1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/ADT/DepthFirstIterator.h"
28 static RegisterAnalysis
<LoopInfo
>
29 X("loops", "Natural Loop Construction", true);
31 //===----------------------------------------------------------------------===//
32 // Loop implementation
34 bool Loop::contains(const BasicBlock
*BB
) const {
35 return std::find(Blocks
.begin(), Blocks
.end(), BB
) != Blocks
.end();
38 bool Loop::isLoopExit(const BasicBlock
*BB
) const {
39 for (succ_const_iterator SI
= succ_begin(BB
), SE
= succ_end(BB
);
47 /// getNumBackEdges - Calculate the number of back edges to the loop header.
49 unsigned Loop::getNumBackEdges() const {
50 unsigned NumBackEdges
= 0;
51 BasicBlock
*H
= getHeader();
53 for (pred_iterator I
= pred_begin(H
), E
= pred_end(H
); I
!= E
; ++I
)
60 /// isLoopInvariant - Return true if the specified value is loop invariant
62 bool Loop::isLoopInvariant(Value
*V
) const {
63 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
64 return !contains(I
->getParent());
65 return true; // All non-instructions are loop invariant
68 void Loop::print(std::ostream
&OS
, unsigned Depth
) const {
69 OS
<< std::string(Depth
*2, ' ') << "Loop Containing: ";
71 for (unsigned i
= 0; i
< getBlocks().size(); ++i
) {
73 WriteAsOperand(OS
, getBlocks()[i
], false);
77 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
)
78 (*I
)->print(OS
, Depth
+2);
81 void Loop::dump() const {
86 //===----------------------------------------------------------------------===//
87 // LoopInfo implementation
89 bool LoopInfo::runOnFunction(Function
&) {
91 Calculate(getAnalysis
<ETForest
>()); // Update
95 void LoopInfo::releaseMemory() {
96 for (std::vector
<Loop
*>::iterator I
= TopLevelLoops
.begin(),
97 E
= TopLevelLoops
.end(); I
!= E
; ++I
)
98 delete *I
; // Delete all of the loops...
100 BBMap
.clear(); // Reset internal state of analysis
101 TopLevelLoops
.clear();
105 void LoopInfo::Calculate(ETForest
&EF
) {
106 BasicBlock
*RootNode
= EF
.getRoot();
108 for (df_iterator
<BasicBlock
*> NI
= df_begin(RootNode
),
109 NE
= df_end(RootNode
); NI
!= NE
; ++NI
)
110 if (Loop
*L
= ConsiderForLoop(*NI
, EF
))
111 TopLevelLoops
.push_back(L
);
114 void LoopInfo::getAnalysisUsage(AnalysisUsage
&AU
) const {
115 AU
.setPreservesAll();
116 AU
.addRequired
<ETForest
>();
119 void LoopInfo::print(std::ostream
&OS
, const Module
* ) const {
120 for (unsigned i
= 0; i
< TopLevelLoops
.size(); ++i
)
121 TopLevelLoops
[i
]->print(OS
);
123 for (std::map
<BasicBlock
*, Loop
*>::const_iterator I
= BBMap
.begin(),
124 E
= BBMap
.end(); I
!= E
; ++I
)
125 OS
<< "BB '" << I
->first
->getName() << "' level = "
126 << I
->second
->getLoopDepth() << "\n";
130 static bool isNotAlreadyContainedIn(Loop
*SubLoop
, Loop
*ParentLoop
) {
131 if (SubLoop
== 0) return true;
132 if (SubLoop
== ParentLoop
) return false;
133 return isNotAlreadyContainedIn(SubLoop
->getParentLoop(), ParentLoop
);
136 Loop
*LoopInfo::ConsiderForLoop(BasicBlock
*BB
, ETForest
&EF
) {
137 if (BBMap
.find(BB
) != BBMap
.end()) return 0; // Haven't processed this node?
139 std::vector
<BasicBlock
*> TodoStack
;
141 // Scan the predecessors of BB, checking to see if BB dominates any of
142 // them. This identifies backedges which target this node...
143 for (pred_iterator I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
)
144 if (EF
.dominates(BB
, *I
)) // If BB dominates it's predecessor...
145 TodoStack
.push_back(*I
);
147 if (TodoStack
.empty()) return 0; // No backedges to this block...
149 // Create a new loop to represent this basic block...
150 Loop
*L
= new Loop(BB
);
153 BasicBlock
*EntryBlock
= &BB
->getParent()->getEntryBlock();
155 while (!TodoStack
.empty()) { // Process all the nodes in the loop
156 BasicBlock
*X
= TodoStack
.back();
157 TodoStack
.pop_back();
159 if (!L
->contains(X
) && // As of yet unprocessed??
160 EF
.dominates(EntryBlock
, X
)) { // X is reachable from entry block?
161 // Check to see if this block already belongs to a loop. If this occurs
162 // then we have a case where a loop that is supposed to be a child of the
163 // current loop was processed before the current loop. When this occurs,
164 // this child loop gets added to a part of the current loop, making it a
165 // sibling to the current loop. We have to reparent this loop.
166 if (Loop
*SubLoop
= const_cast<Loop
*>(getLoopFor(X
)))
167 if (SubLoop
->getHeader() == X
&& isNotAlreadyContainedIn(SubLoop
, L
)) {
168 // Remove the subloop from it's current parent...
169 assert(SubLoop
->ParentLoop
&& SubLoop
->ParentLoop
!= L
);
170 Loop
*SLP
= SubLoop
->ParentLoop
; // SubLoopParent
171 std::vector
<Loop
*>::iterator I
=
172 std::find(SLP
->SubLoops
.begin(), SLP
->SubLoops
.end(), SubLoop
);
173 assert(I
!= SLP
->SubLoops
.end() && "SubLoop not a child of parent?");
174 SLP
->SubLoops
.erase(I
); // Remove from parent...
176 // Add the subloop to THIS loop...
177 SubLoop
->ParentLoop
= L
;
178 L
->SubLoops
.push_back(SubLoop
);
181 // Normal case, add the block to our loop...
182 L
->Blocks
.push_back(X
);
184 // Add all of the predecessors of X to the end of the work stack...
185 TodoStack
.insert(TodoStack
.end(), pred_begin(X
), pred_end(X
));
189 // If there are any loops nested within this loop, create them now!
190 for (std::vector
<BasicBlock
*>::iterator I
= L
->Blocks
.begin(),
191 E
= L
->Blocks
.end(); I
!= E
; ++I
)
192 if (Loop
*NewLoop
= ConsiderForLoop(*I
, EF
)) {
193 L
->SubLoops
.push_back(NewLoop
);
194 NewLoop
->ParentLoop
= L
;
197 // Add the basic blocks that comprise this loop to the BBMap so that this
198 // loop can be found for them.
200 for (std::vector
<BasicBlock
*>::iterator I
= L
->Blocks
.begin(),
201 E
= L
->Blocks
.end(); I
!= E
; ++I
) {
202 std::map
<BasicBlock
*, Loop
*>::iterator BBMI
= BBMap
.lower_bound(*I
);
203 if (BBMI
== BBMap
.end() || BBMI
->first
!= *I
) // Not in map yet...
204 BBMap
.insert(BBMI
, std::make_pair(*I
, L
)); // Must be at this level
207 // Now that we have a list of all of the child loops of this loop, check to
208 // see if any of them should actually be nested inside of each other. We can
209 // accidentally pull loops our of their parents, so we must make sure to
210 // organize the loop nests correctly now.
212 std::map
<BasicBlock
*, Loop
*> ContainingLoops
;
213 for (unsigned i
= 0; i
!= L
->SubLoops
.size(); ++i
) {
214 Loop
*Child
= L
->SubLoops
[i
];
215 assert(Child
->getParentLoop() == L
&& "Not proper child loop?");
217 if (Loop
*ContainingLoop
= ContainingLoops
[Child
->getHeader()]) {
218 // If there is already a loop which contains this loop, move this loop
219 // into the containing loop.
220 MoveSiblingLoopInto(Child
, ContainingLoop
);
221 --i
; // The loop got removed from the SubLoops list.
223 // This is currently considered to be a top-level loop. Check to see if
224 // any of the contained blocks are loop headers for subloops we have
225 // already processed.
226 for (unsigned b
= 0, e
= Child
->Blocks
.size(); b
!= e
; ++b
) {
227 Loop
*&BlockLoop
= ContainingLoops
[Child
->Blocks
[b
]];
228 if (BlockLoop
== 0) { // Child block not processed yet...
230 } else if (BlockLoop
!= Child
) {
231 Loop
*SubLoop
= BlockLoop
;
232 // Reparent all of the blocks which used to belong to BlockLoops
233 for (unsigned j
= 0, e
= SubLoop
->Blocks
.size(); j
!= e
; ++j
)
234 ContainingLoops
[SubLoop
->Blocks
[j
]] = Child
;
236 // There is already a loop which contains this block, that means
237 // that we should reparent the loop which the block is currently
238 // considered to belong to to be a child of this loop.
239 MoveSiblingLoopInto(SubLoop
, Child
);
240 --i
; // We just shrunk the SubLoops list.
250 /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of
251 /// the NewParent Loop, instead of being a sibling of it.
252 void LoopInfo::MoveSiblingLoopInto(Loop
*NewChild
, Loop
*NewParent
) {
253 Loop
*OldParent
= NewChild
->getParentLoop();
254 assert(OldParent
&& OldParent
== NewParent
->getParentLoop() &&
255 NewChild
!= NewParent
&& "Not sibling loops!");
257 // Remove NewChild from being a child of OldParent
258 std::vector
<Loop
*>::iterator I
=
259 std::find(OldParent
->SubLoops
.begin(), OldParent
->SubLoops
.end(), NewChild
);
260 assert(I
!= OldParent
->SubLoops
.end() && "Parent fields incorrect??");
261 OldParent
->SubLoops
.erase(I
); // Remove from parent's subloops list
262 NewChild
->ParentLoop
= 0;
264 InsertLoopInto(NewChild
, NewParent
);
267 /// InsertLoopInto - This inserts loop L into the specified parent loop. If the
268 /// parent loop contains a loop which should contain L, the loop gets inserted
270 void LoopInfo::InsertLoopInto(Loop
*L
, Loop
*Parent
) {
271 BasicBlock
*LHeader
= L
->getHeader();
272 assert(Parent
->contains(LHeader
) && "This loop should not be inserted here!");
274 // Check to see if it belongs in a child loop...
275 for (unsigned i
= 0, e
= Parent
->SubLoops
.size(); i
!= e
; ++i
)
276 if (Parent
->SubLoops
[i
]->contains(LHeader
)) {
277 InsertLoopInto(L
, Parent
->SubLoops
[i
]);
281 // If not, insert it here!
282 Parent
->SubLoops
.push_back(L
);
283 L
->ParentLoop
= Parent
;
286 /// changeLoopFor - Change the top-level loop that contains BB to the
287 /// specified loop. This should be used by transformations that restructure
288 /// the loop hierarchy tree.
289 void LoopInfo::changeLoopFor(BasicBlock
*BB
, Loop
*L
) {
290 Loop
*&OldLoop
= BBMap
[BB
];
291 assert(OldLoop
&& "Block not in a loop yet!");
295 /// changeTopLevelLoop - Replace the specified loop in the top-level loops
296 /// list with the indicated loop.
297 void LoopInfo::changeTopLevelLoop(Loop
*OldLoop
, Loop
*NewLoop
) {
298 std::vector
<Loop
*>::iterator I
= std::find(TopLevelLoops
.begin(),
299 TopLevelLoops
.end(), OldLoop
);
300 assert(I
!= TopLevelLoops
.end() && "Old loop not at top level!");
302 assert(NewLoop
->ParentLoop
== 0 && OldLoop
->ParentLoop
== 0 &&
303 "Loops already embedded into a subloop!");
306 /// removeLoop - This removes the specified top-level loop from this loop info
307 /// object. The loop is not deleted, as it will presumably be inserted into
309 Loop
*LoopInfo::removeLoop(iterator I
) {
310 assert(I
!= end() && "Cannot remove end iterator!");
312 assert(L
->getParentLoop() == 0 && "Not a top-level loop!");
313 TopLevelLoops
.erase(TopLevelLoops
.begin() + (I
-begin()));
317 /// removeBlock - This method completely removes BB from all data structures,
318 /// including all of the Loop objects it is nested in and our mapping from
319 /// BasicBlocks to loops.
320 void LoopInfo::removeBlock(BasicBlock
*BB
) {
321 std::map
<BasicBlock
*, Loop
*>::iterator I
= BBMap
.find(BB
);
322 if (I
!= BBMap
.end()) {
323 for (Loop
*L
= I
->second
; L
; L
= L
->getParentLoop())
324 L
->removeBlockFromLoop(BB
);
331 //===----------------------------------------------------------------------===//
332 // APIs for simple analysis of the loop.
335 /// getExitBlocks - Return all of the successor blocks of this loop. These
336 /// are the blocks _outside of the current loop_ which are branched to.
338 void Loop::getExitBlocks(std::vector
<BasicBlock
*> &ExitBlocks
) const {
339 for (std::vector
<BasicBlock
*>::const_iterator BI
= Blocks
.begin(),
340 BE
= Blocks
.end(); BI
!= BE
; ++BI
)
341 for (succ_iterator I
= succ_begin(*BI
), E
= succ_end(*BI
); I
!= E
; ++I
)
342 if (!contains(*I
)) // Not in current loop?
343 ExitBlocks
.push_back(*I
); // It must be an exit block...
347 /// getLoopPreheader - If there is a preheader for this loop, return it. A
348 /// loop has a preheader if there is only one edge to the header of the loop
349 /// from outside of the loop. If this is the case, the block branching to the
350 /// header of the loop is the preheader node.
352 /// This method returns null if there is no preheader for the loop.
354 BasicBlock
*Loop::getLoopPreheader() const {
355 // Keep track of nodes outside the loop branching to the header...
358 // Loop over the predecessors of the header node...
359 BasicBlock
*Header
= getHeader();
360 for (pred_iterator PI
= pred_begin(Header
), PE
= pred_end(Header
);
362 if (!contains(*PI
)) { // If the block is not in the loop...
363 if (Out
&& Out
!= *PI
)
364 return 0; // Multiple predecessors outside the loop
368 // Make sure there is only one exit out of the preheader.
369 assert(Out
&& "Header of loop has no predecessors from outside loop?");
370 succ_iterator SI
= succ_begin(Out
);
372 if (SI
!= succ_end(Out
))
373 return 0; // Multiple exits from the block, must not be a preheader.
375 // If there is exactly one preheader, return it. If there was zero, then Out
380 /// getLoopLatch - If there is a latch block for this loop, return it. A
381 /// latch block is the canonical backedge for a loop. A loop header in normal
382 /// form has two edges into it: one from a preheader and one from a latch
384 BasicBlock
*Loop::getLoopLatch() const {
385 BasicBlock
*Header
= getHeader();
386 pred_iterator PI
= pred_begin(Header
), PE
= pred_end(Header
);
387 if (PI
== PE
) return 0; // no preds?
389 BasicBlock
*Latch
= 0;
393 if (PI
== PE
) return 0; // only one pred?
396 if (Latch
) return 0; // multiple backedges
400 if (PI
!= PE
) return 0; // more than two preds
405 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
406 /// induction variable: an integer recurrence that starts at 0 and increments by
407 /// one each time through the loop. If so, return the phi node that corresponds
410 PHINode
*Loop::getCanonicalInductionVariable() const {
411 BasicBlock
*H
= getHeader();
413 BasicBlock
*Incoming
= 0, *Backedge
= 0;
414 pred_iterator PI
= pred_begin(H
);
415 assert(PI
!= pred_end(H
) && "Loop must have at least one backedge!");
417 if (PI
== pred_end(H
)) return 0; // dead loop
419 if (PI
!= pred_end(H
)) return 0; // multiple backedges?
421 if (contains(Incoming
)) {
422 if (contains(Backedge
))
424 std::swap(Incoming
, Backedge
);
425 } else if (!contains(Backedge
))
428 // Loop over all of the PHI nodes, looking for a canonical indvar.
429 for (BasicBlock::iterator I
= H
->begin(); isa
<PHINode
>(I
); ++I
) {
430 PHINode
*PN
= cast
<PHINode
>(I
);
431 if (Instruction
*Inc
=
432 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(Backedge
)))
433 if (Inc
->getOpcode() == Instruction::Add
&& Inc
->getOperand(0) == PN
)
434 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Inc
->getOperand(1)))
435 if (CI
->equalsInt(1))
441 /// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
442 /// the canonical induction variable value for the "next" iteration of the loop.
443 /// This always succeeds if getCanonicalInductionVariable succeeds.
445 Instruction
*Loop::getCanonicalInductionVariableIncrement() const {
446 if (PHINode
*PN
= getCanonicalInductionVariable()) {
447 bool P1InLoop
= contains(PN
->getIncomingBlock(1));
448 return cast
<Instruction
>(PN
->getIncomingValue(P1InLoop
));
453 /// getTripCount - Return a loop-invariant LLVM value indicating the number of
454 /// times the loop will be executed. Note that this means that the backedge of
455 /// the loop executes N-1 times. If the trip-count cannot be determined, this
458 Value
*Loop::getTripCount() const {
459 // Canonical loops will end with a 'setne I, V', where I is the incremented
460 // canonical induction variable and V is the trip count of the loop.
461 Instruction
*Inc
= getCanonicalInductionVariableIncrement();
462 if (Inc
== 0) return 0;
463 PHINode
*IV
= cast
<PHINode
>(Inc
->getOperand(0));
465 BasicBlock
*BackedgeBlock
=
466 IV
->getIncomingBlock(contains(IV
->getIncomingBlock(1)));
468 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BackedgeBlock
->getTerminator()))
469 if (BI
->isConditional())
470 if (SetCondInst
*SCI
= dyn_cast
<SetCondInst
>(BI
->getCondition()))
471 if (SCI
->getOperand(0) == Inc
)
472 if (BI
->getSuccessor(0) == getHeader()) {
473 if (SCI
->getOpcode() == Instruction::SetNE
)
474 return SCI
->getOperand(1);
475 } else if (SCI
->getOpcode() == Instruction::SetEQ
) {
476 return SCI
->getOperand(1);
482 /// isLCSSAForm - Return true if the Loop is in LCSSA form
483 bool Loop::isLCSSAForm() const {
484 // Sort the blocks vector so that we can use binary search to do quick
486 std::vector
<BasicBlock
*> LoopBBs(block_begin(), block_end());
487 std::sort(LoopBBs
.begin(), LoopBBs
.end());
489 for (unsigned i
= 0, e
= LoopBBs
.size(); i
!= e
; ++i
) {
490 BasicBlock
*BB
= LoopBBs
[i
];
491 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
492 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
494 BasicBlock
*UserBB
= cast
<Instruction
>(*UI
)->getParent();
495 if (PHINode
* p
= dyn_cast
<PHINode
>(*UI
)) {
496 unsigned OperandNo
= UI
.getOperandNo();
497 UserBB
= p
->getIncomingBlock(OperandNo
/2);
500 // Check the current block, as a fast-path. Most values are used in the
501 // same block they are defined in.
503 // Otherwise, binary search LoopBBs for this block.
504 !std::binary_search(LoopBBs
.begin(), LoopBBs
.end(), UserBB
))
512 //===-------------------------------------------------------------------===//
513 // APIs for updating loop information after changing the CFG
516 /// addBasicBlockToLoop - This function is used by other analyses to update loop
517 /// information. NewBB is set to be a new member of the current loop. Because
518 /// of this, it is added as a member of all parent loops, and is added to the
519 /// specified LoopInfo object as being in the current basic block. It is not
520 /// valid to replace the loop header with this method.
522 void Loop::addBasicBlockToLoop(BasicBlock
*NewBB
, LoopInfo
&LI
) {
523 assert((Blocks
.empty() || LI
[getHeader()] == this) &&
524 "Incorrect LI specified for this loop!");
525 assert(NewBB
&& "Cannot add a null basic block to the loop!");
526 assert(LI
[NewBB
] == 0 && "BasicBlock already in the loop!");
528 // Add the loop mapping to the LoopInfo object...
529 LI
.BBMap
[NewBB
] = this;
531 // Add the basic block to this loop and all parent loops...
534 L
->Blocks
.push_back(NewBB
);
535 L
= L
->getParentLoop();
539 /// replaceChildLoopWith - This is used when splitting loops up. It replaces
540 /// the OldChild entry in our children list with NewChild, and updates the
541 /// parent pointers of the two loops as appropriate.
542 void Loop::replaceChildLoopWith(Loop
*OldChild
, Loop
*NewChild
) {
543 assert(OldChild
->ParentLoop
== this && "This loop is already broken!");
544 assert(NewChild
->ParentLoop
== 0 && "NewChild already has a parent!");
545 std::vector
<Loop
*>::iterator I
= std::find(SubLoops
.begin(), SubLoops
.end(),
547 assert(I
!= SubLoops
.end() && "OldChild not in loop!");
549 OldChild
->ParentLoop
= 0;
550 NewChild
->ParentLoop
= this;
553 /// addChildLoop - Add the specified loop to be a child of this loop.
555 void Loop::addChildLoop(Loop
*NewChild
) {
556 assert(NewChild
->ParentLoop
== 0 && "NewChild already has a parent!");
557 NewChild
->ParentLoop
= this;
558 SubLoops
.push_back(NewChild
);
562 static void RemoveFromVector(std::vector
<T
*> &V
, T
*N
) {
563 typename
std::vector
<T
*>::iterator I
= std::find(V
.begin(), V
.end(), N
);
564 assert(I
!= V
.end() && "N is not in this list!");
568 /// removeChildLoop - This removes the specified child from being a subloop of
569 /// this loop. The loop is not deleted, as it will presumably be inserted
570 /// into another loop.
571 Loop
*Loop::removeChildLoop(iterator I
) {
572 assert(I
!= SubLoops
.end() && "Cannot remove end iterator!");
574 assert(Child
->ParentLoop
== this && "Child is not a child of this loop!");
575 SubLoops
.erase(SubLoops
.begin()+(I
-begin()));
576 Child
->ParentLoop
= 0;
581 /// removeBlockFromLoop - This removes the specified basic block from the
582 /// current loop, updating the Blocks and ExitBlocks lists as appropriate. This
583 /// does not update the mapping in the LoopInfo class.
584 void Loop::removeBlockFromLoop(BasicBlock
*BB
) {
585 RemoveFromVector(Blocks
, BB
);
588 // Ensure this file gets linked when LoopInfo.h is used.
589 DEFINING_FILE_FOR(LoopInfo
)