1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the ELF-specific dumper for llvm-readobj.
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
17 #include "ObjDumper.h"
18 #include "StackMapPrinter.h"
19 #include "llvm-readobj.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/MipsABIFlags.h"
55 #include "llvm/Support/ScopedPrinter.h"
56 #include "llvm/Support/raw_ostream.h"
65 #include <system_error>
66 #include <unordered_set>
70 using namespace llvm::object
;
73 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
77 #define ENUM_ENT(enum, altName) \
78 { #enum, altName, ELF::enum }
80 #define ENUM_ENT_1(enum) \
81 { #enum, #enum, ELF::enum }
83 #define LLVM_READOBJ_PHDR_ENUM(ns, enum) \
85 return std::string(#enum).substr(3);
87 #define TYPEDEF_ELF_TYPES(ELFT) \
88 using ELFO = ELFFile<ELFT>; \
89 using Elf_Addr = typename ELFT::Addr; \
90 using Elf_Shdr = typename ELFT::Shdr; \
91 using Elf_Sym = typename ELFT::Sym; \
92 using Elf_Dyn = typename ELFT::Dyn; \
93 using Elf_Dyn_Range = typename ELFT::DynRange; \
94 using Elf_Rel = typename ELFT::Rel; \
95 using Elf_Rela = typename ELFT::Rela; \
96 using Elf_Relr = typename ELFT::Relr; \
97 using Elf_Rel_Range = typename ELFT::RelRange; \
98 using Elf_Rela_Range = typename ELFT::RelaRange; \
99 using Elf_Relr_Range = typename ELFT::RelrRange; \
100 using Elf_Phdr = typename ELFT::Phdr; \
101 using Elf_Half = typename ELFT::Half; \
102 using Elf_Ehdr = typename ELFT::Ehdr; \
103 using Elf_Word = typename ELFT::Word; \
104 using Elf_Hash = typename ELFT::Hash; \
105 using Elf_GnuHash = typename ELFT::GnuHash; \
106 using Elf_Note = typename ELFT::Note; \
107 using Elf_Sym_Range = typename ELFT::SymRange; \
108 using Elf_Versym = typename ELFT::Versym; \
109 using Elf_Verneed = typename ELFT::Verneed; \
110 using Elf_Vernaux = typename ELFT::Vernaux; \
111 using Elf_Verdef = typename ELFT::Verdef; \
112 using Elf_Verdaux = typename ELFT::Verdaux; \
113 using Elf_CGProfile = typename ELFT::CGProfile; \
114 using uintX_t = typename ELFT::uint;
118 template <class ELFT
> class DumpStyle
;
120 /// Represents a contiguous uniform range in the file. We cannot just create a
121 /// range directly because when creating one of these from the .dynamic table
122 /// the size, entity size and virtual address are different entries in arbitrary
123 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
124 struct DynRegionInfo
{
125 DynRegionInfo() = default;
126 DynRegionInfo(const void *A
, uint64_t S
, uint64_t ES
)
127 : Addr(A
), Size(S
), EntSize(ES
) {}
129 /// Address in current address space.
130 const void *Addr
= nullptr;
131 /// Size in bytes of the region.
133 /// Size of each entity in the region.
134 uint64_t EntSize
= 0;
136 template <typename Type
> ArrayRef
<Type
> getAsArrayRef() const {
137 const Type
*Start
= reinterpret_cast<const Type
*>(Addr
);
139 return {Start
, Start
};
140 if (EntSize
!= sizeof(Type
) || Size
% EntSize
) {
141 // TODO: Add a section index to this warning.
142 reportWarning("invalid section size (" + Twine(Size
) +
143 ") or entity size (" + Twine(EntSize
) + ")");
144 return {Start
, Start
};
146 return {Start
, Start
+ (Size
/ EntSize
)};
150 template <typename ELFT
> class ELFDumper
: public ObjDumper
{
152 ELFDumper(const object::ELFObjectFile
<ELFT
> *ObjF
, ScopedPrinter
&Writer
);
154 void printFileHeaders() override
;
155 void printSectionHeaders() override
;
156 void printRelocations() override
;
157 void printDynamicRelocations() override
;
158 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) override
;
159 void printHashSymbols() override
;
160 void printUnwindInfo() override
;
162 void printDynamicTable() override
;
163 void printNeededLibraries() override
;
164 void printProgramHeaders(bool PrintProgramHeaders
,
165 cl::boolOrDefault PrintSectionMapping
) override
;
166 void printHashTable() override
;
167 void printGnuHashTable() override
;
168 void printLoadName() override
;
169 void printVersionInfo() override
;
170 void printGroupSections() override
;
172 void printAttributes() override
;
173 void printMipsPLTGOT() override
;
174 void printMipsABIFlags() override
;
175 void printMipsReginfo() override
;
176 void printMipsOptions() override
;
178 void printStackMap() const override
;
180 void printHashHistogram() override
;
182 void printCGProfile() override
;
183 void printAddrsig() override
;
185 void printNotes() override
;
187 void printELFLinkerOptions() override
;
188 void printStackSizes() override
;
190 const object::ELFObjectFile
<ELFT
> *getElfObject() const { return ObjF
; };
193 std::unique_ptr
<DumpStyle
<ELFT
>> ELFDumperStyle
;
195 TYPEDEF_ELF_TYPES(ELFT
)
197 DynRegionInfo
checkDRI(DynRegionInfo DRI
) {
198 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
199 if (DRI
.Addr
< Obj
->base() ||
200 reinterpret_cast<const uint8_t *>(DRI
.Addr
) + DRI
.Size
>
201 Obj
->base() + Obj
->getBufSize())
202 error(llvm::object::object_error::parse_failed
);
206 DynRegionInfo
createDRIFrom(const Elf_Phdr
*P
, uintX_t EntSize
) {
208 {ObjF
->getELFFile()->base() + P
->p_offset
, P
->p_filesz
, EntSize
});
211 DynRegionInfo
createDRIFrom(const Elf_Shdr
*S
) {
213 {ObjF
->getELFFile()->base() + S
->sh_offset
, S
->sh_size
, S
->sh_entsize
});
216 void loadDynamicTable(const ELFFile
<ELFT
> *Obj
);
217 void parseDynamicTable();
219 StringRef
getSymbolVersion(StringRef StrTab
, const Elf_Sym
*symb
,
220 bool &IsDefault
) const;
221 void LoadVersionMap() const;
222 void LoadVersionNeeds(const Elf_Shdr
*ec
) const;
223 void LoadVersionDefs(const Elf_Shdr
*sec
) const;
225 const object::ELFObjectFile
<ELFT
> *ObjF
;
226 DynRegionInfo DynRelRegion
;
227 DynRegionInfo DynRelaRegion
;
228 DynRegionInfo DynRelrRegion
;
229 DynRegionInfo DynPLTRelRegion
;
230 DynRegionInfo DynSymRegion
;
231 DynRegionInfo DynamicTable
;
232 StringRef DynamicStringTable
;
233 std::string SOName
= "<Not found>";
234 const Elf_Hash
*HashTable
= nullptr;
235 const Elf_GnuHash
*GnuHashTable
= nullptr;
236 const Elf_Shdr
*DotSymtabSec
= nullptr;
237 const Elf_Shdr
*DotCGProfileSec
= nullptr;
238 const Elf_Shdr
*DotAddrsigSec
= nullptr;
239 StringRef DynSymtabName
;
240 ArrayRef
<Elf_Word
> ShndxTable
;
242 const Elf_Shdr
*SymbolVersionSection
= nullptr; // .gnu.version
243 const Elf_Shdr
*SymbolVersionNeedSection
= nullptr; // .gnu.version_r
244 const Elf_Shdr
*SymbolVersionDefSection
= nullptr; // .gnu.version_d
246 // Records for each version index the corresponding Verdef or Vernaux entry.
247 // This is filled the first time LoadVersionMap() is called.
248 class VersionMapEntry
: public PointerIntPair
<const void *, 1> {
250 // If the integer is 0, this is an Elf_Verdef*.
251 // If the integer is 1, this is an Elf_Vernaux*.
252 VersionMapEntry() : PointerIntPair
<const void *, 1>(nullptr, 0) {}
253 VersionMapEntry(const Elf_Verdef
*verdef
)
254 : PointerIntPair
<const void *, 1>(verdef
, 0) {}
255 VersionMapEntry(const Elf_Vernaux
*vernaux
)
256 : PointerIntPair
<const void *, 1>(vernaux
, 1) {}
258 bool isNull() const { return getPointer() == nullptr; }
259 bool isVerdef() const { return !isNull() && getInt() == 0; }
260 bool isVernaux() const { return !isNull() && getInt() == 1; }
261 const Elf_Verdef
*getVerdef() const {
262 return isVerdef() ? (const Elf_Verdef
*)getPointer() : nullptr;
264 const Elf_Vernaux
*getVernaux() const {
265 return isVernaux() ? (const Elf_Vernaux
*)getPointer() : nullptr;
268 mutable SmallVector
<VersionMapEntry
, 16> VersionMap
;
271 Elf_Dyn_Range
dynamic_table() const {
272 // A valid .dynamic section contains an array of entries terminated
273 // with a DT_NULL entry. However, sometimes the section content may
274 // continue past the DT_NULL entry, so to dump the section correctly,
275 // we first find the end of the entries by iterating over them.
276 Elf_Dyn_Range Table
= DynamicTable
.getAsArrayRef
<Elf_Dyn
>();
279 while (Size
< Table
.size())
280 if (Table
[Size
++].getTag() == DT_NULL
)
283 return Table
.slice(0, Size
);
286 Elf_Sym_Range
dynamic_symbols() const {
287 return DynSymRegion
.getAsArrayRef
<Elf_Sym
>();
290 Elf_Rel_Range
dyn_rels() const;
291 Elf_Rela_Range
dyn_relas() const;
292 Elf_Relr_Range
dyn_relrs() const;
293 std::string
getFullSymbolName(const Elf_Sym
*Symbol
, StringRef StrTable
,
294 bool IsDynamic
) const;
295 void getSectionNameIndex(const Elf_Sym
*Symbol
, const Elf_Sym
*FirstSym
,
296 StringRef
&SectionName
,
297 unsigned &SectionIndex
) const;
298 std::string
getStaticSymbolName(uint32_t Index
) const;
299 std::string
getDynamicString(uint64_t Value
) const;
300 StringRef
getSymbolVersionByIndex(StringRef StrTab
,
301 uint32_t VersionSymbolIndex
,
302 bool &IsDefault
) const;
304 void printSymbolsHelper(bool IsDynamic
) const;
305 void printDynamicEntry(raw_ostream
&OS
, uint64_t Type
, uint64_t Value
) const;
307 const Elf_Shdr
*getDotSymtabSec() const { return DotSymtabSec
; }
308 const Elf_Shdr
*getDotCGProfileSec() const { return DotCGProfileSec
; }
309 const Elf_Shdr
*getDotAddrsigSec() const { return DotAddrsigSec
; }
310 ArrayRef
<Elf_Word
> getShndxTable() const { return ShndxTable
; }
311 StringRef
getDynamicStringTable() const { return DynamicStringTable
; }
312 const DynRegionInfo
&getDynRelRegion() const { return DynRelRegion
; }
313 const DynRegionInfo
&getDynRelaRegion() const { return DynRelaRegion
; }
314 const DynRegionInfo
&getDynRelrRegion() const { return DynRelrRegion
; }
315 const DynRegionInfo
&getDynPLTRelRegion() const { return DynPLTRelRegion
; }
316 const DynRegionInfo
&getDynamicTableRegion() const { return DynamicTable
; }
317 const Elf_Hash
*getHashTable() const { return HashTable
; }
318 const Elf_GnuHash
*getGnuHashTable() const { return GnuHashTable
; }
321 template <class ELFT
>
322 void ELFDumper
<ELFT
>::printSymbolsHelper(bool IsDynamic
) const {
323 StringRef StrTable
, SymtabName
;
325 Elf_Sym_Range
Syms(nullptr, nullptr);
326 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
328 StrTable
= DynamicStringTable
;
329 Syms
= dynamic_symbols();
330 SymtabName
= DynSymtabName
;
331 if (DynSymRegion
.Addr
)
332 Entries
= DynSymRegion
.Size
/ DynSymRegion
.EntSize
;
336 StrTable
= unwrapOrError(ObjF
->getFileName(),
337 Obj
->getStringTableForSymtab(*DotSymtabSec
));
338 Syms
= unwrapOrError(ObjF
->getFileName(), Obj
->symbols(DotSymtabSec
));
340 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(DotSymtabSec
));
341 Entries
= DotSymtabSec
->getEntityCount();
343 if (Syms
.begin() == Syms
.end())
345 ELFDumperStyle
->printSymtabMessage(Obj
, SymtabName
, Entries
);
346 for (const auto &Sym
: Syms
)
347 ELFDumperStyle
->printSymbol(Obj
, &Sym
, Syms
.begin(), StrTable
, IsDynamic
);
350 template <class ELFT
> class MipsGOTParser
;
352 template <typename ELFT
> class DumpStyle
{
354 using Elf_Shdr
= typename
ELFT::Shdr
;
355 using Elf_Sym
= typename
ELFT::Sym
;
356 using Elf_Addr
= typename
ELFT::Addr
;
358 DumpStyle(ELFDumper
<ELFT
> *Dumper
) : Dumper(Dumper
) {
359 FileName
= this->Dumper
->getElfObject()->getFileName();
361 // Dumper reports all non-critical errors as warnings.
362 // It does not print the same warning more than once.
363 WarningHandler
= [this](const Twine
&Msg
) {
364 if (Warnings
.insert(Msg
.str()).second
)
365 reportWarning(FileName
, createError(Msg
));
366 return Error::success();
370 virtual ~DumpStyle() = default;
372 virtual void printFileHeaders(const ELFFile
<ELFT
> *Obj
) = 0;
373 virtual void printGroupSections(const ELFFile
<ELFT
> *Obj
) = 0;
374 virtual void printRelocations(const ELFFile
<ELFT
> *Obj
) = 0;
375 virtual void printSectionHeaders(const ELFFile
<ELFT
> *Obj
) = 0;
376 virtual void printSymbols(const ELFFile
<ELFT
> *Obj
, bool PrintSymbols
,
377 bool PrintDynamicSymbols
) = 0;
378 virtual void printHashSymbols(const ELFFile
<ELFT
> *Obj
) {}
379 virtual void printDynamic(const ELFFile
<ELFT
> *Obj
) {}
380 virtual void printDynamicRelocations(const ELFFile
<ELFT
> *Obj
) = 0;
381 virtual void printSymtabMessage(const ELFFile
<ELFT
> *Obj
, StringRef Name
,
383 virtual void printSymbol(const ELFFile
<ELFT
> *Obj
, const Elf_Sym
*Symbol
,
384 const Elf_Sym
*FirstSym
, StringRef StrTable
,
386 virtual void printProgramHeaders(const ELFFile
<ELFT
> *Obj
,
387 bool PrintProgramHeaders
,
388 cl::boolOrDefault PrintSectionMapping
) = 0;
389 virtual void printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
390 const Elf_Shdr
*Sec
) = 0;
391 virtual void printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
392 const Elf_Shdr
*Sec
) = 0;
393 virtual void printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
394 const Elf_Shdr
*Sec
) = 0;
395 virtual void printHashHistogram(const ELFFile
<ELFT
> *Obj
) = 0;
396 virtual void printCGProfile(const ELFFile
<ELFT
> *Obj
) = 0;
397 virtual void printAddrsig(const ELFFile
<ELFT
> *Obj
) = 0;
398 virtual void printNotes(const ELFFile
<ELFT
> *Obj
) = 0;
399 virtual void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) = 0;
400 virtual void printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) = 0;
401 void printNonRelocatableStackSizes(const ELFObjectFile
<ELFT
> *Obj
,
402 std::function
<void()> PrintHeader
);
403 void printRelocatableStackSizes(const ELFObjectFile
<ELFT
> *Obj
,
404 std::function
<void()> PrintHeader
);
405 void printFunctionStackSize(const ELFObjectFile
<ELFT
> *Obj
, uint64_t SymValue
,
406 SectionRef FunctionSec
,
407 const StringRef SectionName
, DataExtractor Data
,
409 void printStackSize(const ELFObjectFile
<ELFT
> *Obj
, RelocationRef Rel
,
410 SectionRef FunctionSec
,
411 const StringRef
&StackSizeSectionName
,
412 const RelocationResolver
&Resolver
, DataExtractor Data
);
413 virtual void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) = 0;
414 virtual void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
415 virtual void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
416 const ELFDumper
<ELFT
> *dumper() const { return Dumper
; }
419 std::function
<Error(const Twine
&Msg
)> WarningHandler
;
423 std::unordered_set
<std::string
> Warnings
;
424 const ELFDumper
<ELFT
> *Dumper
;
427 template <typename ELFT
> class GNUStyle
: public DumpStyle
<ELFT
> {
428 formatted_raw_ostream
&OS
;
431 TYPEDEF_ELF_TYPES(ELFT
)
433 GNUStyle(ScopedPrinter
&W
, ELFDumper
<ELFT
> *Dumper
)
434 : DumpStyle
<ELFT
>(Dumper
),
435 OS(static_cast<formatted_raw_ostream
&>(W
.getOStream())) {
436 assert (&W
.getOStream() == &llvm::fouts());
439 void printFileHeaders(const ELFO
*Obj
) override
;
440 void printGroupSections(const ELFFile
<ELFT
> *Obj
) override
;
441 void printRelocations(const ELFO
*Obj
) override
;
442 void printSectionHeaders(const ELFO
*Obj
) override
;
443 void printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
444 bool PrintDynamicSymbols
) override
;
445 void printHashSymbols(const ELFO
*Obj
) override
;
446 void printDynamic(const ELFFile
<ELFT
> *Obj
) override
;
447 void printDynamicRelocations(const ELFO
*Obj
) override
;
448 void printSymtabMessage(const ELFO
*Obj
, StringRef Name
,
449 size_t Offset
) override
;
450 void printProgramHeaders(const ELFO
*Obj
, bool PrintProgramHeaders
,
451 cl::boolOrDefault PrintSectionMapping
) override
;
452 void printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
453 const Elf_Shdr
*Sec
) override
;
454 void printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
455 const Elf_Shdr
*Sec
) override
;
456 void printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
457 const Elf_Shdr
*Sec
) override
;
458 void printHashHistogram(const ELFFile
<ELFT
> *Obj
) override
;
459 void printCGProfile(const ELFFile
<ELFT
> *Obj
) override
;
460 void printAddrsig(const ELFFile
<ELFT
> *Obj
) override
;
461 void printNotes(const ELFFile
<ELFT
> *Obj
) override
;
462 void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) override
;
463 void printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) override
;
464 void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) override
;
465 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
466 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
473 Field(StringRef S
, unsigned Col
) : Str(S
), Column(Col
) {}
474 Field(unsigned Col
) : Column(Col
) {}
477 template <typename T
, typename TEnum
>
478 std::string
printEnum(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
) {
479 for (const auto &EnumItem
: EnumValues
)
480 if (EnumItem
.Value
== Value
)
481 return EnumItem
.AltName
;
482 return to_hexString(Value
, false);
485 template <typename T
, typename TEnum
>
486 std::string
printFlags(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
,
487 TEnum EnumMask1
= {}, TEnum EnumMask2
= {},
488 TEnum EnumMask3
= {}) {
490 for (const auto &Flag
: EnumValues
) {
495 if (Flag
.Value
& EnumMask1
)
496 EnumMask
= EnumMask1
;
497 else if (Flag
.Value
& EnumMask2
)
498 EnumMask
= EnumMask2
;
499 else if (Flag
.Value
& EnumMask3
)
500 EnumMask
= EnumMask3
;
501 bool IsEnum
= (Flag
.Value
& EnumMask
) != 0;
502 if ((!IsEnum
&& (Value
& Flag
.Value
) == Flag
.Value
) ||
503 (IsEnum
&& (Value
& EnumMask
) == Flag
.Value
)) {
512 formatted_raw_ostream
&printField(struct Field F
) {
514 OS
.PadToColumn(F
.Column
);
519 void printHashedSymbol(const ELFO
*Obj
, const Elf_Sym
*FirstSym
, uint32_t Sym
,
520 StringRef StrTable
, uint32_t Bucket
);
521 void printRelocHeader(unsigned SType
);
522 void printRelocation(const ELFO
*Obj
, const Elf_Shdr
*SymTab
,
523 const Elf_Rela
&R
, bool IsRela
);
524 void printRelocation(const ELFO
*Obj
, const Elf_Sym
*Sym
,
525 StringRef SymbolName
, const Elf_Rela
&R
, bool IsRela
);
526 void printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
, const Elf_Sym
*First
,
527 StringRef StrTable
, bool IsDynamic
) override
;
528 std::string
getSymbolSectionNdx(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
529 const Elf_Sym
*FirstSym
);
530 void printDynamicRelocation(const ELFO
*Obj
, Elf_Rela R
, bool IsRela
);
531 bool checkTLSSections(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
532 bool checkoffsets(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
533 bool checkVMA(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
534 bool checkPTDynamic(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
535 void printProgramHeaders(const ELFO
*Obj
);
536 void printSectionMapping(const ELFO
*Obj
);
539 template <typename ELFT
> class LLVMStyle
: public DumpStyle
<ELFT
> {
541 TYPEDEF_ELF_TYPES(ELFT
)
543 LLVMStyle(ScopedPrinter
&W
, ELFDumper
<ELFT
> *Dumper
)
544 : DumpStyle
<ELFT
>(Dumper
), W(W
) {}
546 void printFileHeaders(const ELFO
*Obj
) override
;
547 void printGroupSections(const ELFFile
<ELFT
> *Obj
) override
;
548 void printRelocations(const ELFO
*Obj
) override
;
549 void printRelocations(const Elf_Shdr
*Sec
, const ELFO
*Obj
);
550 void printSectionHeaders(const ELFO
*Obj
) override
;
551 void printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
552 bool PrintDynamicSymbols
) override
;
553 void printDynamic(const ELFFile
<ELFT
> *Obj
) override
;
554 void printDynamicRelocations(const ELFO
*Obj
) override
;
555 void printProgramHeaders(const ELFO
*Obj
, bool PrintProgramHeaders
,
556 cl::boolOrDefault PrintSectionMapping
) override
;
557 void printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
558 const Elf_Shdr
*Sec
) override
;
559 void printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
560 const Elf_Shdr
*Sec
) override
;
561 void printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
562 const Elf_Shdr
*Sec
) override
;
563 void printHashHistogram(const ELFFile
<ELFT
> *Obj
) override
;
564 void printCGProfile(const ELFFile
<ELFT
> *Obj
) override
;
565 void printAddrsig(const ELFFile
<ELFT
> *Obj
) override
;
566 void printNotes(const ELFFile
<ELFT
> *Obj
) override
;
567 void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) override
;
568 void printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) override
;
569 void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) override
;
570 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
571 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
574 void printRelocation(const ELFO
*Obj
, Elf_Rela Rel
, const Elf_Shdr
*SymTab
);
575 void printDynamicRelocation(const ELFO
*Obj
, Elf_Rela Rel
);
576 void printSymbols(const ELFO
*Obj
);
577 void printDynamicSymbols(const ELFO
*Obj
);
578 void printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
, const Elf_Sym
*First
,
579 StringRef StrTable
, bool IsDynamic
) override
;
580 void printProgramHeaders(const ELFO
*Obj
);
581 void printSectionMapping(const ELFO
*Obj
) {}
586 } // end anonymous namespace
590 template <class ELFT
>
591 static std::error_code
createELFDumper(const ELFObjectFile
<ELFT
> *Obj
,
592 ScopedPrinter
&Writer
,
593 std::unique_ptr
<ObjDumper
> &Result
) {
594 Result
.reset(new ELFDumper
<ELFT
>(Obj
, Writer
));
595 return readobj_error::success
;
598 std::error_code
createELFDumper(const object::ObjectFile
*Obj
,
599 ScopedPrinter
&Writer
,
600 std::unique_ptr
<ObjDumper
> &Result
) {
601 // Little-endian 32-bit
602 if (const ELF32LEObjectFile
*ELFObj
= dyn_cast
<ELF32LEObjectFile
>(Obj
))
603 return createELFDumper(ELFObj
, Writer
, Result
);
606 if (const ELF32BEObjectFile
*ELFObj
= dyn_cast
<ELF32BEObjectFile
>(Obj
))
607 return createELFDumper(ELFObj
, Writer
, Result
);
609 // Little-endian 64-bit
610 if (const ELF64LEObjectFile
*ELFObj
= dyn_cast
<ELF64LEObjectFile
>(Obj
))
611 return createELFDumper(ELFObj
, Writer
, Result
);
614 if (const ELF64BEObjectFile
*ELFObj
= dyn_cast
<ELF64BEObjectFile
>(Obj
))
615 return createELFDumper(ELFObj
, Writer
, Result
);
617 return readobj_error::unsupported_obj_file_format
;
620 } // end namespace llvm
622 // Iterate through the versions needed section, and place each Elf_Vernaux
623 // in the VersionMap according to its index.
624 template <class ELFT
>
625 void ELFDumper
<ELFT
>::LoadVersionNeeds(const Elf_Shdr
*Sec
) const {
626 unsigned VerneedSize
= Sec
->sh_size
; // Size of section in bytes
627 unsigned VerneedEntries
= Sec
->sh_info
; // Number of Verneed entries
628 const uint8_t *VerneedStart
= reinterpret_cast<const uint8_t *>(
629 ObjF
->getELFFile()->base() + Sec
->sh_offset
);
630 const uint8_t *VerneedEnd
= VerneedStart
+ VerneedSize
;
631 // The first Verneed entry is at the start of the section.
632 const uint8_t *VerneedBuf
= VerneedStart
;
633 for (unsigned VerneedIndex
= 0; VerneedIndex
< VerneedEntries
;
635 if (VerneedBuf
+ sizeof(Elf_Verneed
) > VerneedEnd
)
636 report_fatal_error("Section ended unexpectedly while scanning "
637 "version needed records.");
638 const Elf_Verneed
*Verneed
=
639 reinterpret_cast<const Elf_Verneed
*>(VerneedBuf
);
640 if (Verneed
->vn_version
!= ELF::VER_NEED_CURRENT
)
641 report_fatal_error("Unexpected verneed version");
642 // Iterate through the Vernaux entries
643 const uint8_t *VernauxBuf
= VerneedBuf
+ Verneed
->vn_aux
;
644 for (unsigned VernauxIndex
= 0; VernauxIndex
< Verneed
->vn_cnt
;
646 if (VernauxBuf
+ sizeof(Elf_Vernaux
) > VerneedEnd
)
647 report_fatal_error("Section ended unexpected while scanning auxiliary "
648 "version needed records.");
649 const Elf_Vernaux
*Vernaux
=
650 reinterpret_cast<const Elf_Vernaux
*>(VernauxBuf
);
651 size_t Index
= Vernaux
->vna_other
& ELF::VERSYM_VERSION
;
652 if (Index
>= VersionMap
.size())
653 VersionMap
.resize(Index
+ 1);
654 VersionMap
[Index
] = VersionMapEntry(Vernaux
);
655 VernauxBuf
+= Vernaux
->vna_next
;
657 VerneedBuf
+= Verneed
->vn_next
;
661 // Iterate through the version definitions, and place each Elf_Verdef
662 // in the VersionMap according to its index.
663 template <class ELFT
>
664 void ELFDumper
<ELFT
>::LoadVersionDefs(const Elf_Shdr
*Sec
) const {
665 unsigned VerdefSize
= Sec
->sh_size
; // Size of section in bytes
666 unsigned VerdefEntries
= Sec
->sh_info
; // Number of Verdef entries
667 const uint8_t *VerdefStart
= reinterpret_cast<const uint8_t *>(
668 ObjF
->getELFFile()->base() + Sec
->sh_offset
);
669 const uint8_t *VerdefEnd
= VerdefStart
+ VerdefSize
;
670 // The first Verdef entry is at the start of the section.
671 const uint8_t *VerdefBuf
= VerdefStart
;
672 for (unsigned VerdefIndex
= 0; VerdefIndex
< VerdefEntries
; ++VerdefIndex
) {
673 if (VerdefBuf
+ sizeof(Elf_Verdef
) > VerdefEnd
)
674 report_fatal_error("Section ended unexpectedly while scanning "
675 "version definitions.");
676 const Elf_Verdef
*Verdef
= reinterpret_cast<const Elf_Verdef
*>(VerdefBuf
);
677 if (Verdef
->vd_version
!= ELF::VER_DEF_CURRENT
)
678 report_fatal_error("Unexpected verdef version");
679 size_t Index
= Verdef
->vd_ndx
& ELF::VERSYM_VERSION
;
680 if (Index
>= VersionMap
.size())
681 VersionMap
.resize(Index
+ 1);
682 VersionMap
[Index
] = VersionMapEntry(Verdef
);
683 VerdefBuf
+= Verdef
->vd_next
;
687 template <class ELFT
> void ELFDumper
<ELFT
>::LoadVersionMap() const {
688 // If there is no dynamic symtab or version table, there is nothing to do.
689 if (!DynSymRegion
.Addr
|| !SymbolVersionSection
)
692 // Has the VersionMap already been loaded?
693 if (!VersionMap
.empty())
696 // The first two version indexes are reserved.
697 // Index 0 is LOCAL, index 1 is GLOBAL.
698 VersionMap
.push_back(VersionMapEntry());
699 VersionMap
.push_back(VersionMapEntry());
701 if (SymbolVersionDefSection
)
702 LoadVersionDefs(SymbolVersionDefSection
);
704 if (SymbolVersionNeedSection
)
705 LoadVersionNeeds(SymbolVersionNeedSection
);
708 template <typename ELFT
>
709 StringRef ELFDumper
<ELFT
>::getSymbolVersion(StringRef StrTab
,
711 bool &IsDefault
) const {
712 // This is a dynamic symbol. Look in the GNU symbol version table.
713 if (!SymbolVersionSection
) {
719 // Determine the position in the symbol table of this entry.
720 size_t EntryIndex
= (reinterpret_cast<uintptr_t>(Sym
) -
721 reinterpret_cast<uintptr_t>(DynSymRegion
.Addr
)) /
724 // Get the corresponding version index entry.
725 const Elf_Versym
*Versym
= unwrapOrError(
726 ObjF
->getFileName(), ObjF
->getELFFile()->template getEntry
<Elf_Versym
>(
727 SymbolVersionSection
, EntryIndex
));
728 return this->getSymbolVersionByIndex(StrTab
, Versym
->vs_index
, IsDefault
);
731 static std::string
maybeDemangle(StringRef Name
) {
732 return opts::Demangle
? demangle(Name
) : Name
.str();
735 template <typename ELFT
>
736 std::string ELFDumper
<ELFT
>::getStaticSymbolName(uint32_t Index
) const {
737 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
738 StringRef StrTable
= unwrapOrError(
739 ObjF
->getFileName(), Obj
->getStringTableForSymtab(*DotSymtabSec
));
741 unwrapOrError(ObjF
->getFileName(), Obj
->symbols(DotSymtabSec
));
742 if (Index
>= Syms
.size())
743 reportError("Invalid symbol index");
744 const Elf_Sym
*Sym
= &Syms
[Index
];
745 return maybeDemangle(
746 unwrapOrError(ObjF
->getFileName(), Sym
->getName(StrTable
)));
749 template <typename ELFT
>
750 StringRef ELFDumper
<ELFT
>::getSymbolVersionByIndex(StringRef StrTab
,
751 uint32_t SymbolVersionIndex
,
752 bool &IsDefault
) const {
753 size_t VersionIndex
= SymbolVersionIndex
& VERSYM_VERSION
;
755 // Special markers for unversioned symbols.
756 if (VersionIndex
== VER_NDX_LOCAL
|| VersionIndex
== VER_NDX_GLOBAL
) {
761 // Lookup this symbol in the version table.
763 if (VersionIndex
>= VersionMap
.size() || VersionMap
[VersionIndex
].isNull())
764 reportError("Invalid version entry");
765 const VersionMapEntry
&Entry
= VersionMap
[VersionIndex
];
767 // Get the version name string.
769 if (Entry
.isVerdef()) {
770 // The first Verdaux entry holds the name.
771 NameOffset
= Entry
.getVerdef()->getAux()->vda_name
;
772 IsDefault
= !(SymbolVersionIndex
& VERSYM_HIDDEN
);
774 NameOffset
= Entry
.getVernaux()->vna_name
;
777 if (NameOffset
>= StrTab
.size())
778 reportError("Invalid string offset");
779 return StrTab
.data() + NameOffset
;
782 template <typename ELFT
>
783 std::string ELFDumper
<ELFT
>::getFullSymbolName(const Elf_Sym
*Symbol
,
785 bool IsDynamic
) const {
786 std::string SymbolName
= maybeDemangle(
787 unwrapOrError(ObjF
->getFileName(), Symbol
->getName(StrTable
)));
789 if (SymbolName
.empty() && Symbol
->getType() == ELF::STT_SECTION
) {
790 unsigned SectionIndex
;
791 StringRef SectionName
;
792 Elf_Sym_Range Syms
= unwrapOrError(
793 ObjF
->getFileName(), ObjF
->getELFFile()->symbols(DotSymtabSec
));
794 getSectionNameIndex(Symbol
, Syms
.begin(), SectionName
, SectionIndex
);
802 StringRef Version
= getSymbolVersion(StrTable
, &*Symbol
, IsDefault
);
803 if (!Version
.empty()) {
804 SymbolName
+= (IsDefault
? "@@" : "@");
805 SymbolName
+= Version
;
810 template <typename ELFT
>
811 void ELFDumper
<ELFT
>::getSectionNameIndex(const Elf_Sym
*Symbol
,
812 const Elf_Sym
*FirstSym
,
813 StringRef
&SectionName
,
814 unsigned &SectionIndex
) const {
815 SectionIndex
= Symbol
->st_shndx
;
816 if (Symbol
->isUndefined())
817 SectionName
= "Undefined";
818 else if (Symbol
->isProcessorSpecific())
819 SectionName
= "Processor Specific";
820 else if (Symbol
->isOSSpecific())
821 SectionName
= "Operating System Specific";
822 else if (Symbol
->isAbsolute())
823 SectionName
= "Absolute";
824 else if (Symbol
->isCommon())
825 SectionName
= "Common";
826 else if (Symbol
->isReserved() && SectionIndex
!= SHN_XINDEX
)
827 SectionName
= "Reserved";
829 if (SectionIndex
== SHN_XINDEX
)
830 SectionIndex
= unwrapOrError(ObjF
->getFileName(),
831 object::getExtendedSymbolTableIndex
<ELFT
>(
832 Symbol
, FirstSym
, ShndxTable
));
833 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
834 const typename
ELFT::Shdr
*Sec
=
835 unwrapOrError(ObjF
->getFileName(), Obj
->getSection(SectionIndex
));
836 SectionName
= unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(Sec
));
840 template <class ELFO
>
841 static const typename
ELFO::Elf_Shdr
*
842 findNotEmptySectionByAddress(const ELFO
*Obj
, StringRef FileName
,
844 for (const auto &Shdr
: unwrapOrError(FileName
, Obj
->sections()))
845 if (Shdr
.sh_addr
== Addr
&& Shdr
.sh_size
> 0)
850 template <class ELFO
>
851 static const typename
ELFO::Elf_Shdr
*
852 findSectionByName(const ELFO
&Obj
, StringRef FileName
, StringRef Name
) {
853 for (const auto &Shdr
: unwrapOrError(FileName
, Obj
.sections()))
854 if (Name
== unwrapOrError(FileName
, Obj
.getSectionName(&Shdr
)))
859 static const EnumEntry
<unsigned> ElfClass
[] = {
860 {"None", "none", ELF::ELFCLASSNONE
},
861 {"32-bit", "ELF32", ELF::ELFCLASS32
},
862 {"64-bit", "ELF64", ELF::ELFCLASS64
},
865 static const EnumEntry
<unsigned> ElfDataEncoding
[] = {
866 {"None", "none", ELF::ELFDATANONE
},
867 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB
},
868 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB
},
871 static const EnumEntry
<unsigned> ElfObjectFileType
[] = {
872 {"None", "NONE (none)", ELF::ET_NONE
},
873 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL
},
874 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC
},
875 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN
},
876 {"Core", "CORE (Core file)", ELF::ET_CORE
},
879 static const EnumEntry
<unsigned> ElfOSABI
[] = {
880 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE
},
881 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX
},
882 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD
},
883 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX
},
884 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD
},
885 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS
},
886 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX
},
887 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX
},
888 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD
},
889 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64
},
890 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO
},
891 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD
},
892 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS
},
893 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK
},
894 {"AROS", "AROS", ELF::ELFOSABI_AROS
},
895 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS
},
896 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI
},
897 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE
}
900 static const EnumEntry
<unsigned> SymVersionFlags
[] = {
901 {"Base", "BASE", VER_FLG_BASE
},
902 {"Weak", "WEAK", VER_FLG_WEAK
},
903 {"Info", "INFO", VER_FLG_INFO
}};
905 static const EnumEntry
<unsigned> AMDGPUElfOSABI
[] = {
906 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA
},
907 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL
},
908 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D
}
911 static const EnumEntry
<unsigned> ARMElfOSABI
[] = {
912 {"ARM", "ARM", ELF::ELFOSABI_ARM
}
915 static const EnumEntry
<unsigned> C6000ElfOSABI
[] = {
916 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI
},
917 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX
}
920 static const EnumEntry
<unsigned> ElfMachineType
[] = {
921 ENUM_ENT(EM_NONE
, "None"),
922 ENUM_ENT(EM_M32
, "WE32100"),
923 ENUM_ENT(EM_SPARC
, "Sparc"),
924 ENUM_ENT(EM_386
, "Intel 80386"),
925 ENUM_ENT(EM_68K
, "MC68000"),
926 ENUM_ENT(EM_88K
, "MC88000"),
927 ENUM_ENT(EM_IAMCU
, "EM_IAMCU"),
928 ENUM_ENT(EM_860
, "Intel 80860"),
929 ENUM_ENT(EM_MIPS
, "MIPS R3000"),
930 ENUM_ENT(EM_S370
, "IBM System/370"),
931 ENUM_ENT(EM_MIPS_RS3_LE
, "MIPS R3000 little-endian"),
932 ENUM_ENT(EM_PARISC
, "HPPA"),
933 ENUM_ENT(EM_VPP500
, "Fujitsu VPP500"),
934 ENUM_ENT(EM_SPARC32PLUS
, "Sparc v8+"),
935 ENUM_ENT(EM_960
, "Intel 80960"),
936 ENUM_ENT(EM_PPC
, "PowerPC"),
937 ENUM_ENT(EM_PPC64
, "PowerPC64"),
938 ENUM_ENT(EM_S390
, "IBM S/390"),
939 ENUM_ENT(EM_SPU
, "SPU"),
940 ENUM_ENT(EM_V800
, "NEC V800 series"),
941 ENUM_ENT(EM_FR20
, "Fujistsu FR20"),
942 ENUM_ENT(EM_RH32
, "TRW RH-32"),
943 ENUM_ENT(EM_RCE
, "Motorola RCE"),
944 ENUM_ENT(EM_ARM
, "ARM"),
945 ENUM_ENT(EM_ALPHA
, "EM_ALPHA"),
946 ENUM_ENT(EM_SH
, "Hitachi SH"),
947 ENUM_ENT(EM_SPARCV9
, "Sparc v9"),
948 ENUM_ENT(EM_TRICORE
, "Siemens Tricore"),
949 ENUM_ENT(EM_ARC
, "ARC"),
950 ENUM_ENT(EM_H8_300
, "Hitachi H8/300"),
951 ENUM_ENT(EM_H8_300H
, "Hitachi H8/300H"),
952 ENUM_ENT(EM_H8S
, "Hitachi H8S"),
953 ENUM_ENT(EM_H8_500
, "Hitachi H8/500"),
954 ENUM_ENT(EM_IA_64
, "Intel IA-64"),
955 ENUM_ENT(EM_MIPS_X
, "Stanford MIPS-X"),
956 ENUM_ENT(EM_COLDFIRE
, "Motorola Coldfire"),
957 ENUM_ENT(EM_68HC12
, "Motorola MC68HC12 Microcontroller"),
958 ENUM_ENT(EM_MMA
, "Fujitsu Multimedia Accelerator"),
959 ENUM_ENT(EM_PCP
, "Siemens PCP"),
960 ENUM_ENT(EM_NCPU
, "Sony nCPU embedded RISC processor"),
961 ENUM_ENT(EM_NDR1
, "Denso NDR1 microprocesspr"),
962 ENUM_ENT(EM_STARCORE
, "Motorola Star*Core processor"),
963 ENUM_ENT(EM_ME16
, "Toyota ME16 processor"),
964 ENUM_ENT(EM_ST100
, "STMicroelectronics ST100 processor"),
965 ENUM_ENT(EM_TINYJ
, "Advanced Logic Corp. TinyJ embedded processor"),
966 ENUM_ENT(EM_X86_64
, "Advanced Micro Devices X86-64"),
967 ENUM_ENT(EM_PDSP
, "Sony DSP processor"),
968 ENUM_ENT(EM_PDP10
, "Digital Equipment Corp. PDP-10"),
969 ENUM_ENT(EM_PDP11
, "Digital Equipment Corp. PDP-11"),
970 ENUM_ENT(EM_FX66
, "Siemens FX66 microcontroller"),
971 ENUM_ENT(EM_ST9PLUS
, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
972 ENUM_ENT(EM_ST7
, "STMicroelectronics ST7 8-bit microcontroller"),
973 ENUM_ENT(EM_68HC16
, "Motorola MC68HC16 Microcontroller"),
974 ENUM_ENT(EM_68HC11
, "Motorola MC68HC11 Microcontroller"),
975 ENUM_ENT(EM_68HC08
, "Motorola MC68HC08 Microcontroller"),
976 ENUM_ENT(EM_68HC05
, "Motorola MC68HC05 Microcontroller"),
977 ENUM_ENT(EM_SVX
, "Silicon Graphics SVx"),
978 ENUM_ENT(EM_ST19
, "STMicroelectronics ST19 8-bit microcontroller"),
979 ENUM_ENT(EM_VAX
, "Digital VAX"),
980 ENUM_ENT(EM_CRIS
, "Axis Communications 32-bit embedded processor"),
981 ENUM_ENT(EM_JAVELIN
, "Infineon Technologies 32-bit embedded cpu"),
982 ENUM_ENT(EM_FIREPATH
, "Element 14 64-bit DSP processor"),
983 ENUM_ENT(EM_ZSP
, "LSI Logic's 16-bit DSP processor"),
984 ENUM_ENT(EM_MMIX
, "Donald Knuth's educational 64-bit processor"),
985 ENUM_ENT(EM_HUANY
, "Harvard Universitys's machine-independent object format"),
986 ENUM_ENT(EM_PRISM
, "Vitesse Prism"),
987 ENUM_ENT(EM_AVR
, "Atmel AVR 8-bit microcontroller"),
988 ENUM_ENT(EM_FR30
, "Fujitsu FR30"),
989 ENUM_ENT(EM_D10V
, "Mitsubishi D10V"),
990 ENUM_ENT(EM_D30V
, "Mitsubishi D30V"),
991 ENUM_ENT(EM_V850
, "NEC v850"),
992 ENUM_ENT(EM_M32R
, "Renesas M32R (formerly Mitsubishi M32r)"),
993 ENUM_ENT(EM_MN10300
, "Matsushita MN10300"),
994 ENUM_ENT(EM_MN10200
, "Matsushita MN10200"),
995 ENUM_ENT(EM_PJ
, "picoJava"),
996 ENUM_ENT(EM_OPENRISC
, "OpenRISC 32-bit embedded processor"),
997 ENUM_ENT(EM_ARC_COMPACT
, "EM_ARC_COMPACT"),
998 ENUM_ENT(EM_XTENSA
, "Tensilica Xtensa Processor"),
999 ENUM_ENT(EM_VIDEOCORE
, "Alphamosaic VideoCore processor"),
1000 ENUM_ENT(EM_TMM_GPP
, "Thompson Multimedia General Purpose Processor"),
1001 ENUM_ENT(EM_NS32K
, "National Semiconductor 32000 series"),
1002 ENUM_ENT(EM_TPC
, "Tenor Network TPC processor"),
1003 ENUM_ENT(EM_SNP1K
, "EM_SNP1K"),
1004 ENUM_ENT(EM_ST200
, "STMicroelectronics ST200 microcontroller"),
1005 ENUM_ENT(EM_IP2K
, "Ubicom IP2xxx 8-bit microcontrollers"),
1006 ENUM_ENT(EM_MAX
, "MAX Processor"),
1007 ENUM_ENT(EM_CR
, "National Semiconductor CompactRISC"),
1008 ENUM_ENT(EM_F2MC16
, "Fujitsu F2MC16"),
1009 ENUM_ENT(EM_MSP430
, "Texas Instruments msp430 microcontroller"),
1010 ENUM_ENT(EM_BLACKFIN
, "Analog Devices Blackfin"),
1011 ENUM_ENT(EM_SE_C33
, "S1C33 Family of Seiko Epson processors"),
1012 ENUM_ENT(EM_SEP
, "Sharp embedded microprocessor"),
1013 ENUM_ENT(EM_ARCA
, "Arca RISC microprocessor"),
1014 ENUM_ENT(EM_UNICORE
, "Unicore"),
1015 ENUM_ENT(EM_EXCESS
, "eXcess 16/32/64-bit configurable embedded CPU"),
1016 ENUM_ENT(EM_DXP
, "Icera Semiconductor Inc. Deep Execution Processor"),
1017 ENUM_ENT(EM_ALTERA_NIOS2
, "Altera Nios"),
1018 ENUM_ENT(EM_CRX
, "National Semiconductor CRX microprocessor"),
1019 ENUM_ENT(EM_XGATE
, "Motorola XGATE embedded processor"),
1020 ENUM_ENT(EM_C166
, "Infineon Technologies xc16x"),
1021 ENUM_ENT(EM_M16C
, "Renesas M16C"),
1022 ENUM_ENT(EM_DSPIC30F
, "Microchip Technology dsPIC30F Digital Signal Controller"),
1023 ENUM_ENT(EM_CE
, "Freescale Communication Engine RISC core"),
1024 ENUM_ENT(EM_M32C
, "Renesas M32C"),
1025 ENUM_ENT(EM_TSK3000
, "Altium TSK3000 core"),
1026 ENUM_ENT(EM_RS08
, "Freescale RS08 embedded processor"),
1027 ENUM_ENT(EM_SHARC
, "EM_SHARC"),
1028 ENUM_ENT(EM_ECOG2
, "Cyan Technology eCOG2 microprocessor"),
1029 ENUM_ENT(EM_SCORE7
, "SUNPLUS S+Core"),
1030 ENUM_ENT(EM_DSP24
, "New Japan Radio (NJR) 24-bit DSP Processor"),
1031 ENUM_ENT(EM_VIDEOCORE3
, "Broadcom VideoCore III processor"),
1032 ENUM_ENT(EM_LATTICEMICO32
, "Lattice Mico32"),
1033 ENUM_ENT(EM_SE_C17
, "Seiko Epson C17 family"),
1034 ENUM_ENT(EM_TI_C6000
, "Texas Instruments TMS320C6000 DSP family"),
1035 ENUM_ENT(EM_TI_C2000
, "Texas Instruments TMS320C2000 DSP family"),
1036 ENUM_ENT(EM_TI_C5500
, "Texas Instruments TMS320C55x DSP family"),
1037 ENUM_ENT(EM_MMDSP_PLUS
, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1038 ENUM_ENT(EM_CYPRESS_M8C
, "Cypress M8C microprocessor"),
1039 ENUM_ENT(EM_R32C
, "Renesas R32C series microprocessors"),
1040 ENUM_ENT(EM_TRIMEDIA
, "NXP Semiconductors TriMedia architecture family"),
1041 ENUM_ENT(EM_HEXAGON
, "Qualcomm Hexagon"),
1042 ENUM_ENT(EM_8051
, "Intel 8051 and variants"),
1043 ENUM_ENT(EM_STXP7X
, "STMicroelectronics STxP7x family"),
1044 ENUM_ENT(EM_NDS32
, "Andes Technology compact code size embedded RISC processor family"),
1045 ENUM_ENT(EM_ECOG1
, "Cyan Technology eCOG1 microprocessor"),
1046 ENUM_ENT(EM_ECOG1X
, "Cyan Technology eCOG1X family"),
1047 ENUM_ENT(EM_MAXQ30
, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1048 ENUM_ENT(EM_XIMO16
, "New Japan Radio (NJR) 16-bit DSP Processor"),
1049 ENUM_ENT(EM_MANIK
, "M2000 Reconfigurable RISC Microprocessor"),
1050 ENUM_ENT(EM_CRAYNV2
, "Cray Inc. NV2 vector architecture"),
1051 ENUM_ENT(EM_RX
, "Renesas RX"),
1052 ENUM_ENT(EM_METAG
, "Imagination Technologies Meta processor architecture"),
1053 ENUM_ENT(EM_MCST_ELBRUS
, "MCST Elbrus general purpose hardware architecture"),
1054 ENUM_ENT(EM_ECOG16
, "Cyan Technology eCOG16 family"),
1055 ENUM_ENT(EM_CR16
, "Xilinx MicroBlaze"),
1056 ENUM_ENT(EM_ETPU
, "Freescale Extended Time Processing Unit"),
1057 ENUM_ENT(EM_SLE9X
, "Infineon Technologies SLE9X core"),
1058 ENUM_ENT(EM_L10M
, "EM_L10M"),
1059 ENUM_ENT(EM_K10M
, "EM_K10M"),
1060 ENUM_ENT(EM_AARCH64
, "AArch64"),
1061 ENUM_ENT(EM_AVR32
, "Atmel Corporation 32-bit microprocessor family"),
1062 ENUM_ENT(EM_STM8
, "STMicroeletronics STM8 8-bit microcontroller"),
1063 ENUM_ENT(EM_TILE64
, "Tilera TILE64 multicore architecture family"),
1064 ENUM_ENT(EM_TILEPRO
, "Tilera TILEPro multicore architecture family"),
1065 ENUM_ENT(EM_CUDA
, "NVIDIA CUDA architecture"),
1066 ENUM_ENT(EM_TILEGX
, "Tilera TILE-Gx multicore architecture family"),
1067 ENUM_ENT(EM_CLOUDSHIELD
, "EM_CLOUDSHIELD"),
1068 ENUM_ENT(EM_COREA_1ST
, "EM_COREA_1ST"),
1069 ENUM_ENT(EM_COREA_2ND
, "EM_COREA_2ND"),
1070 ENUM_ENT(EM_ARC_COMPACT2
, "EM_ARC_COMPACT2"),
1071 ENUM_ENT(EM_OPEN8
, "EM_OPEN8"),
1072 ENUM_ENT(EM_RL78
, "Renesas RL78"),
1073 ENUM_ENT(EM_VIDEOCORE5
, "Broadcom VideoCore V processor"),
1074 ENUM_ENT(EM_78KOR
, "EM_78KOR"),
1075 ENUM_ENT(EM_56800EX
, "EM_56800EX"),
1076 ENUM_ENT(EM_AMDGPU
, "EM_AMDGPU"),
1077 ENUM_ENT(EM_RISCV
, "RISC-V"),
1078 ENUM_ENT(EM_LANAI
, "EM_LANAI"),
1079 ENUM_ENT(EM_BPF
, "EM_BPF"),
1082 static const EnumEntry
<unsigned> ElfSymbolBindings
[] = {
1083 {"Local", "LOCAL", ELF::STB_LOCAL
},
1084 {"Global", "GLOBAL", ELF::STB_GLOBAL
},
1085 {"Weak", "WEAK", ELF::STB_WEAK
},
1086 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE
}};
1088 static const EnumEntry
<unsigned> ElfSymbolVisibilities
[] = {
1089 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT
},
1090 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL
},
1091 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN
},
1092 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED
}};
1094 static const EnumEntry
<unsigned> AMDGPUSymbolTypes
[] = {
1095 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL
}
1098 static const char *getGroupType(uint32_t Flag
) {
1099 if (Flag
& ELF::GRP_COMDAT
)
1105 static const EnumEntry
<unsigned> ElfSectionFlags
[] = {
1106 ENUM_ENT(SHF_WRITE
, "W"),
1107 ENUM_ENT(SHF_ALLOC
, "A"),
1108 ENUM_ENT(SHF_EXCLUDE
, "E"),
1109 ENUM_ENT(SHF_EXECINSTR
, "X"),
1110 ENUM_ENT(SHF_MERGE
, "M"),
1111 ENUM_ENT(SHF_STRINGS
, "S"),
1112 ENUM_ENT(SHF_INFO_LINK
, "I"),
1113 ENUM_ENT(SHF_LINK_ORDER
, "L"),
1114 ENUM_ENT(SHF_OS_NONCONFORMING
, "o"),
1115 ENUM_ENT(SHF_GROUP
, "G"),
1116 ENUM_ENT(SHF_TLS
, "T"),
1117 ENUM_ENT(SHF_MASKOS
, "o"),
1118 ENUM_ENT(SHF_MASKPROC
, "p"),
1119 ENUM_ENT_1(SHF_COMPRESSED
),
1122 static const EnumEntry
<unsigned> ElfXCoreSectionFlags
[] = {
1123 LLVM_READOBJ_ENUM_ENT(ELF
, XCORE_SHF_CP_SECTION
),
1124 LLVM_READOBJ_ENUM_ENT(ELF
, XCORE_SHF_DP_SECTION
)
1127 static const EnumEntry
<unsigned> ElfARMSectionFlags
[] = {
1128 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_ARM_PURECODE
)
1131 static const EnumEntry
<unsigned> ElfHexagonSectionFlags
[] = {
1132 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_HEX_GPREL
)
1135 static const EnumEntry
<unsigned> ElfMipsSectionFlags
[] = {
1136 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NODUPES
),
1137 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NAMES
),
1138 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_LOCAL
),
1139 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NOSTRIP
),
1140 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_GPREL
),
1141 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_MERGE
),
1142 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_ADDR
),
1143 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_STRING
)
1146 static const EnumEntry
<unsigned> ElfX86_64SectionFlags
[] = {
1147 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_X86_64_LARGE
)
1150 static std::string
getGNUFlags(uint64_t Flags
) {
1152 for (auto Entry
: ElfSectionFlags
) {
1153 uint64_t Flag
= Entry
.Value
& Flags
;
1154 Flags
&= ~Entry
.Value
;
1156 case ELF::SHF_WRITE
:
1157 case ELF::SHF_ALLOC
:
1158 case ELF::SHF_EXECINSTR
:
1159 case ELF::SHF_MERGE
:
1160 case ELF::SHF_STRINGS
:
1161 case ELF::SHF_INFO_LINK
:
1162 case ELF::SHF_LINK_ORDER
:
1163 case ELF::SHF_OS_NONCONFORMING
:
1164 case ELF::SHF_GROUP
:
1166 case ELF::SHF_EXCLUDE
:
1167 Str
+= Entry
.AltName
;
1170 if (Flag
& ELF::SHF_MASKOS
)
1172 else if (Flag
& ELF::SHF_MASKPROC
)
1181 static const char *getElfSegmentType(unsigned Arch
, unsigned Type
) {
1182 // Check potentially overlapped processor-specific
1183 // program header type.
1186 switch (Type
) { LLVM_READOBJ_ENUM_CASE(ELF
, PT_ARM_EXIDX
); }
1189 case ELF::EM_MIPS_RS3_LE
:
1191 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_REGINFO
);
1192 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_RTPROC
);
1193 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_OPTIONS
);
1194 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_ABIFLAGS
);
1200 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NULL
);
1201 LLVM_READOBJ_ENUM_CASE(ELF
, PT_LOAD
);
1202 LLVM_READOBJ_ENUM_CASE(ELF
, PT_DYNAMIC
);
1203 LLVM_READOBJ_ENUM_CASE(ELF
, PT_INTERP
);
1204 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NOTE
);
1205 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SHLIB
);
1206 LLVM_READOBJ_ENUM_CASE(ELF
, PT_PHDR
);
1207 LLVM_READOBJ_ENUM_CASE(ELF
, PT_TLS
);
1209 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_EH_FRAME
);
1210 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SUNW_UNWIND
);
1212 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_STACK
);
1213 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_RELRO
);
1215 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_RANDOMIZE
);
1216 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_WXNEEDED
);
1217 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_BOOTDATA
);
1224 static std::string
getElfPtType(unsigned Arch
, unsigned Type
) {
1226 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_NULL
)
1227 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_LOAD
)
1228 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_DYNAMIC
)
1229 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_INTERP
)
1230 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_NOTE
)
1231 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_SHLIB
)
1232 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_PHDR
)
1233 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_TLS
)
1234 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_EH_FRAME
)
1235 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_SUNW_UNWIND
)
1236 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_STACK
)
1237 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_RELRO
)
1239 // All machine specific PT_* types
1242 if (Type
== ELF::PT_ARM_EXIDX
)
1246 case ELF::EM_MIPS_RS3_LE
:
1248 case PT_MIPS_REGINFO
:
1250 case PT_MIPS_RTPROC
:
1252 case PT_MIPS_OPTIONS
:
1254 case PT_MIPS_ABIFLAGS
:
1260 return std::string("<unknown>: ") + to_string(format_hex(Type
, 1));
1263 static const EnumEntry
<unsigned> ElfSegmentFlags
[] = {
1264 LLVM_READOBJ_ENUM_ENT(ELF
, PF_X
),
1265 LLVM_READOBJ_ENUM_ENT(ELF
, PF_W
),
1266 LLVM_READOBJ_ENUM_ENT(ELF
, PF_R
)
1269 static const EnumEntry
<unsigned> ElfHeaderMipsFlags
[] = {
1270 ENUM_ENT(EF_MIPS_NOREORDER
, "noreorder"),
1271 ENUM_ENT(EF_MIPS_PIC
, "pic"),
1272 ENUM_ENT(EF_MIPS_CPIC
, "cpic"),
1273 ENUM_ENT(EF_MIPS_ABI2
, "abi2"),
1274 ENUM_ENT(EF_MIPS_32BITMODE
, "32bitmode"),
1275 ENUM_ENT(EF_MIPS_FP64
, "fp64"),
1276 ENUM_ENT(EF_MIPS_NAN2008
, "nan2008"),
1277 ENUM_ENT(EF_MIPS_ABI_O32
, "o32"),
1278 ENUM_ENT(EF_MIPS_ABI_O64
, "o64"),
1279 ENUM_ENT(EF_MIPS_ABI_EABI32
, "eabi32"),
1280 ENUM_ENT(EF_MIPS_ABI_EABI64
, "eabi64"),
1281 ENUM_ENT(EF_MIPS_MACH_3900
, "3900"),
1282 ENUM_ENT(EF_MIPS_MACH_4010
, "4010"),
1283 ENUM_ENT(EF_MIPS_MACH_4100
, "4100"),
1284 ENUM_ENT(EF_MIPS_MACH_4650
, "4650"),
1285 ENUM_ENT(EF_MIPS_MACH_4120
, "4120"),
1286 ENUM_ENT(EF_MIPS_MACH_4111
, "4111"),
1287 ENUM_ENT(EF_MIPS_MACH_SB1
, "sb1"),
1288 ENUM_ENT(EF_MIPS_MACH_OCTEON
, "octeon"),
1289 ENUM_ENT(EF_MIPS_MACH_XLR
, "xlr"),
1290 ENUM_ENT(EF_MIPS_MACH_OCTEON2
, "octeon2"),
1291 ENUM_ENT(EF_MIPS_MACH_OCTEON3
, "octeon3"),
1292 ENUM_ENT(EF_MIPS_MACH_5400
, "5400"),
1293 ENUM_ENT(EF_MIPS_MACH_5900
, "5900"),
1294 ENUM_ENT(EF_MIPS_MACH_5500
, "5500"),
1295 ENUM_ENT(EF_MIPS_MACH_9000
, "9000"),
1296 ENUM_ENT(EF_MIPS_MACH_LS2E
, "loongson-2e"),
1297 ENUM_ENT(EF_MIPS_MACH_LS2F
, "loongson-2f"),
1298 ENUM_ENT(EF_MIPS_MACH_LS3A
, "loongson-3a"),
1299 ENUM_ENT(EF_MIPS_MICROMIPS
, "micromips"),
1300 ENUM_ENT(EF_MIPS_ARCH_ASE_M16
, "mips16"),
1301 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX
, "mdmx"),
1302 ENUM_ENT(EF_MIPS_ARCH_1
, "mips1"),
1303 ENUM_ENT(EF_MIPS_ARCH_2
, "mips2"),
1304 ENUM_ENT(EF_MIPS_ARCH_3
, "mips3"),
1305 ENUM_ENT(EF_MIPS_ARCH_4
, "mips4"),
1306 ENUM_ENT(EF_MIPS_ARCH_5
, "mips5"),
1307 ENUM_ENT(EF_MIPS_ARCH_32
, "mips32"),
1308 ENUM_ENT(EF_MIPS_ARCH_64
, "mips64"),
1309 ENUM_ENT(EF_MIPS_ARCH_32R2
, "mips32r2"),
1310 ENUM_ENT(EF_MIPS_ARCH_64R2
, "mips64r2"),
1311 ENUM_ENT(EF_MIPS_ARCH_32R6
, "mips32r6"),
1312 ENUM_ENT(EF_MIPS_ARCH_64R6
, "mips64r6")
1315 static const EnumEntry
<unsigned> ElfHeaderAMDGPUFlags
[] = {
1316 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_NONE
),
1317 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R600
),
1318 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R630
),
1319 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RS880
),
1320 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV670
),
1321 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV710
),
1322 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV730
),
1323 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV770
),
1324 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CEDAR
),
1325 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CYPRESS
),
1326 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_JUNIPER
),
1327 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_REDWOOD
),
1328 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_SUMO
),
1329 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_BARTS
),
1330 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAICOS
),
1331 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAYMAN
),
1332 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_TURKS
),
1333 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX600
),
1334 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX601
),
1335 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX700
),
1336 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX701
),
1337 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX702
),
1338 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX703
),
1339 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX704
),
1340 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX801
),
1341 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX802
),
1342 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX803
),
1343 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX810
),
1344 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX900
),
1345 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX902
),
1346 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX904
),
1347 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX906
),
1348 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX908
),
1349 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX909
),
1350 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1010
),
1351 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1011
),
1352 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1012
),
1353 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_XNACK
),
1354 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_SRAM_ECC
)
1357 static const EnumEntry
<unsigned> ElfHeaderRISCVFlags
[] = {
1358 ENUM_ENT(EF_RISCV_RVC
, "RVC"),
1359 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE
, "single-float ABI"),
1360 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE
, "double-float ABI"),
1361 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD
, "quad-float ABI"),
1362 ENUM_ENT(EF_RISCV_RVE
, "RVE")
1365 static const EnumEntry
<unsigned> ElfSymOtherFlags
[] = {
1366 LLVM_READOBJ_ENUM_ENT(ELF
, STV_INTERNAL
),
1367 LLVM_READOBJ_ENUM_ENT(ELF
, STV_HIDDEN
),
1368 LLVM_READOBJ_ENUM_ENT(ELF
, STV_PROTECTED
)
1371 static const EnumEntry
<unsigned> ElfMipsSymOtherFlags
[] = {
1372 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1373 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1374 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PIC
),
1375 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MICROMIPS
)
1378 static const EnumEntry
<unsigned> ElfMips16SymOtherFlags
[] = {
1379 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1380 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1381 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MIPS16
)
1384 static const char *getElfMipsOptionsOdkType(unsigned Odk
) {
1386 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_NULL
);
1387 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_REGINFO
);
1388 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_EXCEPTIONS
);
1389 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAD
);
1390 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWPATCH
);
1391 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_FILL
);
1392 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_TAGS
);
1393 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWAND
);
1394 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWOR
);
1395 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_GP_GROUP
);
1396 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_IDENT
);
1397 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAGESIZE
);
1403 template <typename ELFT
>
1404 void ELFDumper
<ELFT
>::loadDynamicTable(const ELFFile
<ELFT
> *Obj
) {
1405 // Try to locate the PT_DYNAMIC header.
1406 const Elf_Phdr
*DynamicPhdr
= nullptr;
1407 for (const Elf_Phdr
&Phdr
:
1408 unwrapOrError(ObjF
->getFileName(), Obj
->program_headers())) {
1409 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
)
1411 DynamicPhdr
= &Phdr
;
1415 // Try to locate the .dynamic section in the sections header table.
1416 const Elf_Shdr
*DynamicSec
= nullptr;
1417 for (const Elf_Shdr
&Sec
:
1418 unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
1419 if (Sec
.sh_type
!= ELF::SHT_DYNAMIC
)
1425 // Information in the section header has priority over the information
1426 // in a PT_DYNAMIC header.
1427 // Ignore sh_entsize and use the expected value for entry size explicitly.
1428 // This allows us to dump the dynamic sections with a broken sh_entsize
1431 DynamicTable
= checkDRI({ObjF
->getELFFile()->base() + DynamicSec
->sh_offset
,
1432 DynamicSec
->sh_size
, sizeof(Elf_Dyn
)});
1433 parseDynamicTable();
1436 // If we have a PT_DYNAMIC header, we will either check the found dynamic
1437 // section or take the dynamic table data directly from the header.
1441 if (DynamicPhdr
->p_offset
+ DynamicPhdr
->p_filesz
>
1442 ObjF
->getMemoryBufferRef().getBufferSize()) {
1444 "PT_DYNAMIC segment offset + size exceeds the size of the file");
1449 DynamicTable
= createDRIFrom(DynamicPhdr
, sizeof(Elf_Dyn
));
1450 parseDynamicTable();
1455 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(DynamicSec
));
1456 if (DynamicSec
->sh_addr
+ DynamicSec
->sh_size
>
1457 DynamicPhdr
->p_vaddr
+ DynamicPhdr
->p_memsz
||
1458 DynamicSec
->sh_addr
< DynamicPhdr
->p_vaddr
)
1459 reportWarning("The SHT_DYNAMIC section '" + Name
+
1460 "' is not contained within the "
1461 "PT_DYNAMIC segment");
1463 if (DynamicSec
->sh_addr
!= DynamicPhdr
->p_vaddr
)
1464 reportWarning("The SHT_DYNAMIC section '" + Name
+
1465 "' is not at the start of "
1466 "PT_DYNAMIC segment");
1469 template <typename ELFT
>
1470 ELFDumper
<ELFT
>::ELFDumper(const object::ELFObjectFile
<ELFT
> *ObjF
,
1471 ScopedPrinter
&Writer
)
1472 : ObjDumper(Writer
), ObjF(ObjF
) {
1473 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
1475 for (const Elf_Shdr
&Sec
:
1476 unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
1477 switch (Sec
.sh_type
) {
1478 case ELF::SHT_SYMTAB
:
1480 DotSymtabSec
= &Sec
;
1482 case ELF::SHT_DYNSYM
:
1483 if (!DynSymRegion
.Size
) {
1484 DynSymRegion
= createDRIFrom(&Sec
);
1485 // This is only used (if Elf_Shdr present)for naming section in GNU
1488 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(&Sec
));
1490 if (Expected
<StringRef
> E
= Obj
->getStringTableForSymtab(Sec
))
1491 DynamicStringTable
= *E
;
1493 warn(E
.takeError());
1496 case ELF::SHT_SYMTAB_SHNDX
:
1497 ShndxTable
= unwrapOrError(ObjF
->getFileName(), Obj
->getSHNDXTable(Sec
));
1499 case ELF::SHT_GNU_versym
:
1500 if (!SymbolVersionSection
)
1501 SymbolVersionSection
= &Sec
;
1503 case ELF::SHT_GNU_verdef
:
1504 if (!SymbolVersionDefSection
)
1505 SymbolVersionDefSection
= &Sec
;
1507 case ELF::SHT_GNU_verneed
:
1508 if (!SymbolVersionNeedSection
)
1509 SymbolVersionNeedSection
= &Sec
;
1511 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE
:
1512 if (!DotCGProfileSec
)
1513 DotCGProfileSec
= &Sec
;
1515 case ELF::SHT_LLVM_ADDRSIG
:
1517 DotAddrsigSec
= &Sec
;
1522 loadDynamicTable(Obj
);
1524 if (opts::Output
== opts::GNU
)
1525 ELFDumperStyle
.reset(new GNUStyle
<ELFT
>(Writer
, this));
1527 ELFDumperStyle
.reset(new LLVMStyle
<ELFT
>(Writer
, this));
1530 static const char *getTypeString(unsigned Arch
, uint64_t Type
) {
1531 #define DYNAMIC_TAG(n, v)
1536 #define AARCH64_DYNAMIC_TAG(name, value) \
1539 #include "llvm/BinaryFormat/DynamicTags.def"
1540 #undef AARCH64_DYNAMIC_TAG
1546 #define HEXAGON_DYNAMIC_TAG(name, value) \
1549 #include "llvm/BinaryFormat/DynamicTags.def"
1550 #undef HEXAGON_DYNAMIC_TAG
1556 #define MIPS_DYNAMIC_TAG(name, value) \
1559 #include "llvm/BinaryFormat/DynamicTags.def"
1560 #undef MIPS_DYNAMIC_TAG
1566 #define PPC64_DYNAMIC_TAG(name, value) \
1569 #include "llvm/BinaryFormat/DynamicTags.def"
1570 #undef PPC64_DYNAMIC_TAG
1576 // Now handle all dynamic tags except the architecture specific ones
1577 #define AARCH64_DYNAMIC_TAG(name, value)
1578 #define MIPS_DYNAMIC_TAG(name, value)
1579 #define HEXAGON_DYNAMIC_TAG(name, value)
1580 #define PPC64_DYNAMIC_TAG(name, value)
1581 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
1582 #define DYNAMIC_TAG_MARKER(name, value)
1583 #define DYNAMIC_TAG(name, value) \
1586 #include "llvm/BinaryFormat/DynamicTags.def"
1588 #undef AARCH64_DYNAMIC_TAG
1589 #undef MIPS_DYNAMIC_TAG
1590 #undef HEXAGON_DYNAMIC_TAG
1591 #undef PPC64_DYNAMIC_TAG
1592 #undef DYNAMIC_TAG_MARKER
1598 template <typename ELFT
> void ELFDumper
<ELFT
>::parseDynamicTable() {
1599 auto toMappedAddr
= [&](uint64_t Tag
, uint64_t VAddr
) -> const uint8_t * {
1600 auto MappedAddrOrError
= ObjF
->getELFFile()->toMappedAddr(VAddr
);
1601 if (!MappedAddrOrError
) {
1602 reportWarning("Unable to parse DT_" +
1603 Twine(getTypeString(
1604 ObjF
->getELFFile()->getHeader()->e_machine
, Tag
)) +
1605 ": " + llvm::toString(MappedAddrOrError
.takeError()));
1608 return MappedAddrOrError
.get();
1611 uint64_t SONameOffset
= 0;
1612 const char *StringTableBegin
= nullptr;
1613 uint64_t StringTableSize
= 0;
1614 for (const Elf_Dyn
&Dyn
: dynamic_table()) {
1615 switch (Dyn
.d_tag
) {
1617 HashTable
= reinterpret_cast<const Elf_Hash
*>(
1618 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1620 case ELF::DT_GNU_HASH
:
1621 GnuHashTable
= reinterpret_cast<const Elf_GnuHash
*>(
1622 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1624 case ELF::DT_STRTAB
:
1625 StringTableBegin
= reinterpret_cast<const char *>(
1626 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
1629 StringTableSize
= Dyn
.getVal();
1631 case ELF::DT_SYMTAB
:
1632 DynSymRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1633 DynSymRegion
.EntSize
= sizeof(Elf_Sym
);
1636 DynRelaRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1638 case ELF::DT_RELASZ
:
1639 DynRelaRegion
.Size
= Dyn
.getVal();
1641 case ELF::DT_RELAENT
:
1642 DynRelaRegion
.EntSize
= Dyn
.getVal();
1644 case ELF::DT_SONAME
:
1645 SONameOffset
= Dyn
.getVal();
1648 DynRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1651 DynRelRegion
.Size
= Dyn
.getVal();
1653 case ELF::DT_RELENT
:
1654 DynRelRegion
.EntSize
= Dyn
.getVal();
1657 case ELF::DT_ANDROID_RELR
:
1658 DynRelrRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1660 case ELF::DT_RELRSZ
:
1661 case ELF::DT_ANDROID_RELRSZ
:
1662 DynRelrRegion
.Size
= Dyn
.getVal();
1664 case ELF::DT_RELRENT
:
1665 case ELF::DT_ANDROID_RELRENT
:
1666 DynRelrRegion
.EntSize
= Dyn
.getVal();
1668 case ELF::DT_PLTREL
:
1669 if (Dyn
.getVal() == DT_REL
)
1670 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rel
);
1671 else if (Dyn
.getVal() == DT_RELA
)
1672 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rela
);
1674 reportError(Twine("unknown DT_PLTREL value of ") +
1675 Twine((uint64_t)Dyn
.getVal()));
1677 case ELF::DT_JMPREL
:
1678 DynPLTRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
1680 case ELF::DT_PLTRELSZ
:
1681 DynPLTRelRegion
.Size
= Dyn
.getVal();
1685 if (StringTableBegin
)
1686 DynamicStringTable
= StringRef(StringTableBegin
, StringTableSize
);
1687 SOName
= getDynamicString(SONameOffset
);
1690 template <typename ELFT
>
1691 typename ELFDumper
<ELFT
>::Elf_Rel_Range ELFDumper
<ELFT
>::dyn_rels() const {
1692 return DynRelRegion
.getAsArrayRef
<Elf_Rel
>();
1695 template <typename ELFT
>
1696 typename ELFDumper
<ELFT
>::Elf_Rela_Range ELFDumper
<ELFT
>::dyn_relas() const {
1697 return DynRelaRegion
.getAsArrayRef
<Elf_Rela
>();
1700 template <typename ELFT
>
1701 typename ELFDumper
<ELFT
>::Elf_Relr_Range ELFDumper
<ELFT
>::dyn_relrs() const {
1702 return DynRelrRegion
.getAsArrayRef
<Elf_Relr
>();
1705 template <class ELFT
> void ELFDumper
<ELFT
>::printFileHeaders() {
1706 ELFDumperStyle
->printFileHeaders(ObjF
->getELFFile());
1709 template <class ELFT
> void ELFDumper
<ELFT
>::printSectionHeaders() {
1710 ELFDumperStyle
->printSectionHeaders(ObjF
->getELFFile());
1713 template <class ELFT
> void ELFDumper
<ELFT
>::printRelocations() {
1714 ELFDumperStyle
->printRelocations(ObjF
->getELFFile());
1717 template <class ELFT
>
1718 void ELFDumper
<ELFT
>::printProgramHeaders(
1719 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
1720 ELFDumperStyle
->printProgramHeaders(ObjF
->getELFFile(), PrintProgramHeaders
,
1721 PrintSectionMapping
);
1724 template <typename ELFT
> void ELFDumper
<ELFT
>::printVersionInfo() {
1725 // Dump version symbol section.
1726 ELFDumperStyle
->printVersionSymbolSection(ObjF
->getELFFile(),
1727 SymbolVersionSection
);
1729 // Dump version definition section.
1730 ELFDumperStyle
->printVersionDefinitionSection(ObjF
->getELFFile(),
1731 SymbolVersionDefSection
);
1733 // Dump version dependency section.
1734 ELFDumperStyle
->printVersionDependencySection(ObjF
->getELFFile(),
1735 SymbolVersionNeedSection
);
1738 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicRelocations() {
1739 ELFDumperStyle
->printDynamicRelocations(ObjF
->getELFFile());
1742 template <class ELFT
>
1743 void ELFDumper
<ELFT
>::printSymbols(bool PrintSymbols
,
1744 bool PrintDynamicSymbols
) {
1745 ELFDumperStyle
->printSymbols(ObjF
->getELFFile(), PrintSymbols
,
1746 PrintDynamicSymbols
);
1749 template <class ELFT
> void ELFDumper
<ELFT
>::printHashSymbols() {
1750 ELFDumperStyle
->printHashSymbols(ObjF
->getELFFile());
1753 template <class ELFT
> void ELFDumper
<ELFT
>::printHashHistogram() {
1754 ELFDumperStyle
->printHashHistogram(ObjF
->getELFFile());
1757 template <class ELFT
> void ELFDumper
<ELFT
>::printCGProfile() {
1758 ELFDumperStyle
->printCGProfile(ObjF
->getELFFile());
1761 template <class ELFT
> void ELFDumper
<ELFT
>::printNotes() {
1762 ELFDumperStyle
->printNotes(ObjF
->getELFFile());
1765 template <class ELFT
> void ELFDumper
<ELFT
>::printELFLinkerOptions() {
1766 ELFDumperStyle
->printELFLinkerOptions(ObjF
->getELFFile());
1769 template <class ELFT
> void ELFDumper
<ELFT
>::printStackSizes() {
1770 ELFDumperStyle
->printStackSizes(ObjF
);
1773 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1774 { #enum, prefix##_##enum }
1776 static const EnumEntry
<unsigned> ElfDynamicDTFlags
[] = {
1777 LLVM_READOBJ_DT_FLAG_ENT(DF
, ORIGIN
),
1778 LLVM_READOBJ_DT_FLAG_ENT(DF
, SYMBOLIC
),
1779 LLVM_READOBJ_DT_FLAG_ENT(DF
, TEXTREL
),
1780 LLVM_READOBJ_DT_FLAG_ENT(DF
, BIND_NOW
),
1781 LLVM_READOBJ_DT_FLAG_ENT(DF
, STATIC_TLS
)
1784 static const EnumEntry
<unsigned> ElfDynamicDTFlags1
[] = {
1785 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOW
),
1786 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAL
),
1787 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GROUP
),
1788 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODELETE
),
1789 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, LOADFLTR
),
1790 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INITFIRST
),
1791 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOOPEN
),
1792 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ORIGIN
),
1793 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DIRECT
),
1794 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, TRANS
),
1795 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INTERPOSE
),
1796 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODEFLIB
),
1797 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODUMP
),
1798 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, CONFALT
),
1799 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ENDFILTEE
),
1800 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELDNE
),
1801 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELPND
),
1802 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODIRECT
),
1803 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, IGNMULDEF
),
1804 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOKSYMS
),
1805 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOHDR
),
1806 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, EDITED
),
1807 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NORELOC
),
1808 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SYMINTPOSE
),
1809 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAUDIT
),
1810 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SINGLETON
)
1813 static const EnumEntry
<unsigned> ElfDynamicDTMipsFlags
[] = {
1814 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NONE
),
1815 LLVM_READOBJ_DT_FLAG_ENT(RHF
, QUICKSTART
),
1816 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NOTPOT
),
1817 LLVM_READOBJ_DT_FLAG_ENT(RHS
, NO_LIBRARY_REPLACEMENT
),
1818 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_MOVE
),
1819 LLVM_READOBJ_DT_FLAG_ENT(RHF
, SGI_ONLY
),
1820 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_INIT
),
1821 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DELTA_C_PLUS_PLUS
),
1822 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_START_INIT
),
1823 LLVM_READOBJ_DT_FLAG_ENT(RHF
, PIXIE
),
1824 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DEFAULT_DELAY_LOAD
),
1825 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTART
),
1826 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTARTED
),
1827 LLVM_READOBJ_DT_FLAG_ENT(RHF
, CORD
),
1828 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_UNRES_UNDEF
),
1829 LLVM_READOBJ_DT_FLAG_ENT(RHF
, RLD_ORDER_SAFE
)
1832 #undef LLVM_READOBJ_DT_FLAG_ENT
1834 template <typename T
, typename TFlag
>
1835 void printFlags(T Value
, ArrayRef
<EnumEntry
<TFlag
>> Flags
, raw_ostream
&OS
) {
1836 using FlagEntry
= EnumEntry
<TFlag
>;
1837 using FlagVector
= SmallVector
<FlagEntry
, 10>;
1838 FlagVector SetFlags
;
1840 for (const auto &Flag
: Flags
) {
1841 if (Flag
.Value
== 0)
1844 if ((Value
& Flag
.Value
) == Flag
.Value
)
1845 SetFlags
.push_back(Flag
);
1848 for (const auto &Flag
: SetFlags
) {
1849 OS
<< Flag
.Name
<< " ";
1853 template <class ELFT
>
1854 void ELFDumper
<ELFT
>::printDynamicEntry(raw_ostream
&OS
, uint64_t Type
,
1855 uint64_t Value
) const {
1856 const char *ConvChar
=
1857 (opts::Output
== opts::GNU
) ? "0x%" PRIx64
: "0x%" PRIX64
;
1859 // Handle custom printing of architecture specific tags
1860 switch (ObjF
->getELFFile()->getHeader()->e_machine
) {
1863 case DT_AARCH64_BTI_PLT
:
1864 case DT_AARCH64_PAC_PLT
:
1873 case DT_HEXAGON_VER
:
1876 case DT_HEXAGON_SYMSZ
:
1877 case DT_HEXAGON_PLT
:
1878 OS
<< format(ConvChar
, Value
);
1886 case DT_MIPS_RLD_VERSION
:
1887 case DT_MIPS_LOCAL_GOTNO
:
1888 case DT_MIPS_SYMTABNO
:
1889 case DT_MIPS_UNREFEXTNO
:
1892 case DT_MIPS_TIME_STAMP
:
1893 case DT_MIPS_ICHECKSUM
:
1894 case DT_MIPS_IVERSION
:
1895 case DT_MIPS_BASE_ADDRESS
:
1897 case DT_MIPS_CONFLICT
:
1898 case DT_MIPS_LIBLIST
:
1899 case DT_MIPS_CONFLICTNO
:
1900 case DT_MIPS_LIBLISTNO
:
1901 case DT_MIPS_GOTSYM
:
1902 case DT_MIPS_HIPAGENO
:
1903 case DT_MIPS_RLD_MAP
:
1904 case DT_MIPS_DELTA_CLASS
:
1905 case DT_MIPS_DELTA_CLASS_NO
:
1906 case DT_MIPS_DELTA_INSTANCE
:
1907 case DT_MIPS_DELTA_RELOC
:
1908 case DT_MIPS_DELTA_RELOC_NO
:
1909 case DT_MIPS_DELTA_SYM
:
1910 case DT_MIPS_DELTA_SYM_NO
:
1911 case DT_MIPS_DELTA_CLASSSYM
:
1912 case DT_MIPS_DELTA_CLASSSYM_NO
:
1913 case DT_MIPS_CXX_FLAGS
:
1914 case DT_MIPS_PIXIE_INIT
:
1915 case DT_MIPS_SYMBOL_LIB
:
1916 case DT_MIPS_LOCALPAGE_GOTIDX
:
1917 case DT_MIPS_LOCAL_GOTIDX
:
1918 case DT_MIPS_HIDDEN_GOTIDX
:
1919 case DT_MIPS_PROTECTED_GOTIDX
:
1920 case DT_MIPS_OPTIONS
:
1921 case DT_MIPS_INTERFACE
:
1922 case DT_MIPS_DYNSTR_ALIGN
:
1923 case DT_MIPS_INTERFACE_SIZE
:
1924 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
1925 case DT_MIPS_PERF_SUFFIX
:
1926 case DT_MIPS_COMPACT_SIZE
:
1927 case DT_MIPS_GP_VALUE
:
1928 case DT_MIPS_AUX_DYNAMIC
:
1929 case DT_MIPS_PLTGOT
:
1931 case DT_MIPS_RLD_MAP_REL
:
1932 OS
<< format(ConvChar
, Value
);
1935 printFlags(Value
, makeArrayRef(ElfDynamicDTMipsFlags
), OS
);
1947 if (Value
== DT_REL
) {
1950 } else if (Value
== DT_RELA
) {
1966 case DT_PREINIT_ARRAY
:
1973 OS
<< format(ConvChar
, Value
);
1988 case DT_INIT_ARRAYSZ
:
1989 case DT_FINI_ARRAYSZ
:
1990 case DT_PREINIT_ARRAYSZ
:
1991 case DT_ANDROID_RELSZ
:
1992 case DT_ANDROID_RELASZ
:
1993 OS
<< Value
<< " (bytes)";
2002 const std::map
<uint64_t, const char*> TagNames
= {
2003 {DT_NEEDED
, "Shared library"},
2004 {DT_SONAME
, "Library soname"},
2005 {DT_AUXILIARY
, "Auxiliary library"},
2006 {DT_USED
, "Not needed object"},
2007 {DT_FILTER
, "Filter library"},
2008 {DT_RPATH
, "Library rpath"},
2009 {DT_RUNPATH
, "Library runpath"},
2011 OS
<< TagNames
.at(Type
) << ": [" << getDynamicString(Value
) << "]";
2015 printFlags(Value
, makeArrayRef(ElfDynamicDTFlags
), OS
);
2018 printFlags(Value
, makeArrayRef(ElfDynamicDTFlags1
), OS
);
2021 OS
<< format(ConvChar
, Value
);
2026 template <class ELFT
>
2027 std::string ELFDumper
<ELFT
>::getDynamicString(uint64_t Value
) const {
2028 if (DynamicStringTable
.empty())
2029 return "<String table is empty or was not found>";
2030 if (Value
< DynamicStringTable
.size())
2031 return DynamicStringTable
.data() + Value
;
2032 return Twine("<Invalid offset 0x" + utohexstr(Value
) + ">").str();
2035 template <class ELFT
> void ELFDumper
<ELFT
>::printUnwindInfo() {
2036 DwarfCFIEH::PrinterContext
<ELFT
> Ctx(W
, ObjF
);
2037 Ctx
.printUnwindInformation();
2042 template <> void ELFDumper
<ELF32LE
>::printUnwindInfo() {
2043 const ELFFile
<ELF32LE
> *Obj
= ObjF
->getELFFile();
2044 const unsigned Machine
= Obj
->getHeader()->e_machine
;
2045 if (Machine
== EM_ARM
) {
2046 ARM::EHABI::PrinterContext
<ELF32LE
> Ctx(W
, Obj
, ObjF
->getFileName(),
2048 Ctx
.PrintUnwindInformation();
2050 DwarfCFIEH::PrinterContext
<ELF32LE
> Ctx(W
, ObjF
);
2051 Ctx
.printUnwindInformation();
2054 } // end anonymous namespace
2056 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicTable() {
2057 ELFDumperStyle
->printDynamic(ObjF
->getELFFile());
2060 template <class ELFT
> void ELFDumper
<ELFT
>::printNeededLibraries() {
2061 ListScope
D(W
, "NeededLibraries");
2063 std::vector
<std::string
> Libs
;
2064 for (const auto &Entry
: dynamic_table())
2065 if (Entry
.d_tag
== ELF::DT_NEEDED
)
2066 Libs
.push_back(getDynamicString(Entry
.d_un
.d_val
));
2068 llvm::stable_sort(Libs
);
2070 for (const auto &L
: Libs
)
2071 W
.startLine() << L
<< "\n";
2074 template <typename ELFT
> void ELFDumper
<ELFT
>::printHashTable() {
2075 DictScope
D(W
, "HashTable");
2078 W
.printNumber("Num Buckets", HashTable
->nbucket
);
2079 W
.printNumber("Num Chains", HashTable
->nchain
);
2080 W
.printList("Buckets", HashTable
->buckets());
2081 W
.printList("Chains", HashTable
->chains());
2084 template <typename ELFT
> void ELFDumper
<ELFT
>::printGnuHashTable() {
2085 DictScope
D(W
, "GnuHashTable");
2088 W
.printNumber("Num Buckets", GnuHashTable
->nbuckets
);
2089 W
.printNumber("First Hashed Symbol Index", GnuHashTable
->symndx
);
2090 W
.printNumber("Num Mask Words", GnuHashTable
->maskwords
);
2091 W
.printNumber("Shift Count", GnuHashTable
->shift2
);
2092 W
.printHexList("Bloom Filter", GnuHashTable
->filter());
2093 W
.printList("Buckets", GnuHashTable
->buckets());
2094 Elf_Sym_Range Syms
= dynamic_symbols();
2095 unsigned NumSyms
= std::distance(Syms
.begin(), Syms
.end());
2097 reportError("No dynamic symbol section");
2098 W
.printHexList("Values", GnuHashTable
->values(NumSyms
));
2101 template <typename ELFT
> void ELFDumper
<ELFT
>::printLoadName() {
2102 W
.printString("LoadName", SOName
);
2105 template <class ELFT
> void ELFDumper
<ELFT
>::printAttributes() {
2106 W
.startLine() << "Attributes not implemented.\n";
2111 template <> void ELFDumper
<ELF32LE
>::printAttributes() {
2112 const ELFFile
<ELF32LE
> *Obj
= ObjF
->getELFFile();
2113 if (Obj
->getHeader()->e_machine
!= EM_ARM
) {
2114 W
.startLine() << "Attributes not implemented.\n";
2118 DictScope
BA(W
, "BuildAttributes");
2119 for (const ELFO::Elf_Shdr
&Sec
:
2120 unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
2121 if (Sec
.sh_type
!= ELF::SHT_ARM_ATTRIBUTES
)
2124 ArrayRef
<uint8_t> Contents
=
2125 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(&Sec
));
2126 if (Contents
[0] != ARMBuildAttrs::Format_Version
) {
2127 errs() << "unrecognised FormatVersion: 0x"
2128 << Twine::utohexstr(Contents
[0]) << '\n';
2132 W
.printHex("FormatVersion", Contents
[0]);
2133 if (Contents
.size() == 1)
2136 ARMAttributeParser(&W
).Parse(Contents
, true);
2140 template <class ELFT
> class MipsGOTParser
{
2142 TYPEDEF_ELF_TYPES(ELFT
)
2143 using Entry
= typename
ELFO::Elf_Addr
;
2144 using Entries
= ArrayRef
<Entry
>;
2146 const bool IsStatic
;
2147 const ELFO
* const Obj
;
2149 MipsGOTParser(const ELFO
*Obj
, StringRef FileName
, Elf_Dyn_Range DynTable
,
2150 Elf_Sym_Range DynSyms
);
2152 bool hasGot() const { return !GotEntries
.empty(); }
2153 bool hasPlt() const { return !PltEntries
.empty(); }
2155 uint64_t getGp() const;
2157 const Entry
*getGotLazyResolver() const;
2158 const Entry
*getGotModulePointer() const;
2159 const Entry
*getPltLazyResolver() const;
2160 const Entry
*getPltModulePointer() const;
2162 Entries
getLocalEntries() const;
2163 Entries
getGlobalEntries() const;
2164 Entries
getOtherEntries() const;
2165 Entries
getPltEntries() const;
2167 uint64_t getGotAddress(const Entry
* E
) const;
2168 int64_t getGotOffset(const Entry
* E
) const;
2169 const Elf_Sym
*getGotSym(const Entry
*E
) const;
2171 uint64_t getPltAddress(const Entry
* E
) const;
2172 const Elf_Sym
*getPltSym(const Entry
*E
) const;
2174 StringRef
getPltStrTable() const { return PltStrTable
; }
2177 const Elf_Shdr
*GotSec
;
2181 const Elf_Shdr
*PltSec
;
2182 const Elf_Shdr
*PltRelSec
;
2183 const Elf_Shdr
*PltSymTable
;
2186 Elf_Sym_Range GotDynSyms
;
2187 StringRef PltStrTable
;
2193 } // end anonymous namespace
2195 template <class ELFT
>
2196 MipsGOTParser
<ELFT
>::MipsGOTParser(const ELFO
*Obj
, StringRef FileName
,
2197 Elf_Dyn_Range DynTable
,
2198 Elf_Sym_Range DynSyms
)
2199 : IsStatic(DynTable
.empty()), Obj(Obj
), GotSec(nullptr), LocalNum(0),
2200 GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr),
2201 FileName(FileName
) {
2202 // See "Global Offset Table" in Chapter 5 in the following document
2203 // for detailed GOT description.
2204 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2206 // Find static GOT secton.
2208 GotSec
= findSectionByName(*Obj
, FileName
, ".got");
2210 reportError("Cannot find .got section");
2212 ArrayRef
<uint8_t> Content
=
2213 unwrapOrError(FileName
, Obj
->getSectionContents(GotSec
));
2214 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2215 Content
.size() / sizeof(Entry
));
2216 LocalNum
= GotEntries
.size();
2220 // Lookup dynamic table tags which define GOT/PLT layouts.
2221 Optional
<uint64_t> DtPltGot
;
2222 Optional
<uint64_t> DtLocalGotNum
;
2223 Optional
<uint64_t> DtGotSym
;
2224 Optional
<uint64_t> DtMipsPltGot
;
2225 Optional
<uint64_t> DtJmpRel
;
2226 for (const auto &Entry
: DynTable
) {
2227 switch (Entry
.getTag()) {
2228 case ELF::DT_PLTGOT
:
2229 DtPltGot
= Entry
.getVal();
2231 case ELF::DT_MIPS_LOCAL_GOTNO
:
2232 DtLocalGotNum
= Entry
.getVal();
2234 case ELF::DT_MIPS_GOTSYM
:
2235 DtGotSym
= Entry
.getVal();
2237 case ELF::DT_MIPS_PLTGOT
:
2238 DtMipsPltGot
= Entry
.getVal();
2240 case ELF::DT_JMPREL
:
2241 DtJmpRel
= Entry
.getVal();
2246 // Find dynamic GOT section.
2247 if (DtPltGot
|| DtLocalGotNum
|| DtGotSym
) {
2249 report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2251 report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2253 report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2255 size_t DynSymTotal
= DynSyms
.size();
2256 if (*DtGotSym
> DynSymTotal
)
2257 reportError("MIPS_GOTSYM exceeds a number of dynamic symbols");
2259 GotSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtPltGot
);
2261 reportError("There is no not empty GOT section at 0x" +
2262 Twine::utohexstr(*DtPltGot
));
2264 LocalNum
= *DtLocalGotNum
;
2265 GlobalNum
= DynSymTotal
- *DtGotSym
;
2267 ArrayRef
<uint8_t> Content
=
2268 unwrapOrError(FileName
, Obj
->getSectionContents(GotSec
));
2269 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2270 Content
.size() / sizeof(Entry
));
2271 GotDynSyms
= DynSyms
.drop_front(*DtGotSym
);
2274 // Find PLT section.
2275 if (DtMipsPltGot
|| DtJmpRel
) {
2277 report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2279 report_fatal_error("Cannot find JMPREL dynamic table tag.");
2281 PltSec
= findNotEmptySectionByAddress(Obj
, FileName
, * DtMipsPltGot
);
2283 report_fatal_error("There is no not empty PLTGOT section at 0x " +
2284 Twine::utohexstr(*DtMipsPltGot
));
2286 PltRelSec
= findNotEmptySectionByAddress(Obj
, FileName
, * DtJmpRel
);
2288 report_fatal_error("There is no not empty RELPLT section at 0x" +
2289 Twine::utohexstr(*DtJmpRel
));
2291 ArrayRef
<uint8_t> PltContent
=
2292 unwrapOrError(FileName
, Obj
->getSectionContents(PltSec
));
2293 PltEntries
= Entries(reinterpret_cast<const Entry
*>(PltContent
.data()),
2294 PltContent
.size() / sizeof(Entry
));
2296 PltSymTable
= unwrapOrError(FileName
, Obj
->getSection(PltRelSec
->sh_link
));
2298 unwrapOrError(FileName
, Obj
->getStringTableForSymtab(*PltSymTable
));
2302 template <class ELFT
> uint64_t MipsGOTParser
<ELFT
>::getGp() const {
2303 return GotSec
->sh_addr
+ 0x7ff0;
2306 template <class ELFT
>
2307 const typename MipsGOTParser
<ELFT
>::Entry
*
2308 MipsGOTParser
<ELFT
>::getGotLazyResolver() const {
2309 return LocalNum
> 0 ? &GotEntries
[0] : nullptr;
2312 template <class ELFT
>
2313 const typename MipsGOTParser
<ELFT
>::Entry
*
2314 MipsGOTParser
<ELFT
>::getGotModulePointer() const {
2317 const Entry
&E
= GotEntries
[1];
2318 if ((E
>> (sizeof(Entry
) * 8 - 1)) == 0)
2323 template <class ELFT
>
2324 typename MipsGOTParser
<ELFT
>::Entries
2325 MipsGOTParser
<ELFT
>::getLocalEntries() const {
2326 size_t Skip
= getGotModulePointer() ? 2 : 1;
2327 if (LocalNum
- Skip
<= 0)
2329 return GotEntries
.slice(Skip
, LocalNum
- Skip
);
2332 template <class ELFT
>
2333 typename MipsGOTParser
<ELFT
>::Entries
2334 MipsGOTParser
<ELFT
>::getGlobalEntries() const {
2337 return GotEntries
.slice(LocalNum
, GlobalNum
);
2340 template <class ELFT
>
2341 typename MipsGOTParser
<ELFT
>::Entries
2342 MipsGOTParser
<ELFT
>::getOtherEntries() const {
2343 size_t OtherNum
= GotEntries
.size() - LocalNum
- GlobalNum
;
2346 return GotEntries
.slice(LocalNum
+ GlobalNum
, OtherNum
);
2349 template <class ELFT
>
2350 uint64_t MipsGOTParser
<ELFT
>::getGotAddress(const Entry
*E
) const {
2351 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2352 return GotSec
->sh_addr
+ Offset
;
2355 template <class ELFT
>
2356 int64_t MipsGOTParser
<ELFT
>::getGotOffset(const Entry
*E
) const {
2357 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2358 return Offset
- 0x7ff0;
2361 template <class ELFT
>
2362 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2363 MipsGOTParser
<ELFT
>::getGotSym(const Entry
*E
) const {
2364 int64_t Offset
= std::distance(GotEntries
.data(), E
);
2365 return &GotDynSyms
[Offset
- LocalNum
];
2368 template <class ELFT
>
2369 const typename MipsGOTParser
<ELFT
>::Entry
*
2370 MipsGOTParser
<ELFT
>::getPltLazyResolver() const {
2371 return PltEntries
.empty() ? nullptr : &PltEntries
[0];
2374 template <class ELFT
>
2375 const typename MipsGOTParser
<ELFT
>::Entry
*
2376 MipsGOTParser
<ELFT
>::getPltModulePointer() const {
2377 return PltEntries
.size() < 2 ? nullptr : &PltEntries
[1];
2380 template <class ELFT
>
2381 typename MipsGOTParser
<ELFT
>::Entries
2382 MipsGOTParser
<ELFT
>::getPltEntries() const {
2383 if (PltEntries
.size() <= 2)
2385 return PltEntries
.slice(2, PltEntries
.size() - 2);
2388 template <class ELFT
>
2389 uint64_t MipsGOTParser
<ELFT
>::getPltAddress(const Entry
*E
) const {
2390 int64_t Offset
= std::distance(PltEntries
.data(), E
) * sizeof(Entry
);
2391 return PltSec
->sh_addr
+ Offset
;
2394 template <class ELFT
>
2395 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2396 MipsGOTParser
<ELFT
>::getPltSym(const Entry
*E
) const {
2397 int64_t Offset
= std::distance(getPltEntries().data(), E
);
2398 if (PltRelSec
->sh_type
== ELF::SHT_REL
) {
2399 Elf_Rel_Range Rels
= unwrapOrError(FileName
, Obj
->rels(PltRelSec
));
2400 return unwrapOrError(FileName
,
2401 Obj
->getRelocationSymbol(&Rels
[Offset
], PltSymTable
));
2403 Elf_Rela_Range Rels
= unwrapOrError(FileName
, Obj
->relas(PltRelSec
));
2404 return unwrapOrError(FileName
,
2405 Obj
->getRelocationSymbol(&Rels
[Offset
], PltSymTable
));
2409 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsPLTGOT() {
2410 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2411 if (Obj
->getHeader()->e_machine
!= EM_MIPS
)
2412 reportError("MIPS PLT GOT is available for MIPS targets only");
2414 MipsGOTParser
<ELFT
> Parser(Obj
, ObjF
->getFileName(), dynamic_table(),
2416 if (Parser
.hasGot())
2417 ELFDumperStyle
->printMipsGOT(Parser
);
2418 if (Parser
.hasPlt())
2419 ELFDumperStyle
->printMipsPLT(Parser
);
2422 static const EnumEntry
<unsigned> ElfMipsISAExtType
[] = {
2423 {"None", Mips::AFL_EXT_NONE
},
2424 {"Broadcom SB-1", Mips::AFL_EXT_SB1
},
2425 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON
},
2426 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2
},
2427 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP
},
2428 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3
},
2429 {"LSI R4010", Mips::AFL_EXT_4010
},
2430 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E
},
2431 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F
},
2432 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A
},
2433 {"MIPS R4650", Mips::AFL_EXT_4650
},
2434 {"MIPS R5900", Mips::AFL_EXT_5900
},
2435 {"MIPS R10000", Mips::AFL_EXT_10000
},
2436 {"NEC VR4100", Mips::AFL_EXT_4100
},
2437 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111
},
2438 {"NEC VR4120", Mips::AFL_EXT_4120
},
2439 {"NEC VR5400", Mips::AFL_EXT_5400
},
2440 {"NEC VR5500", Mips::AFL_EXT_5500
},
2441 {"RMI Xlr", Mips::AFL_EXT_XLR
},
2442 {"Toshiba R3900", Mips::AFL_EXT_3900
}
2445 static const EnumEntry
<unsigned> ElfMipsASEFlags
[] = {
2446 {"DSP", Mips::AFL_ASE_DSP
},
2447 {"DSPR2", Mips::AFL_ASE_DSPR2
},
2448 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA
},
2449 {"MCU", Mips::AFL_ASE_MCU
},
2450 {"MDMX", Mips::AFL_ASE_MDMX
},
2451 {"MIPS-3D", Mips::AFL_ASE_MIPS3D
},
2452 {"MT", Mips::AFL_ASE_MT
},
2453 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS
},
2454 {"VZ", Mips::AFL_ASE_VIRT
},
2455 {"MSA", Mips::AFL_ASE_MSA
},
2456 {"MIPS16", Mips::AFL_ASE_MIPS16
},
2457 {"microMIPS", Mips::AFL_ASE_MICROMIPS
},
2458 {"XPA", Mips::AFL_ASE_XPA
},
2459 {"CRC", Mips::AFL_ASE_CRC
},
2460 {"GINV", Mips::AFL_ASE_GINV
},
2463 static const EnumEntry
<unsigned> ElfMipsFpABIType
[] = {
2464 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY
},
2465 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE
},
2466 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE
},
2467 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT
},
2468 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2469 Mips::Val_GNU_MIPS_ABI_FP_OLD_64
},
2470 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX
},
2471 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64
},
2472 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2473 Mips::Val_GNU_MIPS_ABI_FP_64A
}
2476 static const EnumEntry
<unsigned> ElfMipsFlags1
[] {
2477 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG
},
2480 static int getMipsRegisterSize(uint8_t Flag
) {
2482 case Mips::AFL_REG_NONE
:
2484 case Mips::AFL_REG_32
:
2486 case Mips::AFL_REG_64
:
2488 case Mips::AFL_REG_128
:
2495 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsABIFlags() {
2496 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2497 const Elf_Shdr
*Shdr
=
2498 findSectionByName(*Obj
, ObjF
->getFileName(), ".MIPS.abiflags");
2500 W
.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2503 ArrayRef
<uint8_t> Sec
=
2504 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(Shdr
));
2505 if (Sec
.size() != sizeof(Elf_Mips_ABIFlags
<ELFT
>)) {
2506 W
.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2510 auto *Flags
= reinterpret_cast<const Elf_Mips_ABIFlags
<ELFT
> *>(Sec
.data());
2512 raw_ostream
&OS
= W
.getOStream();
2513 DictScope
GS(W
, "MIPS ABI Flags");
2515 W
.printNumber("Version", Flags
->version
);
2516 W
.startLine() << "ISA: ";
2517 if (Flags
->isa_rev
<= 1)
2518 OS
<< format("MIPS%u", Flags
->isa_level
);
2520 OS
<< format("MIPS%ur%u", Flags
->isa_level
, Flags
->isa_rev
);
2522 W
.printEnum("ISA Extension", Flags
->isa_ext
, makeArrayRef(ElfMipsISAExtType
));
2523 W
.printFlags("ASEs", Flags
->ases
, makeArrayRef(ElfMipsASEFlags
));
2524 W
.printEnum("FP ABI", Flags
->fp_abi
, makeArrayRef(ElfMipsFpABIType
));
2525 W
.printNumber("GPR size", getMipsRegisterSize(Flags
->gpr_size
));
2526 W
.printNumber("CPR1 size", getMipsRegisterSize(Flags
->cpr1_size
));
2527 W
.printNumber("CPR2 size", getMipsRegisterSize(Flags
->cpr2_size
));
2528 W
.printFlags("Flags 1", Flags
->flags1
, makeArrayRef(ElfMipsFlags1
));
2529 W
.printHex("Flags 2", Flags
->flags2
);
2532 template <class ELFT
>
2533 static void printMipsReginfoData(ScopedPrinter
&W
,
2534 const Elf_Mips_RegInfo
<ELFT
> &Reginfo
) {
2535 W
.printHex("GP", Reginfo
.ri_gp_value
);
2536 W
.printHex("General Mask", Reginfo
.ri_gprmask
);
2537 W
.printHex("Co-Proc Mask0", Reginfo
.ri_cprmask
[0]);
2538 W
.printHex("Co-Proc Mask1", Reginfo
.ri_cprmask
[1]);
2539 W
.printHex("Co-Proc Mask2", Reginfo
.ri_cprmask
[2]);
2540 W
.printHex("Co-Proc Mask3", Reginfo
.ri_cprmask
[3]);
2543 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsReginfo() {
2544 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2545 const Elf_Shdr
*Shdr
= findSectionByName(*Obj
, ObjF
->getFileName(), ".reginfo");
2547 W
.startLine() << "There is no .reginfo section in the file.\n";
2550 ArrayRef
<uint8_t> Sec
=
2551 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(Shdr
));
2552 if (Sec
.size() != sizeof(Elf_Mips_RegInfo
<ELFT
>)) {
2553 W
.startLine() << "The .reginfo section has a wrong size.\n";
2557 DictScope
GS(W
, "MIPS RegInfo");
2558 auto *Reginfo
= reinterpret_cast<const Elf_Mips_RegInfo
<ELFT
> *>(Sec
.data());
2559 printMipsReginfoData(W
, *Reginfo
);
2562 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsOptions() {
2563 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2564 const Elf_Shdr
*Shdr
=
2565 findSectionByName(*Obj
, ObjF
->getFileName(), ".MIPS.options");
2567 W
.startLine() << "There is no .MIPS.options section in the file.\n";
2571 DictScope
GS(W
, "MIPS Options");
2573 ArrayRef
<uint8_t> Sec
=
2574 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionContents(Shdr
));
2575 while (!Sec
.empty()) {
2576 if (Sec
.size() < sizeof(Elf_Mips_Options
<ELFT
>)) {
2577 W
.startLine() << "The .MIPS.options section has a wrong size.\n";
2580 auto *O
= reinterpret_cast<const Elf_Mips_Options
<ELFT
> *>(Sec
.data());
2581 DictScope
GS(W
, getElfMipsOptionsOdkType(O
->kind
));
2584 printMipsReginfoData(W
, O
->getRegInfo());
2587 W
.startLine() << "Unsupported MIPS options tag.\n";
2590 Sec
= Sec
.slice(O
->size
);
2594 template <class ELFT
> void ELFDumper
<ELFT
>::printStackMap() const {
2595 const ELFFile
<ELFT
> *Obj
= ObjF
->getELFFile();
2596 const Elf_Shdr
*StackMapSection
= nullptr;
2597 for (const auto &Sec
: unwrapOrError(ObjF
->getFileName(), Obj
->sections())) {
2599 unwrapOrError(ObjF
->getFileName(), Obj
->getSectionName(&Sec
));
2600 if (Name
== ".llvm_stackmaps") {
2601 StackMapSection
= &Sec
;
2606 if (!StackMapSection
)
2609 ArrayRef
<uint8_t> StackMapContentsArray
= unwrapOrError(
2610 ObjF
->getFileName(), Obj
->getSectionContents(StackMapSection
));
2612 prettyPrintStackMap(
2613 W
, StackMapParser
<ELFT::TargetEndianness
>(StackMapContentsArray
));
2616 template <class ELFT
> void ELFDumper
<ELFT
>::printGroupSections() {
2617 ELFDumperStyle
->printGroupSections(ObjF
->getELFFile());
2620 template <class ELFT
> void ELFDumper
<ELFT
>::printAddrsig() {
2621 ELFDumperStyle
->printAddrsig(ObjF
->getELFFile());
2624 static inline void printFields(formatted_raw_ostream
&OS
, StringRef Str1
,
2628 OS
.PadToColumn(37u);
2633 template <class ELFT
>
2634 static std::string
getSectionHeadersNumString(const ELFFile
<ELFT
> *Obj
,
2635 StringRef FileName
) {
2636 const typename
ELFT::Ehdr
*ElfHeader
= Obj
->getHeader();
2637 if (ElfHeader
->e_shnum
!= 0)
2638 return to_string(ElfHeader
->e_shnum
);
2640 ArrayRef
<typename
ELFT::Shdr
> Arr
= unwrapOrError(FileName
, Obj
->sections());
2643 return "0 (" + to_string(Arr
[0].sh_size
) + ")";
2646 template <class ELFT
>
2647 static std::string
getSectionHeaderTableIndexString(const ELFFile
<ELFT
> *Obj
,
2648 StringRef FileName
) {
2649 const typename
ELFT::Ehdr
*ElfHeader
= Obj
->getHeader();
2650 if (ElfHeader
->e_shstrndx
!= SHN_XINDEX
)
2651 return to_string(ElfHeader
->e_shstrndx
);
2653 ArrayRef
<typename
ELFT::Shdr
> Arr
= unwrapOrError(FileName
, Obj
->sections());
2655 return "65535 (corrupt: out of range)";
2656 return to_string(ElfHeader
->e_shstrndx
) + " (" + to_string(Arr
[0].sh_link
) +
2660 template <class ELFT
> void GNUStyle
<ELFT
>::printFileHeaders(const ELFO
*Obj
) {
2661 const Elf_Ehdr
*e
= Obj
->getHeader();
2662 OS
<< "ELF Header:\n";
2665 for (int i
= 0; i
< ELF::EI_NIDENT
; i
++)
2666 OS
<< format(" %02x", static_cast<int>(e
->e_ident
[i
]));
2668 Str
= printEnum(e
->e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
2669 printFields(OS
, "Class:", Str
);
2670 Str
= printEnum(e
->e_ident
[ELF::EI_DATA
], makeArrayRef(ElfDataEncoding
));
2671 printFields(OS
, "Data:", Str
);
2674 OS
.PadToColumn(37u);
2675 OS
<< to_hexString(e
->e_ident
[ELF::EI_VERSION
]);
2676 if (e
->e_version
== ELF::EV_CURRENT
)
2679 Str
= printEnum(e
->e_ident
[ELF::EI_OSABI
], makeArrayRef(ElfOSABI
));
2680 printFields(OS
, "OS/ABI:", Str
);
2681 Str
= "0x" + to_hexString(e
->e_ident
[ELF::EI_ABIVERSION
]);
2682 printFields(OS
, "ABI Version:", Str
);
2683 Str
= printEnum(e
->e_type
, makeArrayRef(ElfObjectFileType
));
2684 printFields(OS
, "Type:", Str
);
2685 Str
= printEnum(e
->e_machine
, makeArrayRef(ElfMachineType
));
2686 printFields(OS
, "Machine:", Str
);
2687 Str
= "0x" + to_hexString(e
->e_version
);
2688 printFields(OS
, "Version:", Str
);
2689 Str
= "0x" + to_hexString(e
->e_entry
);
2690 printFields(OS
, "Entry point address:", Str
);
2691 Str
= to_string(e
->e_phoff
) + " (bytes into file)";
2692 printFields(OS
, "Start of program headers:", Str
);
2693 Str
= to_string(e
->e_shoff
) + " (bytes into file)";
2694 printFields(OS
, "Start of section headers:", Str
);
2695 std::string ElfFlags
;
2696 if (e
->e_machine
== EM_MIPS
)
2698 printFlags(e
->e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
2699 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
2700 unsigned(ELF::EF_MIPS_MACH
));
2701 else if (e
->e_machine
== EM_RISCV
)
2702 ElfFlags
= printFlags(e
->e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
2703 Str
= "0x" + to_hexString(e
->e_flags
);
2704 if (!ElfFlags
.empty())
2705 Str
= Str
+ ", " + ElfFlags
;
2706 printFields(OS
, "Flags:", Str
);
2707 Str
= to_string(e
->e_ehsize
) + " (bytes)";
2708 printFields(OS
, "Size of this header:", Str
);
2709 Str
= to_string(e
->e_phentsize
) + " (bytes)";
2710 printFields(OS
, "Size of program headers:", Str
);
2711 Str
= to_string(e
->e_phnum
);
2712 printFields(OS
, "Number of program headers:", Str
);
2713 Str
= to_string(e
->e_shentsize
) + " (bytes)";
2714 printFields(OS
, "Size of section headers:", Str
);
2715 Str
= getSectionHeadersNumString(Obj
, this->FileName
);
2716 printFields(OS
, "Number of section headers:", Str
);
2717 Str
= getSectionHeaderTableIndexString(Obj
, this->FileName
);
2718 printFields(OS
, "Section header string table index:", Str
);
2722 struct GroupMember
{
2727 struct GroupSection
{
2729 std::string Signature
;
2735 std::vector
<GroupMember
> Members
;
2738 template <class ELFT
>
2739 std::vector
<GroupSection
> getGroups(const ELFFile
<ELFT
> *Obj
,
2740 StringRef FileName
) {
2741 using Elf_Shdr
= typename
ELFT::Shdr
;
2742 using Elf_Sym
= typename
ELFT::Sym
;
2743 using Elf_Word
= typename
ELFT::Word
;
2745 std::vector
<GroupSection
> Ret
;
2747 for (const Elf_Shdr
&Sec
: unwrapOrError(FileName
, Obj
->sections())) {
2749 if (Sec
.sh_type
!= ELF::SHT_GROUP
)
2752 const Elf_Shdr
*Symtab
=
2753 unwrapOrError(FileName
, Obj
->getSection(Sec
.sh_link
));
2754 StringRef StrTable
=
2755 unwrapOrError(FileName
, Obj
->getStringTableForSymtab(*Symtab
));
2756 const Elf_Sym
*Sym
= unwrapOrError(
2757 FileName
, Obj
->template getEntry
<Elf_Sym
>(Symtab
, Sec
.sh_info
));
2758 auto Data
= unwrapOrError(
2759 FileName
, Obj
->template getSectionContentsAsArray
<Elf_Word
>(&Sec
));
2761 StringRef Name
= unwrapOrError(FileName
, Obj
->getSectionName(&Sec
));
2762 StringRef Signature
= StrTable
.data() + Sym
->st_name
;
2763 Ret
.push_back({Name
,
2764 maybeDemangle(Signature
),
2772 std::vector
<GroupMember
> &GM
= Ret
.back().Members
;
2773 for (uint32_t Ndx
: Data
.slice(1)) {
2774 auto Sec
= unwrapOrError(FileName
, Obj
->getSection(Ndx
));
2775 const StringRef Name
= unwrapOrError(FileName
, Obj
->getSectionName(Sec
));
2776 GM
.push_back({Name
, Ndx
});
2782 DenseMap
<uint64_t, const GroupSection
*>
2783 mapSectionsToGroups(ArrayRef
<GroupSection
> Groups
) {
2784 DenseMap
<uint64_t, const GroupSection
*> Ret
;
2785 for (const GroupSection
&G
: Groups
)
2786 for (const GroupMember
&GM
: G
.Members
)
2787 Ret
.insert({GM
.Index
, &G
});
2793 template <class ELFT
> void GNUStyle
<ELFT
>::printGroupSections(const ELFO
*Obj
) {
2794 std::vector
<GroupSection
> V
= getGroups
<ELFT
>(Obj
, this->FileName
);
2795 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
2796 for (const GroupSection
&G
: V
) {
2798 << getGroupType(G
.Type
) << " group section ["
2799 << format_decimal(G
.Index
, 5) << "] `" << G
.Name
<< "' [" << G
.Signature
2800 << "] contains " << G
.Members
.size() << " sections:\n"
2801 << " [Index] Name\n";
2802 for (const GroupMember
&GM
: G
.Members
) {
2803 const GroupSection
*MainGroup
= Map
[GM
.Index
];
2804 if (MainGroup
!= &G
) {
2806 errs() << "Error: section [" << format_decimal(GM
.Index
, 5)
2807 << "] in group section [" << format_decimal(G
.Index
, 5)
2808 << "] already in group section ["
2809 << format_decimal(MainGroup
->Index
, 5) << "]";
2813 OS
<< " [" << format_decimal(GM
.Index
, 5) << "] " << GM
.Name
<< "\n";
2818 OS
<< "There are no section groups in this file.\n";
2821 template <class ELFT
>
2822 void GNUStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, const Elf_Shdr
*SymTab
,
2823 const Elf_Rela
&R
, bool IsRela
) {
2824 const Elf_Sym
*Sym
=
2825 unwrapOrError(this->FileName
, Obj
->getRelocationSymbol(&R
, SymTab
));
2826 std::string TargetName
;
2827 if (Sym
&& Sym
->getType() == ELF::STT_SECTION
) {
2828 const Elf_Shdr
*Sec
= unwrapOrError(
2830 Obj
->getSection(Sym
, SymTab
, this->dumper()->getShndxTable()));
2831 TargetName
= unwrapOrError(this->FileName
, Obj
->getSectionName(Sec
));
2833 StringRef StrTable
=
2834 unwrapOrError(this->FileName
, Obj
->getStringTableForSymtab(*SymTab
));
2835 TargetName
= this->dumper()->getFullSymbolName(
2836 Sym
, StrTable
, SymTab
->sh_type
== SHT_DYNSYM
/* IsDynamic */);
2838 printRelocation(Obj
, Sym
, TargetName
, R
, IsRela
);
2841 template <class ELFT
>
2842 void GNUStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, const Elf_Sym
*Sym
,
2843 StringRef SymbolName
, const Elf_Rela
&R
,
2845 // First two fields are bit width dependent. The rest of them are fixed width.
2846 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
2847 Field Fields
[5] = {0, 10 + Bias
, 19 + 2 * Bias
, 42 + 2 * Bias
, 53 + 2 * Bias
};
2848 unsigned Width
= ELFT::Is64Bits
? 16 : 8;
2850 Fields
[0].Str
= to_string(format_hex_no_prefix(R
.r_offset
, Width
));
2851 Fields
[1].Str
= to_string(format_hex_no_prefix(R
.r_info
, Width
));
2853 SmallString
<32> RelocName
;
2854 Obj
->getRelocationTypeName(R
.getType(Obj
->isMips64EL()), RelocName
);
2855 Fields
[2].Str
= RelocName
.c_str();
2857 if (Sym
&& (!SymbolName
.empty() || Sym
->getValue() != 0))
2858 Fields
[3].Str
= to_string(format_hex_no_prefix(Sym
->getValue(), Width
));
2860 Fields
[4].Str
= SymbolName
;
2861 for (const Field
&F
: Fields
)
2866 int64_t RelAddend
= R
.r_addend
;
2867 if (!SymbolName
.empty()) {
2868 if (R
.r_addend
< 0) {
2870 RelAddend
= std::abs(RelAddend
);
2875 Addend
+= to_hexString(RelAddend
, false);
2877 OS
<< Addend
<< "\n";
2880 template <class ELFT
> void GNUStyle
<ELFT
>::printRelocHeader(unsigned SType
) {
2881 bool IsRela
= SType
== ELF::SHT_RELA
|| SType
== ELF::SHT_ANDROID_RELA
;
2882 bool IsRelr
= SType
== ELF::SHT_RELR
|| SType
== ELF::SHT_ANDROID_RELR
;
2887 if (IsRelr
&& opts::RawRelr
)
2893 << " Symbol's Value Symbol's Name";
2895 OS
<< " Info Type Sym. Value Symbol's Name";
2901 template <class ELFT
> void GNUStyle
<ELFT
>::printRelocations(const ELFO
*Obj
) {
2902 bool HasRelocSections
= false;
2903 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
2904 if (Sec
.sh_type
!= ELF::SHT_REL
&& Sec
.sh_type
!= ELF::SHT_RELA
&&
2905 Sec
.sh_type
!= ELF::SHT_RELR
&& Sec
.sh_type
!= ELF::SHT_ANDROID_REL
&&
2906 Sec
.sh_type
!= ELF::SHT_ANDROID_RELA
&&
2907 Sec
.sh_type
!= ELF::SHT_ANDROID_RELR
)
2909 HasRelocSections
= true;
2910 StringRef Name
= unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
));
2911 unsigned Entries
= Sec
.getEntityCount();
2912 std::vector
<Elf_Rela
> AndroidRelas
;
2913 if (Sec
.sh_type
== ELF::SHT_ANDROID_REL
||
2914 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
) {
2915 // Android's packed relocation section needs to be unpacked first
2916 // to get the actual number of entries.
2917 AndroidRelas
= unwrapOrError(this->FileName
, Obj
->android_relas(&Sec
));
2918 Entries
= AndroidRelas
.size();
2920 std::vector
<Elf_Rela
> RelrRelas
;
2921 if (!opts::RawRelr
&& (Sec
.sh_type
== ELF::SHT_RELR
||
2922 Sec
.sh_type
== ELF::SHT_ANDROID_RELR
)) {
2923 // .relr.dyn relative relocation section needs to be unpacked first
2924 // to get the actual number of entries.
2925 Elf_Relr_Range Relrs
= unwrapOrError(this->FileName
, Obj
->relrs(&Sec
));
2926 RelrRelas
= unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
2927 Entries
= RelrRelas
.size();
2929 uintX_t Offset
= Sec
.sh_offset
;
2930 OS
<< "\nRelocation section '" << Name
<< "' at offset 0x"
2931 << to_hexString(Offset
, false) << " contains " << Entries
2933 printRelocHeader(Sec
.sh_type
);
2934 const Elf_Shdr
*SymTab
=
2935 unwrapOrError(this->FileName
, Obj
->getSection(Sec
.sh_link
));
2936 switch (Sec
.sh_type
) {
2938 for (const auto &R
: unwrapOrError(this->FileName
, Obj
->rels(&Sec
))) {
2940 Rela
.r_offset
= R
.r_offset
;
2941 Rela
.r_info
= R
.r_info
;
2943 printRelocation(Obj
, SymTab
, Rela
, false);
2947 for (const auto &R
: unwrapOrError(this->FileName
, Obj
->relas(&Sec
)))
2948 printRelocation(Obj
, SymTab
, R
, true);
2951 case ELF::SHT_ANDROID_RELR
:
2953 for (const auto &R
: unwrapOrError(this->FileName
, Obj
->relrs(&Sec
)))
2954 OS
<< to_string(format_hex_no_prefix(R
, ELFT::Is64Bits
? 16 : 8))
2957 for (const auto &R
: RelrRelas
)
2958 printRelocation(Obj
, SymTab
, R
, false);
2960 case ELF::SHT_ANDROID_REL
:
2961 case ELF::SHT_ANDROID_RELA
:
2962 for (const auto &R
: AndroidRelas
)
2963 printRelocation(Obj
, SymTab
, R
, Sec
.sh_type
== ELF::SHT_ANDROID_RELA
);
2967 if (!HasRelocSections
)
2968 OS
<< "\nThere are no relocations in this file.\n";
2971 // Print the offset of a particular section from anyone of the ranges:
2972 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
2973 // If 'Type' does not fall within any of those ranges, then a string is
2974 // returned as '<unknown>' followed by the type value.
2975 static std::string
getSectionTypeOffsetString(unsigned Type
) {
2976 if (Type
>= SHT_LOOS
&& Type
<= SHT_HIOS
)
2977 return "LOOS+0x" + to_hexString(Type
- SHT_LOOS
);
2978 else if (Type
>= SHT_LOPROC
&& Type
<= SHT_HIPROC
)
2979 return "LOPROC+0x" + to_hexString(Type
- SHT_LOPROC
);
2980 else if (Type
>= SHT_LOUSER
&& Type
<= SHT_HIUSER
)
2981 return "LOUSER+0x" + to_hexString(Type
- SHT_LOUSER
);
2982 return "0x" + to_hexString(Type
) + ": <unknown>";
2985 static std::string
getSectionTypeString(unsigned Arch
, unsigned Type
) {
2986 using namespace ELF
;
2993 case SHT_ARM_PREEMPTMAP
:
2994 return "ARM_PREEMPTMAP";
2995 case SHT_ARM_ATTRIBUTES
:
2996 return "ARM_ATTRIBUTES";
2997 case SHT_ARM_DEBUGOVERLAY
:
2998 return "ARM_DEBUGOVERLAY";
2999 case SHT_ARM_OVERLAYSECTION
:
3000 return "ARM_OVERLAYSECTION";
3005 case SHT_X86_64_UNWIND
:
3006 return "X86_64_UNWIND";
3010 case EM_MIPS_RS3_LE
:
3012 case SHT_MIPS_REGINFO
:
3013 return "MIPS_REGINFO";
3014 case SHT_MIPS_OPTIONS
:
3015 return "MIPS_OPTIONS";
3016 case SHT_MIPS_DWARF
:
3017 return "MIPS_DWARF";
3018 case SHT_MIPS_ABIFLAGS
:
3019 return "MIPS_ABIFLAGS";
3048 case SHT_INIT_ARRAY
:
3049 return "INIT_ARRAY";
3050 case SHT_FINI_ARRAY
:
3051 return "FINI_ARRAY";
3052 case SHT_PREINIT_ARRAY
:
3053 return "PREINIT_ARRAY";
3056 case SHT_SYMTAB_SHNDX
:
3057 return "SYMTAB SECTION INDICES";
3058 case SHT_ANDROID_REL
:
3059 return "ANDROID_REL";
3060 case SHT_ANDROID_RELA
:
3061 return "ANDROID_RELA";
3063 case SHT_ANDROID_RELR
:
3065 case SHT_LLVM_ODRTAB
:
3066 return "LLVM_ODRTAB";
3067 case SHT_LLVM_LINKER_OPTIONS
:
3068 return "LLVM_LINKER_OPTIONS";
3069 case SHT_LLVM_CALL_GRAPH_PROFILE
:
3070 return "LLVM_CALL_GRAPH_PROFILE";
3071 case SHT_LLVM_ADDRSIG
:
3072 return "LLVM_ADDRSIG";
3073 case SHT_LLVM_DEPENDENT_LIBRARIES
:
3074 return "LLVM_DEPENDENT_LIBRARIES";
3075 // FIXME: Parse processor specific GNU attributes
3076 case SHT_GNU_ATTRIBUTES
:
3077 return "ATTRIBUTES";
3080 case SHT_GNU_verdef
:
3082 case SHT_GNU_verneed
:
3084 case SHT_GNU_versym
:
3087 return getSectionTypeOffsetString(Type
);
3092 template <class ELFT
>
3093 void GNUStyle
<ELFT
>::printSectionHeaders(const ELFO
*Obj
) {
3094 unsigned Bias
= ELFT::Is64Bits
? 0 : 8;
3095 ArrayRef
<Elf_Shdr
> Sections
= unwrapOrError(this->FileName
, Obj
->sections());
3096 OS
<< "There are " << to_string(Sections
.size())
3097 << " section headers, starting at offset "
3098 << "0x" << to_hexString(Obj
->getHeader()->e_shoff
, false) << ":\n\n";
3099 OS
<< "Section Headers:\n";
3100 Field Fields
[11] = {
3101 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3102 {"Address", 41}, {"Off", 58 - Bias
}, {"Size", 65 - Bias
},
3103 {"ES", 72 - Bias
}, {"Flg", 75 - Bias
}, {"Lk", 79 - Bias
},
3104 {"Inf", 82 - Bias
}, {"Al", 86 - Bias
}};
3105 for (auto &F
: Fields
)
3109 const ELFObjectFile
<ELFT
> *ElfObj
= this->dumper()->getElfObject();
3110 size_t SectionIndex
= 0;
3111 for (const Elf_Shdr
&Sec
: Sections
) {
3112 Fields
[0].Str
= to_string(SectionIndex
);
3113 Fields
[1].Str
= unwrapOrError
<StringRef
>(
3114 ElfObj
->getFileName(), Obj
->getSectionName(&Sec
, this->WarningHandler
));
3116 getSectionTypeString(Obj
->getHeader()->e_machine
, Sec
.sh_type
);
3118 to_string(format_hex_no_prefix(Sec
.sh_addr
, ELFT::Is64Bits
? 16 : 8));
3119 Fields
[4].Str
= to_string(format_hex_no_prefix(Sec
.sh_offset
, 6));
3120 Fields
[5].Str
= to_string(format_hex_no_prefix(Sec
.sh_size
, 6));
3121 Fields
[6].Str
= to_string(format_hex_no_prefix(Sec
.sh_entsize
, 2));
3122 Fields
[7].Str
= getGNUFlags(Sec
.sh_flags
);
3123 Fields
[8].Str
= to_string(Sec
.sh_link
);
3124 Fields
[9].Str
= to_string(Sec
.sh_info
);
3125 Fields
[10].Str
= to_string(Sec
.sh_addralign
);
3127 OS
.PadToColumn(Fields
[0].Column
);
3128 OS
<< "[" << right_justify(Fields
[0].Str
, 2) << "]";
3129 for (int i
= 1; i
< 7; i
++)
3130 printField(Fields
[i
]);
3131 OS
.PadToColumn(Fields
[7].Column
);
3132 OS
<< right_justify(Fields
[7].Str
, 3);
3133 OS
.PadToColumn(Fields
[8].Column
);
3134 OS
<< right_justify(Fields
[8].Str
, 2);
3135 OS
.PadToColumn(Fields
[9].Column
);
3136 OS
<< right_justify(Fields
[9].Str
, 3);
3137 OS
.PadToColumn(Fields
[10].Column
);
3138 OS
<< right_justify(Fields
[10].Str
, 2);
3142 OS
<< "Key to Flags:\n"
3143 << " W (write), A (alloc), X (execute), M (merge), S (strings), l "
3145 << " I (info), L (link order), G (group), T (TLS), E (exclude),\
3147 << " O (extra OS processing required) o (OS specific),\
3148 p (processor specific)\n";
3151 template <class ELFT
>
3152 void GNUStyle
<ELFT
>::printSymtabMessage(const ELFO
*Obj
, StringRef Name
,
3155 OS
<< "\nSymbol table '" << Name
<< "' contains " << Entries
3158 OS
<< "\n Symbol table for image:\n";
3161 OS
<< " Num: Value Size Type Bind Vis Ndx Name\n";
3163 OS
<< " Num: Value Size Type Bind Vis Ndx Name\n";
3166 template <class ELFT
>
3167 std::string GNUStyle
<ELFT
>::getSymbolSectionNdx(const ELFO
*Obj
,
3168 const Elf_Sym
*Symbol
,
3169 const Elf_Sym
*FirstSym
) {
3170 unsigned SectionIndex
= Symbol
->st_shndx
;
3171 switch (SectionIndex
) {
3172 case ELF::SHN_UNDEF
:
3176 case ELF::SHN_COMMON
:
3178 case ELF::SHN_XINDEX
:
3179 return to_string(format_decimal(
3180 unwrapOrError(this->FileName
,
3181 object::getExtendedSymbolTableIndex
<ELFT
>(
3182 Symbol
, FirstSym
, this->dumper()->getShndxTable())),
3186 // Processor specific
3187 if (SectionIndex
>= ELF::SHN_LOPROC
&& SectionIndex
<= ELF::SHN_HIPROC
)
3188 return std::string("PRC[0x") +
3189 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3191 if (SectionIndex
>= ELF::SHN_LOOS
&& SectionIndex
<= ELF::SHN_HIOS
)
3192 return std::string("OS[0x") +
3193 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3194 // Architecture reserved:
3195 if (SectionIndex
>= ELF::SHN_LORESERVE
&&
3196 SectionIndex
<= ELF::SHN_HIRESERVE
)
3197 return std::string("RSV[0x") +
3198 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
3199 // A normal section with an index
3200 return to_string(format_decimal(SectionIndex
, 3));
3204 template <class ELFT
>
3205 void GNUStyle
<ELFT
>::printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
3206 const Elf_Sym
*FirstSym
, StringRef StrTable
,
3209 static bool Dynamic
= true;
3211 // If this function was called with a different value from IsDynamic
3212 // from last call, happens when we move from dynamic to static symbol
3213 // table, "Num" field should be reset.
3214 if (!Dynamic
!= !IsDynamic
) {
3219 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3220 Field Fields
[8] = {0, 8, 17 + Bias
, 23 + Bias
,
3221 31 + Bias
, 38 + Bias
, 47 + Bias
, 51 + Bias
};
3222 Fields
[0].Str
= to_string(format_decimal(Idx
++, 6)) + ":";
3223 Fields
[1].Str
= to_string(
3224 format_hex_no_prefix(Symbol
->st_value
, ELFT::Is64Bits
? 16 : 8));
3225 Fields
[2].Str
= to_string(format_decimal(Symbol
->st_size
, 5));
3227 unsigned char SymbolType
= Symbol
->getType();
3228 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
3229 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
3230 Fields
[3].Str
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
3232 Fields
[3].Str
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
3235 printEnum(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
3237 printEnum(Symbol
->getVisibility(), makeArrayRef(ElfSymbolVisibilities
));
3238 Fields
[6].Str
= getSymbolSectionNdx(Obj
, Symbol
, FirstSym
);
3240 this->dumper()->getFullSymbolName(Symbol
, StrTable
, IsDynamic
);
3241 for (auto &Entry
: Fields
)
3246 template <class ELFT
>
3247 void GNUStyle
<ELFT
>::printHashedSymbol(const ELFO
*Obj
, const Elf_Sym
*FirstSym
,
3248 uint32_t Sym
, StringRef StrTable
,
3250 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3251 Field Fields
[9] = {0, 6, 11, 20 + Bias
, 25 + Bias
,
3252 34 + Bias
, 41 + Bias
, 49 + Bias
, 53 + Bias
};
3253 Fields
[0].Str
= to_string(format_decimal(Sym
, 5));
3254 Fields
[1].Str
= to_string(format_decimal(Bucket
, 3)) + ":";
3256 const auto Symbol
= FirstSym
+ Sym
;
3257 Fields
[2].Str
= to_string(
3258 format_hex_no_prefix(Symbol
->st_value
, ELFT::Is64Bits
? 16 : 8));
3259 Fields
[3].Str
= to_string(format_decimal(Symbol
->st_size
, 5));
3261 unsigned char SymbolType
= Symbol
->getType();
3262 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
3263 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
3264 Fields
[4].Str
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
3266 Fields
[4].Str
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
3269 printEnum(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
3271 printEnum(Symbol
->getVisibility(), makeArrayRef(ElfSymbolVisibilities
));
3272 Fields
[7].Str
= getSymbolSectionNdx(Obj
, Symbol
, FirstSym
);
3273 Fields
[8].Str
= this->dumper()->getFullSymbolName(Symbol
, StrTable
, true);
3275 for (auto &Entry
: Fields
)
3280 template <class ELFT
>
3281 void GNUStyle
<ELFT
>::printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
3282 bool PrintDynamicSymbols
) {
3283 if (!PrintSymbols
&& !PrintDynamicSymbols
)
3285 // GNU readelf prints both the .dynsym and .symtab with --symbols.
3286 this->dumper()->printSymbolsHelper(true);
3288 this->dumper()->printSymbolsHelper(false);
3291 template <class ELFT
> void GNUStyle
<ELFT
>::printHashSymbols(const ELFO
*Obj
) {
3292 if (this->dumper()->getDynamicStringTable().empty())
3294 auto StringTable
= this->dumper()->getDynamicStringTable();
3295 auto DynSyms
= this->dumper()->dynamic_symbols();
3297 // Try printing .hash
3298 if (auto SysVHash
= this->dumper()->getHashTable()) {
3299 OS
<< "\n Symbol table of .hash for image:\n";
3301 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3303 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3306 auto Buckets
= SysVHash
->buckets();
3307 auto Chains
= SysVHash
->chains();
3308 for (uint32_t Buc
= 0; Buc
< SysVHash
->nbucket
; Buc
++) {
3309 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3311 for (uint32_t Ch
= Buckets
[Buc
]; Ch
< SysVHash
->nchain
; Ch
= Chains
[Ch
]) {
3312 if (Ch
== ELF::STN_UNDEF
)
3314 printHashedSymbol(Obj
, &DynSyms
[0], Ch
, StringTable
, Buc
);
3319 // Try printing .gnu.hash
3320 if (auto GnuHash
= this->dumper()->getGnuHashTable()) {
3321 OS
<< "\n Symbol table of .gnu.hash for image:\n";
3323 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3325 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3327 auto Buckets
= GnuHash
->buckets();
3328 for (uint32_t Buc
= 0; Buc
< GnuHash
->nbuckets
; Buc
++) {
3329 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3331 uint32_t Index
= Buckets
[Buc
];
3332 uint32_t GnuHashable
= Index
- GnuHash
->symndx
;
3333 // Print whole chain
3335 printHashedSymbol(Obj
, &DynSyms
[0], Index
++, StringTable
, Buc
);
3336 // Chain ends at symbol with stopper bit
3337 if ((GnuHash
->values(DynSyms
.size())[GnuHashable
++] & 1) == 1)
3344 static inline std::string
printPhdrFlags(unsigned Flag
) {
3346 Str
= (Flag
& PF_R
) ? "R" : " ";
3347 Str
+= (Flag
& PF_W
) ? "W" : " ";
3348 Str
+= (Flag
& PF_X
) ? "E" : " ";
3352 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
3353 // PT_TLS must only have SHF_TLS sections
3354 template <class ELFT
>
3355 bool GNUStyle
<ELFT
>::checkTLSSections(const Elf_Phdr
&Phdr
,
3356 const Elf_Shdr
&Sec
) {
3357 return (((Sec
.sh_flags
& ELF::SHF_TLS
) &&
3358 ((Phdr
.p_type
== ELF::PT_TLS
) || (Phdr
.p_type
== ELF::PT_LOAD
) ||
3359 (Phdr
.p_type
== ELF::PT_GNU_RELRO
))) ||
3360 (!(Sec
.sh_flags
& ELF::SHF_TLS
) && Phdr
.p_type
!= ELF::PT_TLS
));
3363 // Non-SHT_NOBITS must have its offset inside the segment
3364 // Only non-zero section can be at end of segment
3365 template <class ELFT
>
3366 bool GNUStyle
<ELFT
>::checkoffsets(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3367 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
3370 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
3371 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3373 (IsSpecial
&& Phdr
.p_type
!= ELF::PT_TLS
) ? 0 : Sec
.sh_size
;
3374 if (Sec
.sh_offset
>= Phdr
.p_offset
)
3375 return ((Sec
.sh_offset
+ SectionSize
<= Phdr
.p_filesz
+ Phdr
.p_offset
)
3376 /*only non-zero sized sections at end*/
3377 && (Sec
.sh_offset
+ 1 <= Phdr
.p_offset
+ Phdr
.p_filesz
));
3381 // SHF_ALLOC must have VMA inside segment
3382 // Only non-zero section can be at end of segment
3383 template <class ELFT
>
3384 bool GNUStyle
<ELFT
>::checkVMA(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3385 if (!(Sec
.sh_flags
& ELF::SHF_ALLOC
))
3388 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
3389 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3391 (IsSpecial
&& Phdr
.p_type
!= ELF::PT_TLS
) ? 0 : Sec
.sh_size
;
3392 if (Sec
.sh_addr
>= Phdr
.p_vaddr
)
3393 return ((Sec
.sh_addr
+ SectionSize
<= Phdr
.p_vaddr
+ Phdr
.p_memsz
) &&
3394 (Sec
.sh_addr
+ 1 <= Phdr
.p_vaddr
+ Phdr
.p_memsz
));
3398 // No section with zero size must be at start or end of PT_DYNAMIC
3399 template <class ELFT
>
3400 bool GNUStyle
<ELFT
>::checkPTDynamic(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3401 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
|| Sec
.sh_size
!= 0 || Phdr
.p_memsz
== 0)
3403 // Is section within the phdr both based on offset and VMA ?
3404 return ((Sec
.sh_type
== ELF::SHT_NOBITS
) ||
3405 (Sec
.sh_offset
> Phdr
.p_offset
&&
3406 Sec
.sh_offset
< Phdr
.p_offset
+ Phdr
.p_filesz
)) &&
3407 (!(Sec
.sh_flags
& ELF::SHF_ALLOC
) ||
3408 (Sec
.sh_addr
> Phdr
.p_vaddr
&& Sec
.sh_addr
< Phdr
.p_memsz
));
3411 template <class ELFT
>
3412 void GNUStyle
<ELFT
>::printProgramHeaders(
3413 const ELFO
*Obj
, bool PrintProgramHeaders
,
3414 cl::boolOrDefault PrintSectionMapping
) {
3415 if (PrintProgramHeaders
)
3416 printProgramHeaders(Obj
);
3418 // Display the section mapping along with the program headers, unless
3419 // -section-mapping is explicitly set to false.
3420 if (PrintSectionMapping
!= cl::BOU_FALSE
)
3421 printSectionMapping(Obj
);
3424 template <class ELFT
>
3425 void GNUStyle
<ELFT
>::printProgramHeaders(const ELFO
*Obj
) {
3426 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3427 const Elf_Ehdr
*Header
= Obj
->getHeader();
3428 Field Fields
[8] = {2, 17, 26, 37 + Bias
,
3429 48 + Bias
, 56 + Bias
, 64 + Bias
, 68 + Bias
};
3430 OS
<< "\nElf file type is "
3431 << printEnum(Header
->e_type
, makeArrayRef(ElfObjectFileType
)) << "\n"
3432 << "Entry point " << format_hex(Header
->e_entry
, 3) << "\n"
3433 << "There are " << Header
->e_phnum
<< " program headers,"
3434 << " starting at offset " << Header
->e_phoff
<< "\n\n"
3435 << "Program Headers:\n";
3437 OS
<< " Type Offset VirtAddr PhysAddr "
3438 << " FileSiz MemSiz Flg Align\n";
3440 OS
<< " Type Offset VirtAddr PhysAddr FileSiz "
3441 << "MemSiz Flg Align\n";
3443 unsigned Width
= ELFT::Is64Bits
? 18 : 10;
3444 unsigned SizeWidth
= ELFT::Is64Bits
? 8 : 7;
3445 for (const auto &Phdr
:
3446 unwrapOrError(this->FileName
, Obj
->program_headers())) {
3447 Fields
[0].Str
= getElfPtType(Header
->e_machine
, Phdr
.p_type
);
3448 Fields
[1].Str
= to_string(format_hex(Phdr
.p_offset
, 8));
3449 Fields
[2].Str
= to_string(format_hex(Phdr
.p_vaddr
, Width
));
3450 Fields
[3].Str
= to_string(format_hex(Phdr
.p_paddr
, Width
));
3451 Fields
[4].Str
= to_string(format_hex(Phdr
.p_filesz
, SizeWidth
));
3452 Fields
[5].Str
= to_string(format_hex(Phdr
.p_memsz
, SizeWidth
));
3453 Fields
[6].Str
= printPhdrFlags(Phdr
.p_flags
);
3454 Fields
[7].Str
= to_string(format_hex(Phdr
.p_align
, 1));
3455 for (auto Field
: Fields
)
3457 if (Phdr
.p_type
== ELF::PT_INTERP
) {
3458 OS
<< "\n [Requesting program interpreter: ";
3459 OS
<< reinterpret_cast<const char *>(Obj
->base()) + Phdr
.p_offset
<< "]";
3465 template <class ELFT
>
3466 void GNUStyle
<ELFT
>::printSectionMapping(const ELFO
*Obj
) {
3467 OS
<< "\n Section to Segment mapping:\n Segment Sections...\n";
3468 DenseSet
<const Elf_Shdr
*> BelongsToSegment
;
3470 for (const Elf_Phdr
&Phdr
:
3471 unwrapOrError(this->FileName
, Obj
->program_headers())) {
3472 std::string Sections
;
3473 OS
<< format(" %2.2d ", Phnum
++);
3474 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
3475 // Check if each section is in a segment and then print mapping.
3476 // readelf additionally makes sure it does not print zero sized sections
3477 // at end of segments and for PT_DYNAMIC both start and end of section
3478 // .tbss must only be shown in PT_TLS section.
3479 bool TbssInNonTLS
= (Sec
.sh_type
== ELF::SHT_NOBITS
) &&
3480 ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0) &&
3481 Phdr
.p_type
!= ELF::PT_TLS
;
3482 if (!TbssInNonTLS
&& checkTLSSections(Phdr
, Sec
) &&
3483 checkoffsets(Phdr
, Sec
) && checkVMA(Phdr
, Sec
) &&
3484 checkPTDynamic(Phdr
, Sec
) && (Sec
.sh_type
!= ELF::SHT_NULL
)) {
3486 unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
)).str() +
3488 BelongsToSegment
.insert(&Sec
);
3491 OS
<< Sections
<< "\n";
3495 // Display sections that do not belong to a segment.
3496 std::string Sections
;
3497 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
3498 if (BelongsToSegment
.find(&Sec
) == BelongsToSegment
.end())
3500 unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
)).str() + ' ';
3502 if (!Sections
.empty()) {
3503 OS
<< " None " << Sections
<< '\n';
3508 template <class ELFT
>
3509 void GNUStyle
<ELFT
>::printDynamicRelocation(const ELFO
*Obj
, Elf_Rela R
,
3511 uint32_t SymIndex
= R
.getSymbol(Obj
->isMips64EL());
3512 const Elf_Sym
*Sym
= this->dumper()->dynamic_symbols().begin() + SymIndex
;
3513 std::string SymbolName
= maybeDemangle(unwrapOrError(
3514 this->FileName
, Sym
->getName(this->dumper()->getDynamicStringTable())));
3515 printRelocation(Obj
, Sym
, SymbolName
, R
, IsRela
);
3518 template <class ELFT
> void GNUStyle
<ELFT
>::printDynamic(const ELFO
*Obj
) {
3519 Elf_Dyn_Range Table
= this->dumper()->dynamic_table();
3523 const DynRegionInfo
&DynamicTableRegion
=
3524 this->dumper()->getDynamicTableRegion();
3526 OS
<< "Dynamic section at offset "
3527 << format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion
.Addr
) -
3530 << " contains " << Table
.size() << " entries:\n";
3532 bool Is64
= ELFT::Is64Bits
;
3534 OS
<< " Tag Type Name/Value\n";
3536 OS
<< " Tag Type Name/Value\n";
3537 for (auto Entry
: Table
) {
3538 uintX_t Tag
= Entry
.getTag();
3539 std::string TypeString
= std::string("(") +
3540 getTypeString(Obj
->getHeader()->e_machine
, Tag
) +
3542 OS
<< " " << format_hex(Tag
, Is64
? 18 : 10)
3543 << format(" %-20s ", TypeString
.c_str());
3544 this->dumper()->printDynamicEntry(OS
, Tag
, Entry
.getVal());
3549 template <class ELFT
>
3550 void GNUStyle
<ELFT
>::printDynamicRelocations(const ELFO
*Obj
) {
3551 const DynRegionInfo
&DynRelRegion
= this->dumper()->getDynRelRegion();
3552 const DynRegionInfo
&DynRelaRegion
= this->dumper()->getDynRelaRegion();
3553 const DynRegionInfo
&DynRelrRegion
= this->dumper()->getDynRelrRegion();
3554 const DynRegionInfo
&DynPLTRelRegion
= this->dumper()->getDynPLTRelRegion();
3555 if (DynRelaRegion
.Size
> 0) {
3556 OS
<< "\n'RELA' relocation section at offset "
3557 << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion
.Addr
) -
3560 << " contains " << DynRelaRegion
.Size
<< " bytes:\n";
3561 printRelocHeader(ELF::SHT_RELA
);
3562 for (const Elf_Rela
&Rela
: this->dumper()->dyn_relas())
3563 printDynamicRelocation(Obj
, Rela
, true);
3565 if (DynRelRegion
.Size
> 0) {
3566 OS
<< "\n'REL' relocation section at offset "
3567 << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion
.Addr
) -
3570 << " contains " << DynRelRegion
.Size
<< " bytes:\n";
3571 printRelocHeader(ELF::SHT_REL
);
3572 for (const Elf_Rel
&Rel
: this->dumper()->dyn_rels()) {
3574 Rela
.r_offset
= Rel
.r_offset
;
3575 Rela
.r_info
= Rel
.r_info
;
3577 printDynamicRelocation(Obj
, Rela
, false);
3580 if (DynRelrRegion
.Size
> 0) {
3581 OS
<< "\n'RELR' relocation section at offset "
3582 << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion
.Addr
) -
3585 << " contains " << DynRelrRegion
.Size
<< " bytes:\n";
3586 printRelocHeader(ELF::SHT_REL
);
3587 Elf_Relr_Range Relrs
= this->dumper()->dyn_relrs();
3588 std::vector
<Elf_Rela
> RelrRelas
=
3589 unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
3590 for (const Elf_Rela
&Rela
: RelrRelas
) {
3591 printDynamicRelocation(Obj
, Rela
, false);
3594 if (DynPLTRelRegion
.Size
) {
3595 OS
<< "\n'PLT' relocation section at offset "
3596 << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion
.Addr
) -
3599 << " contains " << DynPLTRelRegion
.Size
<< " bytes:\n";
3601 if (DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
)) {
3602 printRelocHeader(ELF::SHT_RELA
);
3603 for (const Elf_Rela
&Rela
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rela
>())
3604 printDynamicRelocation(Obj
, Rela
, true);
3606 printRelocHeader(ELF::SHT_REL
);
3607 for (const Elf_Rel
&Rel
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rel
>()) {
3609 Rela
.r_offset
= Rel
.r_offset
;
3610 Rela
.r_info
= Rel
.r_info
;
3612 printDynamicRelocation(Obj
, Rela
, false);
3617 template <class ELFT
>
3618 static void printGNUVersionSectionProlog(formatted_raw_ostream
&OS
,
3619 const Twine
&Name
, unsigned EntriesNum
,
3620 const ELFFile
<ELFT
> *Obj
,
3621 const typename
ELFT::Shdr
*Sec
,
3622 StringRef FileName
) {
3623 StringRef SecName
= unwrapOrError(FileName
, Obj
->getSectionName(Sec
));
3624 OS
<< Name
<< " section '" << SecName
<< "' "
3625 << "contains " << EntriesNum
<< " entries:\n";
3627 const typename
ELFT::Shdr
*SymTab
=
3628 unwrapOrError(FileName
, Obj
->getSection(Sec
->sh_link
));
3629 StringRef SymTabName
= unwrapOrError(FileName
, Obj
->getSectionName(SymTab
));
3630 OS
<< " Addr: " << format_hex_no_prefix(Sec
->sh_addr
, 16)
3631 << " Offset: " << format_hex(Sec
->sh_offset
, 8)
3632 << " Link: " << Sec
->sh_link
<< " (" << SymTabName
<< ")\n";
3635 template <class ELFT
>
3636 void GNUStyle
<ELFT
>::printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
3637 const Elf_Shdr
*Sec
) {
3641 unsigned Entries
= Sec
->sh_size
/ sizeof(Elf_Versym
);
3642 printGNUVersionSectionProlog(OS
, "Version symbols", Entries
, Obj
, Sec
,
3645 const uint8_t *VersymBuf
=
3646 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
3647 const ELFDumper
<ELFT
> *Dumper
= this->dumper();
3648 StringRef StrTable
= Dumper
->getDynamicStringTable();
3650 // readelf prints 4 entries per line.
3651 for (uint64_t VersymRow
= 0; VersymRow
< Entries
; VersymRow
+= 4) {
3652 OS
<< " " << format_hex_no_prefix(VersymRow
, 3) << ":";
3654 for (uint64_t VersymIndex
= 0;
3655 (VersymIndex
< 4) && (VersymIndex
+ VersymRow
) < Entries
;
3657 const Elf_Versym
*Versym
=
3658 reinterpret_cast<const Elf_Versym
*>(VersymBuf
);
3659 switch (Versym
->vs_index
) {
3661 OS
<< " 0 (*local*) ";
3664 OS
<< " 1 (*global*) ";
3667 OS
<< format("%4x%c", Versym
->vs_index
& VERSYM_VERSION
,
3668 Versym
->vs_index
& VERSYM_HIDDEN
? 'h' : ' ');
3670 bool IsDefault
= true;
3671 std::string VersionName
= Dumper
->getSymbolVersionByIndex(
3672 StrTable
, Versym
->vs_index
, IsDefault
);
3674 if (!VersionName
.empty())
3675 VersionName
= "(" + VersionName
+ ")";
3677 VersionName
= "(*invalid*)";
3678 OS
<< left_justify(VersionName
, 13);
3680 VersymBuf
+= sizeof(Elf_Versym
);
3687 static std::string
versionFlagToString(unsigned Flags
) {
3692 auto AddFlag
= [&Ret
, &Flags
](unsigned Flag
, StringRef Name
) {
3693 if (!(Flags
& Flag
))
3701 AddFlag(VER_FLG_BASE
, "BASE");
3702 AddFlag(VER_FLG_WEAK
, "WEAK");
3703 AddFlag(VER_FLG_INFO
, "INFO");
3704 AddFlag(~0, "<unknown>");
3708 template <class ELFT
>
3709 void GNUStyle
<ELFT
>::printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
3710 const Elf_Shdr
*Sec
) {
3714 unsigned VerDefsNum
= Sec
->sh_info
;
3715 printGNUVersionSectionProlog(OS
, "Version definition", VerDefsNum
, Obj
, Sec
,
3718 const Elf_Shdr
*StrTabSec
=
3719 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
3720 StringRef
StringTable(
3721 reinterpret_cast<const char *>(Obj
->base() + StrTabSec
->sh_offset
),
3722 (size_t)StrTabSec
->sh_size
);
3724 const uint8_t *VerdefBuf
=
3725 unwrapOrError(this->FileName
, Obj
->getSectionContents(Sec
)).data();
3726 const uint8_t *Begin
= VerdefBuf
;
3728 while (VerDefsNum
--) {
3729 const Elf_Verdef
*Verdef
= reinterpret_cast<const Elf_Verdef
*>(VerdefBuf
);
3730 OS
<< format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u",
3731 VerdefBuf
- Begin
, (unsigned)Verdef
->vd_version
,
3732 versionFlagToString(Verdef
->vd_flags
).c_str(),
3733 (unsigned)Verdef
->vd_ndx
, (unsigned)Verdef
->vd_cnt
);
3735 const uint8_t *VerdauxBuf
= VerdefBuf
+ Verdef
->vd_aux
;
3736 const Elf_Verdaux
*Verdaux
=
3737 reinterpret_cast<const Elf_Verdaux
*>(VerdauxBuf
);
3738 OS
<< format(" Name: %s\n",
3739 StringTable
.drop_front(Verdaux
->vda_name
).data());
3741 for (unsigned I
= 1; I
< Verdef
->vd_cnt
; ++I
) {
3742 VerdauxBuf
+= Verdaux
->vda_next
;
3743 Verdaux
= reinterpret_cast<const Elf_Verdaux
*>(VerdauxBuf
);
3744 OS
<< format(" 0x%04x: Parent %u: %s\n", VerdauxBuf
- Begin
, I
,
3745 StringTable
.drop_front(Verdaux
->vda_name
).data());
3748 VerdefBuf
+= Verdef
->vd_next
;
3753 template <class ELFT
>
3754 void GNUStyle
<ELFT
>::printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
3755 const Elf_Shdr
*Sec
) {
3759 unsigned VerneedNum
= Sec
->sh_info
;
3760 printGNUVersionSectionProlog(OS
, "Version needs", VerneedNum
, Obj
, Sec
,
3763 ArrayRef
<uint8_t> SecData
=
3764 unwrapOrError(this->FileName
, Obj
->getSectionContents(Sec
));
3766 const Elf_Shdr
*StrTabSec
=
3767 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
3768 StringRef StringTable
= {
3769 reinterpret_cast<const char *>(Obj
->base() + StrTabSec
->sh_offset
),
3770 (size_t)StrTabSec
->sh_size
};
3772 const uint8_t *VerneedBuf
= SecData
.data();
3773 for (unsigned I
= 0; I
< VerneedNum
; ++I
) {
3774 const Elf_Verneed
*Verneed
=
3775 reinterpret_cast<const Elf_Verneed
*>(VerneedBuf
);
3777 OS
<< format(" 0x%04x: Version: %u File: %s Cnt: %u\n",
3778 reinterpret_cast<const uint8_t *>(Verneed
) - SecData
.begin(),
3779 (unsigned)Verneed
->vn_version
,
3780 StringTable
.drop_front(Verneed
->vn_file
).data(),
3781 (unsigned)Verneed
->vn_cnt
);
3783 const uint8_t *VernauxBuf
= VerneedBuf
+ Verneed
->vn_aux
;
3784 for (unsigned J
= 0; J
< Verneed
->vn_cnt
; ++J
) {
3785 const Elf_Vernaux
*Vernaux
=
3786 reinterpret_cast<const Elf_Vernaux
*>(VernauxBuf
);
3788 OS
<< format(" 0x%04x: Name: %s Flags: %s Version: %u\n",
3789 reinterpret_cast<const uint8_t *>(Vernaux
) - SecData
.begin(),
3790 StringTable
.drop_front(Vernaux
->vna_name
).data(),
3791 versionFlagToString(Vernaux
->vna_flags
).c_str(),
3792 (unsigned)Vernaux
->vna_other
);
3793 VernauxBuf
+= Vernaux
->vna_next
;
3795 VerneedBuf
+= Verneed
->vn_next
;
3800 // Hash histogram shows statistics of how efficient the hash was for the
3801 // dynamic symbol table. The table shows number of hash buckets for different
3802 // lengths of chains as absolute number and percentage of the total buckets.
3803 // Additionally cumulative coverage of symbols for each set of buckets.
3804 template <class ELFT
>
3805 void GNUStyle
<ELFT
>::printHashHistogram(const ELFFile
<ELFT
> *Obj
) {
3806 // Print histogram for .hash section
3807 if (const Elf_Hash
*HashTable
= this->dumper()->getHashTable()) {
3808 size_t NBucket
= HashTable
->nbucket
;
3809 size_t NChain
= HashTable
->nchain
;
3810 ArrayRef
<Elf_Word
> Buckets
= HashTable
->buckets();
3811 ArrayRef
<Elf_Word
> Chains
= HashTable
->chains();
3812 size_t TotalSyms
= 0;
3813 // If hash table is correct, we have at least chains with 0 length
3814 size_t MaxChain
= 1;
3815 size_t CumulativeNonZero
= 0;
3817 if (NChain
== 0 || NBucket
== 0)
3820 std::vector
<size_t> ChainLen(NBucket
, 0);
3821 // Go over all buckets and and note chain lengths of each bucket (total
3822 // unique chain lengths).
3823 for (size_t B
= 0; B
< NBucket
; B
++) {
3824 for (size_t C
= Buckets
[B
]; C
> 0 && C
< NChain
; C
= Chains
[C
])
3825 if (MaxChain
<= ++ChainLen
[B
])
3827 TotalSyms
+= ChainLen
[B
];
3833 std::vector
<size_t> Count(MaxChain
, 0) ;
3834 // Count how long is the chain for each bucket
3835 for (size_t B
= 0; B
< NBucket
; B
++)
3836 ++Count
[ChainLen
[B
]];
3837 // Print Number of buckets with each chain lengths and their cumulative
3838 // coverage of the symbols
3839 OS
<< "Histogram for bucket list length (total of " << NBucket
3841 << " Length Number % of total Coverage\n";
3842 for (size_t I
= 0; I
< MaxChain
; I
++) {
3843 CumulativeNonZero
+= Count
[I
] * I
;
3844 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
3845 (Count
[I
] * 100.0) / NBucket
,
3846 (CumulativeNonZero
* 100.0) / TotalSyms
);
3850 // Print histogram for .gnu.hash section
3851 if (const Elf_GnuHash
*GnuHashTable
= this->dumper()->getGnuHashTable()) {
3852 size_t NBucket
= GnuHashTable
->nbuckets
;
3853 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
->buckets();
3854 unsigned NumSyms
= this->dumper()->dynamic_symbols().size();
3857 ArrayRef
<Elf_Word
> Chains
= GnuHashTable
->values(NumSyms
);
3858 size_t Symndx
= GnuHashTable
->symndx
;
3859 size_t TotalSyms
= 0;
3860 size_t MaxChain
= 1;
3861 size_t CumulativeNonZero
= 0;
3863 if (Chains
.empty() || NBucket
== 0)
3866 std::vector
<size_t> ChainLen(NBucket
, 0);
3868 for (size_t B
= 0; B
< NBucket
; B
++) {
3872 for (size_t C
= Buckets
[B
] - Symndx
;
3873 C
< Chains
.size() && (Chains
[C
] & 1) == 0; C
++)
3874 if (MaxChain
< ++Len
)
3884 std::vector
<size_t> Count(MaxChain
, 0) ;
3885 for (size_t B
= 0; B
< NBucket
; B
++)
3886 ++Count
[ChainLen
[B
]];
3887 // Print Number of buckets with each chain lengths and their cumulative
3888 // coverage of the symbols
3889 OS
<< "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
3891 << " Length Number % of total Coverage\n";
3892 for (size_t I
= 0; I
<MaxChain
; I
++) {
3893 CumulativeNonZero
+= Count
[I
] * I
;
3894 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
3895 (Count
[I
] * 100.0) / NBucket
,
3896 (CumulativeNonZero
* 100.0) / TotalSyms
);
3901 template <class ELFT
>
3902 void GNUStyle
<ELFT
>::printCGProfile(const ELFFile
<ELFT
> *Obj
) {
3903 OS
<< "GNUStyle::printCGProfile not implemented\n";
3906 template <class ELFT
>
3907 void GNUStyle
<ELFT
>::printAddrsig(const ELFFile
<ELFT
> *Obj
) {
3908 OS
<< "GNUStyle::printAddrsig not implemented\n";
3911 static StringRef
getGenericNoteTypeName(const uint32_t NT
) {
3912 static const struct {
3916 {ELF::NT_VERSION
, "NT_VERSION (version)"},
3917 {ELF::NT_ARCH
, "NT_ARCH (architecture)"},
3918 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN
, "OPEN"},
3919 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC
, "func"},
3922 for (const auto &Note
: Notes
)
3929 static StringRef
getCoreNoteTypeName(const uint32_t NT
) {
3930 static const struct {
3934 {ELF::NT_PRSTATUS
, "NT_PRSTATUS (prstatus structure)"},
3935 {ELF::NT_FPREGSET
, "NT_FPREGSET (floating point registers)"},
3936 {ELF::NT_PRPSINFO
, "NT_PRPSINFO (prpsinfo structure)"},
3937 {ELF::NT_TASKSTRUCT
, "NT_TASKSTRUCT (task structure)"},
3938 {ELF::NT_AUXV
, "NT_AUXV (auxiliary vector)"},
3939 {ELF::NT_PSTATUS
, "NT_PSTATUS (pstatus structure)"},
3940 {ELF::NT_FPREGS
, "NT_FPREGS (floating point registers)"},
3941 {ELF::NT_PSINFO
, "NT_PSINFO (psinfo structure)"},
3942 {ELF::NT_LWPSTATUS
, "NT_LWPSTATUS (lwpstatus_t structure)"},
3943 {ELF::NT_LWPSINFO
, "NT_LWPSINFO (lwpsinfo_t structure)"},
3944 {ELF::NT_WIN32PSTATUS
, "NT_WIN32PSTATUS (win32_pstatus structure)"},
3946 {ELF::NT_PPC_VMX
, "NT_PPC_VMX (ppc Altivec registers)"},
3947 {ELF::NT_PPC_VSX
, "NT_PPC_VSX (ppc VSX registers)"},
3948 {ELF::NT_PPC_TAR
, "NT_PPC_TAR (ppc TAR register)"},
3949 {ELF::NT_PPC_PPR
, "NT_PPC_PPR (ppc PPR register)"},
3950 {ELF::NT_PPC_DSCR
, "NT_PPC_DSCR (ppc DSCR register)"},
3951 {ELF::NT_PPC_EBB
, "NT_PPC_EBB (ppc EBB registers)"},
3952 {ELF::NT_PPC_PMU
, "NT_PPC_PMU (ppc PMU registers)"},
3953 {ELF::NT_PPC_TM_CGPR
, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
3954 {ELF::NT_PPC_TM_CFPR
,
3955 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
3956 {ELF::NT_PPC_TM_CVMX
,
3957 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
3958 {ELF::NT_PPC_TM_CVSX
, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
3959 {ELF::NT_PPC_TM_SPR
, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
3960 {ELF::NT_PPC_TM_CTAR
, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
3961 {ELF::NT_PPC_TM_CPPR
, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
3962 {ELF::NT_PPC_TM_CDSCR
,
3963 "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
3965 {ELF::NT_386_TLS
, "NT_386_TLS (x86 TLS information)"},
3966 {ELF::NT_386_IOPERM
, "NT_386_IOPERM (x86 I/O permissions)"},
3967 {ELF::NT_X86_XSTATE
, "NT_X86_XSTATE (x86 XSAVE extended state)"},
3969 {ELF::NT_S390_HIGH_GPRS
,
3970 "NT_S390_HIGH_GPRS (s390 upper register halves)"},
3971 {ELF::NT_S390_TIMER
, "NT_S390_TIMER (s390 timer register)"},
3972 {ELF::NT_S390_TODCMP
, "NT_S390_TODCMP (s390 TOD comparator register)"},
3973 {ELF::NT_S390_TODPREG
,
3974 "NT_S390_TODPREG (s390 TOD programmable register)"},
3975 {ELF::NT_S390_CTRS
, "NT_S390_CTRS (s390 control registers)"},
3976 {ELF::NT_S390_PREFIX
, "NT_S390_PREFIX (s390 prefix register)"},
3977 {ELF::NT_S390_LAST_BREAK
,
3978 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
3979 {ELF::NT_S390_SYSTEM_CALL
,
3980 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
3981 {ELF::NT_S390_TDB
, "NT_S390_TDB (s390 transaction diagnostic block)"},
3982 {ELF::NT_S390_VXRS_LOW
,
3983 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
3984 {ELF::NT_S390_VXRS_HIGH
,
3985 "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
3986 {ELF::NT_S390_GS_CB
, "NT_S390_GS_CB (s390 guarded-storage registers)"},
3987 {ELF::NT_S390_GS_BC
,
3988 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
3990 {ELF::NT_ARM_VFP
, "NT_ARM_VFP (arm VFP registers)"},
3991 {ELF::NT_ARM_TLS
, "NT_ARM_TLS (AArch TLS registers)"},
3992 {ELF::NT_ARM_HW_BREAK
,
3993 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
3994 {ELF::NT_ARM_HW_WATCH
,
3995 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
3997 {ELF::NT_FILE
, "NT_FILE (mapped files)"},
3998 {ELF::NT_PRXFPREG
, "NT_PRXFPREG (user_xfpregs structure)"},
3999 {ELF::NT_SIGINFO
, "NT_SIGINFO (siginfo_t data)"},
4002 for (const auto &Note
: Notes
)
4009 static std::string
getGNUNoteTypeName(const uint32_t NT
) {
4010 static const struct {
4014 {ELF::NT_GNU_ABI_TAG
, "NT_GNU_ABI_TAG (ABI version tag)"},
4015 {ELF::NT_GNU_HWCAP
, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
4016 {ELF::NT_GNU_BUILD_ID
, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
4017 {ELF::NT_GNU_GOLD_VERSION
, "NT_GNU_GOLD_VERSION (gold version)"},
4018 {ELF::NT_GNU_PROPERTY_TYPE_0
, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
4021 for (const auto &Note
: Notes
)
4023 return std::string(Note
.Name
);
4026 raw_string_ostream
OS(string
);
4027 OS
<< format("Unknown note type (0x%08x)", NT
);
4031 static std::string
getFreeBSDNoteTypeName(const uint32_t NT
) {
4032 static const struct {
4036 {ELF::NT_FREEBSD_THRMISC
, "NT_THRMISC (thrmisc structure)"},
4037 {ELF::NT_FREEBSD_PROCSTAT_PROC
, "NT_PROCSTAT_PROC (proc data)"},
4038 {ELF::NT_FREEBSD_PROCSTAT_FILES
, "NT_PROCSTAT_FILES (files data)"},
4039 {ELF::NT_FREEBSD_PROCSTAT_VMMAP
, "NT_PROCSTAT_VMMAP (vmmap data)"},
4040 {ELF::NT_FREEBSD_PROCSTAT_GROUPS
, "NT_PROCSTAT_GROUPS (groups data)"},
4041 {ELF::NT_FREEBSD_PROCSTAT_UMASK
, "NT_PROCSTAT_UMASK (umask data)"},
4042 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT
, "NT_PROCSTAT_RLIMIT (rlimit data)"},
4043 {ELF::NT_FREEBSD_PROCSTAT_OSREL
, "NT_PROCSTAT_OSREL (osreldate data)"},
4044 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS
,
4045 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
4046 {ELF::NT_FREEBSD_PROCSTAT_AUXV
, "NT_PROCSTAT_AUXV (auxv data)"},
4049 for (const auto &Note
: Notes
)
4051 return std::string(Note
.Name
);
4054 raw_string_ostream
OS(string
);
4055 OS
<< format("Unknown note type (0x%08x)", NT
);
4059 static std::string
getAMDNoteTypeName(const uint32_t NT
) {
4060 static const struct {
4063 } Notes
[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA
,
4064 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
4065 {ELF::NT_AMD_AMDGPU_ISA
, "NT_AMD_AMDGPU_ISA (ISA Version)"},
4066 {ELF::NT_AMD_AMDGPU_PAL_METADATA
,
4067 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}};
4069 for (const auto &Note
: Notes
)
4071 return std::string(Note
.Name
);
4074 raw_string_ostream
OS(string
);
4075 OS
<< format("Unknown note type (0x%08x)", NT
);
4079 static std::string
getAMDGPUNoteTypeName(const uint32_t NT
) {
4080 if (NT
== ELF::NT_AMDGPU_METADATA
)
4081 return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)");
4084 raw_string_ostream
OS(string
);
4085 OS
<< format("Unknown note type (0x%08x)", NT
);
4089 template <typename ELFT
>
4090 static std::string
getGNUProperty(uint32_t Type
, uint32_t DataSize
,
4091 ArrayRef
<uint8_t> Data
) {
4093 raw_string_ostream
OS(str
);
4095 auto DumpBit
= [&](uint32_t Flag
, StringRef Name
) {
4096 if (PrData
& Flag
) {
4106 OS
<< format("<application-specific type 0x%x>", Type
);
4108 case GNU_PROPERTY_STACK_SIZE
: {
4109 OS
<< "stack size: ";
4110 if (DataSize
== sizeof(typename
ELFT::uint
))
4111 OS
<< formatv("{0:x}",
4112 (uint64_t)(*(const typename
ELFT::Addr
*)Data
.data()));
4114 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4117 case GNU_PROPERTY_NO_COPY_ON_PROTECTED
:
4118 OS
<< "no copy on protected";
4120 OS
<< format(" <corrupt length: 0x%x>", DataSize
);
4122 case GNU_PROPERTY_AARCH64_FEATURE_1_AND
:
4123 case GNU_PROPERTY_X86_FEATURE_1_AND
:
4124 OS
<< ((Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) ? "aarch64 feature: "
4126 if (DataSize
!= 4) {
4127 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4130 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4135 if (Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) {
4136 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI
, "BTI");
4137 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC
, "PAC");
4139 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT
, "IBT");
4140 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK
, "SHSTK");
4143 OS
<< format("<unknown flags: 0x%x>", PrData
);
4145 case GNU_PROPERTY_X86_ISA_1_NEEDED
:
4146 case GNU_PROPERTY_X86_ISA_1_USED
:
4148 << (Type
== GNU_PROPERTY_X86_ISA_1_NEEDED
? "needed: " : "used: ");
4149 if (DataSize
!= 4) {
4150 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4153 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4158 DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV
, "CMOV");
4159 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE
, "SSE");
4160 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2
, "SSE2");
4161 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3
, "SSE3");
4162 DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3
, "SSSE3");
4163 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1
, "SSE4_1");
4164 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2
, "SSE4_2");
4165 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX
, "AVX");
4166 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2
, "AVX2");
4167 DumpBit(GNU_PROPERTY_X86_ISA_1_FMA
, "FMA");
4168 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F
, "AVX512F");
4169 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD
, "AVX512CD");
4170 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER
, "AVX512ER");
4171 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF
, "AVX512PF");
4172 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL
, "AVX512VL");
4173 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ
, "AVX512DQ");
4174 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW
, "AVX512BW");
4175 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS
, "AVX512_4FMAPS");
4176 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW
, "AVX512_4VNNIW");
4177 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG
, "AVX512_BITALG");
4178 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA
, "AVX512_IFMA");
4179 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI
, "AVX512_VBMI");
4180 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2
, "AVX512_VBMI2");
4181 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI
, "AVX512_VNNI");
4183 OS
<< format("<unknown flags: 0x%x>", PrData
);
4186 case GNU_PROPERTY_X86_FEATURE_2_NEEDED
:
4187 case GNU_PROPERTY_X86_FEATURE_2_USED
:
4188 OS
<< "x86 feature "
4189 << (Type
== GNU_PROPERTY_X86_FEATURE_2_NEEDED
? "needed: " : "used: ");
4190 if (DataSize
!= 4) {
4191 OS
<< format("<corrupt length: 0x%x>", DataSize
);
4194 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
4199 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86
, "x86");
4200 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87
, "x87");
4201 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX
, "MMX");
4202 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM
, "XMM");
4203 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM
, "YMM");
4204 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM
, "ZMM");
4205 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR
, "FXSR");
4206 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE
, "XSAVE");
4207 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
, "XSAVEOPT");
4208 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC
, "XSAVEC");
4210 OS
<< format("<unknown flags: 0x%x>", PrData
);
4215 template <typename ELFT
>
4216 static SmallVector
<std::string
, 4> getGNUPropertyList(ArrayRef
<uint8_t> Arr
) {
4217 using Elf_Word
= typename
ELFT::Word
;
4219 SmallVector
<std::string
, 4> Properties
;
4220 while (Arr
.size() >= 8) {
4221 uint32_t Type
= *reinterpret_cast<const Elf_Word
*>(Arr
.data());
4222 uint32_t DataSize
= *reinterpret_cast<const Elf_Word
*>(Arr
.data() + 4);
4223 Arr
= Arr
.drop_front(8);
4225 // Take padding size into account if present.
4226 uint64_t PaddedSize
= alignTo(DataSize
, sizeof(typename
ELFT::uint
));
4228 raw_string_ostream
OS(str
);
4229 if (Arr
.size() < PaddedSize
) {
4230 OS
<< format("<corrupt type (0x%x) datasz: 0x%x>", Type
, DataSize
);
4231 Properties
.push_back(OS
.str());
4234 Properties
.push_back(
4235 getGNUProperty
<ELFT
>(Type
, DataSize
, Arr
.take_front(PaddedSize
)));
4236 Arr
= Arr
.drop_front(PaddedSize
);
4240 Properties
.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4251 template <typename ELFT
> static GNUAbiTag
getGNUAbiTag(ArrayRef
<uint8_t> Desc
) {
4252 typedef typename
ELFT::Word Elf_Word
;
4254 ArrayRef
<Elf_Word
> Words(reinterpret_cast<const Elf_Word
*>(Desc
.begin()),
4255 reinterpret_cast<const Elf_Word
*>(Desc
.end()));
4257 if (Words
.size() < 4)
4258 return {"", "", /*IsValid=*/false};
4260 static const char *OSNames
[] = {
4261 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
4263 StringRef OSName
= "Unknown";
4264 if (Words
[0] < array_lengthof(OSNames
))
4265 OSName
= OSNames
[Words
[0]];
4266 uint32_t Major
= Words
[1], Minor
= Words
[2], Patch
= Words
[3];
4268 raw_string_ostream
ABI(str
);
4269 ABI
<< Major
<< "." << Minor
<< "." << Patch
;
4270 return {OSName
, ABI
.str(), /*IsValid=*/true};
4273 static std::string
getGNUBuildId(ArrayRef
<uint8_t> Desc
) {
4275 raw_string_ostream
OS(str
);
4276 for (const auto &B
: Desc
)
4277 OS
<< format_hex_no_prefix(B
, 2);
4281 static StringRef
getGNUGoldVersion(ArrayRef
<uint8_t> Desc
) {
4282 return StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
4285 template <typename ELFT
>
4286 static void printGNUNote(raw_ostream
&OS
, uint32_t NoteType
,
4287 ArrayRef
<uint8_t> Desc
) {
4291 case ELF::NT_GNU_ABI_TAG
: {
4292 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
4293 if (!AbiTag
.IsValid
)
4294 OS
<< " <corrupt GNU_ABI_TAG>";
4296 OS
<< " OS: " << AbiTag
.OSName
<< ", ABI: " << AbiTag
.ABI
;
4299 case ELF::NT_GNU_BUILD_ID
: {
4300 OS
<< " Build ID: " << getGNUBuildId(Desc
);
4303 case ELF::NT_GNU_GOLD_VERSION
:
4304 OS
<< " Version: " << getGNUGoldVersion(Desc
);
4306 case ELF::NT_GNU_PROPERTY_TYPE_0
:
4307 OS
<< " Properties:";
4308 for (const auto &Property
: getGNUPropertyList
<ELFT
>(Desc
))
4309 OS
<< " " << Property
<< "\n";
4320 template <typename ELFT
>
4321 static AMDNote
getAMDNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
4325 case ELF::NT_AMD_AMDGPU_HSA_METADATA
:
4328 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size())};
4329 case ELF::NT_AMD_AMDGPU_ISA
:
4332 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size())};
4341 template <typename ELFT
>
4342 static AMDGPUNote
getAMDGPUNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
4346 case ELF::NT_AMDGPU_METADATA
: {
4347 auto MsgPackString
=
4348 StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
4349 msgpack::Document MsgPackDoc
;
4350 if (!MsgPackDoc
.readFromBlob(MsgPackString
, /*Multi=*/false))
4351 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4353 AMDGPU::HSAMD::V3::MetadataVerifier
Verifier(true);
4354 if (!Verifier
.verify(MsgPackDoc
.getRoot()))
4355 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4357 std::string HSAMetadataString
;
4358 raw_string_ostream
StrOS(HSAMetadataString
);
4359 MsgPackDoc
.toYAML(StrOS
);
4361 return {"AMDGPU Metadata", StrOS
.str()};
4366 template <class ELFT
>
4367 void GNUStyle
<ELFT
>::printNotes(const ELFFile
<ELFT
> *Obj
) {
4368 auto PrintHeader
= [&](const typename
ELFT::Off Offset
,
4369 const typename
ELFT::Addr Size
) {
4370 OS
<< "Displaying notes found at file offset " << format_hex(Offset
, 10)
4371 << " with length " << format_hex(Size
, 10) << ":\n"
4372 << " Owner Data size \tDescription\n";
4375 auto ProcessNote
= [&](const Elf_Note
&Note
) {
4376 StringRef Name
= Note
.getName();
4377 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc();
4378 Elf_Word Type
= Note
.getType();
4380 OS
<< " " << left_justify(Name
, 20) << ' '
4381 << format_hex(Descriptor
.size(), 10) << '\t';
4383 if (Name
== "GNU") {
4384 OS
<< getGNUNoteTypeName(Type
) << '\n';
4385 printGNUNote
<ELFT
>(OS
, Type
, Descriptor
);
4386 } else if (Name
== "FreeBSD") {
4387 OS
<< getFreeBSDNoteTypeName(Type
) << '\n';
4388 } else if (Name
== "AMD") {
4389 OS
<< getAMDNoteTypeName(Type
) << '\n';
4390 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
4391 if (!N
.Type
.empty())
4392 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
4393 } else if (Name
== "AMDGPU") {
4394 OS
<< getAMDGPUNoteTypeName(Type
) << '\n';
4395 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
4396 if (!N
.Type
.empty())
4397 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
4399 StringRef NoteType
= Obj
->getHeader()->e_type
== ELF::ET_CORE
4400 ? getCoreNoteTypeName(Type
)
4401 : getGenericNoteTypeName(Type
);
4402 if (!NoteType
.empty())
4405 OS
<< "Unknown note type: (" << format_hex(Type
, 10) << ')';
4410 if (Obj
->getHeader()->e_type
== ELF::ET_CORE
) {
4411 for (const auto &P
:
4412 unwrapOrError(this->FileName
, Obj
->program_headers())) {
4413 if (P
.p_type
!= PT_NOTE
)
4415 PrintHeader(P
.p_offset
, P
.p_filesz
);
4416 Error Err
= Error::success();
4417 for (const auto &Note
: Obj
->notes(P
, Err
))
4420 reportError(std::move(Err
), this->FileName
);
4423 for (const auto &S
:
4424 unwrapOrError(this->FileName
, Obj
->sections())) {
4425 if (S
.sh_type
!= SHT_NOTE
)
4427 PrintHeader(S
.sh_offset
, S
.sh_size
);
4428 Error Err
= Error::success();
4429 for (const auto &Note
: Obj
->notes(S
, Err
))
4432 reportError(std::move(Err
), this->FileName
);
4437 template <class ELFT
>
4438 void GNUStyle
<ELFT
>::printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) {
4439 OS
<< "printELFLinkerOptions not implemented!\n";
4442 template <class ELFT
>
4443 void DumpStyle
<ELFT
>::printFunctionStackSize(
4444 const ELFObjectFile
<ELFT
> *Obj
, uint64_t SymValue
, SectionRef FunctionSec
,
4445 const StringRef SectionName
, DataExtractor Data
, uint64_t *Offset
) {
4446 // This function ignores potentially erroneous input, unless it is directly
4447 // related to stack size reporting.
4449 for (const ELFSymbolRef
&Symbol
: Obj
->symbols()) {
4450 Expected
<uint64_t> SymAddrOrErr
= Symbol
.getAddress();
4451 if (!SymAddrOrErr
) {
4452 consumeError(SymAddrOrErr
.takeError());
4455 if (Symbol
.getELFType() == ELF::STT_FUNC
&& *SymAddrOrErr
== SymValue
) {
4456 // Check if the symbol is in the right section.
4457 if (FunctionSec
.containsSymbol(Symbol
)) {
4464 StringRef FileStr
= Obj
->getFileName();
4465 std::string FuncName
= "?";
4466 // A valid SymbolRef has a non-null object file pointer.
4467 if (FuncSym
.BasicSymbolRef::getObject()) {
4468 // Extract the symbol name.
4469 Expected
<StringRef
> FuncNameOrErr
= FuncSym
.getName();
4471 FuncName
= maybeDemangle(*FuncNameOrErr
);
4473 consumeError(FuncNameOrErr
.takeError());
4475 reportWarning(" '" + FileStr
+
4476 "': could not identify function symbol for stack size entry");
4478 // Extract the size. The expectation is that Offset is pointing to the right
4479 // place, i.e. past the function address.
4480 uint64_t PrevOffset
= *Offset
;
4481 uint64_t StackSize
= Data
.getULEB128(Offset
);
4482 // getULEB128() does not advance Offset if it is not able to extract a valid
4484 if (*Offset
== PrevOffset
)
4486 createStringError(object_error::parse_failed
,
4487 "could not extract a valid stack size in section %s",
4488 SectionName
.data()),
4491 printStackSizeEntry(StackSize
, FuncName
);
4494 template <class ELFT
>
4495 void GNUStyle
<ELFT
>::printStackSizeEntry(uint64_t Size
, StringRef FuncName
) {
4497 OS
<< format_decimal(Size
, 11);
4499 OS
<< FuncName
<< "\n";
4502 template <class ELFT
>
4503 void DumpStyle
<ELFT
>::printStackSize(const ELFObjectFile
<ELFT
> *Obj
,
4504 RelocationRef Reloc
,
4505 SectionRef FunctionSec
,
4506 const StringRef
&StackSizeSectionName
,
4507 const RelocationResolver
&Resolver
,
4508 DataExtractor Data
) {
4509 // This function ignores potentially erroneous input, unless it is directly
4510 // related to stack size reporting.
4511 object::symbol_iterator RelocSym
= Reloc
.getSymbol();
4512 uint64_t RelocSymValue
= 0;
4513 StringRef FileStr
= Obj
->getFileName();
4514 if (RelocSym
!= Obj
->symbol_end()) {
4515 // Ensure that the relocation symbol is in the function section, i.e. the
4516 // section where the functions whose stack sizes we are reporting are
4518 StringRef SymName
= "?";
4519 Expected
<StringRef
> NameOrErr
= RelocSym
->getName();
4521 SymName
= *NameOrErr
;
4523 consumeError(NameOrErr
.takeError());
4525 auto SectionOrErr
= RelocSym
->getSection();
4526 if (!SectionOrErr
) {
4527 reportWarning(" '" + FileStr
+
4528 "': cannot identify the section for relocation symbol " +
4530 consumeError(SectionOrErr
.takeError());
4531 } else if (*SectionOrErr
!= FunctionSec
) {
4532 reportWarning(" '" + FileStr
+ "': relocation symbol " + SymName
+
4533 " is not in the expected section");
4534 // Pretend that the symbol is in the correct section and report its
4535 // stack size anyway.
4536 FunctionSec
= **SectionOrErr
;
4539 Expected
<uint64_t> RelocSymValueOrErr
= RelocSym
->getValue();
4540 if (RelocSymValueOrErr
)
4541 RelocSymValue
= *RelocSymValueOrErr
;
4543 consumeError(RelocSymValueOrErr
.takeError());
4546 uint64_t Offset
= Reloc
.getOffset();
4547 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1))
4549 createStringError(object_error::parse_failed
,
4550 "found invalid relocation offset into section %s "
4551 "while trying to extract a stack size entry",
4552 StackSizeSectionName
.data()),
4555 uint64_t Addend
= Data
.getAddress(&Offset
);
4556 uint64_t SymValue
= Resolver(Reloc
, RelocSymValue
, Addend
);
4557 this->printFunctionStackSize(Obj
, SymValue
, FunctionSec
, StackSizeSectionName
,
4561 template <class ELFT
>
4562 SectionRef
toSectionRef(const ObjectFile
*Obj
, const typename
ELFT::Shdr
*Sec
) {
4564 DRI
.p
= reinterpret_cast<uintptr_t>(Sec
);
4565 return SectionRef(DRI
, Obj
);
4568 template <class ELFT
>
4569 void DumpStyle
<ELFT
>::printNonRelocatableStackSizes(
4570 const ELFObjectFile
<ELFT
> *Obj
, std::function
<void()> PrintHeader
) {
4571 // This function ignores potentially erroneous input, unless it is directly
4572 // related to stack size reporting.
4573 const ELFFile
<ELFT
> *EF
= Obj
->getELFFile();
4574 StringRef FileStr
= Obj
->getFileName();
4575 for (const SectionRef
&Sec
: Obj
->sections()) {
4576 StringRef SectionName
;
4577 Sec
.getName(SectionName
);
4578 const Elf_Shdr
*ElfSec
= Obj
->getSection(Sec
.getRawDataRefImpl());
4579 if (!SectionName
.startswith(".stack_sizes"))
4582 ArrayRef
<uint8_t> Contents
=
4583 unwrapOrError(this->FileName
, EF
->getSectionContents(ElfSec
));
4585 StringRef(reinterpret_cast<const char *>(Contents
.data()),
4587 Obj
->isLittleEndian(), sizeof(Elf_Addr
));
4588 // A .stack_sizes section header's sh_link field is supposed to point
4589 // to the section that contains the functions whose stack sizes are
4591 const Elf_Shdr
*FunctionELFSec
=
4592 unwrapOrError(this->FileName
, EF
->getSection(ElfSec
->sh_link
));
4593 uint64_t Offset
= 0;
4594 while (Offset
< Contents
.size()) {
4595 // The function address is followed by a ULEB representing the stack
4596 // size. Check for an extra byte before we try to process the entry.
4597 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1)) {
4600 object_error::parse_failed
,
4601 "section %s ended while trying to extract a stack size entry",
4602 SectionName
.data()),
4605 uint64_t SymValue
= Data
.getAddress(&Offset
);
4606 printFunctionStackSize(Obj
, SymValue
,
4607 toSectionRef
<ELFT
>(Obj
, FunctionELFSec
),
4608 SectionName
, Data
, &Offset
);
4613 template <class ELFT
>
4614 void DumpStyle
<ELFT
>::printRelocatableStackSizes(
4615 const ELFObjectFile
<ELFT
> *Obj
, std::function
<void()> PrintHeader
) {
4616 const ELFFile
<ELFT
> *EF
= Obj
->getELFFile();
4617 StringRef FileStr
= Obj
->getFileName();
4618 // Build a map between stack size sections and their corresponding relocation
4620 llvm::MapVector
<SectionRef
, SectionRef
> StackSizeRelocMap
;
4621 const SectionRef NullSection
;
4623 for (const SectionRef
&Sec
: Obj
->sections()) {
4624 StringRef SectionName
;
4625 Sec
.getName(SectionName
);
4626 // A stack size section that we haven't encountered yet is mapped to the
4627 // null section until we find its corresponding relocation section.
4628 if (SectionName
.startswith(".stack_sizes"))
4629 if (StackSizeRelocMap
.count(Sec
) == 0) {
4630 StackSizeRelocMap
[Sec
] = NullSection
;
4634 // Check relocation sections if they are relocating contents of a
4635 // stack sizes section.
4636 const Elf_Shdr
*ElfSec
= Obj
->getSection(Sec
.getRawDataRefImpl());
4637 uint32_t SectionType
= ElfSec
->sh_type
;
4638 if (SectionType
!= ELF::SHT_RELA
&& SectionType
!= ELF::SHT_REL
)
4641 SectionRef Contents
= *Sec
.getRelocatedSection();
4642 const Elf_Shdr
*ContentsSec
= Obj
->getSection(Contents
.getRawDataRefImpl());
4643 Expected
<StringRef
> ContentsSectionNameOrErr
=
4644 EF
->getSectionName(ContentsSec
);
4645 if (!ContentsSectionNameOrErr
) {
4646 consumeError(ContentsSectionNameOrErr
.takeError());
4649 if (!ContentsSectionNameOrErr
->startswith(".stack_sizes"))
4651 // Insert a mapping from the stack sizes section to its relocation section.
4652 StackSizeRelocMap
[toSectionRef
<ELFT
>(Obj
, ContentsSec
)] = Sec
;
4655 for (const auto &StackSizeMapEntry
: StackSizeRelocMap
) {
4657 const SectionRef
&StackSizesSec
= StackSizeMapEntry
.first
;
4658 const SectionRef
&RelocSec
= StackSizeMapEntry
.second
;
4660 // Warn about stack size sections without a relocation section.
4661 StringRef StackSizeSectionName
;
4662 StackSizesSec
.getName(StackSizeSectionName
);
4663 if (RelocSec
== NullSection
) {
4664 reportWarning(" '" + FileStr
+ "': section " + StackSizeSectionName
+
4665 " does not have a corresponding "
4666 "relocation section");
4670 // A .stack_sizes section header's sh_link field is supposed to point
4671 // to the section that contains the functions whose stack sizes are
4673 const Elf_Shdr
*StackSizesELFSec
=
4674 Obj
->getSection(StackSizesSec
.getRawDataRefImpl());
4675 const SectionRef FunctionSec
= toSectionRef
<ELFT
>(
4676 Obj
, unwrapOrError(this->FileName
,
4677 EF
->getSection(StackSizesELFSec
->sh_link
)));
4679 bool (*IsSupportedFn
)(uint64_t);
4680 RelocationResolver Resolver
;
4681 std::tie(IsSupportedFn
, Resolver
) = getRelocationResolver(*Obj
);
4682 auto Contents
= unwrapOrError(this->FileName
, StackSizesSec
.getContents());
4684 StringRef(reinterpret_cast<const char *>(Contents
.data()),
4686 Obj
->isLittleEndian(), sizeof(Elf_Addr
));
4687 for (const RelocationRef
&Reloc
: RelocSec
.relocations()) {
4688 if (!IsSupportedFn(Reloc
.getType())) {
4689 StringRef RelocSectionName
;
4690 RelocSec
.getName(RelocSectionName
);
4691 StringRef RelocName
= EF
->getRelocationTypeName(Reloc
.getType());
4693 createStringError(object_error::parse_failed
,
4694 "unsupported relocation type in section %s: %s",
4695 RelocSectionName
.data(), RelocName
.data()),
4698 this->printStackSize(Obj
, Reloc
, FunctionSec
, StackSizeSectionName
,
4704 template <class ELFT
>
4705 void GNUStyle
<ELFT
>::printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) {
4706 bool HeaderHasBeenPrinted
= false;
4707 auto PrintHeader
= [&]() {
4708 if (HeaderHasBeenPrinted
)
4710 OS
<< "\nStack Sizes:\n";
4715 HeaderHasBeenPrinted
= true;
4718 // For non-relocatable objects, look directly for sections whose name starts
4719 // with .stack_sizes and process the contents.
4720 if (Obj
->isRelocatableObject())
4721 this->printRelocatableStackSizes(Obj
, PrintHeader
);
4723 this->printNonRelocatableStackSizes(Obj
, PrintHeader
);
4726 template <class ELFT
>
4727 void GNUStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
4728 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
4729 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
4731 OS
<< format_hex_no_prefix(Parser
.getGotAddress(E
), 8 + Bias
);
4732 OS
.PadToColumn(11 + Bias
);
4733 OS
<< format_decimal(Parser
.getGotOffset(E
), 6) << "(gp)";
4734 OS
.PadToColumn(22 + Bias
);
4735 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
4736 OS
.PadToColumn(31 + 2 * Bias
);
4737 OS
<< Purpose
<< "\n";
4740 OS
<< (Parser
.IsStatic
? "Static GOT:\n" : "Primary GOT:\n");
4741 OS
<< " Canonical gp value: "
4742 << format_hex_no_prefix(Parser
.getGp(), 8 + Bias
) << "\n\n";
4744 OS
<< " Reserved entries:\n";
4746 OS
<< " Address Access Initial Purpose\n";
4748 OS
<< " Address Access Initial Purpose\n";
4749 PrintEntry(Parser
.getGotLazyResolver(), "Lazy resolver");
4750 if (Parser
.getGotModulePointer())
4751 PrintEntry(Parser
.getGotModulePointer(), "Module pointer (GNU extension)");
4753 if (!Parser
.getLocalEntries().empty()) {
4755 OS
<< " Local entries:\n";
4757 OS
<< " Address Access Initial\n";
4759 OS
<< " Address Access Initial\n";
4760 for (auto &E
: Parser
.getLocalEntries())
4764 if (Parser
.IsStatic
)
4767 if (!Parser
.getGlobalEntries().empty()) {
4769 OS
<< " Global entries:\n";
4771 OS
<< " Address Access Initial Sym.Val."
4772 << " Type Ndx Name\n";
4774 OS
<< " Address Access Initial Sym.Val. Type Ndx Name\n";
4775 for (auto &E
: Parser
.getGlobalEntries()) {
4776 const Elf_Sym
*Sym
= Parser
.getGotSym(&E
);
4777 std::string SymName
= this->dumper()->getFullSymbolName(
4778 Sym
, this->dumper()->getDynamicStringTable(), false);
4781 OS
<< to_string(format_hex_no_prefix(Parser
.getGotAddress(&E
), 8 + Bias
));
4782 OS
.PadToColumn(11 + Bias
);
4783 OS
<< to_string(format_decimal(Parser
.getGotOffset(&E
), 6)) + "(gp)";
4784 OS
.PadToColumn(22 + Bias
);
4785 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
4786 OS
.PadToColumn(31 + 2 * Bias
);
4787 OS
<< to_string(format_hex_no_prefix(Sym
->st_value
, 8 + Bias
));
4788 OS
.PadToColumn(40 + 3 * Bias
);
4789 OS
<< printEnum(Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
4790 OS
.PadToColumn(48 + 3 * Bias
);
4791 OS
<< getSymbolSectionNdx(Parser
.Obj
, Sym
,
4792 this->dumper()->dynamic_symbols().begin());
4793 OS
.PadToColumn(52 + 3 * Bias
);
4794 OS
<< SymName
<< "\n";
4798 if (!Parser
.getOtherEntries().empty())
4799 OS
<< "\n Number of TLS and multi-GOT entries "
4800 << Parser
.getOtherEntries().size() << "\n";
4803 template <class ELFT
>
4804 void GNUStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
4805 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
4806 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
4808 OS
<< format_hex_no_prefix(Parser
.getPltAddress(E
), 8 + Bias
);
4809 OS
.PadToColumn(11 + Bias
);
4810 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
4811 OS
.PadToColumn(20 + 2 * Bias
);
4812 OS
<< Purpose
<< "\n";
4815 OS
<< "PLT GOT:\n\n";
4817 OS
<< " Reserved entries:\n";
4818 OS
<< " Address Initial Purpose\n";
4819 PrintEntry(Parser
.getPltLazyResolver(), "PLT lazy resolver");
4820 if (Parser
.getPltModulePointer())
4821 PrintEntry(Parser
.getPltModulePointer(), "Module pointer");
4823 if (!Parser
.getPltEntries().empty()) {
4825 OS
<< " Entries:\n";
4826 OS
<< " Address Initial Sym.Val. Type Ndx Name\n";
4827 for (auto &E
: Parser
.getPltEntries()) {
4828 const Elf_Sym
*Sym
= Parser
.getPltSym(&E
);
4829 std::string SymName
= this->dumper()->getFullSymbolName(
4830 Sym
, this->dumper()->getDynamicStringTable(), false);
4833 OS
<< to_string(format_hex_no_prefix(Parser
.getPltAddress(&E
), 8 + Bias
));
4834 OS
.PadToColumn(11 + Bias
);
4835 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
4836 OS
.PadToColumn(20 + 2 * Bias
);
4837 OS
<< to_string(format_hex_no_prefix(Sym
->st_value
, 8 + Bias
));
4838 OS
.PadToColumn(29 + 3 * Bias
);
4839 OS
<< printEnum(Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
4840 OS
.PadToColumn(37 + 3 * Bias
);
4841 OS
<< getSymbolSectionNdx(Parser
.Obj
, Sym
,
4842 this->dumper()->dynamic_symbols().begin());
4843 OS
.PadToColumn(41 + 3 * Bias
);
4844 OS
<< SymName
<< "\n";
4849 template <class ELFT
> void LLVMStyle
<ELFT
>::printFileHeaders(const ELFO
*Obj
) {
4850 const Elf_Ehdr
*E
= Obj
->getHeader();
4852 DictScope
D(W
, "ElfHeader");
4854 DictScope
D(W
, "Ident");
4855 W
.printBinary("Magic", makeArrayRef(E
->e_ident
).slice(ELF::EI_MAG0
, 4));
4856 W
.printEnum("Class", E
->e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
4857 W
.printEnum("DataEncoding", E
->e_ident
[ELF::EI_DATA
],
4858 makeArrayRef(ElfDataEncoding
));
4859 W
.printNumber("FileVersion", E
->e_ident
[ELF::EI_VERSION
]);
4861 auto OSABI
= makeArrayRef(ElfOSABI
);
4862 if (E
->e_ident
[ELF::EI_OSABI
] >= ELF::ELFOSABI_FIRST_ARCH
&&
4863 E
->e_ident
[ELF::EI_OSABI
] <= ELF::ELFOSABI_LAST_ARCH
) {
4864 switch (E
->e_machine
) {
4865 case ELF::EM_AMDGPU
:
4866 OSABI
= makeArrayRef(AMDGPUElfOSABI
);
4869 OSABI
= makeArrayRef(ARMElfOSABI
);
4871 case ELF::EM_TI_C6000
:
4872 OSABI
= makeArrayRef(C6000ElfOSABI
);
4876 W
.printEnum("OS/ABI", E
->e_ident
[ELF::EI_OSABI
], OSABI
);
4877 W
.printNumber("ABIVersion", E
->e_ident
[ELF::EI_ABIVERSION
]);
4878 W
.printBinary("Unused", makeArrayRef(E
->e_ident
).slice(ELF::EI_PAD
));
4881 W
.printEnum("Type", E
->e_type
, makeArrayRef(ElfObjectFileType
));
4882 W
.printEnum("Machine", E
->e_machine
, makeArrayRef(ElfMachineType
));
4883 W
.printNumber("Version", E
->e_version
);
4884 W
.printHex("Entry", E
->e_entry
);
4885 W
.printHex("ProgramHeaderOffset", E
->e_phoff
);
4886 W
.printHex("SectionHeaderOffset", E
->e_shoff
);
4887 if (E
->e_machine
== EM_MIPS
)
4888 W
.printFlags("Flags", E
->e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
4889 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
4890 unsigned(ELF::EF_MIPS_MACH
));
4891 else if (E
->e_machine
== EM_AMDGPU
)
4892 W
.printFlags("Flags", E
->e_flags
, makeArrayRef(ElfHeaderAMDGPUFlags
),
4893 unsigned(ELF::EF_AMDGPU_MACH
));
4894 else if (E
->e_machine
== EM_RISCV
)
4895 W
.printFlags("Flags", E
->e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
4897 W
.printFlags("Flags", E
->e_flags
);
4898 W
.printNumber("HeaderSize", E
->e_ehsize
);
4899 W
.printNumber("ProgramHeaderEntrySize", E
->e_phentsize
);
4900 W
.printNumber("ProgramHeaderCount", E
->e_phnum
);
4901 W
.printNumber("SectionHeaderEntrySize", E
->e_shentsize
);
4902 W
.printString("SectionHeaderCount",
4903 getSectionHeadersNumString(Obj
, this->FileName
));
4904 W
.printString("StringTableSectionIndex",
4905 getSectionHeaderTableIndexString(Obj
, this->FileName
));
4909 template <class ELFT
>
4910 void LLVMStyle
<ELFT
>::printGroupSections(const ELFO
*Obj
) {
4911 DictScope
Lists(W
, "Groups");
4912 std::vector
<GroupSection
> V
= getGroups
<ELFT
>(Obj
, this->FileName
);
4913 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
4914 for (const GroupSection
&G
: V
) {
4915 DictScope
D(W
, "Group");
4916 W
.printNumber("Name", G
.Name
, G
.ShName
);
4917 W
.printNumber("Index", G
.Index
);
4918 W
.printNumber("Link", G
.Link
);
4919 W
.printNumber("Info", G
.Info
);
4920 W
.printHex("Type", getGroupType(G
.Type
), G
.Type
);
4921 W
.startLine() << "Signature: " << G
.Signature
<< "\n";
4923 ListScope
L(W
, "Section(s) in group");
4924 for (const GroupMember
&GM
: G
.Members
) {
4925 const GroupSection
*MainGroup
= Map
[GM
.Index
];
4926 if (MainGroup
!= &G
) {
4928 errs() << "Error: " << GM
.Name
<< " (" << GM
.Index
4929 << ") in a group " + G
.Name
+ " (" << G
.Index
4930 << ") is already in a group " + MainGroup
->Name
+ " ("
4931 << MainGroup
->Index
<< ")\n";
4935 W
.startLine() << GM
.Name
<< " (" << GM
.Index
<< ")\n";
4940 W
.startLine() << "There are no group sections in the file.\n";
4943 template <class ELFT
> void LLVMStyle
<ELFT
>::printRelocations(const ELFO
*Obj
) {
4944 ListScope
D(W
, "Relocations");
4946 int SectionNumber
= -1;
4947 for (const Elf_Shdr
&Sec
: unwrapOrError(this->FileName
, Obj
->sections())) {
4950 if (Sec
.sh_type
!= ELF::SHT_REL
&& Sec
.sh_type
!= ELF::SHT_RELA
&&
4951 Sec
.sh_type
!= ELF::SHT_RELR
&& Sec
.sh_type
!= ELF::SHT_ANDROID_REL
&&
4952 Sec
.sh_type
!= ELF::SHT_ANDROID_RELA
&&
4953 Sec
.sh_type
!= ELF::SHT_ANDROID_RELR
)
4956 StringRef Name
= unwrapOrError(this->FileName
, Obj
->getSectionName(&Sec
));
4958 W
.startLine() << "Section (" << SectionNumber
<< ") " << Name
<< " {\n";
4961 printRelocations(&Sec
, Obj
);
4964 W
.startLine() << "}\n";
4968 template <class ELFT
>
4969 void LLVMStyle
<ELFT
>::printRelocations(const Elf_Shdr
*Sec
, const ELFO
*Obj
) {
4970 const Elf_Shdr
*SymTab
=
4971 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
4973 switch (Sec
->sh_type
) {
4975 for (const Elf_Rel
&R
: unwrapOrError(this->FileName
, Obj
->rels(Sec
))) {
4977 Rela
.r_offset
= R
.r_offset
;
4978 Rela
.r_info
= R
.r_info
;
4980 printRelocation(Obj
, Rela
, SymTab
);
4984 for (const Elf_Rela
&R
: unwrapOrError(this->FileName
, Obj
->relas(Sec
)))
4985 printRelocation(Obj
, R
, SymTab
);
4988 case ELF::SHT_ANDROID_RELR
: {
4989 Elf_Relr_Range Relrs
= unwrapOrError(this->FileName
, Obj
->relrs(Sec
));
4990 if (opts::RawRelr
) {
4991 for (const Elf_Relr
&R
: Relrs
)
4992 W
.startLine() << W
.hex(R
) << "\n";
4994 std::vector
<Elf_Rela
> RelrRelas
=
4995 unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
4996 for (const Elf_Rela
&R
: RelrRelas
)
4997 printRelocation(Obj
, R
, SymTab
);
5001 case ELF::SHT_ANDROID_REL
:
5002 case ELF::SHT_ANDROID_RELA
:
5003 for (const Elf_Rela
&R
:
5004 unwrapOrError(this->FileName
, Obj
->android_relas(Sec
)))
5005 printRelocation(Obj
, R
, SymTab
);
5010 template <class ELFT
>
5011 void LLVMStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, Elf_Rela Rel
,
5012 const Elf_Shdr
*SymTab
) {
5013 SmallString
<32> RelocName
;
5014 Obj
->getRelocationTypeName(Rel
.getType(Obj
->isMips64EL()), RelocName
);
5015 std::string TargetName
;
5016 const Elf_Sym
*Sym
=
5017 unwrapOrError(this->FileName
, Obj
->getRelocationSymbol(&Rel
, SymTab
));
5018 if (Sym
&& Sym
->getType() == ELF::STT_SECTION
) {
5019 const Elf_Shdr
*Sec
= unwrapOrError(
5021 Obj
->getSection(Sym
, SymTab
, this->dumper()->getShndxTable()));
5022 TargetName
= unwrapOrError(this->FileName
, Obj
->getSectionName(Sec
));
5024 StringRef StrTable
=
5025 unwrapOrError(this->FileName
, Obj
->getStringTableForSymtab(*SymTab
));
5026 TargetName
= this->dumper()->getFullSymbolName(
5027 Sym
, StrTable
, SymTab
->sh_type
== SHT_DYNSYM
/* IsDynamic */);
5030 if (opts::ExpandRelocs
) {
5031 DictScope
Group(W
, "Relocation");
5032 W
.printHex("Offset", Rel
.r_offset
);
5033 W
.printNumber("Type", RelocName
, (int)Rel
.getType(Obj
->isMips64EL()));
5034 W
.printNumber("Symbol", !TargetName
.empty() ? TargetName
: "-",
5035 Rel
.getSymbol(Obj
->isMips64EL()));
5036 W
.printHex("Addend", Rel
.r_addend
);
5038 raw_ostream
&OS
= W
.startLine();
5039 OS
<< W
.hex(Rel
.r_offset
) << " " << RelocName
<< " "
5040 << (!TargetName
.empty() ? TargetName
: "-") << " " << W
.hex(Rel
.r_addend
)
5045 template <class ELFT
>
5046 void LLVMStyle
<ELFT
>::printSectionHeaders(const ELFO
*Obj
) {
5047 ListScope
SectionsD(W
, "Sections");
5049 int SectionIndex
= -1;
5050 ArrayRef
<Elf_Shdr
> Sections
= unwrapOrError(this->FileName
, Obj
->sections());
5051 const ELFObjectFile
<ELFT
> *ElfObj
= this->dumper()->getElfObject();
5052 for (const Elf_Shdr
&Sec
: Sections
) {
5053 StringRef Name
= unwrapOrError(
5054 ElfObj
->getFileName(), Obj
->getSectionName(&Sec
, this->WarningHandler
));
5055 DictScope
SectionD(W
, "Section");
5056 W
.printNumber("Index", ++SectionIndex
);
5057 W
.printNumber("Name", Name
, Sec
.sh_name
);
5060 object::getELFSectionTypeName(Obj
->getHeader()->e_machine
, Sec
.sh_type
),
5062 std::vector
<EnumEntry
<unsigned>> SectionFlags(std::begin(ElfSectionFlags
),
5063 std::end(ElfSectionFlags
));
5064 switch (Obj
->getHeader()->e_machine
) {
5066 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfARMSectionFlags
),
5067 std::end(ElfARMSectionFlags
));
5070 SectionFlags
.insert(SectionFlags
.end(),
5071 std::begin(ElfHexagonSectionFlags
),
5072 std::end(ElfHexagonSectionFlags
));
5075 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfMipsSectionFlags
),
5076 std::end(ElfMipsSectionFlags
));
5079 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfX86_64SectionFlags
),
5080 std::end(ElfX86_64SectionFlags
));
5083 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfXCoreSectionFlags
),
5084 std::end(ElfXCoreSectionFlags
));
5090 W
.printFlags("Flags", Sec
.sh_flags
, makeArrayRef(SectionFlags
));
5091 W
.printHex("Address", Sec
.sh_addr
);
5092 W
.printHex("Offset", Sec
.sh_offset
);
5093 W
.printNumber("Size", Sec
.sh_size
);
5094 W
.printNumber("Link", Sec
.sh_link
);
5095 W
.printNumber("Info", Sec
.sh_info
);
5096 W
.printNumber("AddressAlignment", Sec
.sh_addralign
);
5097 W
.printNumber("EntrySize", Sec
.sh_entsize
);
5099 if (opts::SectionRelocations
) {
5100 ListScope
D(W
, "Relocations");
5101 printRelocations(&Sec
, Obj
);
5104 if (opts::SectionSymbols
) {
5105 ListScope
D(W
, "Symbols");
5106 const Elf_Shdr
*Symtab
= this->dumper()->getDotSymtabSec();
5107 StringRef StrTable
=
5108 unwrapOrError(this->FileName
, Obj
->getStringTableForSymtab(*Symtab
));
5110 for (const Elf_Sym
&Sym
:
5111 unwrapOrError(this->FileName
, Obj
->symbols(Symtab
))) {
5112 const Elf_Shdr
*SymSec
= unwrapOrError(
5114 Obj
->getSection(&Sym
, Symtab
, this->dumper()->getShndxTable()));
5116 printSymbol(Obj
, &Sym
,
5117 unwrapOrError(this->FileName
, Obj
->symbols(Symtab
)).begin(),
5122 if (opts::SectionData
&& Sec
.sh_type
!= ELF::SHT_NOBITS
) {
5123 ArrayRef
<uint8_t> Data
=
5124 unwrapOrError(this->FileName
, Obj
->getSectionContents(&Sec
));
5127 StringRef(reinterpret_cast<const char *>(Data
.data()), Data
.size()));
5132 template <class ELFT
>
5133 void LLVMStyle
<ELFT
>::printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
5134 const Elf_Sym
*First
, StringRef StrTable
,
5136 unsigned SectionIndex
= 0;
5137 StringRef SectionName
;
5138 this->dumper()->getSectionNameIndex(Symbol
, First
, SectionName
, SectionIndex
);
5139 std::string FullSymbolName
=
5140 this->dumper()->getFullSymbolName(Symbol
, StrTable
, IsDynamic
);
5141 unsigned char SymbolType
= Symbol
->getType();
5143 DictScope
D(W
, "Symbol");
5144 W
.printNumber("Name", FullSymbolName
, Symbol
->st_name
);
5145 W
.printHex("Value", Symbol
->st_value
);
5146 W
.printNumber("Size", Symbol
->st_size
);
5147 W
.printEnum("Binding", Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
5148 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
5149 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
5150 W
.printEnum("Type", SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
5152 W
.printEnum("Type", SymbolType
, makeArrayRef(ElfSymbolTypes
));
5153 if (Symbol
->st_other
== 0)
5154 // Usually st_other flag is zero. Do not pollute the output
5155 // by flags enumeration in that case.
5156 W
.printNumber("Other", 0);
5158 std::vector
<EnumEntry
<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags
),
5159 std::end(ElfSymOtherFlags
));
5160 if (Obj
->getHeader()->e_machine
== EM_MIPS
) {
5161 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
5162 // flag overlapped with other ST_MIPS_xxx flags. So consider both
5163 // cases separately.
5164 if ((Symbol
->st_other
& STO_MIPS_MIPS16
) == STO_MIPS_MIPS16
)
5165 SymOtherFlags
.insert(SymOtherFlags
.end(),
5166 std::begin(ElfMips16SymOtherFlags
),
5167 std::end(ElfMips16SymOtherFlags
));
5169 SymOtherFlags
.insert(SymOtherFlags
.end(),
5170 std::begin(ElfMipsSymOtherFlags
),
5171 std::end(ElfMipsSymOtherFlags
));
5173 W
.printFlags("Other", Symbol
->st_other
, makeArrayRef(SymOtherFlags
), 0x3u
);
5175 W
.printHex("Section", SectionName
, SectionIndex
);
5178 template <class ELFT
>
5179 void LLVMStyle
<ELFT
>::printSymbols(const ELFO
*Obj
, bool PrintSymbols
,
5180 bool PrintDynamicSymbols
) {
5183 if (PrintDynamicSymbols
)
5184 printDynamicSymbols(Obj
);
5187 template <class ELFT
> void LLVMStyle
<ELFT
>::printSymbols(const ELFO
*Obj
) {
5188 ListScope
Group(W
, "Symbols");
5189 this->dumper()->printSymbolsHelper(false);
5192 template <class ELFT
>
5193 void LLVMStyle
<ELFT
>::printDynamicSymbols(const ELFO
*Obj
) {
5194 ListScope
Group(W
, "DynamicSymbols");
5195 this->dumper()->printSymbolsHelper(true);
5198 template <class ELFT
> void LLVMStyle
<ELFT
>::printDynamic(const ELFFile
<ELFT
> *Obj
) {
5199 Elf_Dyn_Range Table
= this->dumper()->dynamic_table();
5203 raw_ostream
&OS
= W
.getOStream();
5204 W
.startLine() << "DynamicSection [ (" << Table
.size() << " entries)\n";
5206 bool Is64
= ELFT::Is64Bits
;
5208 W
.startLine() << " Tag Type Name/Value\n";
5210 W
.startLine() << " Tag Type Name/Value\n";
5211 for (auto Entry
: Table
) {
5212 uintX_t Tag
= Entry
.getTag();
5213 W
.startLine() << " " << format_hex(Tag
, Is64
? 18 : 10, true) << " "
5215 getTypeString(Obj
->getHeader()->e_machine
, Tag
));
5216 this->dumper()->printDynamicEntry(OS
, Tag
, Entry
.getVal());
5220 W
.startLine() << "]\n";
5223 template <class ELFT
>
5224 void LLVMStyle
<ELFT
>::printDynamicRelocations(const ELFO
*Obj
) {
5225 const DynRegionInfo
&DynRelRegion
= this->dumper()->getDynRelRegion();
5226 const DynRegionInfo
&DynRelaRegion
= this->dumper()->getDynRelaRegion();
5227 const DynRegionInfo
&DynRelrRegion
= this->dumper()->getDynRelrRegion();
5228 const DynRegionInfo
&DynPLTRelRegion
= this->dumper()->getDynPLTRelRegion();
5229 if (DynRelRegion
.Size
&& DynRelaRegion
.Size
)
5230 report_fatal_error("There are both REL and RELA dynamic relocations");
5231 W
.startLine() << "Dynamic Relocations {\n";
5233 if (DynRelaRegion
.Size
> 0)
5234 for (const Elf_Rela
&Rela
: this->dumper()->dyn_relas())
5235 printDynamicRelocation(Obj
, Rela
);
5237 for (const Elf_Rel
&Rel
: this->dumper()->dyn_rels()) {
5239 Rela
.r_offset
= Rel
.r_offset
;
5240 Rela
.r_info
= Rel
.r_info
;
5242 printDynamicRelocation(Obj
, Rela
);
5244 if (DynRelrRegion
.Size
> 0) {
5245 Elf_Relr_Range Relrs
= this->dumper()->dyn_relrs();
5246 std::vector
<Elf_Rela
> RelrRelas
=
5247 unwrapOrError(this->FileName
, Obj
->decode_relrs(Relrs
));
5248 for (const Elf_Rela
&Rela
: RelrRelas
)
5249 printDynamicRelocation(Obj
, Rela
);
5251 if (DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
))
5252 for (const Elf_Rela
&Rela
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rela
>())
5253 printDynamicRelocation(Obj
, Rela
);
5255 for (const Elf_Rel
&Rel
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rel
>()) {
5257 Rela
.r_offset
= Rel
.r_offset
;
5258 Rela
.r_info
= Rel
.r_info
;
5260 printDynamicRelocation(Obj
, Rela
);
5263 W
.startLine() << "}\n";
5266 template <class ELFT
>
5267 void LLVMStyle
<ELFT
>::printDynamicRelocation(const ELFO
*Obj
, Elf_Rela Rel
) {
5268 SmallString
<32> RelocName
;
5269 Obj
->getRelocationTypeName(Rel
.getType(Obj
->isMips64EL()), RelocName
);
5270 std::string SymbolName
;
5271 uint32_t SymIndex
= Rel
.getSymbol(Obj
->isMips64EL());
5272 const Elf_Sym
*Sym
= this->dumper()->dynamic_symbols().begin() + SymIndex
;
5273 SymbolName
= maybeDemangle(unwrapOrError(
5274 this->FileName
, Sym
->getName(this->dumper()->getDynamicStringTable())));
5275 if (opts::ExpandRelocs
) {
5276 DictScope
Group(W
, "Relocation");
5277 W
.printHex("Offset", Rel
.r_offset
);
5278 W
.printNumber("Type", RelocName
, (int)Rel
.getType(Obj
->isMips64EL()));
5279 W
.printString("Symbol", !SymbolName
.empty() ? SymbolName
: "-");
5280 W
.printHex("Addend", Rel
.r_addend
);
5282 raw_ostream
&OS
= W
.startLine();
5283 OS
<< W
.hex(Rel
.r_offset
) << " " << RelocName
<< " "
5284 << (!SymbolName
.empty() ? SymbolName
: "-") << " " << W
.hex(Rel
.r_addend
)
5289 template <class ELFT
>
5290 void LLVMStyle
<ELFT
>::printProgramHeaders(
5291 const ELFO
*Obj
, bool PrintProgramHeaders
,
5292 cl::boolOrDefault PrintSectionMapping
) {
5293 if (PrintProgramHeaders
)
5294 printProgramHeaders(Obj
);
5295 if (PrintSectionMapping
== cl::BOU_TRUE
)
5296 printSectionMapping(Obj
);
5299 template <class ELFT
>
5300 void LLVMStyle
<ELFT
>::printProgramHeaders(const ELFO
*Obj
) {
5301 ListScope
L(W
, "ProgramHeaders");
5303 for (const Elf_Phdr
&Phdr
:
5304 unwrapOrError(this->FileName
, Obj
->program_headers())) {
5305 DictScope
P(W
, "ProgramHeader");
5307 getElfSegmentType(Obj
->getHeader()->e_machine
, Phdr
.p_type
),
5309 W
.printHex("Offset", Phdr
.p_offset
);
5310 W
.printHex("VirtualAddress", Phdr
.p_vaddr
);
5311 W
.printHex("PhysicalAddress", Phdr
.p_paddr
);
5312 W
.printNumber("FileSize", Phdr
.p_filesz
);
5313 W
.printNumber("MemSize", Phdr
.p_memsz
);
5314 W
.printFlags("Flags", Phdr
.p_flags
, makeArrayRef(ElfSegmentFlags
));
5315 W
.printNumber("Alignment", Phdr
.p_align
);
5319 template <class ELFT
>
5320 void LLVMStyle
<ELFT
>::printVersionSymbolSection(const ELFFile
<ELFT
> *Obj
,
5321 const Elf_Shdr
*Sec
) {
5322 DictScope
SS(W
, "Version symbols");
5326 StringRef SecName
= unwrapOrError(this->FileName
, Obj
->getSectionName(Sec
));
5327 W
.printNumber("Section Name", SecName
, Sec
->sh_name
);
5328 W
.printHex("Address", Sec
->sh_addr
);
5329 W
.printHex("Offset", Sec
->sh_offset
);
5330 W
.printNumber("Link", Sec
->sh_link
);
5332 const uint8_t *VersymBuf
=
5333 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
5334 const ELFDumper
<ELFT
> *Dumper
= this->dumper();
5335 StringRef StrTable
= Dumper
->getDynamicStringTable();
5337 // Same number of entries in the dynamic symbol table (DT_SYMTAB).
5338 ListScope
Syms(W
, "Symbols");
5339 for (const Elf_Sym
&Sym
: Dumper
->dynamic_symbols()) {
5340 DictScope
S(W
, "Symbol");
5341 const Elf_Versym
*Versym
= reinterpret_cast<const Elf_Versym
*>(VersymBuf
);
5342 std::string FullSymbolName
=
5343 Dumper
->getFullSymbolName(&Sym
, StrTable
, true /* IsDynamic */);
5344 W
.printNumber("Version", Versym
->vs_index
& VERSYM_VERSION
);
5345 W
.printString("Name", FullSymbolName
);
5346 VersymBuf
+= sizeof(Elf_Versym
);
5350 template <class ELFT
>
5351 void LLVMStyle
<ELFT
>::printVersionDefinitionSection(const ELFFile
<ELFT
> *Obj
,
5352 const Elf_Shdr
*Sec
) {
5353 DictScope
SD(W
, "SHT_GNU_verdef");
5357 const uint8_t *SecStartAddress
=
5358 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
5359 const uint8_t *SecEndAddress
= SecStartAddress
+ Sec
->sh_size
;
5360 const uint8_t *VerdefBuf
= SecStartAddress
;
5361 const Elf_Shdr
*StrTab
=
5362 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
5364 unsigned VerDefsNum
= Sec
->sh_info
;
5365 while (VerDefsNum
--) {
5366 if (VerdefBuf
+ sizeof(Elf_Verdef
) > SecEndAddress
)
5367 // FIXME: report_fatal_error is not a good way to report error. We should
5368 // emit a parsing error here and below.
5369 report_fatal_error("invalid offset in the section");
5371 const Elf_Verdef
*Verdef
= reinterpret_cast<const Elf_Verdef
*>(VerdefBuf
);
5372 DictScope
Def(W
, "Definition");
5373 W
.printNumber("Version", Verdef
->vd_version
);
5374 W
.printEnum("Flags", Verdef
->vd_flags
, makeArrayRef(SymVersionFlags
));
5375 W
.printNumber("Index", Verdef
->vd_ndx
);
5376 W
.printNumber("Hash", Verdef
->vd_hash
);
5377 W
.printString("Name", StringRef(reinterpret_cast<const char *>(
5378 Obj
->base() + StrTab
->sh_offset
+
5379 Verdef
->getAux()->vda_name
)));
5380 if (!Verdef
->vd_cnt
)
5381 report_fatal_error("at least one definition string must exist");
5382 if (Verdef
->vd_cnt
> 2)
5383 report_fatal_error("more than one predecessor is not expected");
5385 if (Verdef
->vd_cnt
== 2) {
5386 const uint8_t *VerdauxBuf
=
5387 VerdefBuf
+ Verdef
->vd_aux
+ Verdef
->getAux()->vda_next
;
5388 const Elf_Verdaux
*Verdaux
=
5389 reinterpret_cast<const Elf_Verdaux
*>(VerdauxBuf
);
5390 W
.printString("Predecessor",
5391 StringRef(reinterpret_cast<const char *>(
5392 Obj
->base() + StrTab
->sh_offset
+ Verdaux
->vda_name
)));
5394 VerdefBuf
+= Verdef
->vd_next
;
5398 template <class ELFT
>
5399 void LLVMStyle
<ELFT
>::printVersionDependencySection(const ELFFile
<ELFT
> *Obj
,
5400 const Elf_Shdr
*Sec
) {
5401 DictScope
SD(W
, "SHT_GNU_verneed");
5405 const uint8_t *SecData
=
5406 reinterpret_cast<const uint8_t *>(Obj
->base() + Sec
->sh_offset
);
5407 const Elf_Shdr
*StrTab
=
5408 unwrapOrError(this->FileName
, Obj
->getSection(Sec
->sh_link
));
5410 const uint8_t *VerneedBuf
= SecData
;
5411 unsigned VerneedNum
= Sec
->sh_info
;
5412 for (unsigned I
= 0; I
< VerneedNum
; ++I
) {
5413 const Elf_Verneed
*Verneed
=
5414 reinterpret_cast<const Elf_Verneed
*>(VerneedBuf
);
5415 DictScope
Entry(W
, "Dependency");
5416 W
.printNumber("Version", Verneed
->vn_version
);
5417 W
.printNumber("Count", Verneed
->vn_cnt
);
5418 W
.printString("FileName",
5419 StringRef(reinterpret_cast<const char *>(
5420 Obj
->base() + StrTab
->sh_offset
+ Verneed
->vn_file
)));
5422 const uint8_t *VernauxBuf
= VerneedBuf
+ Verneed
->vn_aux
;
5423 ListScope
L(W
, "Entries");
5424 for (unsigned J
= 0; J
< Verneed
->vn_cnt
; ++J
) {
5425 const Elf_Vernaux
*Vernaux
=
5426 reinterpret_cast<const Elf_Vernaux
*>(VernauxBuf
);
5427 DictScope
Entry(W
, "Entry");
5428 W
.printNumber("Hash", Vernaux
->vna_hash
);
5429 W
.printEnum("Flags", Vernaux
->vna_flags
, makeArrayRef(SymVersionFlags
));
5430 W
.printNumber("Index", Vernaux
->vna_other
);
5431 W
.printString("Name",
5432 StringRef(reinterpret_cast<const char *>(
5433 Obj
->base() + StrTab
->sh_offset
+ Vernaux
->vna_name
)));
5434 VernauxBuf
+= Vernaux
->vna_next
;
5436 VerneedBuf
+= Verneed
->vn_next
;
5440 template <class ELFT
>
5441 void LLVMStyle
<ELFT
>::printHashHistogram(const ELFFile
<ELFT
> *Obj
) {
5442 W
.startLine() << "Hash Histogram not implemented!\n";
5445 template <class ELFT
>
5446 void LLVMStyle
<ELFT
>::printCGProfile(const ELFFile
<ELFT
> *Obj
) {
5447 ListScope
L(W
, "CGProfile");
5448 if (!this->dumper()->getDotCGProfileSec())
5450 auto CGProfile
= unwrapOrError(
5451 this->FileName
, Obj
->template getSectionContentsAsArray
<Elf_CGProfile
>(
5452 this->dumper()->getDotCGProfileSec()));
5453 for (const Elf_CGProfile
&CGPE
: CGProfile
) {
5454 DictScope
D(W
, "CGProfileEntry");
5455 W
.printNumber("From", this->dumper()->getStaticSymbolName(CGPE
.cgp_from
),
5457 W
.printNumber("To", this->dumper()->getStaticSymbolName(CGPE
.cgp_to
),
5459 W
.printNumber("Weight", CGPE
.cgp_weight
);
5463 template <class ELFT
>
5464 void LLVMStyle
<ELFT
>::printAddrsig(const ELFFile
<ELFT
> *Obj
) {
5465 ListScope
L(W
, "Addrsig");
5466 if (!this->dumper()->getDotAddrsigSec())
5468 ArrayRef
<uint8_t> Contents
= unwrapOrError(
5470 Obj
->getSectionContents(this->dumper()->getDotAddrsigSec()));
5471 const uint8_t *Cur
= Contents
.begin();
5472 const uint8_t *End
= Contents
.end();
5473 while (Cur
!= End
) {
5476 uint64_t SymIndex
= decodeULEB128(Cur
, &Size
, End
, &Err
);
5479 W
.printNumber("Sym", this->dumper()->getStaticSymbolName(SymIndex
),
5485 template <typename ELFT
>
5486 static void printGNUNoteLLVMStyle(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
,
5491 case ELF::NT_GNU_ABI_TAG
: {
5492 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
5493 if (!AbiTag
.IsValid
) {
5494 W
.printString("ABI", "<corrupt GNU_ABI_TAG>");
5496 W
.printString("OS", AbiTag
.OSName
);
5497 W
.printString("ABI", AbiTag
.ABI
);
5501 case ELF::NT_GNU_BUILD_ID
: {
5502 W
.printString("Build ID", getGNUBuildId(Desc
));
5505 case ELF::NT_GNU_GOLD_VERSION
:
5506 W
.printString("Version", getGNUGoldVersion(Desc
));
5508 case ELF::NT_GNU_PROPERTY_TYPE_0
:
5509 ListScope
D(W
, "Property");
5510 for (const auto &Property
: getGNUPropertyList
<ELFT
>(Desc
))
5511 W
.printString(Property
);
5516 template <class ELFT
>
5517 void LLVMStyle
<ELFT
>::printNotes(const ELFFile
<ELFT
> *Obj
) {
5518 ListScope
L(W
, "Notes");
5520 auto PrintHeader
= [&](const typename
ELFT::Off Offset
,
5521 const typename
ELFT::Addr Size
) {
5522 W
.printHex("Offset", Offset
);
5523 W
.printHex("Size", Size
);
5526 auto ProcessNote
= [&](const Elf_Note
&Note
) {
5527 DictScope
D2(W
, "Note");
5528 StringRef Name
= Note
.getName();
5529 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc();
5530 Elf_Word Type
= Note
.getType();
5532 W
.printString("Owner", Name
);
5533 W
.printHex("Data size", Descriptor
.size());
5534 if (Name
== "GNU") {
5535 W
.printString("Type", getGNUNoteTypeName(Type
));
5536 printGNUNoteLLVMStyle
<ELFT
>(Type
, Descriptor
, W
);
5537 } else if (Name
== "FreeBSD") {
5538 W
.printString("Type", getFreeBSDNoteTypeName(Type
));
5539 } else if (Name
== "AMD") {
5540 W
.printString("Type", getAMDNoteTypeName(Type
));
5541 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
5542 if (!N
.Type
.empty())
5543 W
.printString(N
.Type
, N
.Value
);
5544 } else if (Name
== "AMDGPU") {
5545 W
.printString("Type", getAMDGPUNoteTypeName(Type
));
5546 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
5547 if (!N
.Type
.empty())
5548 W
.printString(N
.Type
, N
.Value
);
5550 StringRef NoteType
= Obj
->getHeader()->e_type
== ELF::ET_CORE
5551 ? getCoreNoteTypeName(Type
)
5552 : getGenericNoteTypeName(Type
);
5553 if (!NoteType
.empty())
5554 W
.printString("Type", NoteType
);
5556 W
.printString("Type",
5557 "Unknown (" + to_string(format_hex(Type
, 10)) + ")");
5561 if (Obj
->getHeader()->e_type
== ELF::ET_CORE
) {
5562 for (const auto &P
:
5563 unwrapOrError(this->FileName
, Obj
->program_headers())) {
5564 if (P
.p_type
!= PT_NOTE
)
5566 DictScope
D(W
, "NoteSection");
5567 PrintHeader(P
.p_offset
, P
.p_filesz
);
5568 Error Err
= Error::success();
5569 for (const auto &Note
: Obj
->notes(P
, Err
))
5572 reportError(std::move(Err
), this->FileName
);
5575 for (const auto &S
: unwrapOrError(this->FileName
, Obj
->sections())) {
5576 if (S
.sh_type
!= SHT_NOTE
)
5578 DictScope
D(W
, "NoteSection");
5579 PrintHeader(S
.sh_offset
, S
.sh_size
);
5580 Error Err
= Error::success();
5581 for (const auto &Note
: Obj
->notes(S
, Err
))
5584 reportError(std::move(Err
), this->FileName
);
5589 template <class ELFT
>
5590 void LLVMStyle
<ELFT
>::printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) {
5591 ListScope
L(W
, "LinkerOptions");
5593 for (const Elf_Shdr
&Shdr
: unwrapOrError(this->FileName
, Obj
->sections())) {
5594 if (Shdr
.sh_type
!= ELF::SHT_LLVM_LINKER_OPTIONS
)
5597 ArrayRef
<uint8_t> Contents
=
5598 unwrapOrError(this->FileName
, Obj
->getSectionContents(&Shdr
));
5599 for (const uint8_t *P
= Contents
.begin(), *E
= Contents
.end(); P
< E
; ) {
5600 StringRef Key
= StringRef(reinterpret_cast<const char *>(P
));
5602 StringRef(reinterpret_cast<const char *>(P
) + Key
.size() + 1);
5604 W
.printString(Key
, Value
);
5606 P
= P
+ Key
.size() + Value
.size() + 2;
5611 template <class ELFT
>
5612 void LLVMStyle
<ELFT
>::printStackSizes(const ELFObjectFile
<ELFT
> *Obj
) {
5614 "Dumping of stack sizes in LLVM style is not implemented yet\n");
5617 template <class ELFT
>
5618 void LLVMStyle
<ELFT
>::printStackSizeEntry(uint64_t Size
, StringRef FuncName
) {
5619 // FIXME: Implement this function for LLVM-style dumping.
5622 template <class ELFT
>
5623 void LLVMStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
5624 auto PrintEntry
= [&](const Elf_Addr
*E
) {
5625 W
.printHex("Address", Parser
.getGotAddress(E
));
5626 W
.printNumber("Access", Parser
.getGotOffset(E
));
5627 W
.printHex("Initial", *E
);
5630 DictScope
GS(W
, Parser
.IsStatic
? "Static GOT" : "Primary GOT");
5632 W
.printHex("Canonical gp value", Parser
.getGp());
5634 ListScope
RS(W
, "Reserved entries");
5636 DictScope
D(W
, "Entry");
5637 PrintEntry(Parser
.getGotLazyResolver());
5638 W
.printString("Purpose", StringRef("Lazy resolver"));
5641 if (Parser
.getGotModulePointer()) {
5642 DictScope
D(W
, "Entry");
5643 PrintEntry(Parser
.getGotModulePointer());
5644 W
.printString("Purpose", StringRef("Module pointer (GNU extension)"));
5648 ListScope
LS(W
, "Local entries");
5649 for (auto &E
: Parser
.getLocalEntries()) {
5650 DictScope
D(W
, "Entry");
5655 if (Parser
.IsStatic
)
5659 ListScope
GS(W
, "Global entries");
5660 for (auto &E
: Parser
.getGlobalEntries()) {
5661 DictScope
D(W
, "Entry");
5665 const Elf_Sym
*Sym
= Parser
.getGotSym(&E
);
5666 W
.printHex("Value", Sym
->st_value
);
5667 W
.printEnum("Type", Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
5669 unsigned SectionIndex
= 0;
5670 StringRef SectionName
;
5671 this->dumper()->getSectionNameIndex(
5672 Sym
, this->dumper()->dynamic_symbols().begin(), SectionName
,
5674 W
.printHex("Section", SectionName
, SectionIndex
);
5676 std::string SymName
= this->dumper()->getFullSymbolName(
5677 Sym
, this->dumper()->getDynamicStringTable(), true);
5678 W
.printNumber("Name", SymName
, Sym
->st_name
);
5682 W
.printNumber("Number of TLS and multi-GOT entries",
5683 uint64_t(Parser
.getOtherEntries().size()));
5686 template <class ELFT
>
5687 void LLVMStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
5688 auto PrintEntry
= [&](const Elf_Addr
*E
) {
5689 W
.printHex("Address", Parser
.getPltAddress(E
));
5690 W
.printHex("Initial", *E
);
5693 DictScope
GS(W
, "PLT GOT");
5696 ListScope
RS(W
, "Reserved entries");
5698 DictScope
D(W
, "Entry");
5699 PrintEntry(Parser
.getPltLazyResolver());
5700 W
.printString("Purpose", StringRef("PLT lazy resolver"));
5703 if (auto E
= Parser
.getPltModulePointer()) {
5704 DictScope
D(W
, "Entry");
5706 W
.printString("Purpose", StringRef("Module pointer"));
5710 ListScope
LS(W
, "Entries");
5711 for (auto &E
: Parser
.getPltEntries()) {
5712 DictScope
D(W
, "Entry");
5715 const Elf_Sym
*Sym
= Parser
.getPltSym(&E
);
5716 W
.printHex("Value", Sym
->st_value
);
5717 W
.printEnum("Type", Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
5719 unsigned SectionIndex
= 0;
5720 StringRef SectionName
;
5721 this->dumper()->getSectionNameIndex(
5722 Sym
, this->dumper()->dynamic_symbols().begin(), SectionName
,
5724 W
.printHex("Section", SectionName
, SectionIndex
);
5726 std::string SymName
=
5727 this->dumper()->getFullSymbolName(Sym
, Parser
.getPltStrTable(), true);
5728 W
.printNumber("Name", SymName
, Sym
->st_name
);