1 //===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines a very simple implementation of Andersen's interprocedural
11 // alias analysis. This implementation does not include any of the fancy
12 // features that make Andersen's reasonably efficient (like cycle elimination or
13 // variable substitution), but it should be useful for getting precision
14 // numbers and can be extended in the future.
16 // In pointer analysis terms, this is a subset-based, flow-insensitive,
17 // field-insensitive, and context-insensitive algorithm pointer algorithm.
19 // This algorithm is implemented as three stages:
20 // 1. Object identification.
21 // 2. Inclusion constraint identification.
22 // 3. Inclusion constraint solving.
24 // The object identification stage identifies all of the memory objects in the
25 // program, which includes globals, heap allocated objects, and stack allocated
28 // The inclusion constraint identification stage finds all inclusion constraints
29 // in the program by scanning the program, looking for pointer assignments and
30 // other statements that effect the points-to graph. For a statement like "A =
31 // B", this statement is processed to indicate that A can point to anything that
32 // B can point to. Constraints can handle copies, loads, and stores.
34 // The inclusion constraint solving phase iteratively propagates the inclusion
35 // constraints until a fixed point is reached. This is an O(N^3) algorithm.
37 // In the initial pass, all indirect function calls are completely ignored. As
38 // the analysis discovers new targets of function pointers, it iteratively
39 // resolves a precise (and conservative) call graph. Also related, this
40 // analysis initially assumes that all internal functions have known incoming
41 // pointers. If we find that an internal function's address escapes outside of
42 // the program, we update this assumption.
44 // Future Improvements:
45 // This implementation of Andersen's algorithm is extremely slow. To make it
46 // scale reasonably well, the inclusion constraints could be sorted (easy),
47 // offline variable substitution would be a huge win (straight-forward), and
48 // online cycle elimination (trickier) might help as well.
50 //===----------------------------------------------------------------------===//
52 #define DEBUG_TYPE "anders-aa"
53 #include "llvm/Constants.h"
54 #include "llvm/DerivedTypes.h"
55 #include "llvm/Instructions.h"
56 #include "llvm/Module.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/InstIterator.h"
59 #include "llvm/Support/InstVisitor.h"
60 #include "llvm/Analysis/AliasAnalysis.h"
61 #include "llvm/Analysis/Passes.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/ADT/Statistic.h"
70 NumIters("anders-aa", "Number of iterations to reach convergence");
72 NumConstraints("anders-aa", "Number of constraints");
74 NumNodes("anders-aa", "Number of nodes");
76 NumEscapingFunctions("anders-aa", "Number of internal functions that escape");
78 NumIndirectCallees("anders-aa", "Number of indirect callees found");
80 class Andersens
: public ModulePass
, public AliasAnalysis
,
81 private InstVisitor
<Andersens
> {
82 /// Node class - This class is used to represent a memory object in the
83 /// program, and is the primitive used to build the points-to graph.
85 std::vector
<Node
*> Pointees
;
89 Node
*setValue(Value
*V
) {
90 assert(Val
== 0 && "Value already set for this node!");
95 /// getValue - Return the LLVM value corresponding to this node.
97 Value
*getValue() const { return Val
; }
99 typedef std::vector
<Node
*>::const_iterator iterator
;
100 iterator
begin() const { return Pointees
.begin(); }
101 iterator
end() const { return Pointees
.end(); }
103 /// addPointerTo - Add a pointer to the list of pointees of this node,
104 /// returning true if this caused a new pointer to be added, or false if
105 /// we already knew about the points-to relation.
106 bool addPointerTo(Node
*N
) {
107 std::vector
<Node
*>::iterator I
= std::lower_bound(Pointees
.begin(),
110 if (I
!= Pointees
.end() && *I
== N
)
112 Pointees
.insert(I
, N
);
116 /// intersects - Return true if the points-to set of this node intersects
117 /// with the points-to set of the specified node.
118 bool intersects(Node
*N
) const;
120 /// intersectsIgnoring - Return true if the points-to set of this node
121 /// intersects with the points-to set of the specified node on any nodes
122 /// except for the specified node to ignore.
123 bool intersectsIgnoring(Node
*N
, Node
*Ignoring
) const;
125 // Constraint application methods.
126 bool copyFrom(Node
*N
);
127 bool loadFrom(Node
*N
);
128 bool storeThrough(Node
*N
);
131 /// GraphNodes - This vector is populated as part of the object
132 /// identification stage of the analysis, which populates this vector with a
133 /// node for each memory object and fills in the ValueNodes map.
134 std::vector
<Node
> GraphNodes
;
136 /// ValueNodes - This map indicates the Node that a particular Value* is
137 /// represented by. This contains entries for all pointers.
138 std::map
<Value
*, unsigned> ValueNodes
;
140 /// ObjectNodes - This map contains entries for each memory object in the
141 /// program: globals, alloca's and mallocs.
142 std::map
<Value
*, unsigned> ObjectNodes
;
144 /// ReturnNodes - This map contains an entry for each function in the
145 /// program that returns a value.
146 std::map
<Function
*, unsigned> ReturnNodes
;
148 /// VarargNodes - This map contains the entry used to represent all pointers
149 /// passed through the varargs portion of a function call for a particular
150 /// function. An entry is not present in this map for functions that do not
151 /// take variable arguments.
152 std::map
<Function
*, unsigned> VarargNodes
;
154 /// Constraint - Objects of this structure are used to represent the various
155 /// constraints identified by the algorithm. The constraints are 'copy',
156 /// for statements like "A = B", 'load' for statements like "A = *B", and
157 /// 'store' for statements like "*A = B".
159 enum ConstraintType
{ Copy
, Load
, Store
} Type
;
162 Constraint(ConstraintType Ty
, Node
*D
, Node
*S
)
163 : Type(Ty
), Dest(D
), Src(S
) {}
166 /// Constraints - This vector contains a list of all of the constraints
167 /// identified by the program.
168 std::vector
<Constraint
> Constraints
;
170 /// EscapingInternalFunctions - This set contains all of the internal
171 /// functions that are found to escape from the program. If the address of
172 /// an internal function is passed to an external function or otherwise
173 /// escapes from the analyzed portion of the program, we must assume that
174 /// any pointer arguments can alias the universal node. This set keeps
175 /// track of those functions we are assuming to escape so far.
176 std::set
<Function
*> EscapingInternalFunctions
;
178 /// IndirectCalls - This contains a list of all of the indirect call sites
179 /// in the program. Since the call graph is iteratively discovered, we may
180 /// need to add constraints to our graph as we find new targets of function
182 std::vector
<CallSite
> IndirectCalls
;
184 /// IndirectCallees - For each call site in the indirect calls list, keep
185 /// track of the callees that we have discovered so far. As the analysis
186 /// proceeds, more callees are discovered, until the call graph finally
188 std::map
<CallSite
, std::vector
<Function
*> > IndirectCallees
;
190 /// This enum defines the GraphNodes indices that correspond to important
199 bool runOnModule(Module
&M
) {
200 InitializeAliasAnalysis(this);
202 CollectConstraints(M
);
203 DEBUG(PrintConstraints());
205 DEBUG(PrintPointsToGraph());
207 // Free the constraints list, as we don't need it to respond to alias
212 EscapingInternalFunctions
.clear();
213 std::vector
<Constraint
>().swap(Constraints
);
217 void releaseMemory() {
218 // FIXME: Until we have transitively required passes working correctly,
219 // this cannot be enabled! Otherwise, using -count-aa with the pass
220 // causes memory to be freed too early. :(
222 // The memory objects and ValueNodes data structures at the only ones that
223 // are still live after construction.
224 std::vector
<Node
>().swap(GraphNodes
);
229 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
230 AliasAnalysis::getAnalysisUsage(AU
);
231 AU
.setPreservesAll(); // Does not transform code
234 //------------------------------------------------
235 // Implement the AliasAnalysis API
237 AliasResult
alias(const Value
*V1
, unsigned V1Size
,
238 const Value
*V2
, unsigned V2Size
);
239 ModRefResult
getModRefInfo(CallSite CS
, Value
*P
, unsigned Size
);
240 void getMustAliases(Value
*P
, std::vector
<Value
*> &RetVals
);
241 bool pointsToConstantMemory(const Value
*P
);
243 virtual void deleteValue(Value
*V
) {
245 getAnalysis
<AliasAnalysis
>().deleteValue(V
);
248 virtual void copyValue(Value
*From
, Value
*To
) {
249 ValueNodes
[To
] = ValueNodes
[From
];
250 getAnalysis
<AliasAnalysis
>().copyValue(From
, To
);
254 /// getNode - Return the node corresponding to the specified pointer scalar.
256 Node
*getNode(Value
*V
) {
257 if (Constant
*C
= dyn_cast
<Constant
>(V
))
258 if (!isa
<GlobalValue
>(C
))
259 return getNodeForConstantPointer(C
);
261 std::map
<Value
*, unsigned>::iterator I
= ValueNodes
.find(V
);
262 if (I
== ValueNodes
.end()) {
266 assert(0 && "Value does not have a node in the points-to graph!");
268 return &GraphNodes
[I
->second
];
271 /// getObject - Return the node corresponding to the memory object for the
272 /// specified global or allocation instruction.
273 Node
*getObject(Value
*V
) {
274 std::map
<Value
*, unsigned>::iterator I
= ObjectNodes
.find(V
);
275 assert(I
!= ObjectNodes
.end() &&
276 "Value does not have an object in the points-to graph!");
277 return &GraphNodes
[I
->second
];
280 /// getReturnNode - Return the node representing the return value for the
281 /// specified function.
282 Node
*getReturnNode(Function
*F
) {
283 std::map
<Function
*, unsigned>::iterator I
= ReturnNodes
.find(F
);
284 assert(I
!= ReturnNodes
.end() && "Function does not return a value!");
285 return &GraphNodes
[I
->second
];
288 /// getVarargNode - Return the node representing the variable arguments
289 /// formal for the specified function.
290 Node
*getVarargNode(Function
*F
) {
291 std::map
<Function
*, unsigned>::iterator I
= VarargNodes
.find(F
);
292 assert(I
!= VarargNodes
.end() && "Function does not take var args!");
293 return &GraphNodes
[I
->second
];
296 /// getNodeValue - Get the node for the specified LLVM value and set the
297 /// value for it to be the specified value.
298 Node
*getNodeValue(Value
&V
) {
299 return getNode(&V
)->setValue(&V
);
302 void IdentifyObjects(Module
&M
);
303 void CollectConstraints(Module
&M
);
304 void SolveConstraints();
306 Node
*getNodeForConstantPointer(Constant
*C
);
307 Node
*getNodeForConstantPointerTarget(Constant
*C
);
308 void AddGlobalInitializerConstraints(Node
*N
, Constant
*C
);
310 void AddConstraintsForNonInternalLinkage(Function
*F
);
311 void AddConstraintsForCall(CallSite CS
, Function
*F
);
312 bool AddConstraintsForExternalCall(CallSite CS
, Function
*F
);
315 void PrintNode(Node
*N
);
316 void PrintConstraints();
317 void PrintPointsToGraph();
319 //===------------------------------------------------------------------===//
320 // Instruction visitation methods for adding constraints
322 friend class InstVisitor
<Andersens
>;
323 void visitReturnInst(ReturnInst
&RI
);
324 void visitInvokeInst(InvokeInst
&II
) { visitCallSite(CallSite(&II
)); }
325 void visitCallInst(CallInst
&CI
) { visitCallSite(CallSite(&CI
)); }
326 void visitCallSite(CallSite CS
);
327 void visitAllocationInst(AllocationInst
&AI
);
328 void visitLoadInst(LoadInst
&LI
);
329 void visitStoreInst(StoreInst
&SI
);
330 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
331 void visitPHINode(PHINode
&PN
);
332 void visitCastInst(CastInst
&CI
);
333 void visitSetCondInst(SetCondInst
&SCI
) {} // NOOP!
334 void visitSelectInst(SelectInst
&SI
);
335 void visitVAArg(VAArgInst
&I
);
336 void visitInstruction(Instruction
&I
);
339 RegisterOpt
<Andersens
> X("anders-aa",
340 "Andersen's Interprocedural Alias Analysis");
341 RegisterAnalysisGroup
<AliasAnalysis
, Andersens
> Y
;
344 ModulePass
*llvm::createAndersensPass() { return new Andersens(); }
346 //===----------------------------------------------------------------------===//
347 // AliasAnalysis Interface Implementation
348 //===----------------------------------------------------------------------===//
350 AliasAnalysis::AliasResult
Andersens::alias(const Value
*V1
, unsigned V1Size
,
351 const Value
*V2
, unsigned V2Size
) {
352 Node
*N1
= getNode(const_cast<Value
*>(V1
));
353 Node
*N2
= getNode(const_cast<Value
*>(V2
));
355 // Check to see if the two pointers are known to not alias. They don't alias
356 // if their points-to sets do not intersect.
357 if (!N1
->intersectsIgnoring(N2
, &GraphNodes
[NullObject
]))
360 return AliasAnalysis::alias(V1
, V1Size
, V2
, V2Size
);
363 AliasAnalysis::ModRefResult
364 Andersens::getModRefInfo(CallSite CS
, Value
*P
, unsigned Size
) {
365 // The only thing useful that we can contribute for mod/ref information is
366 // when calling external function calls: if we know that memory never escapes
367 // from the program, it cannot be modified by an external call.
369 // NOTE: This is not really safe, at least not when the entire program is not
370 // available. The deal is that the external function could call back into the
371 // program and modify stuff. We ignore this technical niggle for now. This
372 // is, after all, a "research quality" implementation of Andersen's analysis.
373 if (Function
*F
= CS
.getCalledFunction())
374 if (F
->isExternal()) {
375 Node
*N1
= getNode(P
);
376 bool PointsToUniversalSet
= false;
378 if (N1
->begin() == N1
->end())
379 return NoModRef
; // P doesn't point to anything.
381 // Get the first pointee.
382 Node
*FirstPointee
= *N1
->begin();
383 if (FirstPointee
!= &GraphNodes
[UniversalSet
])
384 return NoModRef
; // P doesn't point to the universal set.
387 return AliasAnalysis::getModRefInfo(CS
, P
, Size
);
390 /// getMustAlias - We can provide must alias information if we know that a
391 /// pointer can only point to a specific function or the null pointer.
392 /// Unfortunately we cannot determine must-alias information for global
393 /// variables or any other memory memory objects because we do not track whether
394 /// a pointer points to the beginning of an object or a field of it.
395 void Andersens::getMustAliases(Value
*P
, std::vector
<Value
*> &RetVals
) {
396 Node
*N
= getNode(P
);
397 Node::iterator I
= N
->begin();
399 // If there is exactly one element in the points-to set for the object...
402 Node
*Pointee
= *N
->begin();
404 // If a function is the only object in the points-to set, then it must be
405 // the destination. Note that we can't handle global variables here,
406 // because we don't know if the pointer is actually pointing to a field of
407 // the global or to the beginning of it.
408 if (Value
*V
= Pointee
->getValue()) {
409 if (Function
*F
= dyn_cast
<Function
>(V
))
410 RetVals
.push_back(F
);
412 // If the object in the points-to set is the null object, then the null
413 // pointer is a must alias.
414 if (Pointee
== &GraphNodes
[NullObject
])
415 RetVals
.push_back(Constant::getNullValue(P
->getType()));
420 AliasAnalysis::getMustAliases(P
, RetVals
);
423 /// pointsToConstantMemory - If we can determine that this pointer only points
424 /// to constant memory, return true. In practice, this means that if the
425 /// pointer can only point to constant globals, functions, or the null pointer,
428 bool Andersens::pointsToConstantMemory(const Value
*P
) {
429 Node
*N
= getNode((Value
*)P
);
430 for (Node::iterator I
= N
->begin(), E
= N
->end(); I
!= E
; ++I
) {
431 if (Value
*V
= (*I
)->getValue()) {
432 if (!isa
<GlobalValue
>(V
) || (isa
<GlobalVariable
>(V
) &&
433 !cast
<GlobalVariable
>(V
)->isConstant()))
434 return AliasAnalysis::pointsToConstantMemory(P
);
436 if (*I
!= &GraphNodes
[NullObject
])
437 return AliasAnalysis::pointsToConstantMemory(P
);
444 //===----------------------------------------------------------------------===//
445 // Object Identification Phase
446 //===----------------------------------------------------------------------===//
448 /// IdentifyObjects - This stage scans the program, adding an entry to the
449 /// GraphNodes list for each memory object in the program (global stack or
450 /// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
452 void Andersens::IdentifyObjects(Module
&M
) {
453 unsigned NumObjects
= 0;
455 // Object #0 is always the universal set: the object that we don't know
457 assert(NumObjects
== UniversalSet
&& "Something changed!");
460 // Object #1 always represents the null pointer.
461 assert(NumObjects
== NullPtr
&& "Something changed!");
464 // Object #2 always represents the null object (the object pointed to by null)
465 assert(NumObjects
== NullObject
&& "Something changed!");
468 // Add all the globals first.
469 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
471 ObjectNodes
[I
] = NumObjects
++;
472 ValueNodes
[I
] = NumObjects
++;
475 // Add nodes for all of the functions and the instructions inside of them.
476 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
) {
477 // The function itself is a memory object.
478 ValueNodes
[F
] = NumObjects
++;
479 ObjectNodes
[F
] = NumObjects
++;
480 if (isa
<PointerType
>(F
->getFunctionType()->getReturnType()))
481 ReturnNodes
[F
] = NumObjects
++;
482 if (F
->getFunctionType()->isVarArg())
483 VarargNodes
[F
] = NumObjects
++;
485 // Add nodes for all of the incoming pointer arguments.
486 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
488 if (isa
<PointerType
>(I
->getType()))
489 ValueNodes
[I
] = NumObjects
++;
491 // Scan the function body, creating a memory object for each heap/stack
492 // allocation in the body of the function and a node to represent all
493 // pointer values defined by instructions and used as operands.
494 for (inst_iterator II
= inst_begin(F
), E
= inst_end(F
); II
!= E
; ++II
) {
495 // If this is an heap or stack allocation, create a node for the memory
497 if (isa
<PointerType
>(II
->getType())) {
498 ValueNodes
[&*II
] = NumObjects
++;
499 if (AllocationInst
*AI
= dyn_cast
<AllocationInst
>(&*II
))
500 ObjectNodes
[AI
] = NumObjects
++;
505 // Now that we know how many objects to create, make them all now!
506 GraphNodes
.resize(NumObjects
);
507 NumNodes
+= NumObjects
;
510 //===----------------------------------------------------------------------===//
511 // Constraint Identification Phase
512 //===----------------------------------------------------------------------===//
514 /// getNodeForConstantPointer - Return the node corresponding to the constant
516 Andersens::Node
*Andersens::getNodeForConstantPointer(Constant
*C
) {
517 assert(isa
<PointerType
>(C
->getType()) && "Not a constant pointer!");
519 if (isa
<ConstantPointerNull
>(C
) || isa
<UndefValue
>(C
))
520 return &GraphNodes
[NullPtr
];
521 else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
523 else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
524 switch (CE
->getOpcode()) {
525 case Instruction::GetElementPtr
:
526 return getNodeForConstantPointer(CE
->getOperand(0));
527 case Instruction::Cast
:
528 if (isa
<PointerType
>(CE
->getOperand(0)->getType()))
529 return getNodeForConstantPointer(CE
->getOperand(0));
531 return &GraphNodes
[UniversalSet
];
533 std::cerr
<< "Constant Expr not yet handled: " << *CE
<< "\n";
537 assert(0 && "Unknown constant pointer!");
542 /// getNodeForConstantPointerTarget - Return the node POINTED TO by the
543 /// specified constant pointer.
544 Andersens::Node
*Andersens::getNodeForConstantPointerTarget(Constant
*C
) {
545 assert(isa
<PointerType
>(C
->getType()) && "Not a constant pointer!");
547 if (isa
<ConstantPointerNull
>(C
))
548 return &GraphNodes
[NullObject
];
549 else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
550 return getObject(GV
);
551 else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
552 switch (CE
->getOpcode()) {
553 case Instruction::GetElementPtr
:
554 return getNodeForConstantPointerTarget(CE
->getOperand(0));
555 case Instruction::Cast
:
556 if (isa
<PointerType
>(CE
->getOperand(0)->getType()))
557 return getNodeForConstantPointerTarget(CE
->getOperand(0));
559 return &GraphNodes
[UniversalSet
];
561 std::cerr
<< "Constant Expr not yet handled: " << *CE
<< "\n";
565 assert(0 && "Unknown constant pointer!");
570 /// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
571 /// object N, which contains values indicated by C.
572 void Andersens::AddGlobalInitializerConstraints(Node
*N
, Constant
*C
) {
573 if (C
->getType()->isFirstClassType()) {
574 if (isa
<PointerType
>(C
->getType()))
575 N
->copyFrom(getNodeForConstantPointer(C
));
577 } else if (C
->isNullValue()) {
578 N
->addPointerTo(&GraphNodes
[NullObject
]);
580 } else if (!isa
<UndefValue
>(C
)) {
581 // If this is an array or struct, include constraints for each element.
582 assert(isa
<ConstantArray
>(C
) || isa
<ConstantStruct
>(C
));
583 for (unsigned i
= 0, e
= C
->getNumOperands(); i
!= e
; ++i
)
584 AddGlobalInitializerConstraints(N
, cast
<Constant
>(C
->getOperand(i
)));
588 /// AddConstraintsForNonInternalLinkage - If this function does not have
589 /// internal linkage, realize that we can't trust anything passed into or
590 /// returned by this function.
591 void Andersens::AddConstraintsForNonInternalLinkage(Function
*F
) {
592 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end(); I
!= E
; ++I
)
593 if (isa
<PointerType
>(I
->getType()))
594 // If this is an argument of an externally accessible function, the
595 // incoming pointer might point to anything.
596 Constraints
.push_back(Constraint(Constraint::Copy
, getNode(I
),
597 &GraphNodes
[UniversalSet
]));
600 /// AddConstraintsForCall - If this is a call to a "known" function, add the
601 /// constraints and return true. If this is a call to an unknown function,
603 bool Andersens::AddConstraintsForExternalCall(CallSite CS
, Function
*F
) {
604 assert(F
->isExternal() && "Not an external function!");
606 // These functions don't induce any points-to constraints.
607 if (F
->getName() == "atoi" || F
->getName() == "atof" ||
608 F
->getName() == "atol" || F
->getName() == "atoll" ||
609 F
->getName() == "remove" || F
->getName() == "unlink" ||
610 F
->getName() == "rename" || F
->getName() == "memcmp" ||
611 F
->getName() == "llvm.memset.i32" ||
612 F
->getName() == "llvm.memset.i64" ||
613 F
->getName() == "strcmp" || F
->getName() == "strncmp" ||
614 F
->getName() == "execl" || F
->getName() == "execlp" ||
615 F
->getName() == "execle" || F
->getName() == "execv" ||
616 F
->getName() == "execvp" || F
->getName() == "chmod" ||
617 F
->getName() == "puts" || F
->getName() == "write" ||
618 F
->getName() == "open" || F
->getName() == "create" ||
619 F
->getName() == "truncate" || F
->getName() == "chdir" ||
620 F
->getName() == "mkdir" || F
->getName() == "rmdir" ||
621 F
->getName() == "read" || F
->getName() == "pipe" ||
622 F
->getName() == "wait" || F
->getName() == "time" ||
623 F
->getName() == "stat" || F
->getName() == "fstat" ||
624 F
->getName() == "lstat" || F
->getName() == "strtod" ||
625 F
->getName() == "strtof" || F
->getName() == "strtold" ||
626 F
->getName() == "fopen" || F
->getName() == "fdopen" ||
627 F
->getName() == "freopen" ||
628 F
->getName() == "fflush" || F
->getName() == "feof" ||
629 F
->getName() == "fileno" || F
->getName() == "clearerr" ||
630 F
->getName() == "rewind" || F
->getName() == "ftell" ||
631 F
->getName() == "ferror" || F
->getName() == "fgetc" ||
632 F
->getName() == "fgetc" || F
->getName() == "_IO_getc" ||
633 F
->getName() == "fwrite" || F
->getName() == "fread" ||
634 F
->getName() == "fgets" || F
->getName() == "ungetc" ||
635 F
->getName() == "fputc" ||
636 F
->getName() == "fputs" || F
->getName() == "putc" ||
637 F
->getName() == "ftell" || F
->getName() == "rewind" ||
638 F
->getName() == "_IO_putc" || F
->getName() == "fseek" ||
639 F
->getName() == "fgetpos" || F
->getName() == "fsetpos" ||
640 F
->getName() == "printf" || F
->getName() == "fprintf" ||
641 F
->getName() == "sprintf" || F
->getName() == "vprintf" ||
642 F
->getName() == "vfprintf" || F
->getName() == "vsprintf" ||
643 F
->getName() == "scanf" || F
->getName() == "fscanf" ||
644 F
->getName() == "sscanf" || F
->getName() == "__assert_fail" ||
645 F
->getName() == "modf")
649 // These functions do induce points-to edges.
650 if (F
->getName() == "llvm.memcpy.i32" || F
->getName() == "llvm.memcpy.i64" ||
651 F
->getName() == "llvm.memmove.i32" ||F
->getName() == "llvm.memmove.i64" ||
652 F
->getName() == "memmove") {
653 // Note: this is a poor approximation, this says Dest = Src, instead of
655 Constraints
.push_back(Constraint(Constraint::Copy
,
656 getNode(CS
.getArgument(0)),
657 getNode(CS
.getArgument(1))));
662 if (F
->getName() == "realloc" || F
->getName() == "strchr" ||
663 F
->getName() == "strrchr" || F
->getName() == "strstr" ||
664 F
->getName() == "strtok") {
665 Constraints
.push_back(Constraint(Constraint::Copy
,
666 getNode(CS
.getInstruction()),
667 getNode(CS
.getArgument(0))));
676 /// CollectConstraints - This stage scans the program, adding a constraint to
677 /// the Constraints list for each instruction in the program that induces a
678 /// constraint, and setting up the initial points-to graph.
680 void Andersens::CollectConstraints(Module
&M
) {
681 // First, the universal set points to itself.
682 GraphNodes
[UniversalSet
].addPointerTo(&GraphNodes
[UniversalSet
]);
683 //Constraints.push_back(Constraint(Constraint::Load, &GraphNodes[UniversalSet],
684 // &GraphNodes[UniversalSet]));
685 Constraints
.push_back(Constraint(Constraint::Store
, &GraphNodes
[UniversalSet
],
686 &GraphNodes
[UniversalSet
]));
688 // Next, the null pointer points to the null object.
689 GraphNodes
[NullPtr
].addPointerTo(&GraphNodes
[NullObject
]);
691 // Next, add any constraints on global variables and their initializers.
692 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
694 // Associate the address of the global object as pointing to the memory for
695 // the global: &G = <G memory>
696 Node
*Object
= getObject(I
);
698 getNodeValue(*I
)->addPointerTo(Object
);
700 if (I
->hasInitializer()) {
701 AddGlobalInitializerConstraints(Object
, I
->getInitializer());
703 // If it doesn't have an initializer (i.e. it's defined in another
704 // translation unit), it points to the universal set.
705 Constraints
.push_back(Constraint(Constraint::Copy
, Object
,
706 &GraphNodes
[UniversalSet
]));
710 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
) {
711 // Make the function address point to the function object.
712 getNodeValue(*F
)->addPointerTo(getObject(F
)->setValue(F
));
714 // Set up the return value node.
715 if (isa
<PointerType
>(F
->getFunctionType()->getReturnType()))
716 getReturnNode(F
)->setValue(F
);
717 if (F
->getFunctionType()->isVarArg())
718 getVarargNode(F
)->setValue(F
);
720 // Set up incoming argument nodes.
721 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
723 if (isa
<PointerType
>(I
->getType()))
726 if (!F
->hasInternalLinkage())
727 AddConstraintsForNonInternalLinkage(F
);
729 if (!F
->isExternal()) {
730 // Scan the function body, creating a memory object for each heap/stack
731 // allocation in the body of the function and a node to represent all
732 // pointer values defined by instructions and used as operands.
735 // External functions that return pointers return the universal set.
736 if (isa
<PointerType
>(F
->getFunctionType()->getReturnType()))
737 Constraints
.push_back(Constraint(Constraint::Copy
,
739 &GraphNodes
[UniversalSet
]));
741 // Any pointers that are passed into the function have the universal set
743 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
745 if (isa
<PointerType
>(I
->getType())) {
746 // Pointers passed into external functions could have anything stored
748 Constraints
.push_back(Constraint(Constraint::Store
, getNode(I
),
749 &GraphNodes
[UniversalSet
]));
750 // Memory objects passed into external function calls can have the
751 // universal set point to them.
752 Constraints
.push_back(Constraint(Constraint::Copy
,
753 &GraphNodes
[UniversalSet
],
757 // If this is an external varargs function, it can also store pointers
758 // into any pointers passed through the varargs section.
759 if (F
->getFunctionType()->isVarArg())
760 Constraints
.push_back(Constraint(Constraint::Store
, getVarargNode(F
),
761 &GraphNodes
[UniversalSet
]));
764 NumConstraints
+= Constraints
.size();
768 void Andersens::visitInstruction(Instruction
&I
) {
770 return; // This function is just a big assert.
772 if (isa
<BinaryOperator
>(I
))
774 // Most instructions don't have any effect on pointer values.
775 switch (I
.getOpcode()) {
776 case Instruction::Br
:
777 case Instruction::Switch
:
778 case Instruction::Unwind
:
779 case Instruction::Unreachable
:
780 case Instruction::Free
:
781 case Instruction::Shl
:
782 case Instruction::Shr
:
785 // Is this something we aren't handling yet?
786 std::cerr
<< "Unknown instruction: " << I
;
791 void Andersens::visitAllocationInst(AllocationInst
&AI
) {
792 getNodeValue(AI
)->addPointerTo(getObject(&AI
)->setValue(&AI
));
795 void Andersens::visitReturnInst(ReturnInst
&RI
) {
796 if (RI
.getNumOperands() && isa
<PointerType
>(RI
.getOperand(0)->getType()))
797 // return V --> <Copy/retval{F}/v>
798 Constraints
.push_back(Constraint(Constraint::Copy
,
799 getReturnNode(RI
.getParent()->getParent()),
800 getNode(RI
.getOperand(0))));
803 void Andersens::visitLoadInst(LoadInst
&LI
) {
804 if (isa
<PointerType
>(LI
.getType()))
805 // P1 = load P2 --> <Load/P1/P2>
806 Constraints
.push_back(Constraint(Constraint::Load
, getNodeValue(LI
),
807 getNode(LI
.getOperand(0))));
810 void Andersens::visitStoreInst(StoreInst
&SI
) {
811 if (isa
<PointerType
>(SI
.getOperand(0)->getType()))
812 // store P1, P2 --> <Store/P2/P1>
813 Constraints
.push_back(Constraint(Constraint::Store
,
814 getNode(SI
.getOperand(1)),
815 getNode(SI
.getOperand(0))));
818 void Andersens::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
819 // P1 = getelementptr P2, ... --> <Copy/P1/P2>
820 Constraints
.push_back(Constraint(Constraint::Copy
, getNodeValue(GEP
),
821 getNode(GEP
.getOperand(0))));
824 void Andersens::visitPHINode(PHINode
&PN
) {
825 if (isa
<PointerType
>(PN
.getType())) {
826 Node
*PNN
= getNodeValue(PN
);
827 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
828 // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
829 Constraints
.push_back(Constraint(Constraint::Copy
, PNN
,
830 getNode(PN
.getIncomingValue(i
))));
834 void Andersens::visitCastInst(CastInst
&CI
) {
835 Value
*Op
= CI
.getOperand(0);
836 if (isa
<PointerType
>(CI
.getType())) {
837 if (isa
<PointerType
>(Op
->getType())) {
838 // P1 = cast P2 --> <Copy/P1/P2>
839 Constraints
.push_back(Constraint(Constraint::Copy
, getNodeValue(CI
),
840 getNode(CI
.getOperand(0))));
842 // P1 = cast int --> <Copy/P1/Univ>
844 Constraints
.push_back(Constraint(Constraint::Copy
, getNodeValue(CI
),
845 &GraphNodes
[UniversalSet
]));
850 } else if (isa
<PointerType
>(Op
->getType())) {
851 // int = cast P1 --> <Copy/Univ/P1>
853 Constraints
.push_back(Constraint(Constraint::Copy
,
854 &GraphNodes
[UniversalSet
],
855 getNode(CI
.getOperand(0))));
857 getNode(CI
.getOperand(0));
862 void Andersens::visitSelectInst(SelectInst
&SI
) {
863 if (isa
<PointerType
>(SI
.getType())) {
864 Node
*SIN
= getNodeValue(SI
);
865 // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
866 Constraints
.push_back(Constraint(Constraint::Copy
, SIN
,
867 getNode(SI
.getOperand(1))));
868 Constraints
.push_back(Constraint(Constraint::Copy
, SIN
,
869 getNode(SI
.getOperand(2))));
873 void Andersens::visitVAArg(VAArgInst
&I
) {
874 assert(0 && "vaarg not handled yet!");
877 /// AddConstraintsForCall - Add constraints for a call with actual arguments
878 /// specified by CS to the function specified by F. Note that the types of
879 /// arguments might not match up in the case where this is an indirect call and
880 /// the function pointer has been casted. If this is the case, do something
882 void Andersens::AddConstraintsForCall(CallSite CS
, Function
*F
) {
883 // If this is a call to an external function, handle it directly to get some
884 // taste of context sensitivity.
885 if (F
->isExternal() && AddConstraintsForExternalCall(CS
, F
))
888 if (isa
<PointerType
>(CS
.getType())) {
889 Node
*CSN
= getNode(CS
.getInstruction());
890 if (isa
<PointerType
>(F
->getFunctionType()->getReturnType())) {
891 Constraints
.push_back(Constraint(Constraint::Copy
, CSN
,
894 // If the function returns a non-pointer value, handle this just like we
895 // treat a nonpointer cast to pointer.
896 Constraints
.push_back(Constraint(Constraint::Copy
, CSN
,
897 &GraphNodes
[UniversalSet
]));
899 } else if (isa
<PointerType
>(F
->getFunctionType()->getReturnType())) {
900 Constraints
.push_back(Constraint(Constraint::Copy
,
901 &GraphNodes
[UniversalSet
],
905 Function::arg_iterator AI
= F
->arg_begin(), AE
= F
->arg_end();
906 CallSite::arg_iterator ArgI
= CS
.arg_begin(), ArgE
= CS
.arg_end();
907 for (; AI
!= AE
&& ArgI
!= ArgE
; ++AI
, ++ArgI
)
908 if (isa
<PointerType
>(AI
->getType())) {
909 if (isa
<PointerType
>((*ArgI
)->getType())) {
910 // Copy the actual argument into the formal argument.
911 Constraints
.push_back(Constraint(Constraint::Copy
, getNode(AI
),
914 Constraints
.push_back(Constraint(Constraint::Copy
, getNode(AI
),
915 &GraphNodes
[UniversalSet
]));
917 } else if (isa
<PointerType
>((*ArgI
)->getType())) {
918 Constraints
.push_back(Constraint(Constraint::Copy
,
919 &GraphNodes
[UniversalSet
],
923 // Copy all pointers passed through the varargs section to the varargs node.
924 if (F
->getFunctionType()->isVarArg())
925 for (; ArgI
!= ArgE
; ++ArgI
)
926 if (isa
<PointerType
>((*ArgI
)->getType()))
927 Constraints
.push_back(Constraint(Constraint::Copy
, getVarargNode(F
),
929 // If more arguments are passed in than we track, just drop them on the floor.
932 void Andersens::visitCallSite(CallSite CS
) {
933 if (isa
<PointerType
>(CS
.getType()))
934 getNodeValue(*CS
.getInstruction());
936 if (Function
*F
= CS
.getCalledFunction()) {
937 AddConstraintsForCall(CS
, F
);
939 // We don't handle indirect call sites yet. Keep track of them for when we
940 // discover the call graph incrementally.
941 IndirectCalls
.push_back(CS
);
945 //===----------------------------------------------------------------------===//
946 // Constraint Solving Phase
947 //===----------------------------------------------------------------------===//
949 /// intersects - Return true if the points-to set of this node intersects
950 /// with the points-to set of the specified node.
951 bool Andersens::Node::intersects(Node
*N
) const {
952 iterator I1
= begin(), I2
= N
->begin(), E1
= end(), E2
= N
->end();
953 while (I1
!= E1
&& I2
!= E2
) {
954 if (*I1
== *I2
) return true;
963 /// intersectsIgnoring - Return true if the points-to set of this node
964 /// intersects with the points-to set of the specified node on any nodes
965 /// except for the specified node to ignore.
966 bool Andersens::Node::intersectsIgnoring(Node
*N
, Node
*Ignoring
) const {
967 iterator I1
= begin(), I2
= N
->begin(), E1
= end(), E2
= N
->end();
968 while (I1
!= E1
&& I2
!= E2
) {
970 if (*I1
!= Ignoring
) return true;
972 } else if (*I1
< *I2
)
980 // Copy constraint: all edges out of the source node get copied to the
981 // destination node. This returns true if a change is made.
982 bool Andersens::Node::copyFrom(Node
*N
) {
983 // Use a mostly linear-time merge since both of the lists are sorted.
984 bool Changed
= false;
985 iterator I
= N
->begin(), E
= N
->end();
987 while (I
!= E
&& i
!= Pointees
.size()) {
988 if (Pointees
[i
] < *I
) {
990 } else if (Pointees
[i
] == *I
) {
993 // We found a new element to copy over.
995 Pointees
.insert(Pointees
.begin()+i
, *I
);
1001 Pointees
.insert(Pointees
.end(), I
, E
);
1008 bool Andersens::Node::loadFrom(Node
*N
) {
1009 bool Changed
= false;
1010 for (iterator I
= N
->begin(), E
= N
->end(); I
!= E
; ++I
)
1011 Changed
|= copyFrom(*I
);
1015 bool Andersens::Node::storeThrough(Node
*N
) {
1016 bool Changed
= false;
1017 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
)
1018 Changed
|= (*I
)->copyFrom(N
);
1023 /// SolveConstraints - This stage iteratively processes the constraints list
1024 /// propagating constraints (adding edges to the Nodes in the points-to graph)
1025 /// until a fixed point is reached.
1027 void Andersens::SolveConstraints() {
1028 bool Changed
= true;
1029 unsigned Iteration
= 0;
1033 DEBUG(std::cerr
<< "Starting iteration #" << Iteration
++ << "!\n");
1035 // Loop over all of the constraints, applying them in turn.
1036 for (unsigned i
= 0, e
= Constraints
.size(); i
!= e
; ++i
) {
1037 Constraint
&C
= Constraints
[i
];
1039 case Constraint::Copy
:
1040 Changed
|= C
.Dest
->copyFrom(C
.Src
);
1042 case Constraint::Load
:
1043 Changed
|= C
.Dest
->loadFrom(C
.Src
);
1045 case Constraint::Store
:
1046 Changed
|= C
.Dest
->storeThrough(C
.Src
);
1049 assert(0 && "Unknown constraint!");
1054 // Check to see if any internal function's addresses have been passed to
1055 // external functions. If so, we have to assume that their incoming
1056 // arguments could be anything. If there are any internal functions in
1057 // the universal node that we don't know about, we must iterate.
1058 for (Node::iterator I
= GraphNodes
[UniversalSet
].begin(),
1059 E
= GraphNodes
[UniversalSet
].end(); I
!= E
; ++I
)
1060 if (Function
*F
= dyn_cast_or_null
<Function
>((*I
)->getValue()))
1061 if (F
->hasInternalLinkage() &&
1062 EscapingInternalFunctions
.insert(F
).second
) {
1063 // We found a function that is just now escaping. Mark it as if it
1064 // didn't have internal linkage.
1065 AddConstraintsForNonInternalLinkage(F
);
1066 DEBUG(std::cerr
<< "Found escaping internal function: "
1067 << F
->getName() << "\n");
1068 ++NumEscapingFunctions
;
1071 // Check to see if we have discovered any new callees of the indirect call
1072 // sites. If so, add constraints to the analysis.
1073 for (unsigned i
= 0, e
= IndirectCalls
.size(); i
!= e
; ++i
) {
1074 CallSite CS
= IndirectCalls
[i
];
1075 std::vector
<Function
*> &KnownCallees
= IndirectCallees
[CS
];
1076 Node
*CN
= getNode(CS
.getCalledValue());
1078 for (Node::iterator NI
= CN
->begin(), E
= CN
->end(); NI
!= E
; ++NI
)
1079 if (Function
*F
= dyn_cast_or_null
<Function
>((*NI
)->getValue())) {
1080 std::vector
<Function
*>::iterator IP
=
1081 std::lower_bound(KnownCallees
.begin(), KnownCallees
.end(), F
);
1082 if (IP
== KnownCallees
.end() || *IP
!= F
) {
1083 // Add the constraints for the call now.
1084 AddConstraintsForCall(CS
, F
);
1085 DEBUG(std::cerr
<< "Found actual callee '"
1086 << F
->getName() << "' for call: "
1087 << *CS
.getInstruction() << "\n");
1088 ++NumIndirectCallees
;
1089 KnownCallees
.insert(IP
, F
);
1099 //===----------------------------------------------------------------------===//
1101 //===----------------------------------------------------------------------===//
1103 void Andersens::PrintNode(Node
*N
) {
1104 if (N
== &GraphNodes
[UniversalSet
]) {
1105 std::cerr
<< "<universal>";
1107 } else if (N
== &GraphNodes
[NullPtr
]) {
1108 std::cerr
<< "<nullptr>";
1110 } else if (N
== &GraphNodes
[NullObject
]) {
1111 std::cerr
<< "<null>";
1115 assert(N
->getValue() != 0 && "Never set node label!");
1116 Value
*V
= N
->getValue();
1117 if (Function
*F
= dyn_cast
<Function
>(V
)) {
1118 if (isa
<PointerType
>(F
->getFunctionType()->getReturnType()) &&
1119 N
== getReturnNode(F
)) {
1120 std::cerr
<< F
->getName() << ":retval";
1122 } else if (F
->getFunctionType()->isVarArg() && N
== getVarargNode(F
)) {
1123 std::cerr
<< F
->getName() << ":vararg";
1128 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
1129 std::cerr
<< I
->getParent()->getParent()->getName() << ":";
1130 else if (Argument
*Arg
= dyn_cast
<Argument
>(V
))
1131 std::cerr
<< Arg
->getParent()->getName() << ":";
1134 std::cerr
<< V
->getName();
1136 std::cerr
<< "(unnamed)";
1138 if (isa
<GlobalValue
>(V
) || isa
<AllocationInst
>(V
))
1139 if (N
== getObject(V
))
1140 std::cerr
<< "<mem>";
1143 void Andersens::PrintConstraints() {
1144 std::cerr
<< "Constraints:\n";
1145 for (unsigned i
= 0, e
= Constraints
.size(); i
!= e
; ++i
) {
1146 std::cerr
<< " #" << i
<< ": ";
1147 Constraint
&C
= Constraints
[i
];
1148 if (C
.Type
== Constraint::Store
)
1152 if (C
.Type
== Constraint::Load
)
1159 void Andersens::PrintPointsToGraph() {
1160 std::cerr
<< "Points-to graph:\n";
1161 for (unsigned i
= 0, e
= GraphNodes
.size(); i
!= e
; ++i
) {
1162 Node
*N
= &GraphNodes
[i
];
1163 std::cerr
<< "[" << (N
->end() - N
->begin()) << "] ";
1165 std::cerr
<< "\t--> ";
1166 for (Node::iterator I
= N
->begin(), E
= N
->end(); I
!= E
; ++I
) {
1167 if (I
!= N
->begin()) std::cerr
<< ", ";