1 //===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a value numbering pass that value numbers load and call
11 // instructions. To do this, it finds lexically identical load instructions,
12 // and uses alias analysis to determine which loads are guaranteed to produce
13 // the same value. To value number call instructions, it looks for calls to
14 // functions that do not write to memory which do not have intervening
15 // instructions that clobber the memory that is read from.
17 // This pass builds off of another value numbering pass to implement value
18 // numbering for non-load and non-call instructions. It uses Alias Analysis so
19 // that it can disambiguate the load instructions. The more powerful these base
20 // analyses are, the more powerful the resultant value numbering will be.
22 //===----------------------------------------------------------------------===//
24 #include "llvm/Analysis/LoadValueNumbering.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/Instructions.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Type.h"
30 #include "llvm/Analysis/ValueNumbering.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/Dominators.h"
33 #include "llvm/Support/CFG.h"
34 #include "llvm/Target/TargetData.h"
40 // FIXME: This should not be a FunctionPass.
41 struct LoadVN
: public FunctionPass
, public ValueNumbering
{
43 /// Pass Implementation stuff. This doesn't do any analysis.
45 bool runOnFunction(Function
&) { return false; }
47 /// getAnalysisUsage - Does not modify anything. It uses Value Numbering
48 /// and Alias Analysis.
50 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const;
52 /// getEqualNumberNodes - Return nodes with the same value number as the
53 /// specified Value. This fills in the argument vector with any equal
56 virtual void getEqualNumberNodes(Value
*V1
,
57 std::vector
<Value
*> &RetVals
) const;
59 /// deleteValue - This method should be called whenever an LLVM Value is
60 /// deleted from the program, for example when an instruction is found to be
61 /// redundant and is eliminated.
63 virtual void deleteValue(Value
*V
) {
64 getAnalysis
<AliasAnalysis
>().deleteValue(V
);
67 /// copyValue - This method should be used whenever a preexisting value in
68 /// the program is copied or cloned, introducing a new value. Note that
69 /// analysis implementations should tolerate clients that use this method to
70 /// introduce the same value multiple times: if the analysis already knows
71 /// about a value, it should ignore the request.
73 virtual void copyValue(Value
*From
, Value
*To
) {
74 getAnalysis
<AliasAnalysis
>().copyValue(From
, To
);
77 /// getCallEqualNumberNodes - Given a call instruction, find other calls
78 /// that have the same value number.
79 void getCallEqualNumberNodes(CallInst
*CI
,
80 std::vector
<Value
*> &RetVals
) const;
83 // Register this pass...
84 RegisterOpt
<LoadVN
> X("load-vn", "Load Value Numbering");
86 // Declare that we implement the ValueNumbering interface
87 RegisterAnalysisGroup
<ValueNumbering
, LoadVN
> Y
;
90 FunctionPass
*llvm::createLoadValueNumberingPass() { return new LoadVN(); }
93 /// getAnalysisUsage - Does not modify anything. It uses Value Numbering and
96 void LoadVN::getAnalysisUsage(AnalysisUsage
&AU
) const {
98 AU
.addRequiredTransitive
<AliasAnalysis
>();
99 AU
.addRequired
<ValueNumbering
>();
100 AU
.addRequiredTransitive
<DominatorSet
>();
101 AU
.addRequiredTransitive
<TargetData
>();
104 static bool isPathTransparentTo(BasicBlock
*CurBlock
, BasicBlock
*Dom
,
105 Value
*Ptr
, unsigned Size
, AliasAnalysis
&AA
,
106 std::set
<BasicBlock
*> &Visited
,
107 std::map
<BasicBlock
*, bool> &TransparentBlocks
){
108 // If we have already checked out this path, or if we reached our destination,
109 // stop searching, returning success.
110 if (CurBlock
== Dom
|| !Visited
.insert(CurBlock
).second
)
113 // Check whether this block is known transparent or not.
114 std::map
<BasicBlock
*, bool>::iterator TBI
=
115 TransparentBlocks
.lower_bound(CurBlock
);
117 if (TBI
== TransparentBlocks
.end() || TBI
->first
!= CurBlock
) {
118 // If this basic block can modify the memory location, then the path is not
120 if (AA
.canBasicBlockModify(*CurBlock
, Ptr
, Size
)) {
121 TransparentBlocks
.insert(TBI
, std::make_pair(CurBlock
, false));
124 TransparentBlocks
.insert(TBI
, std::make_pair(CurBlock
, true));
125 } else if (!TBI
->second
)
126 // This block is known non-transparent, so that path can't be either.
129 // The current block is known to be transparent. The entire path is
130 // transparent if all of the predecessors paths to the parent is also
131 // transparent to the memory location.
132 for (pred_iterator PI
= pred_begin(CurBlock
), E
= pred_end(CurBlock
);
134 if (!isPathTransparentTo(*PI
, Dom
, Ptr
, Size
, AA
, Visited
,
140 /// getCallEqualNumberNodes - Given a call instruction, find other calls that
141 /// have the same value number.
142 void LoadVN::getCallEqualNumberNodes(CallInst
*CI
,
143 std::vector
<Value
*> &RetVals
) const {
144 Function
*CF
= CI
->getCalledFunction();
145 if (CF
== 0) return; // Indirect call.
146 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
147 AliasAnalysis::ModRefBehavior MRB
= AA
.getModRefBehavior(CF
, CI
);
148 if (MRB
!= AliasAnalysis::DoesNotAccessMemory
&&
149 MRB
!= AliasAnalysis::OnlyReadsMemory
)
150 return; // Nothing we can do for now.
152 // Scan all of the arguments of the function, looking for one that is not
153 // global. In particular, we would prefer to have an argument or instruction
154 // operand to chase the def-use chains of.
156 for (unsigned i
= 1, e
= CI
->getNumOperands(); i
!= e
; ++i
)
157 if (isa
<Argument
>(CI
->getOperand(i
)) ||
158 isa
<Instruction
>(CI
->getOperand(i
))) {
159 Op
= CI
->getOperand(i
);
163 // Identify all lexically identical calls in this function.
164 std::vector
<CallInst
*> IdenticalCalls
;
166 Function
*CIFunc
= CI
->getParent()->getParent();
167 for (Value::use_iterator UI
= Op
->use_begin(), E
= Op
->use_end(); UI
!= E
;
169 if (CallInst
*C
= dyn_cast
<CallInst
>(*UI
))
170 if (C
->getNumOperands() == CI
->getNumOperands() &&
171 C
->getOperand(0) == CI
->getOperand(0) &&
172 C
->getParent()->getParent() == CIFunc
&& C
!= CI
) {
173 bool AllOperandsEqual
= true;
174 for (unsigned i
= 1, e
= CI
->getNumOperands(); i
!= e
; ++i
)
175 if (C
->getOperand(i
) != CI
->getOperand(i
)) {
176 AllOperandsEqual
= false;
180 if (AllOperandsEqual
)
181 IdenticalCalls
.push_back(C
);
184 if (IdenticalCalls
.empty()) return;
186 // Eliminate duplicates, which could occur if we chose a value that is passed
187 // into a call site multiple times.
188 std::sort(IdenticalCalls
.begin(), IdenticalCalls
.end());
189 IdenticalCalls
.erase(std::unique(IdenticalCalls
.begin(),IdenticalCalls
.end()),
190 IdenticalCalls
.end());
192 // If the call reads memory, we must make sure that there are no stores
193 // between the calls in question.
195 // FIXME: This should use mod/ref information. What we really care about it
196 // whether an intervening instruction could modify memory that is read, not
199 if (MRB
== AliasAnalysis::OnlyReadsMemory
) {
200 DominatorSet
&DomSetInfo
= getAnalysis
<DominatorSet
>();
201 BasicBlock
*CIBB
= CI
->getParent();
202 for (unsigned i
= 0; i
!= IdenticalCalls
.size(); ++i
) {
203 CallInst
*C
= IdenticalCalls
[i
];
204 bool CantEqual
= false;
206 if (DomSetInfo
.dominates(CIBB
, C
->getParent())) {
207 // FIXME: we currently only handle the case where both calls are in the
209 if (CIBB
!= C
->getParent()) {
212 Instruction
*First
= CI
, *Second
= C
;
213 if (!DomSetInfo
.dominates(CI
, C
))
214 std::swap(First
, Second
);
216 // Scan the instructions between the calls, checking for stores or
217 // calls to dangerous functions.
218 BasicBlock::iterator I
= First
;
219 for (++First
; I
!= BasicBlock::iterator(Second
); ++I
) {
220 if (isa
<StoreInst
>(I
)) {
221 // FIXME: We could use mod/ref information to make this much
225 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
226 if (CI
->getCalledFunction() == 0 ||
227 !AA
.onlyReadsMemory(CI
->getCalledFunction())) {
231 } else if (I
->mayWriteToMemory()) {
238 } else if (DomSetInfo
.dominates(C
->getParent(), CIBB
)) {
239 // FIXME: We could implement this, but we don't for now.
242 // FIXME: if one doesn't dominate the other, we can't tell yet.
248 // This call does not produce the same value as the one in the query.
249 std::swap(IdenticalCalls
[i
--], IdenticalCalls
.back());
250 IdenticalCalls
.pop_back();
255 // Any calls that are identical and not destroyed will produce equal values!
256 for (unsigned i
= 0, e
= IdenticalCalls
.size(); i
!= e
; ++i
)
257 RetVals
.push_back(IdenticalCalls
[i
]);
260 // getEqualNumberNodes - Return nodes with the same value number as the
261 // specified Value. This fills in the argument vector with any equal values.
263 void LoadVN::getEqualNumberNodes(Value
*V
,
264 std::vector
<Value
*> &RetVals
) const {
265 // If the alias analysis has any must alias information to share with us, we
266 // can definitely use it.
267 if (isa
<PointerType
>(V
->getType()))
268 getAnalysis
<AliasAnalysis
>().getMustAliases(V
, RetVals
);
270 if (!isa
<LoadInst
>(V
)) {
271 if (CallInst
*CI
= dyn_cast
<CallInst
>(V
))
272 getCallEqualNumberNodes(CI
, RetVals
);
274 // Not a load instruction? Just chain to the base value numbering
275 // implementation to satisfy the request...
276 assert(&getAnalysis
<ValueNumbering
>() != (ValueNumbering
*)this &&
277 "getAnalysis() returned this!");
279 return getAnalysis
<ValueNumbering
>().getEqualNumberNodes(V
, RetVals
);
282 // Volatile loads cannot be replaced with the value of other loads.
283 LoadInst
*LI
= cast
<LoadInst
>(V
);
284 if (LI
->isVolatile())
285 return getAnalysis
<ValueNumbering
>().getEqualNumberNodes(V
, RetVals
);
287 Value
*LoadPtr
= LI
->getOperand(0);
288 BasicBlock
*LoadBB
= LI
->getParent();
289 Function
*F
= LoadBB
->getParent();
291 // Find out how many bytes of memory are loaded by the load instruction...
292 unsigned LoadSize
= getAnalysis
<TargetData
>().getTypeSize(LI
->getType());
293 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
295 // Figure out if the load is invalidated from the entry of the block it is in
296 // until the actual instruction. This scans the block backwards from LI. If
297 // we see any candidate load or store instructions, then we know that the
298 // candidates have the same value # as LI.
299 bool LoadInvalidatedInBBBefore
= false;
300 for (BasicBlock::iterator I
= LI
; I
!= LoadBB
->begin(); ) {
303 // If we run into an allocation of the value being loaded, then the
304 // contents are not initialized.
305 if (isa
<AllocationInst
>(I
))
306 RetVals
.push_back(UndefValue::get(LI
->getType()));
308 // Otherwise, since this is the definition of what we are loading, this
309 // loaded value cannot occur before this block.
310 LoadInvalidatedInBBBefore
= true;
312 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
313 // If this instruction is a candidate load before LI, we know there are no
314 // invalidating instructions between it and LI, so they have the same
316 if (LI
->getOperand(0) == LoadPtr
&& !LI
->isVolatile())
317 RetVals
.push_back(I
);
320 if (AA
.getModRefInfo(I
, LoadPtr
, LoadSize
) & AliasAnalysis::Mod
) {
321 // If the invalidating instruction is a store, and its in our candidate
322 // set, then we can do store-load forwarding: the load has the same value
323 // # as the stored value.
324 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
325 if (SI
->getOperand(1) == LoadPtr
)
326 RetVals
.push_back(I
->getOperand(0));
328 LoadInvalidatedInBBBefore
= true;
333 // Figure out if the load is invalidated between the load and the exit of the
334 // block it is defined in. While we are scanning the current basic block, if
335 // we see any candidate loads, then we know they have the same value # as LI.
337 bool LoadInvalidatedInBBAfter
= false;
338 for (BasicBlock::iterator I
= LI
->getNext(); I
!= LoadBB
->end(); ++I
) {
339 // If this instruction is a load, then this instruction returns the same
341 if (isa
<LoadInst
>(I
) && cast
<LoadInst
>(I
)->getOperand(0) == LoadPtr
)
342 RetVals
.push_back(I
);
344 if (AA
.getModRefInfo(I
, LoadPtr
, LoadSize
) & AliasAnalysis::Mod
) {
345 LoadInvalidatedInBBAfter
= true;
350 // If the pointer is clobbered on entry and on exit to the function, there is
351 // no need to do any global analysis at all.
352 if (LoadInvalidatedInBBBefore
&& LoadInvalidatedInBBAfter
)
355 // Now that we know the value is not neccesarily killed on entry or exit to
356 // the BB, find out how many load and store instructions (to this location)
357 // live in each BB in the function.
359 std::map
<BasicBlock
*, unsigned> CandidateLoads
;
360 std::set
<BasicBlock
*> CandidateStores
;
362 for (Value::use_iterator UI
= LoadPtr
->use_begin(), UE
= LoadPtr
->use_end();
364 if (LoadInst
*Cand
= dyn_cast
<LoadInst
>(*UI
)) {// Is a load of source?
365 if (Cand
->getParent()->getParent() == F
&& // In the same function?
366 // Not in LI's block?
367 Cand
->getParent() != LoadBB
&& !Cand
->isVolatile())
368 ++CandidateLoads
[Cand
->getParent()]; // Got one.
369 } else if (StoreInst
*Cand
= dyn_cast
<StoreInst
>(*UI
)) {
370 if (Cand
->getParent()->getParent() == F
&& !Cand
->isVolatile() &&
371 Cand
->getOperand(1) == LoadPtr
) // It's a store THROUGH the ptr.
372 CandidateStores
.insert(Cand
->getParent());
376 DominatorSet
&DomSetInfo
= getAnalysis
<DominatorSet
>();
378 // TransparentBlocks - For each basic block the load/store is alive across,
379 // figure out if the pointer is invalidated or not. If it is invalidated, the
380 // boolean is set to false, if it's not it is set to true. If we don't know
381 // yet, the entry is not in the map.
382 std::map
<BasicBlock
*, bool> TransparentBlocks
;
384 // Loop over all of the basic blocks that also load the value. If the value
385 // is live across the CFG from the source to destination blocks, and if the
386 // value is not invalidated in either the source or destination blocks, add it
387 // to the equivalence sets.
388 for (std::map
<BasicBlock
*, unsigned>::iterator
389 I
= CandidateLoads
.begin(), E
= CandidateLoads
.end(); I
!= E
; ++I
) {
390 bool CantEqual
= false;
392 // Right now we only can handle cases where one load dominates the other.
393 // FIXME: generalize this!
394 BasicBlock
*BB1
= I
->first
, *BB2
= LoadBB
;
395 if (DomSetInfo
.dominates(BB1
, BB2
)) {
396 // The other load dominates LI. If the loaded value is killed entering
397 // the LoadBB block, we know the load is not live.
398 if (LoadInvalidatedInBBBefore
)
400 } else if (DomSetInfo
.dominates(BB2
, BB1
)) {
401 std::swap(BB1
, BB2
); // Canonicalize
402 // LI dominates the other load. If the loaded value is killed exiting
403 // the LoadBB block, we know the load is not live.
404 if (LoadInvalidatedInBBAfter
)
407 // None of these loads can VN the same.
412 // Ok, at this point, we know that BB1 dominates BB2, and that there is
413 // nothing in the LI block that kills the loaded value. Check to see if
414 // the value is live across the CFG.
415 std::set
<BasicBlock
*> Visited
;
416 for (pred_iterator PI
= pred_begin(BB2
), E
= pred_end(BB2
); PI
!=E
; ++PI
)
417 if (!isPathTransparentTo(*PI
, BB1
, LoadPtr
, LoadSize
, AA
,
418 Visited
, TransparentBlocks
)) {
419 // None of these loads can VN the same.
425 // If the loads can equal so far, scan the basic block that contains the
426 // loads under consideration to see if they are invalidated in the block.
427 // For any loads that are not invalidated, add them to the equivalence
430 unsigned NumLoads
= I
->second
;
432 // If LI dominates the block in question, check to see if any of the
433 // loads in this block are invalidated before they are reached.
434 for (BasicBlock::iterator BBI
= I
->first
->begin(); ; ++BBI
) {
435 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
)) {
436 if (LI
->getOperand(0) == LoadPtr
&& !LI
->isVolatile()) {
437 // The load is in the set!
438 RetVals
.push_back(BBI
);
439 if (--NumLoads
== 0) break; // Found last load to check.
441 } else if (AA
.getModRefInfo(BBI
, LoadPtr
, LoadSize
)
442 & AliasAnalysis::Mod
) {
443 // If there is a modifying instruction, nothing below it will value
449 // If the block dominates LI, make sure that the loads in the block are
450 // not invalidated before the block ends.
451 BasicBlock::iterator BBI
= I
->first
->end();
454 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
)) {
455 if (LI
->getOperand(0) == LoadPtr
&& !LI
->isVolatile()) {
456 // The load is the same as this load!
457 RetVals
.push_back(BBI
);
458 if (--NumLoads
== 0) break; // Found all of the laods.
460 } else if (AA
.getModRefInfo(BBI
, LoadPtr
, LoadSize
)
461 & AliasAnalysis::Mod
) {
462 // If there is a modifying instruction, nothing above it will value
471 // Handle candidate stores. If the loaded location is clobbered on entrance
472 // to the LoadBB, no store outside of the LoadBB can value number equal, so
474 if (LoadInvalidatedInBBBefore
)
477 // Stores in the load-bb are handled above.
478 CandidateStores
.erase(LoadBB
);
480 for (std::set
<BasicBlock
*>::iterator I
= CandidateStores
.begin(),
481 E
= CandidateStores
.end(); I
!= E
; ++I
)
482 if (DomSetInfo
.dominates(*I
, LoadBB
)) {
483 BasicBlock
*StoreBB
= *I
;
485 // Check to see if the path from the store to the load is transparent
486 // w.r.t. the memory location.
487 bool CantEqual
= false;
488 std::set
<BasicBlock
*> Visited
;
489 for (pred_iterator PI
= pred_begin(LoadBB
), E
= pred_end(LoadBB
);
491 if (!isPathTransparentTo(*PI
, StoreBB
, LoadPtr
, LoadSize
, AA
,
492 Visited
, TransparentBlocks
)) {
493 // None of these stores can VN the same.
499 // Okay, the path from the store block to the load block is clear, and
500 // we know that there are no invalidating instructions from the start
501 // of the load block to the load itself. Now we just scan the store
504 BasicBlock::iterator BBI
= StoreBB
->end();
506 assert(BBI
!= StoreBB
->begin() &&
507 "There is a store in this block of the pointer, but the store"
508 " doesn't mod the address being stored to?? Must be a bug in"
509 " the alias analysis implementation!");
511 if (AA
.getModRefInfo(BBI
, LoadPtr
, LoadSize
) & AliasAnalysis::Mod
) {
512 // If the invalidating instruction is one of the candidates,
513 // then it provides the value the load loads.
514 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
))
515 if (SI
->getOperand(1) == LoadPtr
)
516 RetVals
.push_back(SI
->getOperand(0));