.getSizeInBits();
15700 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
15701 "Unexpected type for custom-lowering FP_ROUND");
15703 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
15704 "With both FP DP and 16, any FP conversion is legal!");
15708 // Instruction from 32 -> 16 if hasFP16 is valid
15709 if (SrcSz
== 32 && Subtarget
->hasFP16())
15712 // Lib call from 32 -> 16 / 64 -> [32, 16]
15713 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
15714 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
15715 "Unexpected type for custom-lowering FP_ROUND");
15716 MakeLibCallOptions CallOptions
;
15717 return makeLibCall(DAG
, LC
, DstVT
, SrcVal
, CallOptions
, Loc
).first
;
15720 void ARMTargetLowering::lowerABS(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
15721 SelectionDAG
&DAG
) const {
15722 assert(N
->getValueType(0) == MVT::i64
&& "Unexpected type (!= i64) on ABS.");
15723 MVT HalfT
= MVT::i32
;
15725 SDValue Hi
, Lo
, Tmp
;
15727 if (!isOperationLegalOrCustom(ISD::ADDCARRY
, HalfT
) ||
15728 !isOperationLegalOrCustom(ISD::UADDO
, HalfT
))
15731 unsigned OpTypeBits
= HalfT
.getScalarSizeInBits();
15732 SDVTList VTList
= DAG
.getVTList(HalfT
, MVT::i1
);
15734 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15735 DAG
.getConstant(0, dl
, HalfT
));
15736 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, HalfT
, N
->getOperand(0),
15737 DAG
.getConstant(1, dl
, HalfT
));
15739 Tmp
= DAG
.getNode(ISD::SRA
, dl
, HalfT
, Hi
,
15740 DAG
.getConstant(OpTypeBits
- 1, dl
,
15741 getShiftAmountTy(HalfT
, DAG
.getDataLayout())));
15742 Lo
= DAG
.getNode(ISD::UADDO
, dl
, VTList
, Tmp
, Lo
);
15743 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, VTList
, Tmp
, Hi
,
15744 SDValue(Lo
.getNode(), 1));
15745 Hi
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Hi
);
15746 Lo
= DAG
.getNode(ISD::XOR
, dl
, HalfT
, Tmp
, Lo
);
15748 Results
.push_back(Lo
);
15749 Results
.push_back(Hi
);
15753 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
15754 // The ARM target isn't yet aware of offsets.
15758 bool ARM::isBitFieldInvertedMask(unsigned v
) {
15759 if (v
== 0xffffffff)
15762 // there can be 1's on either or both "outsides", all the "inside"
15763 // bits must be 0's
15764 return isShiftedMask_32(~v
);
15767 /// isFPImmLegal - Returns true if the target can instruction select the
15768 /// specified FP immediate natively. If false, the legalizer will
15769 /// materialize the FP immediate as a load from a constant pool.
15770 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
15771 bool ForCodeSize
) const {
15772 if (!Subtarget
->hasVFP3Base())
15774 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
15775 return ARM_AM::getFP16Imm(Imm
) != -1;
15776 if (VT
== MVT::f32
)
15777 return ARM_AM::getFP32Imm(Imm
) != -1;
15778 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
15779 return ARM_AM::getFP64Imm(Imm
) != -1;
15783 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
15784 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
15785 /// specified in the intrinsic calls.
15786 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
15788 MachineFunction
&MF
,
15789 unsigned Intrinsic
) const {
15790 switch (Intrinsic
) {
15791 case Intrinsic::arm_neon_vld1
:
15792 case Intrinsic::arm_neon_vld2
:
15793 case Intrinsic::arm_neon_vld3
:
15794 case Intrinsic::arm_neon_vld4
:
15795 case Intrinsic::arm_neon_vld2lane
:
15796 case Intrinsic::arm_neon_vld3lane
:
15797 case Intrinsic::arm_neon_vld4lane
:
15798 case Intrinsic::arm_neon_vld2dup
:
15799 case Intrinsic::arm_neon_vld3dup
:
15800 case Intrinsic::arm_neon_vld4dup
: {
15801 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15802 // Conservatively set memVT to the entire set of vectors loaded.
15803 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15804 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15805 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15806 Info
.ptrVal
= I
.getArgOperand(0);
15808 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15809 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
15810 // volatile loads with NEON intrinsics not supported
15811 Info
.flags
= MachineMemOperand::MOLoad
;
15814 case Intrinsic::arm_neon_vld1x2
:
15815 case Intrinsic::arm_neon_vld1x3
:
15816 case Intrinsic::arm_neon_vld1x4
: {
15817 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15818 // Conservatively set memVT to the entire set of vectors loaded.
15819 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15820 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
15821 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15822 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15824 Info
.align
.reset();
15825 // volatile loads with NEON intrinsics not supported
15826 Info
.flags
= MachineMemOperand::MOLoad
;
15829 case Intrinsic::arm_neon_vst1
:
15830 case Intrinsic::arm_neon_vst2
:
15831 case Intrinsic::arm_neon_vst3
:
15832 case Intrinsic::arm_neon_vst4
:
15833 case Intrinsic::arm_neon_vst2lane
:
15834 case Intrinsic::arm_neon_vst3lane
:
15835 case Intrinsic::arm_neon_vst4lane
: {
15836 Info
.opc
= ISD::INTRINSIC_VOID
;
15837 // Conservatively set memVT to the entire set of vectors stored.
15838 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15839 unsigned NumElts
= 0;
15840 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15841 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15842 if (!ArgTy
->isVectorTy())
15844 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15846 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15847 Info
.ptrVal
= I
.getArgOperand(0);
15849 Value
*AlignArg
= I
.getArgOperand(I
.getNumArgOperands() - 1);
15850 Info
.align
= MaybeAlign(cast
<ConstantInt
>(AlignArg
)->getZExtValue());
15851 // volatile stores with NEON intrinsics not supported
15852 Info
.flags
= MachineMemOperand::MOStore
;
15855 case Intrinsic::arm_neon_vst1x2
:
15856 case Intrinsic::arm_neon_vst1x3
:
15857 case Intrinsic::arm_neon_vst1x4
: {
15858 Info
.opc
= ISD::INTRINSIC_VOID
;
15859 // Conservatively set memVT to the entire set of vectors stored.
15860 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15861 unsigned NumElts
= 0;
15862 for (unsigned ArgI
= 1, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
15863 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
15864 if (!ArgTy
->isVectorTy())
15866 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
15868 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
15869 Info
.ptrVal
= I
.getArgOperand(0);
15871 Info
.align
.reset();
15872 // volatile stores with NEON intrinsics not supported
15873 Info
.flags
= MachineMemOperand::MOStore
;
15876 case Intrinsic::arm_ldaex
:
15877 case Intrinsic::arm_ldrex
: {
15878 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15879 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
15880 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15881 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15882 Info
.ptrVal
= I
.getArgOperand(0);
15884 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
15885 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15888 case Intrinsic::arm_stlex
:
15889 case Intrinsic::arm_strex
: {
15890 auto &DL
= I
.getCalledFunction()->getParent()->getDataLayout();
15891 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
15892 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15893 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
15894 Info
.ptrVal
= I
.getArgOperand(1);
15896 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
15897 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15900 case Intrinsic::arm_stlexd
:
15901 case Intrinsic::arm_strexd
:
15902 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15903 Info
.memVT
= MVT::i64
;
15904 Info
.ptrVal
= I
.getArgOperand(2);
15906 Info
.align
= Align(8);
15907 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
15910 case Intrinsic::arm_ldaexd
:
15911 case Intrinsic::arm_ldrexd
:
15912 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
15913 Info
.memVT
= MVT::i64
;
15914 Info
.ptrVal
= I
.getArgOperand(0);
15916 Info
.align
= Align(8);
15917 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
15927 /// Returns true if it is beneficial to convert a load of a constant
15928 /// to just the constant itself.
15929 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
15931 assert(Ty
->isIntegerTy());
15933 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
15934 if (Bits
== 0 || Bits
> 32)
15939 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
15940 unsigned Index
) const {
15941 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
15944 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
15947 Instruction
* ARMTargetLowering::makeDMB(IRBuilder
<> &Builder
,
15948 ARM_MB::MemBOpt Domain
) const {
15949 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
15951 // First, if the target has no DMB, see what fallback we can use.
15952 if (!Subtarget
->hasDataBarrier()) {
15953 // Some ARMv6 cpus can support data barriers with an mcr instruction.
15954 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
15956 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
15957 Function
*MCR
= Intrinsic::getDeclaration(M
, Intrinsic::arm_mcr
);
15958 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
15959 Builder
.getInt32(0), Builder
.getInt32(7),
15960 Builder
.getInt32(10), Builder
.getInt32(5)};
15961 return Builder
.CreateCall(MCR
, args
);
15963 // Instead of using barriers, atomic accesses on these subtargets use
15965 llvm_unreachable("makeDMB on a target so old that it has no barriers");
15968 Function
*DMB
= Intrinsic::getDeclaration(M
, Intrinsic::arm_dmb
);
15969 // Only a full system barrier exists in the M-class architectures.
15970 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
15971 Constant
*CDomain
= Builder
.getInt32(Domain
);
15972 return Builder
.CreateCall(DMB
, CDomain
);
15976 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
15977 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
15979 AtomicOrdering Ord
) const {
15981 case AtomicOrdering::NotAtomic
:
15982 case AtomicOrdering::Unordered
:
15983 llvm_unreachable("Invalid fence: unordered/non-atomic");
15984 case AtomicOrdering::Monotonic
:
15985 case AtomicOrdering::Acquire
:
15986 return nullptr; // Nothing to do
15987 case AtomicOrdering::SequentiallyConsistent
:
15988 if (!Inst
->hasAtomicStore())
15989 return nullptr; // Nothing to do
15991 case AtomicOrdering::Release
:
15992 case AtomicOrdering::AcquireRelease
:
15993 if (Subtarget
->preferISHSTBarriers())
15994 return makeDMB(Builder
, ARM_MB::ISHST
);
15995 // FIXME: add a comment with a link to documentation justifying this.
15997 return makeDMB(Builder
, ARM_MB::ISH
);
15999 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
16002 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
16004 AtomicOrdering Ord
) const {
16006 case AtomicOrdering::NotAtomic
:
16007 case AtomicOrdering::Unordered
:
16008 llvm_unreachable("Invalid fence: unordered/not-atomic");
16009 case AtomicOrdering::Monotonic
:
16010 case AtomicOrdering::Release
:
16011 return nullptr; // Nothing to do
16012 case AtomicOrdering::Acquire
:
16013 case AtomicOrdering::AcquireRelease
:
16014 case AtomicOrdering::SequentiallyConsistent
:
16015 return makeDMB(Builder
, ARM_MB::ISH
);
16017 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
16020 // Loads and stores less than 64-bits are already atomic; ones above that
16021 // are doomed anyway, so defer to the default libcall and blame the OS when
16022 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16023 // anything for those.
16024 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
16025 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
16026 return (Size
== 64) && !Subtarget
->isMClass();
16029 // Loads and stores less than 64-bits are already atomic; ones above that
16030 // are doomed anyway, so defer to the default libcall and blame the OS when
16031 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16032 // anything for those.
16033 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
16034 // guarantee, see DDI0406C ARM architecture reference manual,
16035 // sections A8.8.72-74 LDRD)
16036 TargetLowering::AtomicExpansionKind
16037 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
16038 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
16039 return ((Size
== 64) && !Subtarget
->isMClass()) ? AtomicExpansionKind::LLOnly
16040 : AtomicExpansionKind::None
;
16043 // For the real atomic operations, we have ldrex/strex up to 32 bits,
16044 // and up to 64 bits on the non-M profiles
16045 TargetLowering::AtomicExpansionKind
16046 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
16047 if (AI
->isFloatingPointOperation())
16048 return AtomicExpansionKind::CmpXChg
;
16050 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
16051 bool hasAtomicRMW
= !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16052 return (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
)
16053 ? AtomicExpansionKind::LLSC
16054 : AtomicExpansionKind::None
;
16057 TargetLowering::AtomicExpansionKind
16058 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
16059 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16060 // implement cmpxchg without spilling. If the address being exchanged is also
16061 // on the stack and close enough to the spill slot, this can lead to a
16062 // situation where the monitor always gets cleared and the atomic operation
16063 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
16064 bool HasAtomicCmpXchg
=
16065 !Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps();
16066 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg
)
16067 return AtomicExpansionKind::LLSC
;
16068 return AtomicExpansionKind::None
;
16071 bool ARMTargetLowering::shouldInsertFencesForAtomic(
16072 const Instruction
*I
) const {
16073 return InsertFencesForAtomic
;
16076 // This has so far only been implemented for MachO.
16077 bool ARMTargetLowering::useLoadStackGuardNode() const {
16078 return Subtarget
->isTargetMachO();
16081 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
16082 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16083 return TargetLowering::insertSSPDeclarations(M
);
16085 // MSVC CRT has a global variable holding security cookie.
16086 M
.getOrInsertGlobal("__security_cookie",
16087 Type::getInt8PtrTy(M
.getContext()));
16089 // MSVC CRT has a function to validate security cookie.
16090 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
16091 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
16092 Type::getInt8PtrTy(M
.getContext()));
16093 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
16094 F
->addAttribute(1, Attribute::AttrKind::InReg
);
16097 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
16098 // MSVC CRT has a global variable holding security cookie.
16099 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16100 return M
.getGlobalVariable("__security_cookie");
16101 return TargetLowering::getSDagStackGuard(M
);
16104 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
16105 // MSVC CRT has a function to validate security cookie.
16106 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
16107 return M
.getFunction("__security_check_cookie");
16108 return TargetLowering::getSSPStackGuardCheck(M
);
16111 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
16112 unsigned &Cost
) const {
16113 // If we do not have NEON, vector types are not natively supported.
16114 if (!Subtarget
->hasNEON())
16117 // Floating point values and vector values map to the same register file.
16118 // Therefore, although we could do a store extract of a vector type, this is
16119 // better to leave at float as we have more freedom in the addressing mode for
16121 if (VectorTy
->isFPOrFPVectorTy())
16124 // If the index is unknown at compile time, this is very expensive to lower
16125 // and it is not possible to combine the store with the extract.
16126 if (!isa
<ConstantInt
>(Idx
))
16129 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
16130 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
16131 // We can do a store + vector extract on any vector that fits perfectly in a D
16133 if (BitWidth
== 64 || BitWidth
== 128) {
16140 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16141 return Subtarget
->hasV6T2Ops();
16144 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16145 return Subtarget
->hasV6T2Ops();
16148 bool ARMTargetLowering::shouldExpandShift(SelectionDAG
&DAG
, SDNode
*N
) const {
16149 return !Subtarget
->hasMinSize();
16152 Value
*ARMTargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
16153 AtomicOrdering Ord
) const {
16154 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16155 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
16156 bool IsAcquire
= isAcquireOrStronger(Ord
);
16158 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16159 // intrinsic must return {i32, i32} and we have to recombine them into a
16160 // single i64 here.
16161 if (ValTy
->getPrimitiveSizeInBits() == 64) {
16162 Intrinsic::ID Int
=
16163 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
16164 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
);
16166 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16167 Value
*LoHi
= Builder
.CreateCall(Ldrex
, Addr
, "lohi");
16169 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
16170 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
16171 if (!Subtarget
->isLittle())
16172 std::swap (Lo
, Hi
);
16173 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
16174 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
16175 return Builder
.CreateOr(
16176 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 32)), "val64");
16179 Type
*Tys
[] = { Addr
->getType() };
16180 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
16181 Function
*Ldrex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16183 return Builder
.CreateTruncOrBitCast(
16184 Builder
.CreateCall(Ldrex
, Addr
),
16185 cast
<PointerType
>(Addr
->getType())->getElementType());
16188 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16189 IRBuilder
<> &Builder
) const {
16190 if (!Subtarget
->hasV7Ops())
16192 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16193 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::arm_clrex
));
16196 Value
*ARMTargetLowering::emitStoreConditional(IRBuilder
<> &Builder
, Value
*Val
,
16198 AtomicOrdering Ord
) const {
16199 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
16200 bool IsRelease
= isReleaseOrStronger(Ord
);
16202 // Since the intrinsics must have legal type, the i64 intrinsics take two
16203 // parameters: "i32, i32". We must marshal Val into the appropriate form
16204 // before the call.
16205 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
16206 Intrinsic::ID Int
=
16207 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
16208 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
);
16209 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
16211 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
16212 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
16213 if (!Subtarget
->isLittle())
16215 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
16216 return Builder
.CreateCall(Strex
, {Lo
, Hi
, Addr
});
16219 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
16220 Type
*Tys
[] = { Addr
->getType() };
16221 Function
*Strex
= Intrinsic::getDeclaration(M
, Int
, Tys
);
16223 return Builder
.CreateCall(
16224 Strex
, {Builder
.CreateZExtOrBitCast(
16225 Val
, Strex
->getFunctionType()->getParamType(0)),
16230 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16231 return Subtarget
->isMClass();
16234 /// A helper function for determining the number of interleaved accesses we
16235 /// will generate when lowering accesses of the given type.
16237 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
16238 const DataLayout
&DL
) const {
16239 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
16242 bool ARMTargetLowering::isLegalInterleavedAccessType(
16243 VectorType
*VecTy
, const DataLayout
&DL
) const {
16245 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
16246 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
16248 // Ensure the vector doesn't have f16 elements. Even though we could do an
16249 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16251 if (VecTy
->getElementType()->isHalfTy())
16254 // Ensure the number of vector elements is greater than 1.
16255 if (VecTy
->getNumElements() < 2)
16258 // Ensure the element type is legal.
16259 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
16262 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16263 // 128 will be split into multiple interleaved accesses.
16264 return VecSize
== 64 || VecSize
% 128 == 0;
16267 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
16268 if (Subtarget
->hasNEON())
16270 return TargetLoweringBase::getMaxSupportedInterleaveFactor();
16273 /// Lower an interleaved load into a vldN intrinsic.
16275 /// E.g. Lower an interleaved load (Factor = 2):
16276 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16277 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16278 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16281 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16282 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16283 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16284 bool ARMTargetLowering::lowerInterleavedLoad(
16285 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
16286 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
16287 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16288 "Invalid interleave factor");
16289 assert(!Shuffles
.empty() && "Empty shufflevector input");
16290 assert(Shuffles
.size() == Indices
.size() &&
16291 "Unmatched number of shufflevectors and indices");
16293 VectorType
*VecTy
= Shuffles
[0]->getType();
16294 Type
*EltTy
= VecTy
->getVectorElementType();
16296 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
16298 // Skip if we do not have NEON and skip illegal vector types. We can
16299 // "legalize" wide vector types into multiple interleaved accesses as long as
16300 // the vector types are divisible by 128.
16301 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
16304 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
16306 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16307 // load integer vectors first and then convert to pointer vectors.
16308 if (EltTy
->isPointerTy())
16310 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
16312 IRBuilder
<> Builder(LI
);
16314 // The base address of the load.
16315 Value
*BaseAddr
= LI
->getPointerOperand();
16317 if (NumLoads
> 1) {
16318 // If we're going to generate more than one load, reset the sub-vector type
16319 // to something legal.
16320 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
16321 VecTy
->getVectorNumElements() / NumLoads
);
16323 // We will compute the pointer operand of each load from the original base
16324 // address using GEPs. Cast the base address to a pointer to the scalar
16326 BaseAddr
= Builder
.CreateBitCast(
16327 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
16328 LI
->getPointerAddressSpace()));
16331 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
16333 Type
*Int8Ptr
= Builder
.getInt8PtrTy(LI
->getPointerAddressSpace());
16334 Type
*Tys
[] = {VecTy
, Int8Ptr
};
16335 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
16336 Intrinsic::arm_neon_vld3
,
16337 Intrinsic::arm_neon_vld4
};
16338 Function
*VldnFunc
=
16339 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
16341 // Holds sub-vectors extracted from the load intrinsic return values. The
16342 // sub-vectors are associated with the shufflevector instructions they will
16344 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
16346 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
16347 // If we're generating more than one load, compute the base address of
16348 // subsequent loads as an offset from the previous.
16351 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
16352 VecTy
->getVectorNumElements() * Factor
);
16354 SmallVector
<Value
*, 2> Ops
;
16355 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16356 Ops
.push_back(Builder
.getInt32(LI
->getAlignment()));
16358 CallInst
*VldN
= Builder
.CreateCall(VldnFunc
, Ops
, "vldN");
16360 // Replace uses of each shufflevector with the corresponding vector loaded
16362 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
16363 ShuffleVectorInst
*SV
= Shuffles
[i
];
16364 unsigned Index
= Indices
[i
];
16366 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
16368 // Convert the integer vector to pointer vector if the element is pointer.
16369 if (EltTy
->isPointerTy())
16370 SubVec
= Builder
.CreateIntToPtr(
16371 SubVec
, VectorType::get(SV
->getType()->getVectorElementType(),
16372 VecTy
->getVectorNumElements()));
16374 SubVecs
[SV
].push_back(SubVec
);
16378 // Replace uses of the shufflevector instructions with the sub-vectors
16379 // returned by the load intrinsic. If a shufflevector instruction is
16380 // associated with more than one sub-vector, those sub-vectors will be
16381 // concatenated into a single wide vector.
16382 for (ShuffleVectorInst
*SVI
: Shuffles
) {
16383 auto &SubVec
= SubVecs
[SVI
];
16385 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
16386 SVI
->replaceAllUsesWith(WideVec
);
16392 /// Lower an interleaved store into a vstN intrinsic.
16394 /// E.g. Lower an interleaved store (Factor = 3):
16395 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16396 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16397 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16400 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16401 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16402 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16403 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16405 /// Note that the new shufflevectors will be removed and we'll only generate one
16406 /// vst3 instruction in CodeGen.
16408 /// Example for a more general valid mask (Factor 3). Lower:
16409 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16410 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16411 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16414 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16415 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16416 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16417 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16418 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
16419 ShuffleVectorInst
*SVI
,
16420 unsigned Factor
) const {
16421 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
16422 "Invalid interleave factor");
16424 VectorType
*VecTy
= SVI
->getType();
16425 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
16426 "Invalid interleaved store");
16428 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
16429 Type
*EltTy
= VecTy
->getVectorElementType();
16430 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
16432 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
16434 // Skip if we do not have NEON and skip illegal vector types. We can
16435 // "legalize" wide vector types into multiple interleaved accesses as long as
16436 // the vector types are divisible by 128.
16437 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
16440 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
16442 Value
*Op0
= SVI
->getOperand(0);
16443 Value
*Op1
= SVI
->getOperand(1);
16444 IRBuilder
<> Builder(SI
);
16446 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16447 // vectors to integer vectors.
16448 if (EltTy
->isPointerTy()) {
16449 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
16451 // Convert to the corresponding integer vector.
16453 VectorType::get(IntTy
, Op0
->getType()->getVectorNumElements());
16454 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
16455 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
16457 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
16460 // The base address of the store.
16461 Value
*BaseAddr
= SI
->getPointerOperand();
16463 if (NumStores
> 1) {
16464 // If we're going to generate more than one store, reset the lane length
16465 // and sub-vector type to something legal.
16466 LaneLen
/= NumStores
;
16467 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
16469 // We will compute the pointer operand of each store from the original base
16470 // address using GEPs. Cast the base address to a pointer to the scalar
16472 BaseAddr
= Builder
.CreateBitCast(
16473 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
16474 SI
->getPointerAddressSpace()));
16477 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
16479 auto Mask
= SVI
->getShuffleMask();
16481 Type
*Int8Ptr
= Builder
.getInt8PtrTy(SI
->getPointerAddressSpace());
16482 Type
*Tys
[] = {Int8Ptr
, SubVecTy
};
16483 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
16484 Intrinsic::arm_neon_vst3
,
16485 Intrinsic::arm_neon_vst4
};
16487 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
16488 // If we generating more than one store, we compute the base address of
16489 // subsequent stores as an offset from the previous.
16490 if (StoreCount
> 0)
16491 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
16492 BaseAddr
, LaneLen
* Factor
);
16494 SmallVector
<Value
*, 6> Ops
;
16495 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, Int8Ptr
));
16497 Function
*VstNFunc
=
16498 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
16500 // Split the shufflevector operands into sub vectors for the new vstN call.
16501 for (unsigned i
= 0; i
< Factor
; i
++) {
16502 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
16503 if (Mask
[IdxI
] >= 0) {
16504 Ops
.push_back(Builder
.CreateShuffleVector(
16505 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
16507 unsigned StartMask
= 0;
16508 for (unsigned j
= 1; j
< LaneLen
; j
++) {
16509 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
16510 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
16511 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
16515 // Note: If all elements in a chunk are undefs, StartMask=0!
16516 // Note: Filling undef gaps with random elements is ok, since
16517 // those elements were being written anyway (with undefs).
16518 // In the case of all undefs we're defaulting to using elems from 0
16519 // Note: StartMask cannot be negative, it's checked in
16520 // isReInterleaveMask
16521 Ops
.push_back(Builder
.CreateShuffleVector(
16522 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
16526 Ops
.push_back(Builder
.getInt32(SI
->getAlignment()));
16527 Builder
.CreateCall(VstNFunc
, Ops
);
16540 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
16541 uint64_t &Members
) {
16542 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
16543 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
16544 uint64_t SubMembers
= 0;
16545 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
16547 Members
+= SubMembers
;
16549 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
16550 uint64_t SubMembers
= 0;
16551 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
16553 Members
+= SubMembers
* AT
->getNumElements();
16554 } else if (Ty
->isFloatTy()) {
16555 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
16559 } else if (Ty
->isDoubleTy()) {
16560 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
16564 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
16571 return VT
->getBitWidth() == 64;
16573 return VT
->getBitWidth() == 128;
16575 switch (VT
->getBitWidth()) {
16588 return (Members
> 0 && Members
<= 4);
16591 /// Return the correct alignment for the current calling convention.
16593 ARMTargetLowering::getABIAlignmentForCallingConv(Type
*ArgTy
,
16594 DataLayout DL
) const {
16595 if (!ArgTy
->isVectorTy())
16596 return DL
.getABITypeAlignment(ArgTy
);
16598 // Avoid over-aligning vector parameters. It would require realigning the
16599 // stack and waste space for no real benefit.
16600 return std::min(DL
.getABITypeAlignment(ArgTy
), DL
.getStackAlignment());
16603 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16604 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16605 /// passing according to AAPCS rules.
16606 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16607 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
16608 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
16609 CallingConv::ARM_AAPCS_VFP
)
16612 HABaseType Base
= HA_UNKNOWN
;
16613 uint64_t Members
= 0;
16614 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
16615 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
16617 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
16618 return IsHA
|| IsIntArray
;
16621 unsigned ARMTargetLowering::getExceptionPointerRegister(
16622 const Constant
*PersonalityFn
) const {
16623 // Platforms which do not use SjLj EH may return values in these registers
16624 // via the personality function.
16625 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R0
;
16628 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16629 const Constant
*PersonalityFn
) const {
16630 // Platforms which do not use SjLj EH may return values in these registers
16631 // via the personality function.
16632 return Subtarget
->useSjLjEH() ? ARM::NoRegister
: ARM::R1
;
16635 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
16636 // Update IsSplitCSR in ARMFunctionInfo.
16637 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
16638 AFI
->setIsSplitCSR(true);
16641 void ARMTargetLowering::insertCopiesSplitCSR(
16642 MachineBasicBlock
*Entry
,
16643 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
16644 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
16645 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
16649 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
16650 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
16651 MachineBasicBlock::iterator MBBI
= Entry
->begin();
16652 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
16653 const TargetRegisterClass
*RC
= nullptr;
16654 if (ARM::GPRRegClass
.contains(*I
))
16655 RC
= &ARM::GPRRegClass
;
16656 else if (ARM::DPRRegClass
.contains(*I
))
16657 RC
= &ARM::DPRRegClass
;
16659 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16661 Register NewVR
= MRI
->createVirtualRegister(RC
);
16662 // Create copy from CSR to a virtual register.
16663 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16664 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16665 // nounwind. If we want to generalize this later, we may need to emit
16666 // CFI pseudo-instructions.
16667 assert(Entry
->getParent()->getFunction().hasFnAttribute(
16668 Attribute::NoUnwind
) &&
16669 "Function should be nounwind in insertCopiesSplitCSR!");
16670 Entry
->addLiveIn(*I
);
16671 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
16674 // Insert the copy-back instructions right before the terminator.
16675 for (auto *Exit
: Exits
)
16676 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
16677 TII
->get(TargetOpcode::COPY
), *I
)
16682 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
16683 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
16684 TargetLoweringBase::finalizeLowering(MF
);