1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
81 #define DEBUG_TYPE "mips-lower"
83 STATISTIC(NumTailCalls
, "Number of tail calls");
86 LargeGOT("mxgot", cl::Hidden
,
87 cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
90 NoZeroDivCheck("mno-check-zero-division", cl::Hidden
,
91 cl::desc("MIPS: Don't trap on integer division by zero."),
94 extern cl::opt
<bool> EmitJalrReloc
;
96 static const MCPhysReg Mips64DPRegs
[8] = {
97 Mips::D12_64
, Mips::D13_64
, Mips::D14_64
, Mips::D15_64
,
98 Mips::D16_64
, Mips::D17_64
, Mips::D18_64
, Mips::D19_64
101 // If I is a shifted mask, set the size (Size) and the first bit of the
102 // mask (Pos), and return true.
103 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
104 static bool isShiftedMask(uint64_t I
, uint64_t &Pos
, uint64_t &Size
) {
105 if (!isShiftedMask_64(I
))
108 Size
= countPopulation(I
);
109 Pos
= countTrailingZeros(I
);
113 // The MIPS MSA ABI passes vector arguments in the integer register set.
114 // The number of integer registers used is dependant on the ABI used.
115 MVT
MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext
&Context
,
119 if (Subtarget
.isABI_O32()) {
122 return (VT
.getSizeInBits() == 32) ? MVT::i32
: MVT::i64
;
125 return MipsTargetLowering::getRegisterType(Context
, VT
);
128 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext
&Context
,
132 return std::max((VT
.getSizeInBits() / (Subtarget
.isABI_O32() ? 32 : 64)),
134 return MipsTargetLowering::getNumRegisters(Context
, VT
);
137 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
138 LLVMContext
&Context
, CallingConv::ID CC
, EVT VT
, EVT
&IntermediateVT
,
139 unsigned &NumIntermediates
, MVT
&RegisterVT
) const {
140 // Break down vector types to either 2 i64s or 4 i32s.
141 RegisterVT
= getRegisterTypeForCallingConv(Context
, CC
, VT
);
142 IntermediateVT
= RegisterVT
;
143 NumIntermediates
= VT
.getSizeInBits() < RegisterVT
.getSizeInBits()
144 ? VT
.getVectorNumElements()
145 : VT
.getSizeInBits() / RegisterVT
.getSizeInBits();
147 return NumIntermediates
;
150 SDValue
MipsTargetLowering::getGlobalReg(SelectionDAG
&DAG
, EVT Ty
) const {
151 MipsFunctionInfo
*FI
= DAG
.getMachineFunction().getInfo
<MipsFunctionInfo
>();
152 return DAG
.getRegister(FI
->getGlobalBaseReg(), Ty
);
155 SDValue
MipsTargetLowering::getTargetNode(GlobalAddressSDNode
*N
, EVT Ty
,
157 unsigned Flag
) const {
158 return DAG
.getTargetGlobalAddress(N
->getGlobal(), SDLoc(N
), Ty
, 0, Flag
);
161 SDValue
MipsTargetLowering::getTargetNode(ExternalSymbolSDNode
*N
, EVT Ty
,
163 unsigned Flag
) const {
164 return DAG
.getTargetExternalSymbol(N
->getSymbol(), Ty
, Flag
);
167 SDValue
MipsTargetLowering::getTargetNode(BlockAddressSDNode
*N
, EVT Ty
,
169 unsigned Flag
) const {
170 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, 0, Flag
);
173 SDValue
MipsTargetLowering::getTargetNode(JumpTableSDNode
*N
, EVT Ty
,
175 unsigned Flag
) const {
176 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flag
);
179 SDValue
MipsTargetLowering::getTargetNode(ConstantPoolSDNode
*N
, EVT Ty
,
181 unsigned Flag
) const {
182 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlignment(),
183 N
->getOffset(), Flag
);
186 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode
) const {
187 switch ((MipsISD::NodeType
)Opcode
) {
188 case MipsISD::FIRST_NUMBER
: break;
189 case MipsISD::JmpLink
: return "MipsISD::JmpLink";
190 case MipsISD::TailCall
: return "MipsISD::TailCall";
191 case MipsISD::Highest
: return "MipsISD::Highest";
192 case MipsISD::Higher
: return "MipsISD::Higher";
193 case MipsISD::Hi
: return "MipsISD::Hi";
194 case MipsISD::Lo
: return "MipsISD::Lo";
195 case MipsISD::GotHi
: return "MipsISD::GotHi";
196 case MipsISD::TlsHi
: return "MipsISD::TlsHi";
197 case MipsISD::GPRel
: return "MipsISD::GPRel";
198 case MipsISD::ThreadPointer
: return "MipsISD::ThreadPointer";
199 case MipsISD::Ret
: return "MipsISD::Ret";
200 case MipsISD::ERet
: return "MipsISD::ERet";
201 case MipsISD::EH_RETURN
: return "MipsISD::EH_RETURN";
202 case MipsISD::FMS
: return "MipsISD::FMS";
203 case MipsISD::FPBrcond
: return "MipsISD::FPBrcond";
204 case MipsISD::FPCmp
: return "MipsISD::FPCmp";
205 case MipsISD::FSELECT
: return "MipsISD::FSELECT";
206 case MipsISD::MTC1_D64
: return "MipsISD::MTC1_D64";
207 case MipsISD::CMovFP_T
: return "MipsISD::CMovFP_T";
208 case MipsISD::CMovFP_F
: return "MipsISD::CMovFP_F";
209 case MipsISD::TruncIntFP
: return "MipsISD::TruncIntFP";
210 case MipsISD::MFHI
: return "MipsISD::MFHI";
211 case MipsISD::MFLO
: return "MipsISD::MFLO";
212 case MipsISD::MTLOHI
: return "MipsISD::MTLOHI";
213 case MipsISD::Mult
: return "MipsISD::Mult";
214 case MipsISD::Multu
: return "MipsISD::Multu";
215 case MipsISD::MAdd
: return "MipsISD::MAdd";
216 case MipsISD::MAddu
: return "MipsISD::MAddu";
217 case MipsISD::MSub
: return "MipsISD::MSub";
218 case MipsISD::MSubu
: return "MipsISD::MSubu";
219 case MipsISD::DivRem
: return "MipsISD::DivRem";
220 case MipsISD::DivRemU
: return "MipsISD::DivRemU";
221 case MipsISD::DivRem16
: return "MipsISD::DivRem16";
222 case MipsISD::DivRemU16
: return "MipsISD::DivRemU16";
223 case MipsISD::BuildPairF64
: return "MipsISD::BuildPairF64";
224 case MipsISD::ExtractElementF64
: return "MipsISD::ExtractElementF64";
225 case MipsISD::Wrapper
: return "MipsISD::Wrapper";
226 case MipsISD::DynAlloc
: return "MipsISD::DynAlloc";
227 case MipsISD::Sync
: return "MipsISD::Sync";
228 case MipsISD::Ext
: return "MipsISD::Ext";
229 case MipsISD::Ins
: return "MipsISD::Ins";
230 case MipsISD::CIns
: return "MipsISD::CIns";
231 case MipsISD::LWL
: return "MipsISD::LWL";
232 case MipsISD::LWR
: return "MipsISD::LWR";
233 case MipsISD::SWL
: return "MipsISD::SWL";
234 case MipsISD::SWR
: return "MipsISD::SWR";
235 case MipsISD::LDL
: return "MipsISD::LDL";
236 case MipsISD::LDR
: return "MipsISD::LDR";
237 case MipsISD::SDL
: return "MipsISD::SDL";
238 case MipsISD::SDR
: return "MipsISD::SDR";
239 case MipsISD::EXTP
: return "MipsISD::EXTP";
240 case MipsISD::EXTPDP
: return "MipsISD::EXTPDP";
241 case MipsISD::EXTR_S_H
: return "MipsISD::EXTR_S_H";
242 case MipsISD::EXTR_W
: return "MipsISD::EXTR_W";
243 case MipsISD::EXTR_R_W
: return "MipsISD::EXTR_R_W";
244 case MipsISD::EXTR_RS_W
: return "MipsISD::EXTR_RS_W";
245 case MipsISD::SHILO
: return "MipsISD::SHILO";
246 case MipsISD::MTHLIP
: return "MipsISD::MTHLIP";
247 case MipsISD::MULSAQ_S_W_PH
: return "MipsISD::MULSAQ_S_W_PH";
248 case MipsISD::MAQ_S_W_PHL
: return "MipsISD::MAQ_S_W_PHL";
249 case MipsISD::MAQ_S_W_PHR
: return "MipsISD::MAQ_S_W_PHR";
250 case MipsISD::MAQ_SA_W_PHL
: return "MipsISD::MAQ_SA_W_PHL";
251 case MipsISD::MAQ_SA_W_PHR
: return "MipsISD::MAQ_SA_W_PHR";
252 case MipsISD::DPAU_H_QBL
: return "MipsISD::DPAU_H_QBL";
253 case MipsISD::DPAU_H_QBR
: return "MipsISD::DPAU_H_QBR";
254 case MipsISD::DPSU_H_QBL
: return "MipsISD::DPSU_H_QBL";
255 case MipsISD::DPSU_H_QBR
: return "MipsISD::DPSU_H_QBR";
256 case MipsISD::DPAQ_S_W_PH
: return "MipsISD::DPAQ_S_W_PH";
257 case MipsISD::DPSQ_S_W_PH
: return "MipsISD::DPSQ_S_W_PH";
258 case MipsISD::DPAQ_SA_L_W
: return "MipsISD::DPAQ_SA_L_W";
259 case MipsISD::DPSQ_SA_L_W
: return "MipsISD::DPSQ_SA_L_W";
260 case MipsISD::DPA_W_PH
: return "MipsISD::DPA_W_PH";
261 case MipsISD::DPS_W_PH
: return "MipsISD::DPS_W_PH";
262 case MipsISD::DPAQX_S_W_PH
: return "MipsISD::DPAQX_S_W_PH";
263 case MipsISD::DPAQX_SA_W_PH
: return "MipsISD::DPAQX_SA_W_PH";
264 case MipsISD::DPAX_W_PH
: return "MipsISD::DPAX_W_PH";
265 case MipsISD::DPSX_W_PH
: return "MipsISD::DPSX_W_PH";
266 case MipsISD::DPSQX_S_W_PH
: return "MipsISD::DPSQX_S_W_PH";
267 case MipsISD::DPSQX_SA_W_PH
: return "MipsISD::DPSQX_SA_W_PH";
268 case MipsISD::MULSA_W_PH
: return "MipsISD::MULSA_W_PH";
269 case MipsISD::MULT
: return "MipsISD::MULT";
270 case MipsISD::MULTU
: return "MipsISD::MULTU";
271 case MipsISD::MADD_DSP
: return "MipsISD::MADD_DSP";
272 case MipsISD::MADDU_DSP
: return "MipsISD::MADDU_DSP";
273 case MipsISD::MSUB_DSP
: return "MipsISD::MSUB_DSP";
274 case MipsISD::MSUBU_DSP
: return "MipsISD::MSUBU_DSP";
275 case MipsISD::SHLL_DSP
: return "MipsISD::SHLL_DSP";
276 case MipsISD::SHRA_DSP
: return "MipsISD::SHRA_DSP";
277 case MipsISD::SHRL_DSP
: return "MipsISD::SHRL_DSP";
278 case MipsISD::SETCC_DSP
: return "MipsISD::SETCC_DSP";
279 case MipsISD::SELECT_CC_DSP
: return "MipsISD::SELECT_CC_DSP";
280 case MipsISD::VALL_ZERO
: return "MipsISD::VALL_ZERO";
281 case MipsISD::VANY_ZERO
: return "MipsISD::VANY_ZERO";
282 case MipsISD::VALL_NONZERO
: return "MipsISD::VALL_NONZERO";
283 case MipsISD::VANY_NONZERO
: return "MipsISD::VANY_NONZERO";
284 case MipsISD::VCEQ
: return "MipsISD::VCEQ";
285 case MipsISD::VCLE_S
: return "MipsISD::VCLE_S";
286 case MipsISD::VCLE_U
: return "MipsISD::VCLE_U";
287 case MipsISD::VCLT_S
: return "MipsISD::VCLT_S";
288 case MipsISD::VCLT_U
: return "MipsISD::VCLT_U";
289 case MipsISD::VEXTRACT_SEXT_ELT
: return "MipsISD::VEXTRACT_SEXT_ELT";
290 case MipsISD::VEXTRACT_ZEXT_ELT
: return "MipsISD::VEXTRACT_ZEXT_ELT";
291 case MipsISD::VNOR
: return "MipsISD::VNOR";
292 case MipsISD::VSHF
: return "MipsISD::VSHF";
293 case MipsISD::SHF
: return "MipsISD::SHF";
294 case MipsISD::ILVEV
: return "MipsISD::ILVEV";
295 case MipsISD::ILVOD
: return "MipsISD::ILVOD";
296 case MipsISD::ILVL
: return "MipsISD::ILVL";
297 case MipsISD::ILVR
: return "MipsISD::ILVR";
298 case MipsISD::PCKEV
: return "MipsISD::PCKEV";
299 case MipsISD::PCKOD
: return "MipsISD::PCKOD";
300 case MipsISD::INSVE
: return "MipsISD::INSVE";
305 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine
&TM
,
306 const MipsSubtarget
&STI
)
307 : TargetLowering(TM
), Subtarget(STI
), ABI(TM
.getABI()) {
308 // Mips does not have i1 type, so use i32 for
309 // setcc operations results (slt, sgt, ...).
310 setBooleanContents(ZeroOrOneBooleanContent
);
311 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
312 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
313 // does. Integer booleans still use 0 and 1.
314 if (Subtarget
.hasMips32r6())
315 setBooleanContents(ZeroOrOneBooleanContent
,
316 ZeroOrNegativeOneBooleanContent
);
318 // Load extented operations for i1 types must be promoted
319 for (MVT VT
: MVT::integer_valuetypes()) {
320 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
321 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
322 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
325 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
327 for (MVT VT
: MVT::fp_valuetypes()) {
328 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
329 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
332 // Set LoadExtAction for f16 vectors to Expand
333 for (MVT VT
: MVT::fp_vector_valuetypes()) {
334 MVT F16VT
= MVT::getVectorVT(MVT::f16
, VT
.getVectorNumElements());
336 setLoadExtAction(ISD::EXTLOAD
, VT
, F16VT
, Expand
);
339 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
340 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
342 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
344 // Used by legalize types to correctly generate the setcc result.
345 // Without this, every float setcc comes with a AND/OR with the result,
346 // we don't want this, since the fpcmp result goes to a flag register,
347 // which is used implicitly by brcond and select operations.
348 AddPromotedToType(ISD::SETCC
, MVT::i1
, MVT::i32
);
350 // Mips Custom Operations
351 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
352 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
353 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
354 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
355 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
356 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
357 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
358 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
359 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
360 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
361 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
362 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
363 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
364 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
365 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
367 if (!(TM
.Options
.NoNaNsFPMath
|| Subtarget
.inAbs2008Mode())) {
368 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
369 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
372 if (Subtarget
.isGP64bit()) {
373 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
374 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
375 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
376 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
377 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
378 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
379 setOperationAction(ISD::LOAD
, MVT::i64
, Custom
);
380 setOperationAction(ISD::STORE
, MVT::i64
, Custom
);
381 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
382 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
383 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
384 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
387 if (!Subtarget
.isGP64bit()) {
388 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
389 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
390 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
393 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i32
, Custom
);
394 if (Subtarget
.isGP64bit())
395 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i64
, Custom
);
397 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
398 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
399 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
400 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
401 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
402 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
403 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
404 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
406 // Operations not directly supported by Mips.
407 setOperationAction(ISD::BR_CC
, MVT::f32
, Expand
);
408 setOperationAction(ISD::BR_CC
, MVT::f64
, Expand
);
409 setOperationAction(ISD::BR_CC
, MVT::i32
, Expand
);
410 setOperationAction(ISD::BR_CC
, MVT::i64
, Expand
);
411 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Expand
);
412 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
413 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Expand
);
414 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Expand
);
415 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
416 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
417 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
418 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
419 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
420 if (Subtarget
.hasCnMips()) {
421 setOperationAction(ISD::CTPOP
, MVT::i32
, Legal
);
422 setOperationAction(ISD::CTPOP
, MVT::i64
, Legal
);
424 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
425 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
427 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
428 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
429 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
430 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
431 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
432 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
434 if (!Subtarget
.hasMips32r2())
435 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
437 if (!Subtarget
.hasMips64r2())
438 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
440 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
441 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
442 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
443 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
444 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
445 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
446 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
447 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
448 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
449 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
450 setOperationAction(ISD::FLOG10
, MVT::f32
, Expand
);
451 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
452 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
453 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
454 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
455 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
457 // Lower f16 conversion operations into library calls
458 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
459 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
460 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
461 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
463 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
465 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
466 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
467 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
468 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
470 // Use the default for now
471 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
472 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
474 if (!Subtarget
.isGP64bit()) {
475 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i64
, Expand
);
476 setOperationAction(ISD::ATOMIC_STORE
, MVT::i64
, Expand
);
479 if (!Subtarget
.hasMips32r2()) {
480 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
481 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
484 // MIPS16 lacks MIPS32's clz and clo instructions.
485 if (!Subtarget
.hasMips32() || Subtarget
.inMips16Mode())
486 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
487 if (!Subtarget
.hasMips64())
488 setOperationAction(ISD::CTLZ
, MVT::i64
, Expand
);
490 if (!Subtarget
.hasMips32r2())
491 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
492 if (!Subtarget
.hasMips64r2())
493 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
495 if (Subtarget
.isGP64bit()) {
496 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
497 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
498 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
499 setTruncStoreAction(MVT::i64
, MVT::i32
, Custom
);
502 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
504 setTargetDAGCombine(ISD::SDIVREM
);
505 setTargetDAGCombine(ISD::UDIVREM
);
506 setTargetDAGCombine(ISD::SELECT
);
507 setTargetDAGCombine(ISD::AND
);
508 setTargetDAGCombine(ISD::OR
);
509 setTargetDAGCombine(ISD::ADD
);
510 setTargetDAGCombine(ISD::SUB
);
511 setTargetDAGCombine(ISD::AssertZext
);
512 setTargetDAGCombine(ISD::SHL
);
515 // These libcalls are not available in 32-bit.
516 setLibcallName(RTLIB::SHL_I128
, nullptr);
517 setLibcallName(RTLIB::SRL_I128
, nullptr);
518 setLibcallName(RTLIB::SRA_I128
, nullptr);
521 setMinFunctionAlignment(Subtarget
.isGP64bit() ? llvm::Align(8)
524 // The arguments on the stack are defined in terms of 4-byte slots on O32
525 // and 8-byte slots on N32/N64.
526 setMinStackArgumentAlignment((ABI
.IsN32() || ABI
.IsN64()) ? 8 : 4);
528 setStackPointerRegisterToSaveRestore(ABI
.IsN64() ? Mips::SP_64
: Mips::SP
);
530 MaxStoresPerMemcpy
= 16;
532 isMicroMips
= Subtarget
.inMicroMipsMode();
535 const MipsTargetLowering
*MipsTargetLowering::create(const MipsTargetMachine
&TM
,
536 const MipsSubtarget
&STI
) {
537 if (STI
.inMips16Mode())
538 return createMips16TargetLowering(TM
, STI
);
540 return createMipsSETargetLowering(TM
, STI
);
543 // Create a fast isel object.
545 MipsTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
546 const TargetLibraryInfo
*libInfo
) const {
547 const MipsTargetMachine
&TM
=
548 static_cast<const MipsTargetMachine
&>(funcInfo
.MF
->getTarget());
550 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
551 bool UseFastISel
= TM
.Options
.EnableFastISel
&& Subtarget
.hasMips32() &&
552 !Subtarget
.hasMips32r6() && !Subtarget
.inMips16Mode() &&
553 !Subtarget
.inMicroMipsMode();
555 // Disable if either of the following is true:
556 // We do not generate PIC, the ABI is not O32, LargeGOT is being used.
557 if (!TM
.isPositionIndependent() || !TM
.getABI().IsO32() || LargeGOT
)
560 return UseFastISel
? Mips::createFastISel(funcInfo
, libInfo
) : nullptr;
563 EVT
MipsTargetLowering::getSetCCResultType(const DataLayout
&, LLVMContext
&,
567 return VT
.changeVectorElementTypeToInteger();
570 static SDValue
performDivRemCombine(SDNode
*N
, SelectionDAG
&DAG
,
571 TargetLowering::DAGCombinerInfo
&DCI
,
572 const MipsSubtarget
&Subtarget
) {
573 if (DCI
.isBeforeLegalizeOps())
576 EVT Ty
= N
->getValueType(0);
577 unsigned LO
= (Ty
== MVT::i32
) ? Mips::LO0
: Mips::LO0_64
;
578 unsigned HI
= (Ty
== MVT::i32
) ? Mips::HI0
: Mips::HI0_64
;
579 unsigned Opc
= N
->getOpcode() == ISD::SDIVREM
? MipsISD::DivRem16
:
583 SDValue DivRem
= DAG
.getNode(Opc
, DL
, MVT::Glue
,
584 N
->getOperand(0), N
->getOperand(1));
585 SDValue InChain
= DAG
.getEntryNode();
586 SDValue InGlue
= DivRem
;
589 if (N
->hasAnyUseOfValue(0)) {
590 SDValue CopyFromLo
= DAG
.getCopyFromReg(InChain
, DL
, LO
, Ty
,
592 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), CopyFromLo
);
593 InChain
= CopyFromLo
.getValue(1);
594 InGlue
= CopyFromLo
.getValue(2);
598 if (N
->hasAnyUseOfValue(1)) {
599 SDValue CopyFromHi
= DAG
.getCopyFromReg(InChain
, DL
,
601 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), CopyFromHi
);
607 static Mips::CondCode
condCodeToFCC(ISD::CondCode CC
) {
609 default: llvm_unreachable("Unknown fp condition code!");
611 case ISD::SETOEQ
: return Mips::FCOND_OEQ
;
612 case ISD::SETUNE
: return Mips::FCOND_UNE
;
614 case ISD::SETOLT
: return Mips::FCOND_OLT
;
616 case ISD::SETOGT
: return Mips::FCOND_OGT
;
618 case ISD::SETOLE
: return Mips::FCOND_OLE
;
620 case ISD::SETOGE
: return Mips::FCOND_OGE
;
621 case ISD::SETULT
: return Mips::FCOND_ULT
;
622 case ISD::SETULE
: return Mips::FCOND_ULE
;
623 case ISD::SETUGT
: return Mips::FCOND_UGT
;
624 case ISD::SETUGE
: return Mips::FCOND_UGE
;
625 case ISD::SETUO
: return Mips::FCOND_UN
;
626 case ISD::SETO
: return Mips::FCOND_OR
;
628 case ISD::SETONE
: return Mips::FCOND_ONE
;
629 case ISD::SETUEQ
: return Mips::FCOND_UEQ
;
633 /// This function returns true if the floating point conditional branches and
634 /// conditional moves which use condition code CC should be inverted.
635 static bool invertFPCondCodeUser(Mips::CondCode CC
) {
636 if (CC
>= Mips::FCOND_F
&& CC
<= Mips::FCOND_NGT
)
639 assert((CC
>= Mips::FCOND_T
&& CC
<= Mips::FCOND_GT
) &&
640 "Illegal Condition Code");
645 // Creates and returns an FPCmp node from a setcc node.
646 // Returns Op if setcc is not a floating point comparison.
647 static SDValue
createFPCmp(SelectionDAG
&DAG
, const SDValue
&Op
) {
648 // must be a SETCC node
649 if (Op
.getOpcode() != ISD::SETCC
)
652 SDValue LHS
= Op
.getOperand(0);
654 if (!LHS
.getValueType().isFloatingPoint())
657 SDValue RHS
= Op
.getOperand(1);
660 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
661 // node if necessary.
662 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
664 return DAG
.getNode(MipsISD::FPCmp
, DL
, MVT::Glue
, LHS
, RHS
,
665 DAG
.getConstant(condCodeToFCC(CC
), DL
, MVT::i32
));
668 // Creates and returns a CMovFPT/F node.
669 static SDValue
createCMovFP(SelectionDAG
&DAG
, SDValue Cond
, SDValue True
,
670 SDValue False
, const SDLoc
&DL
) {
671 ConstantSDNode
*CC
= cast
<ConstantSDNode
>(Cond
.getOperand(2));
672 bool invert
= invertFPCondCodeUser((Mips::CondCode
)CC
->getSExtValue());
673 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
675 return DAG
.getNode((invert
? MipsISD::CMovFP_F
: MipsISD::CMovFP_T
), DL
,
676 True
.getValueType(), True
, FCC0
, False
, Cond
);
679 static SDValue
performSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
680 TargetLowering::DAGCombinerInfo
&DCI
,
681 const MipsSubtarget
&Subtarget
) {
682 if (DCI
.isBeforeLegalizeOps())
685 SDValue SetCC
= N
->getOperand(0);
687 if ((SetCC
.getOpcode() != ISD::SETCC
) ||
688 !SetCC
.getOperand(0).getValueType().isInteger())
691 SDValue False
= N
->getOperand(2);
692 EVT FalseTy
= False
.getValueType();
694 if (!FalseTy
.isInteger())
697 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(False
);
699 // If the RHS (False) is 0, we swap the order of the operands
700 // of ISD::SELECT (obviously also inverting the condition) so that we can
701 // take advantage of conditional moves using the $0 register.
703 // return (a != 0) ? x : 0;
711 if (!FalseC
->getZExtValue()) {
712 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
713 SDValue True
= N
->getOperand(1);
715 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
716 SetCC
.getOperand(1), ISD::getSetCCInverse(CC
, true));
718 return DAG
.getNode(ISD::SELECT
, DL
, FalseTy
, SetCC
, False
, True
);
721 // If both operands are integer constants there's a possibility that we
722 // can do some interesting optimizations.
723 SDValue True
= N
->getOperand(1);
724 ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(True
);
726 if (!TrueC
|| !True
.getValueType().isInteger())
729 // We'll also ignore MVT::i64 operands as this optimizations proves
730 // to be ineffective because of the required sign extensions as the result
731 // of a SETCC operator is always MVT::i32 for non-vector types.
732 if (True
.getValueType() == MVT::i64
)
735 int64_t Diff
= TrueC
->getSExtValue() - FalseC
->getSExtValue();
737 // 1) (a < x) ? y : y-1
739 // addiu $reg2, $reg1, y-1
741 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, False
);
743 // 2) (a < x) ? y-1 : y
745 // xor $reg1, $reg1, 1
746 // addiu $reg2, $reg1, y-1
748 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
749 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
750 SetCC
.getOperand(1), ISD::getSetCCInverse(CC
, true));
751 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, True
);
754 // Could not optimize.
758 static SDValue
performCMovFPCombine(SDNode
*N
, SelectionDAG
&DAG
,
759 TargetLowering::DAGCombinerInfo
&DCI
,
760 const MipsSubtarget
&Subtarget
) {
761 if (DCI
.isBeforeLegalizeOps())
764 SDValue ValueIfTrue
= N
->getOperand(0), ValueIfFalse
= N
->getOperand(2);
766 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(ValueIfFalse
);
767 if (!FalseC
|| FalseC
->getZExtValue())
770 // Since RHS (False) is 0, we swap the order of the True/False operands
771 // (obviously also inverting the condition) so that we can
772 // take advantage of conditional moves using the $0 register.
774 // return (a != 0) ? x : 0;
777 unsigned Opc
= (N
->getOpcode() == MipsISD::CMovFP_T
) ? MipsISD::CMovFP_F
:
780 SDValue FCC
= N
->getOperand(1), Glue
= N
->getOperand(3);
781 return DAG
.getNode(Opc
, SDLoc(N
), ValueIfFalse
.getValueType(),
782 ValueIfFalse
, FCC
, ValueIfTrue
, Glue
);
785 static SDValue
performANDCombine(SDNode
*N
, SelectionDAG
&DAG
,
786 TargetLowering::DAGCombinerInfo
&DCI
,
787 const MipsSubtarget
&Subtarget
) {
788 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
791 SDValue FirstOperand
= N
->getOperand(0);
792 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
793 SDValue Mask
= N
->getOperand(1);
794 EVT ValTy
= N
->getValueType(0);
797 uint64_t Pos
= 0, SMPos
, SMSize
;
802 // Op's second operand must be a shifted mask.
803 if (!(CN
= dyn_cast
<ConstantSDNode
>(Mask
)) ||
804 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
807 if (FirstOperandOpc
== ISD::SRA
|| FirstOperandOpc
== ISD::SRL
) {
808 // Pattern match EXT.
809 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
810 // => ext $dst, $src, pos, size
812 // The second operand of the shift must be an immediate.
813 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
816 Pos
= CN
->getZExtValue();
818 // Return if the shifted mask does not start at bit 0 or the sum of its size
819 // and Pos exceeds the word's size.
820 if (SMPos
!= 0 || Pos
+ SMSize
> ValTy
.getSizeInBits())
824 NewOperand
= FirstOperand
.getOperand(0);
825 } else if (FirstOperandOpc
== ISD::SHL
&& Subtarget
.hasCnMips()) {
826 // Pattern match CINS.
827 // $dst = and (shl $src , pos), mask
828 // => cins $dst, $src, pos, size
829 // mask is a shifted mask with consecutive 1's, pos = shift amount,
830 // size = population count.
832 // The second operand of the shift must be an immediate.
833 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
836 Pos
= CN
->getZExtValue();
838 if (SMPos
!= Pos
|| Pos
>= ValTy
.getSizeInBits() || SMSize
>= 32 ||
839 Pos
+ SMSize
> ValTy
.getSizeInBits())
842 NewOperand
= FirstOperand
.getOperand(0);
843 // SMSize is 'location' (position) in this case, not size.
847 // Pattern match EXT.
848 // $dst = and $src, (2**size - 1) , if size > 16
849 // => ext $dst, $src, pos, size , pos = 0
851 // If the mask is <= 0xffff, andi can be used instead.
852 if (CN
->getZExtValue() <= 0xffff)
855 // Return if the mask doesn't start at position 0.
860 NewOperand
= FirstOperand
;
862 return DAG
.getNode(Opc
, DL
, ValTy
, NewOperand
,
863 DAG
.getConstant(Pos
, DL
, MVT::i32
),
864 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
867 static SDValue
performORCombine(SDNode
*N
, SelectionDAG
&DAG
,
868 TargetLowering::DAGCombinerInfo
&DCI
,
869 const MipsSubtarget
&Subtarget
) {
870 // Pattern match INS.
871 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
872 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
873 // => ins $dst, $src, size, pos, $src1
874 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
877 SDValue And0
= N
->getOperand(0), And1
= N
->getOperand(1);
878 uint64_t SMPos0
, SMSize0
, SMPos1
, SMSize1
;
879 ConstantSDNode
*CN
, *CN1
;
881 // See if Op's first operand matches (and $src1 , mask0).
882 if (And0
.getOpcode() != ISD::AND
)
885 if (!(CN
= dyn_cast
<ConstantSDNode
>(And0
.getOperand(1))) ||
886 !isShiftedMask(~CN
->getSExtValue(), SMPos0
, SMSize0
))
889 // See if Op's second operand matches (and (shl $src, pos), mask1).
890 if (And1
.getOpcode() == ISD::AND
&&
891 And1
.getOperand(0).getOpcode() == ISD::SHL
) {
893 if (!(CN
= dyn_cast
<ConstantSDNode
>(And1
.getOperand(1))) ||
894 !isShiftedMask(CN
->getZExtValue(), SMPos1
, SMSize1
))
897 // The shift masks must have the same position and size.
898 if (SMPos0
!= SMPos1
|| SMSize0
!= SMSize1
)
901 SDValue Shl
= And1
.getOperand(0);
903 if (!(CN
= dyn_cast
<ConstantSDNode
>(Shl
.getOperand(1))))
906 unsigned Shamt
= CN
->getZExtValue();
908 // Return if the shift amount and the first bit position of mask are not the
910 EVT ValTy
= N
->getValueType(0);
911 if ((Shamt
!= SMPos0
) || (SMPos0
+ SMSize0
> ValTy
.getSizeInBits()))
915 return DAG
.getNode(MipsISD::Ins
, DL
, ValTy
, Shl
.getOperand(0),
916 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
917 DAG
.getConstant(SMSize0
, DL
, MVT::i32
),
920 // Pattern match DINS.
921 // $dst = or (and $src, mask0), mask1
922 // where mask0 = ((1 << SMSize0) -1) << SMPos0
923 // => dins $dst, $src, pos, size
924 if (~CN
->getSExtValue() == ((((int64_t)1 << SMSize0
) - 1) << SMPos0
) &&
925 ((SMSize0
+ SMPos0
<= 64 && Subtarget
.hasMips64r2()) ||
926 (SMSize0
+ SMPos0
<= 32))) {
927 // Check if AND instruction has constant as argument
928 bool isConstCase
= And1
.getOpcode() != ISD::AND
;
929 if (And1
.getOpcode() == ISD::AND
) {
930 if (!(CN1
= dyn_cast
<ConstantSDNode
>(And1
->getOperand(1))))
933 if (!(CN1
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))))
936 // Don't generate INS if constant OR operand doesn't fit into bits
937 // cleared by constant AND operand.
938 if (CN
->getSExtValue() & CN1
->getSExtValue())
942 EVT ValTy
= N
->getOperand(0)->getValueType(0);
946 Const1
= DAG
.getConstant(SMPos0
, DL
, MVT::i32
);
947 SrlX
= DAG
.getNode(ISD::SRL
, DL
, And1
->getValueType(0), And1
, Const1
);
950 MipsISD::Ins
, DL
, N
->getValueType(0),
952 ? DAG
.getConstant(CN1
->getSExtValue() >> SMPos0
, DL
, ValTy
)
954 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
955 DAG
.getConstant(ValTy
.getSizeInBits() / 8 < 8 ? SMSize0
& 31
958 And0
->getOperand(0));
965 static SDValue
performMADD_MSUBCombine(SDNode
*ROOTNode
, SelectionDAG
&CurDAG
,
966 const MipsSubtarget
&Subtarget
) {
967 // ROOTNode must have a multiplication as an operand for the match to be
969 if (ROOTNode
->getOperand(0).getOpcode() != ISD::MUL
&&
970 ROOTNode
->getOperand(1).getOpcode() != ISD::MUL
)
973 // We don't handle vector types here.
974 if (ROOTNode
->getValueType(0).isVector())
977 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
979 // (add (mul a b) c) =>
980 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
981 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
983 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
985 // The overhead of setting up the Hi/Lo registers and reassembling the
986 // result makes this a dubious optimzation for MIPS64. The core of the
987 // problem is that Hi/Lo contain the upper and lower 32 bits of the
988 // operand and result.
990 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
991 // density than doing it naively, 5 for MIPS64. Additionally, using
992 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
993 // extended operands, not true 64 bit values.
995 // FIXME: For the moment, disable this completely for MIPS64.
996 if (Subtarget
.hasMips64())
999 SDValue Mult
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
1000 ? ROOTNode
->getOperand(0)
1001 : ROOTNode
->getOperand(1);
1003 SDValue AddOperand
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
1004 ? ROOTNode
->getOperand(1)
1005 : ROOTNode
->getOperand(0);
1007 // Transform this to a MADD only if the user of this node is the add.
1008 // If there are other users of the mul, this function returns here.
1009 if (!Mult
.hasOneUse())
1012 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1013 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1014 // of the multiply must have 32 or more sign bits, otherwise we cannot
1015 // perform this optimization. We have to check this here as we're performing
1016 // this optimization pre-legalization.
1017 SDValue MultLHS
= Mult
->getOperand(0);
1018 SDValue MultRHS
= Mult
->getOperand(1);
1020 bool IsSigned
= MultLHS
->getOpcode() == ISD::SIGN_EXTEND
&&
1021 MultRHS
->getOpcode() == ISD::SIGN_EXTEND
;
1022 bool IsUnsigned
= MultLHS
->getOpcode() == ISD::ZERO_EXTEND
&&
1023 MultRHS
->getOpcode() == ISD::ZERO_EXTEND
;
1025 if (!IsSigned
&& !IsUnsigned
)
1028 // Initialize accumulator.
1032 BottomHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1033 CurDAG
.getIntPtrConstant(0, DL
));
1035 TopHalf
= CurDAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, MVT::i32
, AddOperand
,
1036 CurDAG
.getIntPtrConstant(1, DL
));
1037 SDValue ACCIn
= CurDAG
.getNode(MipsISD::MTLOHI
, DL
, MVT::Untyped
,
1041 // Create MipsMAdd(u) / MipsMSub(u) node.
1042 bool IsAdd
= ROOTNode
->getOpcode() == ISD::ADD
;
1043 unsigned Opcode
= IsAdd
? (IsUnsigned
? MipsISD::MAddu
: MipsISD::MAdd
)
1044 : (IsUnsigned
? MipsISD::MSubu
: MipsISD::MSub
);
1045 SDValue MAddOps
[3] = {
1046 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(0)),
1047 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(1)), ACCIn
};
1048 EVT VTs
[2] = {MVT::i32
, MVT::i32
};
1049 SDValue MAdd
= CurDAG
.getNode(Opcode
, DL
, VTs
, MAddOps
);
1051 SDValue ResLo
= CurDAG
.getNode(MipsISD::MFLO
, DL
, MVT::i32
, MAdd
);
1052 SDValue ResHi
= CurDAG
.getNode(MipsISD::MFHI
, DL
, MVT::i32
, MAdd
);
1054 CurDAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, ResLo
, ResHi
);
1058 static SDValue
performSUBCombine(SDNode
*N
, SelectionDAG
&DAG
,
1059 TargetLowering::DAGCombinerInfo
&DCI
,
1060 const MipsSubtarget
&Subtarget
) {
1061 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1062 if (DCI
.isBeforeLegalizeOps()) {
1063 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1064 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1065 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1073 static SDValue
performADDCombine(SDNode
*N
, SelectionDAG
&DAG
,
1074 TargetLowering::DAGCombinerInfo
&DCI
,
1075 const MipsSubtarget
&Subtarget
) {
1076 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1077 if (DCI
.isBeforeLegalizeOps()) {
1078 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1079 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1080 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1085 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1086 SDValue Add
= N
->getOperand(1);
1088 if (Add
.getOpcode() != ISD::ADD
)
1091 SDValue Lo
= Add
.getOperand(1);
1093 if ((Lo
.getOpcode() != MipsISD::Lo
) ||
1094 (Lo
.getOperand(0).getOpcode() != ISD::TargetJumpTable
))
1097 EVT ValTy
= N
->getValueType(0);
1100 SDValue Add1
= DAG
.getNode(ISD::ADD
, DL
, ValTy
, N
->getOperand(0),
1102 return DAG
.getNode(ISD::ADD
, DL
, ValTy
, Add1
, Lo
);
1105 static SDValue
performSHLCombine(SDNode
*N
, SelectionDAG
&DAG
,
1106 TargetLowering::DAGCombinerInfo
&DCI
,
1107 const MipsSubtarget
&Subtarget
) {
1108 // Pattern match CINS.
1109 // $dst = shl (and $src , imm), pos
1110 // => cins $dst, $src, pos, size
1112 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasCnMips())
1115 SDValue FirstOperand
= N
->getOperand(0);
1116 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
1117 SDValue SecondOperand
= N
->getOperand(1);
1118 EVT ValTy
= N
->getValueType(0);
1121 uint64_t Pos
= 0, SMPos
, SMSize
;
1125 // The second operand of the shift must be an immediate.
1126 if (!(CN
= dyn_cast
<ConstantSDNode
>(SecondOperand
)))
1129 Pos
= CN
->getZExtValue();
1131 if (Pos
>= ValTy
.getSizeInBits())
1134 if (FirstOperandOpc
!= ISD::AND
)
1137 // AND's second operand must be a shifted mask.
1138 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))) ||
1139 !isShiftedMask(CN
->getZExtValue(), SMPos
, SMSize
))
1142 // Return if the shifted mask does not start at bit 0 or the sum of its size
1143 // and Pos exceeds the word's size.
1144 if (SMPos
!= 0 || SMSize
> 32 || Pos
+ SMSize
> ValTy
.getSizeInBits())
1147 NewOperand
= FirstOperand
.getOperand(0);
1148 // SMSize is 'location' (position) in this case, not size.
1151 return DAG
.getNode(MipsISD::CIns
, DL
, ValTy
, NewOperand
,
1152 DAG
.getConstant(Pos
, DL
, MVT::i32
),
1153 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
1156 SDValue
MipsTargetLowering::PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
)
1158 SelectionDAG
&DAG
= DCI
.DAG
;
1159 unsigned Opc
= N
->getOpcode();
1165 return performDivRemCombine(N
, DAG
, DCI
, Subtarget
);
1167 return performSELECTCombine(N
, DAG
, DCI
, Subtarget
);
1168 case MipsISD::CMovFP_F
:
1169 case MipsISD::CMovFP_T
:
1170 return performCMovFPCombine(N
, DAG
, DCI
, Subtarget
);
1172 return performANDCombine(N
, DAG
, DCI
, Subtarget
);
1174 return performORCombine(N
, DAG
, DCI
, Subtarget
);
1176 return performADDCombine(N
, DAG
, DCI
, Subtarget
);
1178 return performSHLCombine(N
, DAG
, DCI
, Subtarget
);
1180 return performSUBCombine(N
, DAG
, DCI
, Subtarget
);
1186 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1187 return Subtarget
.hasMips32();
1190 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1191 return Subtarget
.hasMips32();
1194 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1195 const SDNode
*N
, CombineLevel Level
) const {
1196 if (N
->getOperand(0).getValueType().isVector())
1202 MipsTargetLowering::LowerOperationWrapper(SDNode
*N
,
1203 SmallVectorImpl
<SDValue
> &Results
,
1204 SelectionDAG
&DAG
) const {
1205 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
1208 for (unsigned I
= 0, E
= Res
->getNumValues(); I
!= E
; ++I
)
1209 Results
.push_back(Res
.getValue(I
));
1213 MipsTargetLowering::ReplaceNodeResults(SDNode
*N
,
1214 SmallVectorImpl
<SDValue
> &Results
,
1215 SelectionDAG
&DAG
) const {
1216 return LowerOperationWrapper(N
, Results
, DAG
);
1219 SDValue
MipsTargetLowering::
1220 LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const
1222 switch (Op
.getOpcode())
1224 case ISD::BRCOND
: return lowerBRCOND(Op
, DAG
);
1225 case ISD::ConstantPool
: return lowerConstantPool(Op
, DAG
);
1226 case ISD::GlobalAddress
: return lowerGlobalAddress(Op
, DAG
);
1227 case ISD::BlockAddress
: return lowerBlockAddress(Op
, DAG
);
1228 case ISD::GlobalTLSAddress
: return lowerGlobalTLSAddress(Op
, DAG
);
1229 case ISD::JumpTable
: return lowerJumpTable(Op
, DAG
);
1230 case ISD::SELECT
: return lowerSELECT(Op
, DAG
);
1231 case ISD::SETCC
: return lowerSETCC(Op
, DAG
);
1232 case ISD::VASTART
: return lowerVASTART(Op
, DAG
);
1233 case ISD::VAARG
: return lowerVAARG(Op
, DAG
);
1234 case ISD::FCOPYSIGN
: return lowerFCOPYSIGN(Op
, DAG
);
1235 case ISD::FABS
: return lowerFABS(Op
, DAG
);
1236 case ISD::FRAMEADDR
: return lowerFRAMEADDR(Op
, DAG
);
1237 case ISD::RETURNADDR
: return lowerRETURNADDR(Op
, DAG
);
1238 case ISD::EH_RETURN
: return lowerEH_RETURN(Op
, DAG
);
1239 case ISD::ATOMIC_FENCE
: return lowerATOMIC_FENCE(Op
, DAG
);
1240 case ISD::SHL_PARTS
: return lowerShiftLeftParts(Op
, DAG
);
1241 case ISD::SRA_PARTS
: return lowerShiftRightParts(Op
, DAG
, true);
1242 case ISD::SRL_PARTS
: return lowerShiftRightParts(Op
, DAG
, false);
1243 case ISD::LOAD
: return lowerLOAD(Op
, DAG
);
1244 case ISD::STORE
: return lowerSTORE(Op
, DAG
);
1245 case ISD::EH_DWARF_CFA
: return lowerEH_DWARF_CFA(Op
, DAG
);
1246 case ISD::FP_TO_SINT
: return lowerFP_TO_SINT(Op
, DAG
);
1251 //===----------------------------------------------------------------------===//
1252 // Lower helper functions
1253 //===----------------------------------------------------------------------===//
1255 // addLiveIn - This helper function adds the specified physical register to the
1256 // MachineFunction as a live in value. It also creates a corresponding
1257 // virtual register for it.
1259 addLiveIn(MachineFunction
&MF
, unsigned PReg
, const TargetRegisterClass
*RC
)
1261 Register VReg
= MF
.getRegInfo().createVirtualRegister(RC
);
1262 MF
.getRegInfo().addLiveIn(PReg
, VReg
);
1266 static MachineBasicBlock
*insertDivByZeroTrap(MachineInstr
&MI
,
1267 MachineBasicBlock
&MBB
,
1268 const TargetInstrInfo
&TII
,
1269 bool Is64Bit
, bool IsMicroMips
) {
1273 // Insert instruction "teq $divisor_reg, $zero, 7".
1274 MachineBasicBlock::iterator
I(MI
);
1275 MachineInstrBuilder MIB
;
1276 MachineOperand
&Divisor
= MI
.getOperand(2);
1277 MIB
= BuildMI(MBB
, std::next(I
), MI
.getDebugLoc(),
1278 TII
.get(IsMicroMips
? Mips::TEQ_MM
: Mips::TEQ
))
1279 .addReg(Divisor
.getReg(), getKillRegState(Divisor
.isKill()))
1283 // Use the 32-bit sub-register if this is a 64-bit division.
1285 MIB
->getOperand(0).setSubReg(Mips::sub_32
);
1287 // Clear Divisor's kill flag.
1288 Divisor
.setIsKill(false);
1290 // We would normally delete the original instruction here but in this case
1291 // we only needed to inject an additional instruction rather than replace it.
1297 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
1298 MachineBasicBlock
*BB
) const {
1299 switch (MI
.getOpcode()) {
1301 llvm_unreachable("Unexpected instr type to insert");
1302 case Mips::ATOMIC_LOAD_ADD_I8
:
1303 return emitAtomicBinaryPartword(MI
, BB
, 1);
1304 case Mips::ATOMIC_LOAD_ADD_I16
:
1305 return emitAtomicBinaryPartword(MI
, BB
, 2);
1306 case Mips::ATOMIC_LOAD_ADD_I32
:
1307 return emitAtomicBinary(MI
, BB
);
1308 case Mips::ATOMIC_LOAD_ADD_I64
:
1309 return emitAtomicBinary(MI
, BB
);
1311 case Mips::ATOMIC_LOAD_AND_I8
:
1312 return emitAtomicBinaryPartword(MI
, BB
, 1);
1313 case Mips::ATOMIC_LOAD_AND_I16
:
1314 return emitAtomicBinaryPartword(MI
, BB
, 2);
1315 case Mips::ATOMIC_LOAD_AND_I32
:
1316 return emitAtomicBinary(MI
, BB
);
1317 case Mips::ATOMIC_LOAD_AND_I64
:
1318 return emitAtomicBinary(MI
, BB
);
1320 case Mips::ATOMIC_LOAD_OR_I8
:
1321 return emitAtomicBinaryPartword(MI
, BB
, 1);
1322 case Mips::ATOMIC_LOAD_OR_I16
:
1323 return emitAtomicBinaryPartword(MI
, BB
, 2);
1324 case Mips::ATOMIC_LOAD_OR_I32
:
1325 return emitAtomicBinary(MI
, BB
);
1326 case Mips::ATOMIC_LOAD_OR_I64
:
1327 return emitAtomicBinary(MI
, BB
);
1329 case Mips::ATOMIC_LOAD_XOR_I8
:
1330 return emitAtomicBinaryPartword(MI
, BB
, 1);
1331 case Mips::ATOMIC_LOAD_XOR_I16
:
1332 return emitAtomicBinaryPartword(MI
, BB
, 2);
1333 case Mips::ATOMIC_LOAD_XOR_I32
:
1334 return emitAtomicBinary(MI
, BB
);
1335 case Mips::ATOMIC_LOAD_XOR_I64
:
1336 return emitAtomicBinary(MI
, BB
);
1338 case Mips::ATOMIC_LOAD_NAND_I8
:
1339 return emitAtomicBinaryPartword(MI
, BB
, 1);
1340 case Mips::ATOMIC_LOAD_NAND_I16
:
1341 return emitAtomicBinaryPartword(MI
, BB
, 2);
1342 case Mips::ATOMIC_LOAD_NAND_I32
:
1343 return emitAtomicBinary(MI
, BB
);
1344 case Mips::ATOMIC_LOAD_NAND_I64
:
1345 return emitAtomicBinary(MI
, BB
);
1347 case Mips::ATOMIC_LOAD_SUB_I8
:
1348 return emitAtomicBinaryPartword(MI
, BB
, 1);
1349 case Mips::ATOMIC_LOAD_SUB_I16
:
1350 return emitAtomicBinaryPartword(MI
, BB
, 2);
1351 case Mips::ATOMIC_LOAD_SUB_I32
:
1352 return emitAtomicBinary(MI
, BB
);
1353 case Mips::ATOMIC_LOAD_SUB_I64
:
1354 return emitAtomicBinary(MI
, BB
);
1356 case Mips::ATOMIC_SWAP_I8
:
1357 return emitAtomicBinaryPartword(MI
, BB
, 1);
1358 case Mips::ATOMIC_SWAP_I16
:
1359 return emitAtomicBinaryPartword(MI
, BB
, 2);
1360 case Mips::ATOMIC_SWAP_I32
:
1361 return emitAtomicBinary(MI
, BB
);
1362 case Mips::ATOMIC_SWAP_I64
:
1363 return emitAtomicBinary(MI
, BB
);
1365 case Mips::ATOMIC_CMP_SWAP_I8
:
1366 return emitAtomicCmpSwapPartword(MI
, BB
, 1);
1367 case Mips::ATOMIC_CMP_SWAP_I16
:
1368 return emitAtomicCmpSwapPartword(MI
, BB
, 2);
1369 case Mips::ATOMIC_CMP_SWAP_I32
:
1370 return emitAtomicCmpSwap(MI
, BB
);
1371 case Mips::ATOMIC_CMP_SWAP_I64
:
1372 return emitAtomicCmpSwap(MI
, BB
);
1373 case Mips::PseudoSDIV
:
1374 case Mips::PseudoUDIV
:
1379 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false,
1381 case Mips::SDIV_MM_Pseudo
:
1382 case Mips::UDIV_MM_Pseudo
:
1385 case Mips::DIV_MMR6
:
1386 case Mips::DIVU_MMR6
:
1387 case Mips::MOD_MMR6
:
1388 case Mips::MODU_MMR6
:
1389 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false, true);
1390 case Mips::PseudoDSDIV
:
1391 case Mips::PseudoDUDIV
:
1396 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), true, false);
1398 case Mips::PseudoSELECT_I
:
1399 case Mips::PseudoSELECT_I64
:
1400 case Mips::PseudoSELECT_S
:
1401 case Mips::PseudoSELECT_D32
:
1402 case Mips::PseudoSELECT_D64
:
1403 return emitPseudoSELECT(MI
, BB
, false, Mips::BNE
);
1404 case Mips::PseudoSELECTFP_F_I
:
1405 case Mips::PseudoSELECTFP_F_I64
:
1406 case Mips::PseudoSELECTFP_F_S
:
1407 case Mips::PseudoSELECTFP_F_D32
:
1408 case Mips::PseudoSELECTFP_F_D64
:
1409 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1F
);
1410 case Mips::PseudoSELECTFP_T_I
:
1411 case Mips::PseudoSELECTFP_T_I64
:
1412 case Mips::PseudoSELECTFP_T_S
:
1413 case Mips::PseudoSELECTFP_T_D32
:
1414 case Mips::PseudoSELECTFP_T_D64
:
1415 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1T
);
1416 case Mips::PseudoD_SELECT_I
:
1417 case Mips::PseudoD_SELECT_I64
:
1418 return emitPseudoD_SELECT(MI
, BB
);
1422 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1423 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1425 MipsTargetLowering::emitAtomicBinary(MachineInstr
&MI
,
1426 MachineBasicBlock
*BB
) const {
1428 MachineFunction
*MF
= BB
->getParent();
1429 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1430 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1431 DebugLoc DL
= MI
.getDebugLoc();
1434 switch (MI
.getOpcode()) {
1435 case Mips::ATOMIC_LOAD_ADD_I32
:
1436 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I32_POSTRA
;
1438 case Mips::ATOMIC_LOAD_SUB_I32
:
1439 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I32_POSTRA
;
1441 case Mips::ATOMIC_LOAD_AND_I32
:
1442 AtomicOp
= Mips::ATOMIC_LOAD_AND_I32_POSTRA
;
1444 case Mips::ATOMIC_LOAD_OR_I32
:
1445 AtomicOp
= Mips::ATOMIC_LOAD_OR_I32_POSTRA
;
1447 case Mips::ATOMIC_LOAD_XOR_I32
:
1448 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I32_POSTRA
;
1450 case Mips::ATOMIC_LOAD_NAND_I32
:
1451 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I32_POSTRA
;
1453 case Mips::ATOMIC_SWAP_I32
:
1454 AtomicOp
= Mips::ATOMIC_SWAP_I32_POSTRA
;
1456 case Mips::ATOMIC_LOAD_ADD_I64
:
1457 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I64_POSTRA
;
1459 case Mips::ATOMIC_LOAD_SUB_I64
:
1460 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I64_POSTRA
;
1462 case Mips::ATOMIC_LOAD_AND_I64
:
1463 AtomicOp
= Mips::ATOMIC_LOAD_AND_I64_POSTRA
;
1465 case Mips::ATOMIC_LOAD_OR_I64
:
1466 AtomicOp
= Mips::ATOMIC_LOAD_OR_I64_POSTRA
;
1468 case Mips::ATOMIC_LOAD_XOR_I64
:
1469 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I64_POSTRA
;
1471 case Mips::ATOMIC_LOAD_NAND_I64
:
1472 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I64_POSTRA
;
1474 case Mips::ATOMIC_SWAP_I64
:
1475 AtomicOp
= Mips::ATOMIC_SWAP_I64_POSTRA
;
1478 llvm_unreachable("Unknown pseudo atomic for replacement!");
1481 Register OldVal
= MI
.getOperand(0).getReg();
1482 Register Ptr
= MI
.getOperand(1).getReg();
1483 Register Incr
= MI
.getOperand(2).getReg();
1484 Register Scratch
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(OldVal
));
1486 MachineBasicBlock::iterator
II(MI
);
1488 // The scratch registers here with the EarlyClobber | Define | Implicit
1489 // flags is used to persuade the register allocator and the machine
1490 // verifier to accept the usage of this register. This has to be a real
1491 // register which has an UNDEF value but is dead after the instruction which
1492 // is unique among the registers chosen for the instruction.
1494 // The EarlyClobber flag has the semantic properties that the operand it is
1495 // attached to is clobbered before the rest of the inputs are read. Hence it
1496 // must be unique among the operands to the instruction.
1497 // The Define flag is needed to coerce the machine verifier that an Undef
1498 // value isn't a problem.
1499 // The Dead flag is needed as the value in scratch isn't used by any other
1500 // instruction. Kill isn't used as Dead is more precise.
1501 // The implicit flag is here due to the interaction between the other flags
1502 // and the machine verifier.
1504 // For correctness purpose, a new pseudo is introduced here. We need this
1505 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1506 // that is spread over >1 basic blocks. A register allocator which
1507 // introduces (or any codegen infact) a store, can violate the expectations
1510 // An atomic read-modify-write sequence starts with a linked load
1511 // instruction and ends with a store conditional instruction. The atomic
1512 // read-modify-write sequence fails if any of the following conditions
1513 // occur between the execution of ll and sc:
1514 // * A coherent store is completed by another process or coherent I/O
1515 // module into the block of synchronizable physical memory containing
1516 // the word. The size and alignment of the block is
1517 // implementation-dependent.
1518 // * A coherent store is executed between an LL and SC sequence on the
1519 // same processor to the block of synchornizable physical memory
1520 // containing the word.
1523 Register PtrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Ptr
));
1524 Register IncrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Incr
));
1526 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), IncrCopy
).addReg(Incr
);
1527 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1529 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1530 .addReg(OldVal
, RegState::Define
| RegState::EarlyClobber
)
1533 .addReg(Scratch
, RegState::Define
| RegState::EarlyClobber
|
1534 RegState::Implicit
| RegState::Dead
);
1536 MI
.eraseFromParent();
1541 MachineBasicBlock
*MipsTargetLowering::emitSignExtendToI32InReg(
1542 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
, unsigned DstReg
,
1543 unsigned SrcReg
) const {
1544 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1545 const DebugLoc
&DL
= MI
.getDebugLoc();
1547 if (Subtarget
.hasMips32r2() && Size
== 1) {
1548 BuildMI(BB
, DL
, TII
->get(Mips::SEB
), DstReg
).addReg(SrcReg
);
1552 if (Subtarget
.hasMips32r2() && Size
== 2) {
1553 BuildMI(BB
, DL
, TII
->get(Mips::SEH
), DstReg
).addReg(SrcReg
);
1557 MachineFunction
*MF
= BB
->getParent();
1558 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1559 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1560 Register ScrReg
= RegInfo
.createVirtualRegister(RC
);
1563 int64_t ShiftImm
= 32 - (Size
* 8);
1565 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ScrReg
).addReg(SrcReg
).addImm(ShiftImm
);
1566 BuildMI(BB
, DL
, TII
->get(Mips::SRA
), DstReg
).addReg(ScrReg
).addImm(ShiftImm
);
1571 MachineBasicBlock
*MipsTargetLowering::emitAtomicBinaryPartword(
1572 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1573 assert((Size
== 1 || Size
== 2) &&
1574 "Unsupported size for EmitAtomicBinaryPartial.");
1576 MachineFunction
*MF
= BB
->getParent();
1577 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1578 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1579 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1580 const TargetRegisterClass
*RCp
=
1581 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1582 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1583 DebugLoc DL
= MI
.getDebugLoc();
1585 Register Dest
= MI
.getOperand(0).getReg();
1586 Register Ptr
= MI
.getOperand(1).getReg();
1587 Register Incr
= MI
.getOperand(2).getReg();
1589 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1590 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1591 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1592 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1593 Register Incr2
= RegInfo
.createVirtualRegister(RC
);
1594 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1595 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1596 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1597 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1598 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1599 Register Scratch3
= RegInfo
.createVirtualRegister(RC
);
1601 unsigned AtomicOp
= 0;
1602 switch (MI
.getOpcode()) {
1603 case Mips::ATOMIC_LOAD_NAND_I8
:
1604 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I8_POSTRA
;
1606 case Mips::ATOMIC_LOAD_NAND_I16
:
1607 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I16_POSTRA
;
1609 case Mips::ATOMIC_SWAP_I8
:
1610 AtomicOp
= Mips::ATOMIC_SWAP_I8_POSTRA
;
1612 case Mips::ATOMIC_SWAP_I16
:
1613 AtomicOp
= Mips::ATOMIC_SWAP_I16_POSTRA
;
1615 case Mips::ATOMIC_LOAD_ADD_I8
:
1616 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I8_POSTRA
;
1618 case Mips::ATOMIC_LOAD_ADD_I16
:
1619 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I16_POSTRA
;
1621 case Mips::ATOMIC_LOAD_SUB_I8
:
1622 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I8_POSTRA
;
1624 case Mips::ATOMIC_LOAD_SUB_I16
:
1625 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I16_POSTRA
;
1627 case Mips::ATOMIC_LOAD_AND_I8
:
1628 AtomicOp
= Mips::ATOMIC_LOAD_AND_I8_POSTRA
;
1630 case Mips::ATOMIC_LOAD_AND_I16
:
1631 AtomicOp
= Mips::ATOMIC_LOAD_AND_I16_POSTRA
;
1633 case Mips::ATOMIC_LOAD_OR_I8
:
1634 AtomicOp
= Mips::ATOMIC_LOAD_OR_I8_POSTRA
;
1636 case Mips::ATOMIC_LOAD_OR_I16
:
1637 AtomicOp
= Mips::ATOMIC_LOAD_OR_I16_POSTRA
;
1639 case Mips::ATOMIC_LOAD_XOR_I8
:
1640 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I8_POSTRA
;
1642 case Mips::ATOMIC_LOAD_XOR_I16
:
1643 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I16_POSTRA
;
1646 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1649 // insert new blocks after the current block
1650 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1651 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1652 MachineFunction::iterator It
= ++BB
->getIterator();
1653 MF
->insert(It
, exitMBB
);
1655 // Transfer the remainder of BB and its successor edges to exitMBB.
1656 exitMBB
->splice(exitMBB
->begin(), BB
,
1657 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1658 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1660 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1663 // addiu masklsb2,$0,-4 # 0xfffffffc
1664 // and alignedaddr,ptr,masklsb2
1665 // andi ptrlsb2,ptr,3
1666 // sll shiftamt,ptrlsb2,3
1667 // ori maskupper,$0,255 # 0xff
1668 // sll mask,maskupper,shiftamt
1669 // nor mask2,$0,mask
1670 // sll incr2,incr,shiftamt
1672 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1673 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAddiuOp()), MaskLSB2
)
1674 .addReg(ABI
.GetNullPtr()).addImm(-4);
1675 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAndOp()), AlignedAddr
)
1676 .addReg(Ptr
).addReg(MaskLSB2
);
1677 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1678 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1679 if (Subtarget
.isLittle()) {
1680 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1682 Register Off
= RegInfo
.createVirtualRegister(RC
);
1683 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1684 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1685 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1687 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1688 .addReg(Mips::ZERO
).addImm(MaskImm
);
1689 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1690 .addReg(MaskUpper
).addReg(ShiftAmt
);
1691 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1692 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Incr2
).addReg(Incr
).addReg(ShiftAmt
);
1695 // The purposes of the flags on the scratch registers is explained in
1696 // emitAtomicBinary. In summary, we need a scratch register which is going to
1697 // be undef, that is unique among registers chosen for the instruction.
1699 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1700 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1701 .addReg(AlignedAddr
)
1706 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1707 RegState::Dead
| RegState::Implicit
)
1708 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1709 RegState::Dead
| RegState::Implicit
)
1710 .addReg(Scratch3
, RegState::EarlyClobber
| RegState::Define
|
1711 RegState::Dead
| RegState::Implicit
);
1713 MI
.eraseFromParent(); // The instruction is gone now.
1718 // Lower atomic compare and swap to a pseudo instruction, taking care to
1719 // define a scratch register for the pseudo instruction's expansion. The
1720 // instruction is expanded after the register allocator as to prevent
1721 // the insertion of stores between the linked load and the store conditional.
1724 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr
&MI
,
1725 MachineBasicBlock
*BB
) const {
1727 assert((MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
||
1728 MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64
) &&
1729 "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1731 const unsigned Size
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
? 4 : 8;
1733 MachineFunction
*MF
= BB
->getParent();
1734 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1735 const TargetRegisterClass
*RC
= getRegClassFor(MVT::getIntegerVT(Size
* 8));
1736 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1737 DebugLoc DL
= MI
.getDebugLoc();
1739 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1740 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1741 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA
;
1742 Register Dest
= MI
.getOperand(0).getReg();
1743 Register Ptr
= MI
.getOperand(1).getReg();
1744 Register OldVal
= MI
.getOperand(2).getReg();
1745 Register NewVal
= MI
.getOperand(3).getReg();
1747 Register Scratch
= MRI
.createVirtualRegister(RC
);
1748 MachineBasicBlock::iterator
II(MI
);
1750 // We need to create copies of the various registers and kill them at the
1751 // atomic pseudo. If the copies are not made, when the atomic is expanded
1752 // after fast register allocation, the spills will end up outside of the
1753 // blocks that their values are defined in, causing livein errors.
1755 Register PtrCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(Ptr
));
1756 Register OldValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(OldVal
));
1757 Register NewValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(NewVal
));
1759 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1760 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), OldValCopy
).addReg(OldVal
);
1761 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), NewValCopy
).addReg(NewVal
);
1763 // The purposes of the flags on the scratch registers is explained in
1764 // emitAtomicBinary. In summary, we need a scratch register which is going to
1765 // be undef, that is unique among registers chosen for the instruction.
1767 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1768 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1769 .addReg(PtrCopy
, RegState::Kill
)
1770 .addReg(OldValCopy
, RegState::Kill
)
1771 .addReg(NewValCopy
, RegState::Kill
)
1772 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1773 RegState::Dead
| RegState::Implicit
);
1775 MI
.eraseFromParent(); // The instruction is gone now.
1780 MachineBasicBlock
*MipsTargetLowering::emitAtomicCmpSwapPartword(
1781 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1782 assert((Size
== 1 || Size
== 2) &&
1783 "Unsupported size for EmitAtomicCmpSwapPartial.");
1785 MachineFunction
*MF
= BB
->getParent();
1786 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1787 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1788 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1789 const TargetRegisterClass
*RCp
=
1790 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1791 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1792 DebugLoc DL
= MI
.getDebugLoc();
1794 Register Dest
= MI
.getOperand(0).getReg();
1795 Register Ptr
= MI
.getOperand(1).getReg();
1796 Register CmpVal
= MI
.getOperand(2).getReg();
1797 Register NewVal
= MI
.getOperand(3).getReg();
1799 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1800 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1801 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1802 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1803 Register ShiftedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1804 Register ShiftedNewVal
= RegInfo
.createVirtualRegister(RC
);
1805 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1806 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1807 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1808 Register MaskedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1809 Register MaskedNewVal
= RegInfo
.createVirtualRegister(RC
);
1810 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1811 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1812 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA
;
1814 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1815 // flags are used to coerce the register allocator and the machine verifier to
1816 // accept the usage of these registers.
1817 // The EarlyClobber flag has the semantic properties that the operand it is
1818 // attached to is clobbered before the rest of the inputs are read. Hence it
1819 // must be unique among the operands to the instruction.
1820 // The Define flag is needed to coerce the machine verifier that an Undef
1821 // value isn't a problem.
1822 // The Dead flag is needed as the value in scratch isn't used by any other
1823 // instruction. Kill isn't used as Dead is more precise.
1824 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1825 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1827 // insert new blocks after the current block
1828 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1829 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1830 MachineFunction::iterator It
= ++BB
->getIterator();
1831 MF
->insert(It
, exitMBB
);
1833 // Transfer the remainder of BB and its successor edges to exitMBB.
1834 exitMBB
->splice(exitMBB
->begin(), BB
,
1835 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1836 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1838 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1841 // addiu masklsb2,$0,-4 # 0xfffffffc
1842 // and alignedaddr,ptr,masklsb2
1843 // andi ptrlsb2,ptr,3
1844 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1845 // sll shiftamt,ptrlsb2,3
1846 // ori maskupper,$0,255 # 0xff
1847 // sll mask,maskupper,shiftamt
1848 // nor mask2,$0,mask
1849 // andi maskedcmpval,cmpval,255
1850 // sll shiftedcmpval,maskedcmpval,shiftamt
1851 // andi maskednewval,newval,255
1852 // sll shiftednewval,maskednewval,shiftamt
1853 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1854 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::DADDiu
: Mips::ADDiu
), MaskLSB2
)
1855 .addReg(ABI
.GetNullPtr()).addImm(-4);
1856 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::AND64
: Mips::AND
), AlignedAddr
)
1857 .addReg(Ptr
).addReg(MaskLSB2
);
1858 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1859 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1860 if (Subtarget
.isLittle()) {
1861 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1863 Register Off
= RegInfo
.createVirtualRegister(RC
);
1864 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1865 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1866 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1868 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1869 .addReg(Mips::ZERO
).addImm(MaskImm
);
1870 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1871 .addReg(MaskUpper
).addReg(ShiftAmt
);
1872 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1873 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedCmpVal
)
1874 .addReg(CmpVal
).addImm(MaskImm
);
1875 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedCmpVal
)
1876 .addReg(MaskedCmpVal
).addReg(ShiftAmt
);
1877 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedNewVal
)
1878 .addReg(NewVal
).addImm(MaskImm
);
1879 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedNewVal
)
1880 .addReg(MaskedNewVal
).addReg(ShiftAmt
);
1882 // The purposes of the flags on the scratch registers are explained in
1883 // emitAtomicBinary. In summary, we need a scratch register which is going to
1884 // be undef, that is unique among the register chosen for the instruction.
1886 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1887 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1888 .addReg(AlignedAddr
)
1890 .addReg(ShiftedCmpVal
)
1892 .addReg(ShiftedNewVal
)
1894 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1895 RegState::Dead
| RegState::Implicit
)
1896 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1897 RegState::Dead
| RegState::Implicit
);
1899 MI
.eraseFromParent(); // The instruction is gone now.
1904 SDValue
MipsTargetLowering::lowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
1905 // The first operand is the chain, the second is the condition, the third is
1906 // the block to branch to if the condition is true.
1907 SDValue Chain
= Op
.getOperand(0);
1908 SDValue Dest
= Op
.getOperand(2);
1911 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1912 SDValue CondRes
= createFPCmp(DAG
, Op
.getOperand(1));
1914 // Return if flag is not set by a floating point comparison.
1915 if (CondRes
.getOpcode() != MipsISD::FPCmp
)
1918 SDValue CCNode
= CondRes
.getOperand(2);
1920 (Mips::CondCode
)cast
<ConstantSDNode
>(CCNode
)->getZExtValue();
1921 unsigned Opc
= invertFPCondCodeUser(CC
) ? Mips::BRANCH_F
: Mips::BRANCH_T
;
1922 SDValue BrCode
= DAG
.getConstant(Opc
, DL
, MVT::i32
);
1923 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
1924 return DAG
.getNode(MipsISD::FPBrcond
, DL
, Op
.getValueType(), Chain
, BrCode
,
1925 FCC0
, Dest
, CondRes
);
1928 SDValue
MipsTargetLowering::
1929 lowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const
1931 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1932 SDValue Cond
= createFPCmp(DAG
, Op
.getOperand(0));
1934 // Return if flag is not set by a floating point comparison.
1935 if (Cond
.getOpcode() != MipsISD::FPCmp
)
1938 return createCMovFP(DAG
, Cond
, Op
.getOperand(1), Op
.getOperand(2),
1942 SDValue
MipsTargetLowering::lowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
1943 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
1944 SDValue Cond
= createFPCmp(DAG
, Op
);
1946 assert(Cond
.getOpcode() == MipsISD::FPCmp
&&
1947 "Floating point operand expected.");
1950 SDValue True
= DAG
.getConstant(1, DL
, MVT::i32
);
1951 SDValue False
= DAG
.getConstant(0, DL
, MVT::i32
);
1953 return createCMovFP(DAG
, Cond
, True
, False
, DL
);
1956 SDValue
MipsTargetLowering::lowerGlobalAddress(SDValue Op
,
1957 SelectionDAG
&DAG
) const {
1958 EVT Ty
= Op
.getValueType();
1959 GlobalAddressSDNode
*N
= cast
<GlobalAddressSDNode
>(Op
);
1960 const GlobalValue
*GV
= N
->getGlobal();
1962 if (!isPositionIndependent()) {
1963 const MipsTargetObjectFile
*TLOF
=
1964 static_cast<const MipsTargetObjectFile
*>(
1965 getTargetMachine().getObjFileLowering());
1966 const GlobalObject
*GO
= GV
->getBaseObject();
1967 if (GO
&& TLOF
->IsGlobalInSmallSection(GO
, getTargetMachine()))
1968 // %gp_rel relocation
1969 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
1971 // %hi/%lo relocation
1972 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
1973 // %highest/%higher/%hi/%lo relocation
1974 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
1977 // Every other architecture would use shouldAssumeDSOLocal in here, but
1979 // * In PIC code mips requires got loads even for local statics!
1980 // * To save on got entries, for local statics the got entry contains the
1981 // page and an additional add instruction takes care of the low bits.
1982 // * It is legal to access a hidden symbol with a non hidden undefined,
1983 // so one cannot guarantee that all access to a hidden symbol will know
1985 // * Mips linkers don't support creating a page and a full got entry for
1987 // * Given all that, we have to use a full got entry for hidden symbols :-(
1988 if (GV
->hasLocalLinkage())
1989 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
1992 return getAddrGlobalLargeGOT(
1993 N
, SDLoc(N
), Ty
, DAG
, MipsII::MO_GOT_HI16
, MipsII::MO_GOT_LO16
,
1995 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
1997 return getAddrGlobal(
1998 N
, SDLoc(N
), Ty
, DAG
,
1999 (ABI
.IsN32() || ABI
.IsN64()) ? MipsII::MO_GOT_DISP
: MipsII::MO_GOT
,
2000 DAG
.getEntryNode(), MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2003 SDValue
MipsTargetLowering::lowerBlockAddress(SDValue Op
,
2004 SelectionDAG
&DAG
) const {
2005 BlockAddressSDNode
*N
= cast
<BlockAddressSDNode
>(Op
);
2006 EVT Ty
= Op
.getValueType();
2008 if (!isPositionIndependent())
2009 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2010 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2012 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2015 SDValue
MipsTargetLowering::
2016 lowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const
2018 // If the relocation model is PIC, use the General Dynamic TLS Model or
2019 // Local Dynamic TLS model, otherwise use the Initial Exec or
2020 // Local Exec TLS Model.
2022 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
2023 if (DAG
.getTarget().useEmulatedTLS())
2024 return LowerToTLSEmulatedModel(GA
, DAG
);
2027 const GlobalValue
*GV
= GA
->getGlobal();
2028 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2030 TLSModel::Model model
= getTargetMachine().getTLSModel(GV
);
2032 if (model
== TLSModel::GeneralDynamic
|| model
== TLSModel::LocalDynamic
) {
2033 // General Dynamic and Local Dynamic TLS Model.
2034 unsigned Flag
= (model
== TLSModel::LocalDynamic
) ? MipsII::MO_TLSLDM
2037 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, Flag
);
2038 SDValue Argument
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
,
2039 getGlobalReg(DAG
, PtrVT
), TGA
);
2040 unsigned PtrSize
= PtrVT
.getSizeInBits();
2041 IntegerType
*PtrTy
= Type::getIntNTy(*DAG
.getContext(), PtrSize
);
2043 SDValue TlsGetAddr
= DAG
.getExternalSymbol("__tls_get_addr", PtrVT
);
2047 Entry
.Node
= Argument
;
2049 Args
.push_back(Entry
);
2051 TargetLowering::CallLoweringInfo
CLI(DAG
);
2053 .setChain(DAG
.getEntryNode())
2054 .setLibCallee(CallingConv::C
, PtrTy
, TlsGetAddr
, std::move(Args
));
2055 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
2057 SDValue Ret
= CallResult
.first
;
2059 if (model
!= TLSModel::LocalDynamic
)
2062 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2063 MipsII::MO_DTPREL_HI
);
2064 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2065 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2066 MipsII::MO_DTPREL_LO
);
2067 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2068 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Ret
);
2069 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Add
, Lo
);
2073 if (model
== TLSModel::InitialExec
) {
2074 // Initial Exec TLS Model
2075 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2076 MipsII::MO_GOTTPREL
);
2077 TGA
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
, getGlobalReg(DAG
, PtrVT
),
2080 DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), TGA
, MachinePointerInfo());
2082 // Local Exec TLS Model
2083 assert(model
== TLSModel::LocalExec
);
2084 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2085 MipsII::MO_TPREL_HI
);
2086 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2087 MipsII::MO_TPREL_LO
);
2088 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2089 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2090 Offset
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
2093 SDValue ThreadPointer
= DAG
.getNode(MipsISD::ThreadPointer
, DL
, PtrVT
);
2094 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadPointer
, Offset
);
2097 SDValue
MipsTargetLowering::
2098 lowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const
2100 JumpTableSDNode
*N
= cast
<JumpTableSDNode
>(Op
);
2101 EVT Ty
= Op
.getValueType();
2103 if (!isPositionIndependent())
2104 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2105 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2107 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2110 SDValue
MipsTargetLowering::
2111 lowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const
2113 ConstantPoolSDNode
*N
= cast
<ConstantPoolSDNode
>(Op
);
2114 EVT Ty
= Op
.getValueType();
2116 if (!isPositionIndependent()) {
2117 const MipsTargetObjectFile
*TLOF
=
2118 static_cast<const MipsTargetObjectFile
*>(
2119 getTargetMachine().getObjFileLowering());
2121 if (TLOF
->IsConstantInSmallSection(DAG
.getDataLayout(), N
->getConstVal(),
2122 getTargetMachine()))
2123 // %gp_rel relocation
2124 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
2126 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2127 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2130 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2133 SDValue
MipsTargetLowering::lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
2134 MachineFunction
&MF
= DAG
.getMachineFunction();
2135 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
2138 SDValue FI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
2139 getPointerTy(MF
.getDataLayout()));
2141 // vastart just stores the address of the VarArgsFrameIndex slot into the
2142 // memory location argument.
2143 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
2144 return DAG
.getStore(Op
.getOperand(0), DL
, FI
, Op
.getOperand(1),
2145 MachinePointerInfo(SV
));
2148 SDValue
MipsTargetLowering::lowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
2149 SDNode
*Node
= Op
.getNode();
2150 EVT VT
= Node
->getValueType(0);
2151 SDValue Chain
= Node
->getOperand(0);
2152 SDValue VAListPtr
= Node
->getOperand(1);
2153 unsigned Align
= Node
->getConstantOperandVal(3);
2154 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
2156 unsigned ArgSlotSizeInBytes
= (ABI
.IsN32() || ABI
.IsN64()) ? 8 : 4;
2158 SDValue VAListLoad
= DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), DL
, Chain
,
2159 VAListPtr
, MachinePointerInfo(SV
));
2160 SDValue VAList
= VAListLoad
;
2162 // Re-align the pointer if necessary.
2163 // It should only ever be necessary for 64-bit types on O32 since the minimum
2164 // argument alignment is the same as the maximum type alignment for N32/N64.
2166 // FIXME: We currently align too often. The code generator doesn't notice
2167 // when the pointer is still aligned from the last va_arg (or pair of
2168 // va_args for the i64 on O32 case).
2169 if (Align
> getMinStackArgumentAlignment()) {
2170 assert(((Align
& (Align
-1)) == 0) && "Expected Align to be a power of 2");
2172 VAList
= DAG
.getNode(ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2173 DAG
.getConstant(Align
- 1, DL
, VAList
.getValueType()));
2175 VAList
= DAG
.getNode(ISD::AND
, DL
, VAList
.getValueType(), VAList
,
2176 DAG
.getConstant(-(int64_t)Align
, DL
,
2177 VAList
.getValueType()));
2180 // Increment the pointer, VAList, to the next vaarg.
2181 auto &TD
= DAG
.getDataLayout();
2182 unsigned ArgSizeInBytes
=
2183 TD
.getTypeAllocSize(VT
.getTypeForEVT(*DAG
.getContext()));
2185 DAG
.getNode(ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2186 DAG
.getConstant(alignTo(ArgSizeInBytes
, ArgSlotSizeInBytes
),
2187 DL
, VAList
.getValueType()));
2188 // Store the incremented VAList to the legalized pointer
2189 Chain
= DAG
.getStore(VAListLoad
.getValue(1), DL
, Tmp3
, VAListPtr
,
2190 MachinePointerInfo(SV
));
2192 // In big-endian mode we must adjust the pointer when the load size is smaller
2193 // than the argument slot size. We must also reduce the known alignment to
2194 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2195 // the correct half of the slot, and reduce the alignment from 8 (slot
2196 // alignment) down to 4 (type alignment).
2197 if (!Subtarget
.isLittle() && ArgSizeInBytes
< ArgSlotSizeInBytes
) {
2198 unsigned Adjustment
= ArgSlotSizeInBytes
- ArgSizeInBytes
;
2199 VAList
= DAG
.getNode(ISD::ADD
, DL
, VAListPtr
.getValueType(), VAList
,
2200 DAG
.getIntPtrConstant(Adjustment
, DL
));
2202 // Load the actual argument out of the pointer VAList
2203 return DAG
.getLoad(VT
, DL
, Chain
, VAList
, MachinePointerInfo());
2206 static SDValue
lowerFCOPYSIGN32(SDValue Op
, SelectionDAG
&DAG
,
2207 bool HasExtractInsert
) {
2208 EVT TyX
= Op
.getOperand(0).getValueType();
2209 EVT TyY
= Op
.getOperand(1).getValueType();
2211 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2212 SDValue Const31
= DAG
.getConstant(31, DL
, MVT::i32
);
2215 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2217 SDValue X
= (TyX
== MVT::f32
) ?
2218 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0)) :
2219 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2221 SDValue Y
= (TyY
== MVT::f32
) ?
2222 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(1)) :
2223 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(1),
2226 if (HasExtractInsert
) {
2227 // ext E, Y, 31, 1 ; extract bit31 of Y
2228 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2229 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, MVT::i32
, Y
, Const31
, Const1
);
2230 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
, E
, Const31
, Const1
, X
);
2233 // srl SrlX, SllX, 1
2235 // sll SllY, SrlX, 31
2236 // or Or, SrlX, SllY
2237 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2238 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2239 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Y
, Const31
);
2240 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SrlY
, Const31
);
2241 Res
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, SrlX
, SllY
);
2244 if (TyX
== MVT::f32
)
2245 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Res
);
2247 SDValue LowX
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2249 DAG
.getConstant(0, DL
, MVT::i32
));
2250 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2253 static SDValue
lowerFCOPYSIGN64(SDValue Op
, SelectionDAG
&DAG
,
2254 bool HasExtractInsert
) {
2255 unsigned WidthX
= Op
.getOperand(0).getValueSizeInBits();
2256 unsigned WidthY
= Op
.getOperand(1).getValueSizeInBits();
2257 EVT TyX
= MVT::getIntegerVT(WidthX
), TyY
= MVT::getIntegerVT(WidthY
);
2259 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2261 // Bitcast to integer nodes.
2262 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, TyX
, Op
.getOperand(0));
2263 SDValue Y
= DAG
.getNode(ISD::BITCAST
, DL
, TyY
, Op
.getOperand(1));
2265 if (HasExtractInsert
) {
2266 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2267 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2268 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, TyY
, Y
,
2269 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
), Const1
);
2271 if (WidthX
> WidthY
)
2272 E
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, E
);
2273 else if (WidthY
> WidthX
)
2274 E
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, E
);
2276 SDValue I
= DAG
.getNode(MipsISD::Ins
, DL
, TyX
, E
,
2277 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
), Const1
,
2279 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), I
);
2282 // (d)sll SllX, X, 1
2283 // (d)srl SrlX, SllX, 1
2284 // (d)srl SrlY, Y, width(Y)-1
2285 // (d)sll SllY, SrlX, width(Y)-1
2286 // or Or, SrlX, SllY
2287 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, TyX
, X
, Const1
);
2288 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, TyX
, SllX
, Const1
);
2289 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, TyY
, Y
,
2290 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
));
2292 if (WidthX
> WidthY
)
2293 SrlY
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, SrlY
);
2294 else if (WidthY
> WidthX
)
2295 SrlY
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, SrlY
);
2297 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, TyX
, SrlY
,
2298 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
));
2299 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, TyX
, SrlX
, SllY
);
2300 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Or
);
2304 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
2305 if (Subtarget
.isGP64bit())
2306 return lowerFCOPYSIGN64(Op
, DAG
, Subtarget
.hasExtractInsert());
2308 return lowerFCOPYSIGN32(Op
, DAG
, Subtarget
.hasExtractInsert());
2311 static SDValue
lowerFABS32(SDValue Op
, SelectionDAG
&DAG
,
2312 bool HasExtractInsert
) {
2314 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2316 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2318 SDValue X
= (Op
.getValueType() == MVT::f32
)
2319 ? DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0))
2320 : DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2321 Op
.getOperand(0), Const1
);
2324 if (HasExtractInsert
)
2325 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
,
2326 DAG
.getRegister(Mips::ZERO
, MVT::i32
),
2327 DAG
.getConstant(31, DL
, MVT::i32
), Const1
, X
);
2329 // TODO: Provide DAG patterns which transform (and x, cst)
2330 // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2331 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2332 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2335 if (Op
.getValueType() == MVT::f32
)
2336 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f32
, Res
);
2338 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2339 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2340 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2343 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2344 DAG
.getConstant(0, DL
, MVT::i32
));
2345 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2348 static SDValue
lowerFABS64(SDValue Op
, SelectionDAG
&DAG
,
2349 bool HasExtractInsert
) {
2351 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2353 // Bitcast to integer node.
2354 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Op
.getOperand(0));
2357 if (HasExtractInsert
)
2358 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i64
,
2359 DAG
.getRegister(Mips::ZERO_64
, MVT::i64
),
2360 DAG
.getConstant(63, DL
, MVT::i32
), Const1
, X
);
2362 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, X
, Const1
);
2363 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SllX
, Const1
);
2366 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, Res
);
2369 SDValue
MipsTargetLowering::lowerFABS(SDValue Op
, SelectionDAG
&DAG
) const {
2370 if ((ABI
.IsN32() || ABI
.IsN64()) && (Op
.getValueType() == MVT::f64
))
2371 return lowerFABS64(Op
, DAG
, Subtarget
.hasExtractInsert());
2373 return lowerFABS32(Op
, DAG
, Subtarget
.hasExtractInsert());
2376 SDValue
MipsTargetLowering::
2377 lowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
2379 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2380 DAG
.getContext()->emitError(
2381 "return address can be determined only for current frame");
2385 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2386 MFI
.setFrameAddressIsTaken(true);
2387 EVT VT
= Op
.getValueType();
2389 SDValue FrameAddr
= DAG
.getCopyFromReg(
2390 DAG
.getEntryNode(), DL
, ABI
.IsN64() ? Mips::FP_64
: Mips::FP
, VT
);
2394 SDValue
MipsTargetLowering::lowerRETURNADDR(SDValue Op
,
2395 SelectionDAG
&DAG
) const {
2396 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
2400 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2401 DAG
.getContext()->emitError(
2402 "return address can be determined only for current frame");
2406 MachineFunction
&MF
= DAG
.getMachineFunction();
2407 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2408 MVT VT
= Op
.getSimpleValueType();
2409 unsigned RA
= ABI
.IsN64() ? Mips::RA_64
: Mips::RA
;
2410 MFI
.setReturnAddressIsTaken(true);
2412 // Return RA, which contains the return address. Mark it an implicit live-in.
2413 unsigned Reg
= MF
.addLiveIn(RA
, getRegClassFor(VT
));
2414 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SDLoc(Op
), Reg
, VT
);
2417 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2418 // generated from __builtin_eh_return (offset, handler)
2419 // The effect of this is to adjust the stack pointer by "offset"
2420 // and then branch to "handler".
2421 SDValue
MipsTargetLowering::lowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
2423 MachineFunction
&MF
= DAG
.getMachineFunction();
2424 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
2426 MipsFI
->setCallsEhReturn();
2427 SDValue Chain
= Op
.getOperand(0);
2428 SDValue Offset
= Op
.getOperand(1);
2429 SDValue Handler
= Op
.getOperand(2);
2431 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2433 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2434 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2435 unsigned OffsetReg
= ABI
.IsN64() ? Mips::V1_64
: Mips::V1
;
2436 unsigned AddrReg
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
2437 Chain
= DAG
.getCopyToReg(Chain
, DL
, OffsetReg
, Offset
, SDValue());
2438 Chain
= DAG
.getCopyToReg(Chain
, DL
, AddrReg
, Handler
, Chain
.getValue(1));
2439 return DAG
.getNode(MipsISD::EH_RETURN
, DL
, MVT::Other
, Chain
,
2440 DAG
.getRegister(OffsetReg
, Ty
),
2441 DAG
.getRegister(AddrReg
, getPointerTy(MF
.getDataLayout())),
2445 SDValue
MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op
,
2446 SelectionDAG
&DAG
) const {
2447 // FIXME: Need pseudo-fence for 'singlethread' fences
2448 // FIXME: Set SType for weaker fences where supported/appropriate.
2451 return DAG
.getNode(MipsISD::Sync
, DL
, MVT::Other
, Op
.getOperand(0),
2452 DAG
.getConstant(SType
, DL
, MVT::i32
));
2455 SDValue
MipsTargetLowering::lowerShiftLeftParts(SDValue Op
,
2456 SelectionDAG
&DAG
) const {
2458 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2460 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2461 SDValue Shamt
= Op
.getOperand(2);
2462 // if shamt < (VT.bits):
2463 // lo = (shl lo, shamt)
2464 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2467 // hi = (shl lo, shamt[4:0])
2468 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2469 DAG
.getConstant(-1, DL
, MVT::i32
));
2470 SDValue ShiftRight1Lo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
,
2471 DAG
.getConstant(1, DL
, VT
));
2472 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, ShiftRight1Lo
, Not
);
2473 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
, Shamt
);
2474 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2475 SDValue ShiftLeftLo
= DAG
.getNode(ISD::SHL
, DL
, VT
, Lo
, Shamt
);
2476 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2477 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2478 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2479 DAG
.getConstant(0, DL
, VT
), ShiftLeftLo
);
2480 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftLeftLo
, Or
);
2482 SDValue Ops
[2] = {Lo
, Hi
};
2483 return DAG
.getMergeValues(Ops
, DL
);
2486 SDValue
MipsTargetLowering::lowerShiftRightParts(SDValue Op
, SelectionDAG
&DAG
,
2489 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2490 SDValue Shamt
= Op
.getOperand(2);
2491 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2493 // if shamt < (VT.bits):
2494 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2496 // hi = (sra hi, shamt)
2498 // hi = (srl hi, shamt)
2501 // lo = (sra hi, shamt[4:0])
2502 // hi = (sra hi, 31)
2504 // lo = (srl hi, shamt[4:0])
2506 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2507 DAG
.getConstant(-1, DL
, MVT::i32
));
2508 SDValue ShiftLeft1Hi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
,
2509 DAG
.getConstant(1, DL
, VT
));
2510 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, ShiftLeft1Hi
, Not
);
2511 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
, Shamt
);
2512 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2513 SDValue ShiftRightHi
= DAG
.getNode(IsSRA
? ISD::SRA
: ISD::SRL
,
2515 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2516 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2517 SDValue Ext
= DAG
.getNode(ISD::SRA
, DL
, VT
, Hi
,
2518 DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
));
2520 if (!(Subtarget
.hasMips4() || Subtarget
.hasMips32())) {
2521 SDVTList VTList
= DAG
.getVTList(VT
, VT
);
2522 return DAG
.getNode(Subtarget
.isGP64bit() ? Mips::PseudoD_SELECT_I64
2523 : Mips::PseudoD_SELECT_I
,
2524 DL
, VTList
, Cond
, ShiftRightHi
,
2525 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), Or
,
2529 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftRightHi
, Or
);
2530 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2531 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), ShiftRightHi
);
2533 SDValue Ops
[2] = {Lo
, Hi
};
2534 return DAG
.getMergeValues(Ops
, DL
);
2537 static SDValue
createLoadLR(unsigned Opc
, SelectionDAG
&DAG
, LoadSDNode
*LD
,
2538 SDValue Chain
, SDValue Src
, unsigned Offset
) {
2539 SDValue Ptr
= LD
->getBasePtr();
2540 EVT VT
= LD
->getValueType(0), MemVT
= LD
->getMemoryVT();
2541 EVT BasePtrVT
= Ptr
.getValueType();
2543 SDVTList VTList
= DAG
.getVTList(VT
, MVT::Other
);
2546 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2547 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2549 SDValue Ops
[] = { Chain
, Ptr
, Src
};
2550 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2551 LD
->getMemOperand());
2554 // Expand an unaligned 32 or 64-bit integer load node.
2555 SDValue
MipsTargetLowering::lowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
2556 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2557 EVT MemVT
= LD
->getMemoryVT();
2559 if (Subtarget
.systemSupportsUnalignedAccess())
2562 // Return if load is aligned or if MemVT is neither i32 nor i64.
2563 if ((LD
->getAlignment() >= MemVT
.getSizeInBits() / 8) ||
2564 ((MemVT
!= MVT::i32
) && (MemVT
!= MVT::i64
)))
2567 bool IsLittle
= Subtarget
.isLittle();
2568 EVT VT
= Op
.getValueType();
2569 ISD::LoadExtType ExtType
= LD
->getExtensionType();
2570 SDValue Chain
= LD
->getChain(), Undef
= DAG
.getUNDEF(VT
);
2572 assert((VT
== MVT::i32
) || (VT
== MVT::i64
));
2575 // (set dst, (i64 (load baseptr)))
2577 // (set tmp, (ldl (add baseptr, 7), undef))
2578 // (set dst, (ldr baseptr, tmp))
2579 if ((VT
== MVT::i64
) && (ExtType
== ISD::NON_EXTLOAD
)) {
2580 SDValue LDL
= createLoadLR(MipsISD::LDL
, DAG
, LD
, Chain
, Undef
,
2582 return createLoadLR(MipsISD::LDR
, DAG
, LD
, LDL
.getValue(1), LDL
,
2586 SDValue LWL
= createLoadLR(MipsISD::LWL
, DAG
, LD
, Chain
, Undef
,
2588 SDValue LWR
= createLoadLR(MipsISD::LWR
, DAG
, LD
, LWL
.getValue(1), LWL
,
2592 // (set dst, (i32 (load baseptr))) or
2593 // (set dst, (i64 (sextload baseptr))) or
2594 // (set dst, (i64 (extload baseptr)))
2596 // (set tmp, (lwl (add baseptr, 3), undef))
2597 // (set dst, (lwr baseptr, tmp))
2598 if ((VT
== MVT::i32
) || (ExtType
== ISD::SEXTLOAD
) ||
2599 (ExtType
== ISD::EXTLOAD
))
2602 assert((VT
== MVT::i64
) && (ExtType
== ISD::ZEXTLOAD
));
2605 // (set dst, (i64 (zextload baseptr)))
2607 // (set tmp0, (lwl (add baseptr, 3), undef))
2608 // (set tmp1, (lwr baseptr, tmp0))
2609 // (set tmp2, (shl tmp1, 32))
2610 // (set dst, (srl tmp2, 32))
2612 SDValue Const32
= DAG
.getConstant(32, DL
, MVT::i32
);
2613 SDValue SLL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, LWR
, Const32
);
2614 SDValue SRL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SLL
, Const32
);
2615 SDValue Ops
[] = { SRL
, LWR
.getValue(1) };
2616 return DAG
.getMergeValues(Ops
, DL
);
2619 static SDValue
createStoreLR(unsigned Opc
, SelectionDAG
&DAG
, StoreSDNode
*SD
,
2620 SDValue Chain
, unsigned Offset
) {
2621 SDValue Ptr
= SD
->getBasePtr(), Value
= SD
->getValue();
2622 EVT MemVT
= SD
->getMemoryVT(), BasePtrVT
= Ptr
.getValueType();
2624 SDVTList VTList
= DAG
.getVTList(MVT::Other
);
2627 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2628 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2630 SDValue Ops
[] = { Chain
, Value
, Ptr
};
2631 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2632 SD
->getMemOperand());
2635 // Expand an unaligned 32 or 64-bit integer store node.
2636 static SDValue
lowerUnalignedIntStore(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2638 SDValue Value
= SD
->getValue(), Chain
= SD
->getChain();
2639 EVT VT
= Value
.getValueType();
2642 // (store val, baseptr) or
2643 // (truncstore val, baseptr)
2645 // (swl val, (add baseptr, 3))
2646 // (swr val, baseptr)
2647 if ((VT
== MVT::i32
) || SD
->isTruncatingStore()) {
2648 SDValue SWL
= createStoreLR(MipsISD::SWL
, DAG
, SD
, Chain
,
2650 return createStoreLR(MipsISD::SWR
, DAG
, SD
, SWL
, IsLittle
? 0 : 3);
2653 assert(VT
== MVT::i64
);
2656 // (store val, baseptr)
2658 // (sdl val, (add baseptr, 7))
2659 // (sdr val, baseptr)
2660 SDValue SDL
= createStoreLR(MipsISD::SDL
, DAG
, SD
, Chain
, IsLittle
? 7 : 0);
2661 return createStoreLR(MipsISD::SDR
, DAG
, SD
, SDL
, IsLittle
? 0 : 7);
2664 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2665 static SDValue
lowerFP_TO_SINT_STORE(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2667 SDValue Val
= SD
->getValue();
2669 if (Val
.getOpcode() != ISD::FP_TO_SINT
||
2670 (Val
.getValueSizeInBits() > 32 && SingleFloat
))
2673 EVT FPTy
= EVT::getFloatingPointVT(Val
.getValueSizeInBits());
2674 SDValue Tr
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Val
), FPTy
,
2676 return DAG
.getStore(SD
->getChain(), SDLoc(SD
), Tr
, SD
->getBasePtr(),
2677 SD
->getPointerInfo(), SD
->getAlignment(),
2678 SD
->getMemOperand()->getFlags());
2681 SDValue
MipsTargetLowering::lowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
2682 StoreSDNode
*SD
= cast
<StoreSDNode
>(Op
);
2683 EVT MemVT
= SD
->getMemoryVT();
2685 // Lower unaligned integer stores.
2686 if (!Subtarget
.systemSupportsUnalignedAccess() &&
2687 (SD
->getAlignment() < MemVT
.getSizeInBits() / 8) &&
2688 ((MemVT
== MVT::i32
) || (MemVT
== MVT::i64
)))
2689 return lowerUnalignedIntStore(SD
, DAG
, Subtarget
.isLittle());
2691 return lowerFP_TO_SINT_STORE(SD
, DAG
, Subtarget
.isSingleFloat());
2694 SDValue
MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op
,
2695 SelectionDAG
&DAG
) const {
2697 // Return a fixed StackObject with offset 0 which points to the old stack
2699 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2700 EVT ValTy
= Op
->getValueType(0);
2701 int FI
= MFI
.CreateFixedObject(Op
.getValueSizeInBits() / 8, 0, false);
2702 return DAG
.getFrameIndex(FI
, ValTy
);
2705 SDValue
MipsTargetLowering::lowerFP_TO_SINT(SDValue Op
,
2706 SelectionDAG
&DAG
) const {
2707 if (Op
.getValueSizeInBits() > 32 && Subtarget
.isSingleFloat())
2710 EVT FPTy
= EVT::getFloatingPointVT(Op
.getValueSizeInBits());
2711 SDValue Trunc
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Op
), FPTy
,
2713 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
), Op
.getValueType(), Trunc
);
2716 //===----------------------------------------------------------------------===//
2717 // Calling Convention Implementation
2718 //===----------------------------------------------------------------------===//
2720 //===----------------------------------------------------------------------===//
2721 // TODO: Implement a generic logic using tblgen that can support this.
2722 // Mips O32 ABI rules:
2724 // i32 - Passed in A0, A1, A2, A3 and stack
2725 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2726 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2727 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2728 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2729 // not used, it must be shadowed. If only A3 is available, shadow it and
2731 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2732 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2733 // with the remainder spilled to the stack.
2734 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2735 // spilling the remainder to the stack.
2737 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2738 //===----------------------------------------------------------------------===//
2740 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2741 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2742 CCState
&State
, ArrayRef
<MCPhysReg
> F64Regs
) {
2743 const MipsSubtarget
&Subtarget
= static_cast<const MipsSubtarget
&>(
2744 State
.getMachineFunction().getSubtarget());
2746 static const MCPhysReg IntRegs
[] = { Mips::A0
, Mips::A1
, Mips::A2
, Mips::A3
};
2748 const MipsCCState
* MipsState
= static_cast<MipsCCState
*>(&State
);
2750 static const MCPhysReg F32Regs
[] = { Mips::F12
, Mips::F14
};
2752 static const MCPhysReg FloatVectorIntRegs
[] = { Mips::A0
, Mips::A2
};
2754 // Do not process byval args here.
2755 if (ArgFlags
.isByVal())
2758 // Promote i8 and i16
2759 if (ArgFlags
.isInReg() && !Subtarget
.isLittle()) {
2760 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
|| LocVT
== MVT::i32
) {
2762 if (ArgFlags
.isSExt())
2763 LocInfo
= CCValAssign::SExtUpper
;
2764 else if (ArgFlags
.isZExt())
2765 LocInfo
= CCValAssign::ZExtUpper
;
2767 LocInfo
= CCValAssign::AExtUpper
;
2771 // Promote i8 and i16
2772 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
) {
2774 if (ArgFlags
.isSExt())
2775 LocInfo
= CCValAssign::SExt
;
2776 else if (ArgFlags
.isZExt())
2777 LocInfo
= CCValAssign::ZExt
;
2779 LocInfo
= CCValAssign::AExt
;
2784 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2785 // is true: function is vararg, argument is 3rd or higher, there is previous
2786 // argument which is not f32 or f64.
2787 bool AllocateFloatsInIntReg
= State
.isVarArg() || ValNo
> 1 ||
2788 State
.getFirstUnallocated(F32Regs
) != ValNo
;
2789 unsigned OrigAlign
= ArgFlags
.getOrigAlign();
2790 bool isI64
= (ValVT
== MVT::i32
&& OrigAlign
== 8);
2791 bool isVectorFloat
= MipsState
->WasOriginalArgVectorFloat(ValNo
);
2793 // The MIPS vector ABI for floats passes them in a pair of registers
2794 if (ValVT
== MVT::i32
&& isVectorFloat
) {
2795 // This is the start of an vector that was scalarized into an unknown number
2796 // of components. It doesn't matter how many there are. Allocate one of the
2797 // notional 8 byte aligned registers which map onto the argument stack, and
2798 // shadow the register lost to alignment requirements.
2799 if (ArgFlags
.isSplit()) {
2800 Reg
= State
.AllocateReg(FloatVectorIntRegs
);
2801 if (Reg
== Mips::A2
)
2802 State
.AllocateReg(Mips::A1
);
2804 State
.AllocateReg(Mips::A3
);
2806 // If we're an intermediate component of the split, we can just attempt to
2807 // allocate a register directly.
2808 Reg
= State
.AllocateReg(IntRegs
);
2810 } else if (ValVT
== MVT::i32
|| (ValVT
== MVT::f32
&& AllocateFloatsInIntReg
)) {
2811 Reg
= State
.AllocateReg(IntRegs
);
2812 // If this is the first part of an i64 arg,
2813 // the allocated register must be either A0 or A2.
2814 if (isI64
&& (Reg
== Mips::A1
|| Reg
== Mips::A3
))
2815 Reg
= State
.AllocateReg(IntRegs
);
2817 } else if (ValVT
== MVT::f64
&& AllocateFloatsInIntReg
) {
2818 // Allocate int register and shadow next int register. If first
2819 // available register is Mips::A1 or Mips::A3, shadow it too.
2820 Reg
= State
.AllocateReg(IntRegs
);
2821 if (Reg
== Mips::A1
|| Reg
== Mips::A3
)
2822 Reg
= State
.AllocateReg(IntRegs
);
2823 State
.AllocateReg(IntRegs
);
2825 } else if (ValVT
.isFloatingPoint() && !AllocateFloatsInIntReg
) {
2826 // we are guaranteed to find an available float register
2827 if (ValVT
== MVT::f32
) {
2828 Reg
= State
.AllocateReg(F32Regs
);
2829 // Shadow int register
2830 State
.AllocateReg(IntRegs
);
2832 Reg
= State
.AllocateReg(F64Regs
);
2833 // Shadow int registers
2834 unsigned Reg2
= State
.AllocateReg(IntRegs
);
2835 if (Reg2
== Mips::A1
|| Reg2
== Mips::A3
)
2836 State
.AllocateReg(IntRegs
);
2837 State
.AllocateReg(IntRegs
);
2840 llvm_unreachable("Cannot handle this ValVT.");
2843 unsigned Offset
= State
.AllocateStack(ValVT
.getStoreSize(), OrigAlign
);
2844 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
2846 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
2851 static bool CC_MipsO32_FP32(unsigned ValNo
, MVT ValVT
,
2852 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2853 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2854 static const MCPhysReg F64Regs
[] = { Mips::D6
, Mips::D7
};
2856 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2859 static bool CC_MipsO32_FP64(unsigned ValNo
, MVT ValVT
,
2860 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2861 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2862 static const MCPhysReg F64Regs
[] = { Mips::D12_64
, Mips::D14_64
};
2864 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
2867 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2868 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2869 CCState
&State
) LLVM_ATTRIBUTE_UNUSED
;
2871 #include "MipsGenCallingConv.inc"
2873 CCAssignFn
*MipsTargetLowering::CCAssignFnForCall() const{
2877 CCAssignFn
*MipsTargetLowering::CCAssignFnForReturn() const{
2880 //===----------------------------------------------------------------------===//
2881 // Call Calling Convention Implementation
2882 //===----------------------------------------------------------------------===//
2884 // Return next O32 integer argument register.
2885 static unsigned getNextIntArgReg(unsigned Reg
) {
2886 assert((Reg
== Mips::A0
) || (Reg
== Mips::A2
));
2887 return (Reg
== Mips::A0
) ? Mips::A1
: Mips::A3
;
2890 SDValue
MipsTargetLowering::passArgOnStack(SDValue StackPtr
, unsigned Offset
,
2891 SDValue Chain
, SDValue Arg
,
2892 const SDLoc
&DL
, bool IsTailCall
,
2893 SelectionDAG
&DAG
) const {
2896 DAG
.getNode(ISD::ADD
, DL
, getPointerTy(DAG
.getDataLayout()), StackPtr
,
2897 DAG
.getIntPtrConstant(Offset
, DL
));
2898 return DAG
.getStore(Chain
, DL
, Arg
, PtrOff
, MachinePointerInfo());
2901 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2902 int FI
= MFI
.CreateFixedObject(Arg
.getValueSizeInBits() / 8, Offset
, false);
2903 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
2904 return DAG
.getStore(Chain
, DL
, Arg
, FIN
, MachinePointerInfo(),
2905 /* Alignment = */ 0, MachineMemOperand::MOVolatile
);
2908 void MipsTargetLowering::
2909 getOpndList(SmallVectorImpl
<SDValue
> &Ops
,
2910 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
2911 bool IsPICCall
, bool GlobalOrExternal
, bool InternalLinkage
,
2912 bool IsCallReloc
, CallLoweringInfo
&CLI
, SDValue Callee
,
2913 SDValue Chain
) const {
2914 // Insert node "GP copy globalreg" before call to function.
2916 // R_MIPS_CALL* operators (emitted when non-internal functions are called
2917 // in PIC mode) allow symbols to be resolved via lazy binding.
2918 // The lazy binding stub requires GP to point to the GOT.
2919 // Note that we don't need GP to point to the GOT for indirect calls
2920 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
2921 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
2922 // used for the function (that is, Mips linker doesn't generate lazy binding
2923 // stub for a function whose address is taken in the program).
2924 if (IsPICCall
&& !InternalLinkage
&& IsCallReloc
) {
2925 unsigned GPReg
= ABI
.IsN64() ? Mips::GP_64
: Mips::GP
;
2926 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2927 RegsToPass
.push_back(std::make_pair(GPReg
, getGlobalReg(CLI
.DAG
, Ty
)));
2930 // Build a sequence of copy-to-reg nodes chained together with token
2931 // chain and flag operands which copy the outgoing args into registers.
2932 // The InFlag in necessary since all emitted instructions must be
2936 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2937 Chain
= CLI
.DAG
.getCopyToReg(Chain
, CLI
.DL
, RegsToPass
[i
].first
,
2938 RegsToPass
[i
].second
, InFlag
);
2939 InFlag
= Chain
.getValue(1);
2942 // Add argument registers to the end of the list so that they are
2943 // known live into the call.
2944 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2945 Ops
.push_back(CLI
.DAG
.getRegister(RegsToPass
[i
].first
,
2946 RegsToPass
[i
].second
.getValueType()));
2948 // Add a register mask operand representing the call-preserved registers.
2949 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
2950 const uint32_t *Mask
=
2951 TRI
->getCallPreservedMask(CLI
.DAG
.getMachineFunction(), CLI
.CallConv
);
2952 assert(Mask
&& "Missing call preserved mask for calling convention");
2953 if (Subtarget
.inMips16HardFloat()) {
2954 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(CLI
.Callee
)) {
2955 StringRef Sym
= G
->getGlobal()->getName();
2956 Function
*F
= G
->getGlobal()->getParent()->getFunction(Sym
);
2957 if (F
&& F
->hasFnAttribute("__Mips16RetHelper")) {
2958 Mask
= MipsRegisterInfo::getMips16RetHelperMask();
2962 Ops
.push_back(CLI
.DAG
.getRegisterMask(Mask
));
2964 if (InFlag
.getNode())
2965 Ops
.push_back(InFlag
);
2968 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
2969 SDNode
*Node
) const {
2970 switch (MI
.getOpcode()) {
2974 case Mips::JALRPseudo
:
2976 case Mips::JALR64Pseudo
:
2977 case Mips::JALR16_MM
:
2978 case Mips::JALRC16_MMR6
:
2979 case Mips::TAILCALLREG
:
2980 case Mips::TAILCALLREG64
:
2981 case Mips::TAILCALLR6REG
:
2982 case Mips::TAILCALL64R6REG
:
2983 case Mips::TAILCALLREG_MM
:
2984 case Mips::TAILCALLREG_MMR6
: {
2985 if (!EmitJalrReloc
||
2986 Subtarget
.inMips16Mode() ||
2987 !isPositionIndependent() ||
2988 Node
->getNumOperands() < 1 ||
2989 Node
->getOperand(0).getNumOperands() < 2) {
2992 // We are after the callee address, set by LowerCall().
2993 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
2995 const SDValue TargetAddr
= Node
->getOperand(0).getOperand(1);
2997 if (const GlobalAddressSDNode
*G
=
2998 dyn_cast_or_null
<const GlobalAddressSDNode
>(TargetAddr
)) {
2999 Sym
= G
->getGlobal()->getName();
3001 else if (const ExternalSymbolSDNode
*ES
=
3002 dyn_cast_or_null
<const ExternalSymbolSDNode
>(TargetAddr
)) {
3003 Sym
= ES
->getSymbol();
3009 MachineFunction
*MF
= MI
.getParent()->getParent();
3010 MCSymbol
*S
= MF
->getContext().getOrCreateSymbol(Sym
);
3011 MI
.addOperand(MachineOperand::CreateMCSymbol(S
, MipsII::MO_JALR
));
3016 /// LowerCall - functions arguments are copied from virtual regs to
3017 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3019 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
3020 SmallVectorImpl
<SDValue
> &InVals
) const {
3021 SelectionDAG
&DAG
= CLI
.DAG
;
3023 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
3024 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
3025 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
3026 SDValue Chain
= CLI
.Chain
;
3027 SDValue Callee
= CLI
.Callee
;
3028 bool &IsTailCall
= CLI
.IsTailCall
;
3029 CallingConv::ID CallConv
= CLI
.CallConv
;
3030 bool IsVarArg
= CLI
.IsVarArg
;
3032 MachineFunction
&MF
= DAG
.getMachineFunction();
3033 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3034 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
3035 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
3036 bool IsPIC
= isPositionIndependent();
3038 // Analyze operands of the call, assigning locations to each operand.
3039 SmallVector
<CCValAssign
, 16> ArgLocs
;
3041 CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
, *DAG
.getContext(),
3042 MipsCCState::getSpecialCallingConvForCallee(Callee
.getNode(), Subtarget
));
3044 const ExternalSymbolSDNode
*ES
=
3045 dyn_cast_or_null
<const ExternalSymbolSDNode
>(Callee
.getNode());
3047 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3048 // is during the lowering of a call with a byval argument which produces
3049 // a call to memcpy. For the O32 case, this causes the caller to allocate
3050 // stack space for the reserved argument area for the callee, then recursively
3051 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3052 // ABIs mandate that the callee allocates the reserved argument area. We do
3053 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3055 // If the callee has a byval argument and memcpy is used, we are mandated
3056 // to already have produced a reserved argument area for the callee for O32.
3057 // Therefore, the reserved argument area can be reused for both calls.
3059 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3060 // present, as we have yet to hook that node onto the chain.
3062 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3063 // case. GCC does a similar trick, in that wherever possible, it calculates
3064 // the maximum out going argument area (including the reserved area), and
3065 // preallocates the stack space on entrance to the caller.
3067 // FIXME: We should do the same for efficiency and space.
3069 // Note: The check on the calling convention below must match
3070 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3071 bool MemcpyInByVal
= ES
&&
3072 StringRef(ES
->getSymbol()) == StringRef("memcpy") &&
3073 CallConv
!= CallingConv::Fast
&&
3074 Chain
.getOpcode() == ISD::CALLSEQ_START
;
3076 // Allocate the reserved argument area. It seems strange to do this from the
3077 // caller side but removing it breaks the frame size calculation.
3078 unsigned ReservedArgArea
=
3079 MemcpyInByVal
? 0 : ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
);
3080 CCInfo
.AllocateStack(ReservedArgArea
, 1);
3082 CCInfo
.AnalyzeCallOperands(Outs
, CC_Mips
, CLI
.getArgs(),
3083 ES
? ES
->getSymbol() : nullptr);
3085 // Get a count of how many bytes are to be pushed on the stack.
3086 unsigned NextStackOffset
= CCInfo
.getNextStackOffset();
3088 // Check if it's really possible to do a tail call. Restrict it to functions
3089 // that are part of this compilation unit.
3090 bool InternalLinkage
= false;
3092 IsTailCall
= isEligibleForTailCallOptimization(
3093 CCInfo
, NextStackOffset
, *MF
.getInfo
<MipsFunctionInfo
>());
3094 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3095 InternalLinkage
= G
->getGlobal()->hasInternalLinkage();
3096 IsTailCall
&= (InternalLinkage
|| G
->getGlobal()->hasLocalLinkage() ||
3097 G
->getGlobal()->hasPrivateLinkage() ||
3098 G
->getGlobal()->hasHiddenVisibility() ||
3099 G
->getGlobal()->hasProtectedVisibility());
3102 if (!IsTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
3103 report_fatal_error("failed to perform tail call elimination on a call "
3104 "site marked musttail");
3109 // Chain is the output chain of the last Load/Store or CopyToReg node.
3110 // ByValChain is the output chain of the last Memcpy node created for copying
3111 // byval arguments to the stack.
3112 unsigned StackAlignment
= TFL
->getStackAlignment();
3113 NextStackOffset
= alignTo(NextStackOffset
, StackAlignment
);
3114 SDValue NextStackOffsetVal
= DAG
.getIntPtrConstant(NextStackOffset
, DL
, true);
3116 if (!(IsTailCall
|| MemcpyInByVal
))
3117 Chain
= DAG
.getCALLSEQ_START(Chain
, NextStackOffset
, 0, DL
);
3120 DAG
.getCopyFromReg(Chain
, DL
, ABI
.IsN64() ? Mips::SP_64
: Mips::SP
,
3121 getPointerTy(DAG
.getDataLayout()));
3123 std::deque
<std::pair
<unsigned, SDValue
>> RegsToPass
;
3124 SmallVector
<SDValue
, 8> MemOpChains
;
3126 CCInfo
.rewindByValRegsInfo();
3128 // Walk the register/memloc assignments, inserting copies/loads.
3129 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3130 SDValue Arg
= OutVals
[i
];
3131 CCValAssign
&VA
= ArgLocs
[i
];
3132 MVT ValVT
= VA
.getValVT(), LocVT
= VA
.getLocVT();
3133 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
3134 bool UseUpperBits
= false;
3137 if (Flags
.isByVal()) {
3138 unsigned FirstByValReg
, LastByValReg
;
3139 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3140 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3142 assert(Flags
.getByValSize() &&
3143 "ByVal args of size 0 should have been ignored by front-end.");
3144 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3145 assert(!IsTailCall
&&
3146 "Do not tail-call optimize if there is a byval argument.");
3147 passByValArg(Chain
, DL
, RegsToPass
, MemOpChains
, StackPtr
, MFI
, DAG
, Arg
,
3148 FirstByValReg
, LastByValReg
, Flags
, Subtarget
.isLittle(),
3150 CCInfo
.nextInRegsParam();
3154 // Promote the value if needed.
3155 switch (VA
.getLocInfo()) {
3157 llvm_unreachable("Unknown loc info!");
3158 case CCValAssign::Full
:
3159 if (VA
.isRegLoc()) {
3160 if ((ValVT
== MVT::f32
&& LocVT
== MVT::i32
) ||
3161 (ValVT
== MVT::f64
&& LocVT
== MVT::i64
) ||
3162 (ValVT
== MVT::i64
&& LocVT
== MVT::f64
))
3163 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3164 else if (ValVT
== MVT::f64
&& LocVT
== MVT::i32
) {
3165 SDValue Lo
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3166 Arg
, DAG
.getConstant(0, DL
, MVT::i32
));
3167 SDValue Hi
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3168 Arg
, DAG
.getConstant(1, DL
, MVT::i32
));
3169 if (!Subtarget
.isLittle())
3171 Register LocRegLo
= VA
.getLocReg();
3172 unsigned LocRegHigh
= getNextIntArgReg(LocRegLo
);
3173 RegsToPass
.push_back(std::make_pair(LocRegLo
, Lo
));
3174 RegsToPass
.push_back(std::make_pair(LocRegHigh
, Hi
));
3179 case CCValAssign::BCvt
:
3180 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3182 case CCValAssign::SExtUpper
:
3183 UseUpperBits
= true;
3185 case CCValAssign::SExt
:
3186 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, LocVT
, Arg
);
3188 case CCValAssign::ZExtUpper
:
3189 UseUpperBits
= true;
3191 case CCValAssign::ZExt
:
3192 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LocVT
, Arg
);
3194 case CCValAssign::AExtUpper
:
3195 UseUpperBits
= true;
3197 case CCValAssign::AExt
:
3198 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, LocVT
, Arg
);
3203 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3204 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3206 ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
3207 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3210 // Arguments that can be passed on register must be kept at
3211 // RegsToPass vector
3212 if (VA
.isRegLoc()) {
3213 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
3217 // Register can't get to this point...
3218 assert(VA
.isMemLoc());
3220 // emit ISD::STORE whichs stores the
3221 // parameter value to a stack Location
3222 MemOpChains
.push_back(passArgOnStack(StackPtr
, VA
.getLocMemOffset(),
3223 Chain
, Arg
, DL
, IsTailCall
, DAG
));
3226 // Transform all store nodes into one single node because all store
3227 // nodes are independent of each other.
3228 if (!MemOpChains
.empty())
3229 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
3231 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3232 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3233 // node so that legalize doesn't hack it.
3235 EVT Ty
= Callee
.getValueType();
3236 bool GlobalOrExternal
= false, IsCallReloc
= false;
3238 // The long-calls feature is ignored in case of PIC.
3239 // While we do not support -mshared / -mno-shared properly,
3240 // ignore long-calls in case of -mabicalls too.
3241 if (!Subtarget
.isABICalls() && !IsPIC
) {
3242 // If the function should be called using "long call",
3243 // get its address into a register to prevent using
3244 // of the `jal` instruction for the direct call.
3245 if (auto *N
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3246 if (Subtarget
.useLongCalls())
3247 Callee
= Subtarget
.hasSym32()
3248 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3249 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3250 } else if (auto *N
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3251 bool UseLongCalls
= Subtarget
.useLongCalls();
3252 // If the function has long-call/far/near attribute
3253 // it overrides command line switch pased to the backend.
3254 if (auto *F
= dyn_cast
<Function
>(N
->getGlobal())) {
3255 if (F
->hasFnAttribute("long-call"))
3256 UseLongCalls
= true;
3257 else if (F
->hasFnAttribute("short-call"))
3258 UseLongCalls
= false;
3261 Callee
= Subtarget
.hasSym32()
3262 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3263 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3267 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3269 const GlobalValue
*Val
= G
->getGlobal();
3270 InternalLinkage
= Val
->hasInternalLinkage();
3272 if (InternalLinkage
)
3273 Callee
= getAddrLocal(G
, DL
, Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
3274 else if (LargeGOT
) {
3275 Callee
= getAddrGlobalLargeGOT(G
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3276 MipsII::MO_CALL_LO16
, Chain
,
3277 FuncInfo
->callPtrInfo(Val
));
3280 Callee
= getAddrGlobal(G
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3281 FuncInfo
->callPtrInfo(Val
));
3285 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), DL
,
3286 getPointerTy(DAG
.getDataLayout()), 0,
3287 MipsII::MO_NO_FLAG
);
3288 GlobalOrExternal
= true;
3290 else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3291 const char *Sym
= S
->getSymbol();
3293 if (!IsPIC
) // static
3294 Callee
= DAG
.getTargetExternalSymbol(
3295 Sym
, getPointerTy(DAG
.getDataLayout()), MipsII::MO_NO_FLAG
);
3296 else if (LargeGOT
) {
3297 Callee
= getAddrGlobalLargeGOT(S
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3298 MipsII::MO_CALL_LO16
, Chain
,
3299 FuncInfo
->callPtrInfo(Sym
));
3302 Callee
= getAddrGlobal(S
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3303 FuncInfo
->callPtrInfo(Sym
));
3307 GlobalOrExternal
= true;
3310 SmallVector
<SDValue
, 8> Ops(1, Chain
);
3311 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
3313 getOpndList(Ops
, RegsToPass
, IsPIC
, GlobalOrExternal
, InternalLinkage
,
3314 IsCallReloc
, CLI
, Callee
, Chain
);
3317 MF
.getFrameInfo().setHasTailCall();
3318 return DAG
.getNode(MipsISD::TailCall
, DL
, MVT::Other
, Ops
);
3321 Chain
= DAG
.getNode(MipsISD::JmpLink
, DL
, NodeTys
, Ops
);
3322 SDValue InFlag
= Chain
.getValue(1);
3324 // Create the CALLSEQ_END node in the case of where it is not a call to
3326 if (!(MemcpyInByVal
)) {
3327 Chain
= DAG
.getCALLSEQ_END(Chain
, NextStackOffsetVal
,
3328 DAG
.getIntPtrConstant(0, DL
, true), InFlag
, DL
);
3329 InFlag
= Chain
.getValue(1);
3332 // Handle result values, copying them out of physregs into vregs that we
3334 return LowerCallResult(Chain
, InFlag
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
3338 /// LowerCallResult - Lower the result values of a call into the
3339 /// appropriate copies out of appropriate physical registers.
3340 SDValue
MipsTargetLowering::LowerCallResult(
3341 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool IsVarArg
,
3342 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3343 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
3344 TargetLowering::CallLoweringInfo
&CLI
) const {
3345 // Assign locations to each value returned by this call.
3346 SmallVector
<CCValAssign
, 16> RVLocs
;
3347 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), RVLocs
,
3350 const ExternalSymbolSDNode
*ES
=
3351 dyn_cast_or_null
<const ExternalSymbolSDNode
>(CLI
.Callee
.getNode());
3352 CCInfo
.AnalyzeCallResult(Ins
, RetCC_Mips
, CLI
.RetTy
,
3353 ES
? ES
->getSymbol() : nullptr);
3355 // Copy all of the result registers out of their specified physreg.
3356 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3357 CCValAssign
&VA
= RVLocs
[i
];
3358 assert(VA
.isRegLoc() && "Can only return in registers!");
3360 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, RVLocs
[i
].getLocReg(),
3361 RVLocs
[i
].getLocVT(), InFlag
);
3362 Chain
= Val
.getValue(1);
3363 InFlag
= Val
.getValue(2);
3365 if (VA
.isUpperBitsInLoc()) {
3366 unsigned ValSizeInBits
= Ins
[i
].ArgVT
.getSizeInBits();
3367 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3369 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3371 Shift
, DL
, VA
.getLocVT(), Val
,
3372 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3375 switch (VA
.getLocInfo()) {
3377 llvm_unreachable("Unknown loc info!");
3378 case CCValAssign::Full
:
3380 case CCValAssign::BCvt
:
3381 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
3383 case CCValAssign::AExt
:
3384 case CCValAssign::AExtUpper
:
3385 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3387 case CCValAssign::ZExt
:
3388 case CCValAssign::ZExtUpper
:
3389 Val
= DAG
.getNode(ISD::AssertZext
, DL
, VA
.getLocVT(), Val
,
3390 DAG
.getValueType(VA
.getValVT()));
3391 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3393 case CCValAssign::SExt
:
3394 case CCValAssign::SExtUpper
:
3395 Val
= DAG
.getNode(ISD::AssertSext
, DL
, VA
.getLocVT(), Val
,
3396 DAG
.getValueType(VA
.getValVT()));
3397 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3401 InVals
.push_back(Val
);
3407 static SDValue
UnpackFromArgumentSlot(SDValue Val
, const CCValAssign
&VA
,
3408 EVT ArgVT
, const SDLoc
&DL
,
3409 SelectionDAG
&DAG
) {
3410 MVT LocVT
= VA
.getLocVT();
3411 EVT ValVT
= VA
.getValVT();
3413 // Shift into the upper bits if necessary.
3414 switch (VA
.getLocInfo()) {
3417 case CCValAssign::AExtUpper
:
3418 case CCValAssign::SExtUpper
:
3419 case CCValAssign::ZExtUpper
: {
3420 unsigned ValSizeInBits
= ArgVT
.getSizeInBits();
3421 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3423 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3425 Opcode
, DL
, VA
.getLocVT(), Val
,
3426 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3431 // If this is an value smaller than the argument slot size (32-bit for O32,
3432 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3433 // size. Extract the value and insert any appropriate assertions regarding
3434 // sign/zero extension.
3435 switch (VA
.getLocInfo()) {
3437 llvm_unreachable("Unknown loc info!");
3438 case CCValAssign::Full
:
3440 case CCValAssign::AExtUpper
:
3441 case CCValAssign::AExt
:
3442 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3444 case CCValAssign::SExtUpper
:
3445 case CCValAssign::SExt
:
3446 Val
= DAG
.getNode(ISD::AssertSext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3447 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3449 case CCValAssign::ZExtUpper
:
3450 case CCValAssign::ZExt
:
3451 Val
= DAG
.getNode(ISD::AssertZext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3452 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3454 case CCValAssign::BCvt
:
3455 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, Val
);
3462 //===----------------------------------------------------------------------===//
3463 // Formal Arguments Calling Convention Implementation
3464 //===----------------------------------------------------------------------===//
3465 /// LowerFormalArguments - transform physical registers into virtual registers
3466 /// and generate load operations for arguments places on the stack.
3467 SDValue
MipsTargetLowering::LowerFormalArguments(
3468 SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
3469 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3470 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3471 MachineFunction
&MF
= DAG
.getMachineFunction();
3472 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3473 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3475 MipsFI
->setVarArgsFrameIndex(0);
3477 // Used with vargs to acumulate store chains.
3478 std::vector
<SDValue
> OutChains
;
3480 // Assign locations to all of the incoming arguments.
3481 SmallVector
<CCValAssign
, 16> ArgLocs
;
3482 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3484 CCInfo
.AllocateStack(ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
), 1);
3485 const Function
&Func
= DAG
.getMachineFunction().getFunction();
3486 Function::const_arg_iterator FuncArg
= Func
.arg_begin();
3488 if (Func
.hasFnAttribute("interrupt") && !Func
.arg_empty())
3490 "Functions with the interrupt attribute cannot have arguments!");
3492 CCInfo
.AnalyzeFormalArguments(Ins
, CC_Mips_FixedArg
);
3493 MipsFI
->setFormalArgInfo(CCInfo
.getNextStackOffset(),
3494 CCInfo
.getInRegsParamsCount() > 0);
3496 unsigned CurArgIdx
= 0;
3497 CCInfo
.rewindByValRegsInfo();
3499 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3500 CCValAssign
&VA
= ArgLocs
[i
];
3501 if (Ins
[i
].isOrigArg()) {
3502 std::advance(FuncArg
, Ins
[i
].getOrigArgIndex() - CurArgIdx
);
3503 CurArgIdx
= Ins
[i
].getOrigArgIndex();
3505 EVT ValVT
= VA
.getValVT();
3506 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
3507 bool IsRegLoc
= VA
.isRegLoc();
3509 if (Flags
.isByVal()) {
3510 assert(Ins
[i
].isOrigArg() && "Byval arguments cannot be implicit");
3511 unsigned FirstByValReg
, LastByValReg
;
3512 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3513 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3515 assert(Flags
.getByValSize() &&
3516 "ByVal args of size 0 should have been ignored by front-end.");
3517 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3518 copyByValRegs(Chain
, DL
, OutChains
, DAG
, Flags
, InVals
, &*FuncArg
,
3519 FirstByValReg
, LastByValReg
, VA
, CCInfo
);
3520 CCInfo
.nextInRegsParam();
3524 // Arguments stored on registers
3526 MVT RegVT
= VA
.getLocVT();
3527 Register ArgReg
= VA
.getLocReg();
3528 const TargetRegisterClass
*RC
= getRegClassFor(RegVT
);
3530 // Transform the arguments stored on
3531 // physical registers into virtual ones
3532 unsigned Reg
= addLiveIn(DAG
.getMachineFunction(), ArgReg
, RC
);
3533 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
3535 ArgValue
= UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[i
].ArgVT
, DL
, DAG
);
3537 // Handle floating point arguments passed in integer registers and
3538 // long double arguments passed in floating point registers.
3539 if ((RegVT
== MVT::i32
&& ValVT
== MVT::f32
) ||
3540 (RegVT
== MVT::i64
&& ValVT
== MVT::f64
) ||
3541 (RegVT
== MVT::f64
&& ValVT
== MVT::i64
))
3542 ArgValue
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, ArgValue
);
3543 else if (ABI
.IsO32() && RegVT
== MVT::i32
&&
3544 ValVT
== MVT::f64
) {
3545 unsigned Reg2
= addLiveIn(DAG
.getMachineFunction(),
3546 getNextIntArgReg(ArgReg
), RC
);
3547 SDValue ArgValue2
= DAG
.getCopyFromReg(Chain
, DL
, Reg2
, RegVT
);
3548 if (!Subtarget
.isLittle())
3549 std::swap(ArgValue
, ArgValue2
);
3550 ArgValue
= DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
,
3551 ArgValue
, ArgValue2
);
3554 InVals
.push_back(ArgValue
);
3555 } else { // VA.isRegLoc()
3556 MVT LocVT
= VA
.getLocVT();
3559 // We ought to be able to use LocVT directly but O32 sets it to i32
3560 // when allocating floating point values to integer registers.
3561 // This shouldn't influence how we load the value into registers unless
3562 // we are targeting softfloat.
3563 if (VA
.getValVT().isFloatingPoint() && !Subtarget
.useSoftFloat())
3564 LocVT
= VA
.getValVT();
3568 assert(VA
.isMemLoc());
3570 // The stack pointer offset is relative to the caller stack frame.
3571 int FI
= MFI
.CreateFixedObject(LocVT
.getSizeInBits() / 8,
3572 VA
.getLocMemOffset(), true);
3574 // Create load nodes to retrieve arguments from the stack
3575 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3576 SDValue ArgValue
= DAG
.getLoad(
3577 LocVT
, DL
, Chain
, FIN
,
3578 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3579 OutChains
.push_back(ArgValue
.getValue(1));
3581 ArgValue
= UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[i
].ArgVT
, DL
, DAG
);
3583 InVals
.push_back(ArgValue
);
3587 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3588 // The mips ABIs for returning structs by value requires that we copy
3589 // the sret argument into $v0 for the return. Save the argument into
3590 // a virtual register so that we can access it from the return points.
3591 if (Ins
[i
].Flags
.isSRet()) {
3592 unsigned Reg
= MipsFI
->getSRetReturnReg();
3594 Reg
= MF
.getRegInfo().createVirtualRegister(
3595 getRegClassFor(ABI
.IsN64() ? MVT::i64
: MVT::i32
));
3596 MipsFI
->setSRetReturnReg(Reg
);
3598 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[i
]);
3599 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
3605 writeVarArgRegs(OutChains
, Chain
, DL
, DAG
, CCInfo
);
3607 // All stores are grouped in one node to allow the matching between
3608 // the size of Ins and InVals. This only happens when on varg functions
3609 if (!OutChains
.empty()) {
3610 OutChains
.push_back(Chain
);
3611 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, OutChains
);
3617 //===----------------------------------------------------------------------===//
3618 // Return Value Calling Convention Implementation
3619 //===----------------------------------------------------------------------===//
3622 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
3623 MachineFunction
&MF
, bool IsVarArg
,
3624 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3625 LLVMContext
&Context
) const {
3626 SmallVector
<CCValAssign
, 16> RVLocs
;
3627 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, Context
);
3628 return CCInfo
.CheckReturn(Outs
, RetCC_Mips
);
3632 MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type
, bool IsSigned
) const {
3633 if ((ABI
.IsN32() || ABI
.IsN64()) && Type
== MVT::i32
)
3640 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
3642 SelectionDAG
&DAG
) const {
3643 MachineFunction
&MF
= DAG
.getMachineFunction();
3644 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3648 return DAG
.getNode(MipsISD::ERet
, DL
, MVT::Other
, RetOps
);
3652 MipsTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
3654 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3655 const SmallVectorImpl
<SDValue
> &OutVals
,
3656 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
3657 // CCValAssign - represent the assignment of
3658 // the return value to a location
3659 SmallVector
<CCValAssign
, 16> RVLocs
;
3660 MachineFunction
&MF
= DAG
.getMachineFunction();
3662 // CCState - Info about the registers and stack slot.
3663 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, *DAG
.getContext());
3665 // Analyze return values.
3666 CCInfo
.AnalyzeReturn(Outs
, RetCC_Mips
);
3669 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
3671 // Copy the result values into the output registers.
3672 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3673 SDValue Val
= OutVals
[i
];
3674 CCValAssign
&VA
= RVLocs
[i
];
3675 assert(VA
.isRegLoc() && "Can only return in registers!");
3676 bool UseUpperBits
= false;
3678 switch (VA
.getLocInfo()) {
3680 llvm_unreachable("Unknown loc info!");
3681 case CCValAssign::Full
:
3683 case CCValAssign::BCvt
:
3684 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getLocVT(), Val
);
3686 case CCValAssign::AExtUpper
:
3687 UseUpperBits
= true;
3689 case CCValAssign::AExt
:
3690 Val
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Val
);
3692 case CCValAssign::ZExtUpper
:
3693 UseUpperBits
= true;
3695 case CCValAssign::ZExt
:
3696 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Val
);
3698 case CCValAssign::SExtUpper
:
3699 UseUpperBits
= true;
3701 case CCValAssign::SExt
:
3702 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), Val
);
3707 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3708 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3710 ISD::SHL
, DL
, VA
.getLocVT(), Val
,
3711 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3714 Chain
= DAG
.getCopyToReg(Chain
, DL
, VA
.getLocReg(), Val
, Flag
);
3716 // Guarantee that all emitted copies are stuck together with flags.
3717 Flag
= Chain
.getValue(1);
3718 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
3721 // The mips ABIs for returning structs by value requires that we copy
3722 // the sret argument into $v0 for the return. We saved the argument into
3723 // a virtual register in the entry block, so now we copy the value out
3725 if (MF
.getFunction().hasStructRetAttr()) {
3726 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3727 unsigned Reg
= MipsFI
->getSRetReturnReg();
3730 llvm_unreachable("sret virtual register not created in the entry block");
3732 DAG
.getCopyFromReg(Chain
, DL
, Reg
, getPointerTy(DAG
.getDataLayout()));
3733 unsigned V0
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
3735 Chain
= DAG
.getCopyToReg(Chain
, DL
, V0
, Val
, Flag
);
3736 Flag
= Chain
.getValue(1);
3737 RetOps
.push_back(DAG
.getRegister(V0
, getPointerTy(DAG
.getDataLayout())));
3740 RetOps
[0] = Chain
; // Update chain.
3742 // Add the flag if we have it.
3744 RetOps
.push_back(Flag
);
3746 // ISRs must use "eret".
3747 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3748 return LowerInterruptReturn(RetOps
, DL
, DAG
);
3750 // Standard return on Mips is a "jr $ra"
3751 return DAG
.getNode(MipsISD::Ret
, DL
, MVT::Other
, RetOps
);
3754 //===----------------------------------------------------------------------===//
3755 // Mips Inline Assembly Support
3756 //===----------------------------------------------------------------------===//
3758 /// getConstraintType - Given a constraint letter, return the type of
3759 /// constraint it is for this target.
3760 MipsTargetLowering::ConstraintType
3761 MipsTargetLowering::getConstraintType(StringRef Constraint
) const {
3762 // Mips specific constraints
3763 // GCC config/mips/constraints.md
3765 // 'd' : An address register. Equivalent to r
3766 // unless generating MIPS16 code.
3767 // 'y' : Equivalent to r; retained for
3768 // backwards compatibility.
3769 // 'c' : A register suitable for use in an indirect
3770 // jump. This will always be $25 for -mabicalls.
3771 // 'l' : The lo register. 1 word storage.
3772 // 'x' : The hilo register pair. Double word storage.
3773 if (Constraint
.size() == 1) {
3774 switch (Constraint
[0]) {
3782 return C_RegisterClass
;
3788 if (Constraint
== "ZC")
3791 return TargetLowering::getConstraintType(Constraint
);
3794 /// Examine constraint type and operand type and determine a weight value.
3795 /// This object must already have been set up with the operand type
3796 /// and the current alternative constraint selected.
3797 TargetLowering::ConstraintWeight
3798 MipsTargetLowering::getSingleConstraintMatchWeight(
3799 AsmOperandInfo
&info
, const char *constraint
) const {
3800 ConstraintWeight weight
= CW_Invalid
;
3801 Value
*CallOperandVal
= info
.CallOperandVal
;
3802 // If we don't have a value, we can't do a match,
3803 // but allow it at the lowest weight.
3804 if (!CallOperandVal
)
3806 Type
*type
= CallOperandVal
->getType();
3807 // Look at the constraint type.
3808 switch (*constraint
) {
3810 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
3814 if (type
->isIntegerTy())
3815 weight
= CW_Register
;
3817 case 'f': // FPU or MSA register
3818 if (Subtarget
.hasMSA() && type
->isVectorTy() &&
3819 cast
<VectorType
>(type
)->getBitWidth() == 128)
3820 weight
= CW_Register
;
3821 else if (type
->isFloatTy())
3822 weight
= CW_Register
;
3824 case 'c': // $25 for indirect jumps
3825 case 'l': // lo register
3826 case 'x': // hilo register pair
3827 if (type
->isIntegerTy())
3828 weight
= CW_SpecificReg
;
3830 case 'I': // signed 16 bit immediate
3831 case 'J': // integer zero
3832 case 'K': // unsigned 16 bit immediate
3833 case 'L': // signed 32 bit immediate where lower 16 bits are 0
3834 case 'N': // immediate in the range of -65535 to -1 (inclusive)
3835 case 'O': // signed 15 bit immediate (+- 16383)
3836 case 'P': // immediate in the range of 65535 to 1 (inclusive)
3837 if (isa
<ConstantInt
>(CallOperandVal
))
3838 weight
= CW_Constant
;
3847 /// This is a helper function to parse a physical register string and split it
3848 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3849 /// that is returned indicates whether parsing was successful. The second flag
3850 /// is true if the numeric part exists.
3851 static std::pair
<bool, bool> parsePhysicalReg(StringRef C
, StringRef
&Prefix
,
3852 unsigned long long &Reg
) {
3853 if (C
.front() != '{' || C
.back() != '}')
3854 return std::make_pair(false, false);
3856 // Search for the first numeric character.
3857 StringRef::const_iterator I
, B
= C
.begin() + 1, E
= C
.end() - 1;
3858 I
= std::find_if(B
, E
, isdigit
);
3860 Prefix
= StringRef(B
, I
- B
);
3862 // The second flag is set to false if no numeric characters were found.
3864 return std::make_pair(true, false);
3866 // Parse the numeric characters.
3867 return std::make_pair(!getAsUnsignedInteger(StringRef(I
, E
- I
), 10, Reg
),
3871 EVT
MipsTargetLowering::getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
3872 ISD::NodeType
) const {
3873 bool Cond
= !Subtarget
.isABI_O32() && VT
.getSizeInBits() == 32;
3874 EVT MinVT
= getRegisterType(Context
, Cond
? MVT::i64
: MVT::i32
);
3875 return VT
.bitsLT(MinVT
) ? MinVT
: VT
;
3878 std::pair
<unsigned, const TargetRegisterClass
*> MipsTargetLowering::
3879 parseRegForInlineAsmConstraint(StringRef C
, MVT VT
) const {
3880 const TargetRegisterInfo
*TRI
=
3881 Subtarget
.getRegisterInfo();
3882 const TargetRegisterClass
*RC
;
3884 unsigned long long Reg
;
3886 std::pair
<bool, bool> R
= parsePhysicalReg(C
, Prefix
, Reg
);
3889 return std::make_pair(0U, nullptr);
3891 if ((Prefix
== "hi" || Prefix
== "lo")) { // Parse hi/lo.
3892 // No numeric characters follow "hi" or "lo".
3894 return std::make_pair(0U, nullptr);
3896 RC
= TRI
->getRegClass(Prefix
== "hi" ?
3897 Mips::HI32RegClassID
: Mips::LO32RegClassID
);
3898 return std::make_pair(*(RC
->begin()), RC
);
3899 } else if (Prefix
.startswith("$msa")) {
3900 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
3902 // No numeric characters follow the name.
3904 return std::make_pair(0U, nullptr);
3906 Reg
= StringSwitch
<unsigned long long>(Prefix
)
3907 .Case("$msair", Mips::MSAIR
)
3908 .Case("$msacsr", Mips::MSACSR
)
3909 .Case("$msaaccess", Mips::MSAAccess
)
3910 .Case("$msasave", Mips::MSASave
)
3911 .Case("$msamodify", Mips::MSAModify
)
3912 .Case("$msarequest", Mips::MSARequest
)
3913 .Case("$msamap", Mips::MSAMap
)
3914 .Case("$msaunmap", Mips::MSAUnmap
)
3918 return std::make_pair(0U, nullptr);
3920 RC
= TRI
->getRegClass(Mips::MSACtrlRegClassID
);
3921 return std::make_pair(Reg
, RC
);
3925 return std::make_pair(0U, nullptr);
3927 if (Prefix
== "$f") { // Parse $f0-$f31.
3928 // If the size of FP registers is 64-bit or Reg is an even number, select
3929 // the 64-bit register class. Otherwise, select the 32-bit register class.
3930 if (VT
== MVT::Other
)
3931 VT
= (Subtarget
.isFP64bit() || !(Reg
% 2)) ? MVT::f64
: MVT::f32
;
3933 RC
= getRegClassFor(VT
);
3935 if (RC
== &Mips::AFGR64RegClass
) {
3936 assert(Reg
% 2 == 0);
3939 } else if (Prefix
== "$fcc") // Parse $fcc0-$fcc7.
3940 RC
= TRI
->getRegClass(Mips::FCCRegClassID
);
3941 else if (Prefix
== "$w") { // Parse $w0-$w31.
3942 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::v16i8
: VT
);
3943 } else { // Parse $0-$31.
3944 assert(Prefix
== "$");
3945 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::i32
: VT
);
3948 assert(Reg
< RC
->getNumRegs());
3949 return std::make_pair(*(RC
->begin() + Reg
), RC
);
3952 /// Given a register class constraint, like 'r', if this corresponds directly
3953 /// to an LLVM register class, return a register of 0 and the register class
3955 std::pair
<unsigned, const TargetRegisterClass
*>
3956 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
3957 StringRef Constraint
,
3959 if (Constraint
.size() == 1) {
3960 switch (Constraint
[0]) {
3961 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
3962 case 'y': // Same as 'r'. Exists for compatibility.
3964 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
) {
3965 if (Subtarget
.inMips16Mode())
3966 return std::make_pair(0U, &Mips::CPU16RegsRegClass
);
3967 return std::make_pair(0U, &Mips::GPR32RegClass
);
3969 if (VT
== MVT::i64
&& !Subtarget
.isGP64bit())
3970 return std::make_pair(0U, &Mips::GPR32RegClass
);
3971 if (VT
== MVT::i64
&& Subtarget
.isGP64bit())
3972 return std::make_pair(0U, &Mips::GPR64RegClass
);
3973 // This will generate an error message
3974 return std::make_pair(0U, nullptr);
3975 case 'f': // FPU or MSA register
3976 if (VT
== MVT::v16i8
)
3977 return std::make_pair(0U, &Mips::MSA128BRegClass
);
3978 else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
)
3979 return std::make_pair(0U, &Mips::MSA128HRegClass
);
3980 else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
)
3981 return std::make_pair(0U, &Mips::MSA128WRegClass
);
3982 else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
)
3983 return std::make_pair(0U, &Mips::MSA128DRegClass
);
3984 else if (VT
== MVT::f32
)
3985 return std::make_pair(0U, &Mips::FGR32RegClass
);
3986 else if ((VT
== MVT::f64
) && (!Subtarget
.isSingleFloat())) {
3987 if (Subtarget
.isFP64bit())
3988 return std::make_pair(0U, &Mips::FGR64RegClass
);
3989 return std::make_pair(0U, &Mips::AFGR64RegClass
);
3992 case 'c': // register suitable for indirect jump
3994 return std::make_pair((unsigned)Mips::T9
, &Mips::GPR32RegClass
);
3996 return std::make_pair((unsigned)Mips::T9_64
, &Mips::GPR64RegClass
);
3997 // This will generate an error message
3998 return std::make_pair(0U, nullptr);
3999 case 'l': // use the `lo` register to store values
4000 // that are no bigger than a word
4001 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
)
4002 return std::make_pair((unsigned)Mips::LO0
, &Mips::LO32RegClass
);
4003 return std::make_pair((unsigned)Mips::LO0_64
, &Mips::LO64RegClass
);
4004 case 'x': // use the concatenated `hi` and `lo` registers
4005 // to store doubleword values
4006 // Fixme: Not triggering the use of both hi and low
4007 // This will generate an error message
4008 return std::make_pair(0U, nullptr);
4012 std::pair
<unsigned, const TargetRegisterClass
*> R
;
4013 R
= parseRegForInlineAsmConstraint(Constraint
, VT
);
4018 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
4021 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4022 /// vector. If it is invalid, don't add anything to Ops.
4023 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
4024 std::string
&Constraint
,
4025 std::vector
<SDValue
>&Ops
,
4026 SelectionDAG
&DAG
) const {
4030 // Only support length 1 constraints for now.
4031 if (Constraint
.length() > 1) return;
4033 char ConstraintLetter
= Constraint
[0];
4034 switch (ConstraintLetter
) {
4035 default: break; // This will fall through to the generic implementation
4036 case 'I': // Signed 16 bit constant
4037 // If this fails, the parent routine will give an error
4038 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4039 EVT Type
= Op
.getValueType();
4040 int64_t Val
= C
->getSExtValue();
4041 if (isInt
<16>(Val
)) {
4042 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4047 case 'J': // integer zero
4048 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4049 EVT Type
= Op
.getValueType();
4050 int64_t Val
= C
->getZExtValue();
4052 Result
= DAG
.getTargetConstant(0, DL
, Type
);
4057 case 'K': // unsigned 16 bit immediate
4058 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4059 EVT Type
= Op
.getValueType();
4060 uint64_t Val
= (uint64_t)C
->getZExtValue();
4061 if (isUInt
<16>(Val
)) {
4062 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4067 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4068 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4069 EVT Type
= Op
.getValueType();
4070 int64_t Val
= C
->getSExtValue();
4071 if ((isInt
<32>(Val
)) && ((Val
& 0xffff) == 0)){
4072 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4077 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4078 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4079 EVT Type
= Op
.getValueType();
4080 int64_t Val
= C
->getSExtValue();
4081 if ((Val
>= -65535) && (Val
<= -1)) {
4082 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4087 case 'O': // signed 15 bit immediate
4088 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4089 EVT Type
= Op
.getValueType();
4090 int64_t Val
= C
->getSExtValue();
4091 if ((isInt
<15>(Val
))) {
4092 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4097 case 'P': // immediate in the range of 1 to 65535 (inclusive)
4098 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4099 EVT Type
= Op
.getValueType();
4100 int64_t Val
= C
->getSExtValue();
4101 if ((Val
<= 65535) && (Val
>= 1)) {
4102 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4109 if (Result
.getNode()) {
4110 Ops
.push_back(Result
);
4114 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
4117 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
4118 const AddrMode
&AM
, Type
*Ty
,
4119 unsigned AS
, Instruction
*I
) const {
4120 // No global is ever allowed as a base.
4125 case 0: // "r+i" or just "i", depending on HasBaseReg.
4128 if (!AM
.HasBaseReg
) // allow "r+i".
4130 return false; // disallow "r+r" or "r+r+i".
4139 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
4140 // The Mips target isn't yet aware of offsets.
4144 EVT
MipsTargetLowering::getOptimalMemOpType(
4145 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
4146 bool ZeroMemset
, bool MemcpyStrSrc
,
4147 const AttributeList
&FuncAttributes
) const {
4148 if (Subtarget
.hasMips64())
4154 bool MipsTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
4155 bool ForCodeSize
) const {
4156 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
4158 if (Imm
.isNegZero())
4160 return Imm
.isZero();
4163 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4165 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4166 if (ABI
.IsN64() && isPositionIndependent())
4167 return MachineJumpTableInfo::EK_GPRel64BlockAddress
;
4169 return TargetLowering::getJumpTableEncoding();
4172 bool MipsTargetLowering::useSoftFloat() const {
4173 return Subtarget
.useSoftFloat();
4176 void MipsTargetLowering::copyByValRegs(
4177 SDValue Chain
, const SDLoc
&DL
, std::vector
<SDValue
> &OutChains
,
4178 SelectionDAG
&DAG
, const ISD::ArgFlagsTy
&Flags
,
4179 SmallVectorImpl
<SDValue
> &InVals
, const Argument
*FuncArg
,
4180 unsigned FirstReg
, unsigned LastReg
, const CCValAssign
&VA
,
4181 MipsCCState
&State
) const {
4182 MachineFunction
&MF
= DAG
.getMachineFunction();
4183 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4184 unsigned GPRSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4185 unsigned NumRegs
= LastReg
- FirstReg
;
4186 unsigned RegAreaSize
= NumRegs
* GPRSizeInBytes
;
4187 unsigned FrameObjSize
= std::max(Flags
.getByValSize(), RegAreaSize
);
4189 ArrayRef
<MCPhysReg
> ByValArgRegs
= ABI
.GetByValArgRegs();
4193 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4194 (int)((ByValArgRegs
.size() - FirstReg
) * GPRSizeInBytes
);
4196 FrameObjOffset
= VA
.getLocMemOffset();
4198 // Create frame object.
4199 EVT PtrTy
= getPointerTy(DAG
.getDataLayout());
4200 // Make the fixed object stored to mutable so that the load instructions
4201 // referencing it have their memory dependencies added.
4202 // Set the frame object as isAliased which clears the underlying objects
4203 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4204 // stores as dependencies for loads referencing this fixed object.
4205 int FI
= MFI
.CreateFixedObject(FrameObjSize
, FrameObjOffset
, false, true);
4206 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4207 InVals
.push_back(FIN
);
4212 // Copy arg registers.
4213 MVT RegTy
= MVT::getIntegerVT(GPRSizeInBytes
* 8);
4214 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4216 for (unsigned I
= 0; I
< NumRegs
; ++I
) {
4217 unsigned ArgReg
= ByValArgRegs
[FirstReg
+ I
];
4218 unsigned VReg
= addLiveIn(MF
, ArgReg
, RC
);
4219 unsigned Offset
= I
* GPRSizeInBytes
;
4220 SDValue StorePtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, FIN
,
4221 DAG
.getConstant(Offset
, DL
, PtrTy
));
4222 SDValue Store
= DAG
.getStore(Chain
, DL
, DAG
.getRegister(VReg
, RegTy
),
4223 StorePtr
, MachinePointerInfo(FuncArg
, Offset
));
4224 OutChains
.push_back(Store
);
4228 // Copy byVal arg to registers and stack.
4229 void MipsTargetLowering::passByValArg(
4230 SDValue Chain
, const SDLoc
&DL
,
4231 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
4232 SmallVectorImpl
<SDValue
> &MemOpChains
, SDValue StackPtr
,
4233 MachineFrameInfo
&MFI
, SelectionDAG
&DAG
, SDValue Arg
, unsigned FirstReg
,
4234 unsigned LastReg
, const ISD::ArgFlagsTy
&Flags
, bool isLittle
,
4235 const CCValAssign
&VA
) const {
4236 unsigned ByValSizeInBytes
= Flags
.getByValSize();
4237 unsigned OffsetInBytes
= 0; // From beginning of struct
4238 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4239 unsigned Alignment
= std::min(Flags
.getByValAlign(), RegSizeInBytes
);
4240 EVT PtrTy
= getPointerTy(DAG
.getDataLayout()),
4241 RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4242 unsigned NumRegs
= LastReg
- FirstReg
;
4245 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetByValArgRegs();
4246 bool LeftoverBytes
= (NumRegs
* RegSizeInBytes
> ByValSizeInBytes
);
4249 // Copy words to registers.
4250 for (; I
< NumRegs
- LeftoverBytes
; ++I
, OffsetInBytes
+= RegSizeInBytes
) {
4251 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4252 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4253 SDValue LoadVal
= DAG
.getLoad(RegTy
, DL
, Chain
, LoadPtr
,
4254 MachinePointerInfo(), Alignment
);
4255 MemOpChains
.push_back(LoadVal
.getValue(1));
4256 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4257 RegsToPass
.push_back(std::make_pair(ArgReg
, LoadVal
));
4260 // Return if the struct has been fully copied.
4261 if (ByValSizeInBytes
== OffsetInBytes
)
4264 // Copy the remainder of the byval argument with sub-word loads and shifts.
4265 if (LeftoverBytes
) {
4268 for (unsigned LoadSizeInBytes
= RegSizeInBytes
/ 2, TotalBytesLoaded
= 0;
4269 OffsetInBytes
< ByValSizeInBytes
; LoadSizeInBytes
/= 2) {
4270 unsigned RemainingSizeInBytes
= ByValSizeInBytes
- OffsetInBytes
;
4272 if (RemainingSizeInBytes
< LoadSizeInBytes
)
4276 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4277 DAG
.getConstant(OffsetInBytes
, DL
,
4279 SDValue LoadVal
= DAG
.getExtLoad(
4280 ISD::ZEXTLOAD
, DL
, RegTy
, Chain
, LoadPtr
, MachinePointerInfo(),
4281 MVT::getIntegerVT(LoadSizeInBytes
* 8), Alignment
);
4282 MemOpChains
.push_back(LoadVal
.getValue(1));
4284 // Shift the loaded value.
4288 Shamt
= TotalBytesLoaded
* 8;
4290 Shamt
= (RegSizeInBytes
- (TotalBytesLoaded
+ LoadSizeInBytes
)) * 8;
4292 SDValue Shift
= DAG
.getNode(ISD::SHL
, DL
, RegTy
, LoadVal
,
4293 DAG
.getConstant(Shamt
, DL
, MVT::i32
));
4296 Val
= DAG
.getNode(ISD::OR
, DL
, RegTy
, Val
, Shift
);
4300 OffsetInBytes
+= LoadSizeInBytes
;
4301 TotalBytesLoaded
+= LoadSizeInBytes
;
4302 Alignment
= std::min(Alignment
, LoadSizeInBytes
);
4305 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4306 RegsToPass
.push_back(std::make_pair(ArgReg
, Val
));
4311 // Copy remainder of byval arg to it with memcpy.
4312 unsigned MemCpySize
= ByValSizeInBytes
- OffsetInBytes
;
4313 SDValue Src
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4314 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4315 SDValue Dst
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, StackPtr
,
4316 DAG
.getIntPtrConstant(VA
.getLocMemOffset(), DL
));
4317 Chain
= DAG
.getMemcpy(Chain
, DL
, Dst
, Src
,
4318 DAG
.getConstant(MemCpySize
, DL
, PtrTy
),
4319 Alignment
, /*isVolatile=*/false, /*AlwaysInline=*/false,
4320 /*isTailCall=*/false,
4321 MachinePointerInfo(), MachinePointerInfo());
4322 MemOpChains
.push_back(Chain
);
4325 void MipsTargetLowering::writeVarArgRegs(std::vector
<SDValue
> &OutChains
,
4326 SDValue Chain
, const SDLoc
&DL
,
4328 CCState
&State
) const {
4329 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetVarArgRegs();
4330 unsigned Idx
= State
.getFirstUnallocated(ArgRegs
);
4331 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4332 MVT RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4333 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4334 MachineFunction
&MF
= DAG
.getMachineFunction();
4335 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4336 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
4338 // Offset of the first variable argument from stack pointer.
4341 if (ArgRegs
.size() == Idx
)
4342 VaArgOffset
= alignTo(State
.getNextStackOffset(), RegSizeInBytes
);
4345 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4346 (int)(RegSizeInBytes
* (ArgRegs
.size() - Idx
));
4349 // Record the frame index of the first variable argument
4350 // which is a value necessary to VASTART.
4351 int FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4352 MipsFI
->setVarArgsFrameIndex(FI
);
4354 // Copy the integer registers that have not been used for argument passing
4355 // to the argument register save area. For O32, the save area is allocated
4356 // in the caller's stack frame, while for N32/64, it is allocated in the
4357 // callee's stack frame.
4358 for (unsigned I
= Idx
; I
< ArgRegs
.size();
4359 ++I
, VaArgOffset
+= RegSizeInBytes
) {
4360 unsigned Reg
= addLiveIn(MF
, ArgRegs
[I
], RC
);
4361 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegTy
);
4362 FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4363 SDValue PtrOff
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
4365 DAG
.getStore(Chain
, DL
, ArgValue
, PtrOff
, MachinePointerInfo());
4366 cast
<StoreSDNode
>(Store
.getNode())->getMemOperand()->setValue(
4368 OutChains
.push_back(Store
);
4372 void MipsTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
4373 unsigned Align
) const {
4374 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
4376 assert(Size
&& "Byval argument's size shouldn't be 0.");
4378 Align
= std::min(Align
, TFL
->getStackAlignment());
4380 unsigned FirstReg
= 0;
4381 unsigned NumRegs
= 0;
4383 if (State
->getCallingConv() != CallingConv::Fast
) {
4384 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4385 ArrayRef
<MCPhysReg
> IntArgRegs
= ABI
.GetByValArgRegs();
4386 // FIXME: The O32 case actually describes no shadow registers.
4387 const MCPhysReg
*ShadowRegs
=
4388 ABI
.IsO32() ? IntArgRegs
.data() : Mips64DPRegs
;
4390 // We used to check the size as well but we can't do that anymore since
4391 // CCState::HandleByVal() rounds up the size after calling this function.
4392 assert(!(Align
% RegSizeInBytes
) &&
4393 "Byval argument's alignment should be a multiple of"
4396 FirstReg
= State
->getFirstUnallocated(IntArgRegs
);
4398 // If Align > RegSizeInBytes, the first arg register must be even.
4399 // FIXME: This condition happens to do the right thing but it's not the
4400 // right way to test it. We want to check that the stack frame offset
4401 // of the register is aligned.
4402 if ((Align
> RegSizeInBytes
) && (FirstReg
% 2)) {
4403 State
->AllocateReg(IntArgRegs
[FirstReg
], ShadowRegs
[FirstReg
]);
4407 // Mark the registers allocated.
4408 Size
= alignTo(Size
, RegSizeInBytes
);
4409 for (unsigned I
= FirstReg
; Size
> 0 && (I
< IntArgRegs
.size());
4410 Size
-= RegSizeInBytes
, ++I
, ++NumRegs
)
4411 State
->AllocateReg(IntArgRegs
[I
], ShadowRegs
[I
]);
4414 State
->addInRegsParamInfo(FirstReg
, FirstReg
+ NumRegs
);
4417 MachineBasicBlock
*MipsTargetLowering::emitPseudoSELECT(MachineInstr
&MI
,
4418 MachineBasicBlock
*BB
,
4420 unsigned Opc
) const {
4421 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4422 "Subtarget already supports SELECT nodes with the use of"
4423 "conditional-move instructions.");
4425 const TargetInstrInfo
*TII
=
4426 Subtarget
.getInstrInfo();
4427 DebugLoc DL
= MI
.getDebugLoc();
4429 // To "insert" a SELECT instruction, we actually have to insert the
4430 // diamond control-flow pattern. The incoming instruction knows the
4431 // destination vreg to set, the condition code register to branch on, the
4432 // true/false values to select between, and a branch opcode to use.
4433 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4434 MachineFunction::iterator It
= ++BB
->getIterator();
4440 // bNE r1, r0, copy1MBB
4441 // fallthrough --> copy0MBB
4442 MachineBasicBlock
*thisMBB
= BB
;
4443 MachineFunction
*F
= BB
->getParent();
4444 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4445 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4446 F
->insert(It
, copy0MBB
);
4447 F
->insert(It
, sinkMBB
);
4449 // Transfer the remainder of BB and its successor edges to sinkMBB.
4450 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4451 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4452 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4454 // Next, add the true and fallthrough blocks as its successors.
4455 BB
->addSuccessor(copy0MBB
);
4456 BB
->addSuccessor(sinkMBB
);
4459 // bc1[tf] cc, sinkMBB
4460 BuildMI(BB
, DL
, TII
->get(Opc
))
4461 .addReg(MI
.getOperand(1).getReg())
4464 // bne rs, $0, sinkMBB
4465 BuildMI(BB
, DL
, TII
->get(Opc
))
4466 .addReg(MI
.getOperand(1).getReg())
4472 // %FalseValue = ...
4473 // # fallthrough to sinkMBB
4476 // Update machine-CFG edges
4477 BB
->addSuccessor(sinkMBB
);
4480 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4484 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4485 .addReg(MI
.getOperand(2).getReg())
4487 .addReg(MI
.getOperand(3).getReg())
4490 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4495 MachineBasicBlock
*MipsTargetLowering::emitPseudoD_SELECT(MachineInstr
&MI
,
4496 MachineBasicBlock
*BB
) const {
4497 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4498 "Subtarget already supports SELECT nodes with the use of"
4499 "conditional-move instructions.");
4501 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4502 DebugLoc DL
= MI
.getDebugLoc();
4504 // D_SELECT substitutes two SELECT nodes that goes one after another and
4505 // have the same condition operand. On machines which don't have
4506 // conditional-move instruction, it reduces unnecessary branch instructions
4507 // which are result of using two diamond patterns that are result of two
4508 // SELECT pseudo instructions.
4509 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4510 MachineFunction::iterator It
= ++BB
->getIterator();
4516 // bNE r1, r0, copy1MBB
4517 // fallthrough --> copy0MBB
4518 MachineBasicBlock
*thisMBB
= BB
;
4519 MachineFunction
*F
= BB
->getParent();
4520 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4521 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4522 F
->insert(It
, copy0MBB
);
4523 F
->insert(It
, sinkMBB
);
4525 // Transfer the remainder of BB and its successor edges to sinkMBB.
4526 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4527 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4528 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4530 // Next, add the true and fallthrough blocks as its successors.
4531 BB
->addSuccessor(copy0MBB
);
4532 BB
->addSuccessor(sinkMBB
);
4534 // bne rs, $0, sinkMBB
4535 BuildMI(BB
, DL
, TII
->get(Mips::BNE
))
4536 .addReg(MI
.getOperand(2).getReg())
4541 // %FalseValue = ...
4542 // # fallthrough to sinkMBB
4545 // Update machine-CFG edges
4546 BB
->addSuccessor(sinkMBB
);
4549 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4553 // Use two PHI nodes to select two reults
4554 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4555 .addReg(MI
.getOperand(3).getReg())
4557 .addReg(MI
.getOperand(5).getReg())
4559 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(1).getReg())
4560 .addReg(MI
.getOperand(4).getReg())
4562 .addReg(MI
.getOperand(6).getReg())
4565 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4570 // FIXME? Maybe this could be a TableGen attribute on some registers and
4571 // this table could be generated automatically from RegInfo.
4572 unsigned MipsTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
4573 SelectionDAG
&DAG
) const {
4574 // Named registers is expected to be fairly rare. For now, just support $28
4575 // since the linux kernel uses it.
4576 if (Subtarget
.isGP64bit()) {
4577 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
4578 .Case("$28", Mips::GP_64
)
4583 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
4584 .Case("$28", Mips::GP
)
4589 report_fatal_error("Invalid register name global variable");