1 //===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the bison parser for LLVM assembly languages files.
12 //===----------------------------------------------------------------------===//
15 #include "ParserInternals.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Module.h"
20 #include "llvm/SymbolTable.h"
21 #include "llvm/Assembly/AutoUpgrade.h"
22 #include "llvm/Support/GetElementPtrTypeIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/Support/MathExtras.h"
30 int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
31 int yylex(); // declaration" of xxx warnings.
35 std::string CurFilename;
39 static Module *ParserResult;
41 // DEBUG_UPREFS - Define this symbol if you want to enable debugging output
42 // relating to upreferences in the input stream.
44 //#define DEBUG_UPREFS 1
46 #define UR_OUT(X) std::cerr << X
51 #define YYERROR_VERBOSE 1
53 static bool ObsoleteVarArgs;
54 static bool NewVarArgs;
55 static BasicBlock *CurBB;
56 static GlobalVariable *CurGV;
59 // This contains info used when building the body of a function. It is
60 // destroyed when the function is completed.
62 typedef std::vector<Value *> ValueList; // Numbered defs
64 ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
65 std::map<const Type *,ValueList> *FutureLateResolvers = 0);
67 static struct PerModuleInfo {
68 Module *CurrentModule;
69 std::map<const Type *, ValueList> Values; // Module level numbered definitions
70 std::map<const Type *,ValueList> LateResolveValues;
71 std::vector<PATypeHolder> Types;
72 std::map<ValID, PATypeHolder> LateResolveTypes;
74 /// PlaceHolderInfo - When temporary placeholder objects are created, remember
75 /// how they were referenced and on which line of the input they came from so
76 /// that we can resolve them later and print error messages as appropriate.
77 std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
79 // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
80 // references to global values. Global values may be referenced before they
81 // are defined, and if so, the temporary object that they represent is held
82 // here. This is used for forward references of GlobalValues.
84 typedef std::map<std::pair<const PointerType *,
85 ValID>, GlobalValue*> GlobalRefsType;
86 GlobalRefsType GlobalRefs;
89 // If we could not resolve some functions at function compilation time
90 // (calls to functions before they are defined), resolve them now... Types
91 // are resolved when the constant pool has been completely parsed.
93 ResolveDefinitions(LateResolveValues);
95 // Check to make sure that all global value forward references have been
98 if (!GlobalRefs.empty()) {
99 std::string UndefinedReferences = "Unresolved global references exist:\n";
101 for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
103 UndefinedReferences += " " + I->first.first->getDescription() + " " +
104 I->first.second.getName() + "\n";
106 ThrowException(UndefinedReferences);
109 // Look for intrinsic functions and CallInst that need to be upgraded
110 for (Module::iterator FI = CurrentModule->begin(),
111 FE = CurrentModule->end(); FI != FE; )
112 UpgradeCallsToIntrinsic(FI++);
114 Values.clear(); // Clear out function local definitions
119 // GetForwardRefForGlobal - Check to see if there is a forward reference
120 // for this global. If so, remove it from the GlobalRefs map and return it.
121 // If not, just return null.
122 GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
123 // Check to see if there is a forward reference to this global variable...
124 // if there is, eliminate it and patch the reference to use the new def'n.
125 GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
126 GlobalValue *Ret = 0;
127 if (I != GlobalRefs.end()) {
135 static struct PerFunctionInfo {
136 Function *CurrentFunction; // Pointer to current function being created
138 std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
139 std::map<const Type*, ValueList> LateResolveValues;
140 bool isDeclare; // Is this function a forward declararation?
142 /// BBForwardRefs - When we see forward references to basic blocks, keep
143 /// track of them here.
144 std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
145 std::vector<BasicBlock*> NumberedBlocks;
148 inline PerFunctionInfo() {
153 inline void FunctionStart(Function *M) {
158 void FunctionDone() {
159 NumberedBlocks.clear();
161 // Any forward referenced blocks left?
162 if (!BBForwardRefs.empty())
163 ThrowException("Undefined reference to label " +
164 BBForwardRefs.begin()->first->getName());
166 // Resolve all forward references now.
167 ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
169 Values.clear(); // Clear out function local definitions
173 } CurFun; // Info for the current function...
175 static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
178 //===----------------------------------------------------------------------===//
179 // Code to handle definitions of all the types
180 //===----------------------------------------------------------------------===//
182 static int InsertValue(Value *V,
183 std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
184 if (V->hasName()) return -1; // Is this a numbered definition?
186 // Yes, insert the value into the value table...
187 ValueList &List = ValueTab[V->getType()];
189 return List.size()-1;
192 static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
194 case ValID::NumberVal: // Is it a numbered definition?
195 // Module constants occupy the lowest numbered slots...
196 if ((unsigned)D.Num < CurModule.Types.size())
197 return CurModule.Types[(unsigned)D.Num];
199 case ValID::NameVal: // Is it a named definition?
200 if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
201 D.destroy(); // Free old strdup'd memory...
206 ThrowException("Internal parser error: Invalid symbol type reference!");
209 // If we reached here, we referenced either a symbol that we don't know about
210 // or an id number that hasn't been read yet. We may be referencing something
211 // forward, so just create an entry to be resolved later and get to it...
213 if (DoNotImprovise) return 0; // Do we just want a null to be returned?
216 if (inFunctionScope()) {
217 if (D.Type == ValID::NameVal)
218 ThrowException("Reference to an undefined type: '" + D.getName() + "'");
220 ThrowException("Reference to an undefined type: #" + itostr(D.Num));
223 std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
224 if (I != CurModule.LateResolveTypes.end())
227 Type *Typ = OpaqueType::get();
228 CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
232 static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) {
233 SymbolTable &SymTab =
234 inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() :
235 CurModule.CurrentModule->getSymbolTable();
236 return SymTab.lookup(Ty, Name);
239 // getValNonImprovising - Look up the value specified by the provided type and
240 // the provided ValID. If the value exists and has already been defined, return
241 // it. Otherwise return null.
243 static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
244 if (isa<FunctionType>(Ty))
245 ThrowException("Functions are not values and "
246 "must be referenced as pointers");
249 case ValID::NumberVal: { // Is it a numbered definition?
250 unsigned Num = (unsigned)D.Num;
252 // Module constants occupy the lowest numbered slots...
253 std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
254 if (VI != CurModule.Values.end()) {
255 if (Num < VI->second.size())
256 return VI->second[Num];
257 Num -= VI->second.size();
260 // Make sure that our type is within bounds
261 VI = CurFun.Values.find(Ty);
262 if (VI == CurFun.Values.end()) return 0;
264 // Check that the number is within bounds...
265 if (VI->second.size() <= Num) return 0;
267 return VI->second[Num];
270 case ValID::NameVal: { // Is it a named definition?
271 Value *N = lookupInSymbolTable(Ty, std::string(D.Name));
272 if (N == 0) return 0;
274 D.destroy(); // Free old strdup'd memory...
278 // Check to make sure that "Ty" is an integral type, and that our
279 // value will fit into the specified type...
280 case ValID::ConstSIntVal: // Is it a constant pool reference??
281 if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
282 ThrowException("Signed integral constant '" +
283 itostr(D.ConstPool64) + "' is invalid for type '" +
284 Ty->getDescription() + "'!");
285 return ConstantSInt::get(Ty, D.ConstPool64);
287 case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
288 if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
289 if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
290 ThrowException("Integral constant '" + utostr(D.UConstPool64) +
291 "' is invalid or out of range!");
292 } else { // This is really a signed reference. Transmogrify.
293 return ConstantSInt::get(Ty, D.ConstPool64);
296 return ConstantUInt::get(Ty, D.UConstPool64);
299 case ValID::ConstFPVal: // Is it a floating point const pool reference?
300 if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
301 ThrowException("FP constant invalid for type!!");
302 return ConstantFP::get(Ty, D.ConstPoolFP);
304 case ValID::ConstNullVal: // Is it a null value?
305 if (!isa<PointerType>(Ty))
306 ThrowException("Cannot create a a non pointer null!");
307 return ConstantPointerNull::get(cast<PointerType>(Ty));
309 case ValID::ConstUndefVal: // Is it an undef value?
310 return UndefValue::get(Ty);
312 case ValID::ConstZeroVal: // Is it a zero value?
313 return Constant::getNullValue(Ty);
315 case ValID::ConstantVal: // Fully resolved constant?
316 if (D.ConstantValue->getType() != Ty)
317 ThrowException("Constant expression type different from required type!");
318 return D.ConstantValue;
320 case ValID::InlineAsmVal: { // Inline asm expression
321 const PointerType *PTy = dyn_cast<PointerType>(Ty);
322 const FunctionType *FTy =
323 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
324 if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints))
325 ThrowException("Invalid type for asm constraint string!");
326 InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
327 D.IAD->HasSideEffects);
328 D.destroy(); // Free InlineAsmDescriptor.
332 assert(0 && "Unhandled case!");
336 assert(0 && "Unhandled case!");
340 // getVal - This function is identical to getValNonImprovising, except that if a
341 // value is not already defined, it "improvises" by creating a placeholder var
342 // that looks and acts just like the requested variable. When the value is
343 // defined later, all uses of the placeholder variable are replaced with the
346 static Value *getVal(const Type *Ty, const ValID &ID) {
347 if (Ty == Type::LabelTy)
348 ThrowException("Cannot use a basic block here");
350 // See if the value has already been defined.
351 Value *V = getValNonImprovising(Ty, ID);
354 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
355 ThrowException("Invalid use of a composite type!");
357 // If we reached here, we referenced either a symbol that we don't know about
358 // or an id number that hasn't been read yet. We may be referencing something
359 // forward, so just create an entry to be resolved later and get to it...
361 V = new Argument(Ty);
363 // Remember where this forward reference came from. FIXME, shouldn't we try
364 // to recycle these things??
365 CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
368 if (inFunctionScope())
369 InsertValue(V, CurFun.LateResolveValues);
371 InsertValue(V, CurModule.LateResolveValues);
375 /// getBBVal - This is used for two purposes:
376 /// * If isDefinition is true, a new basic block with the specified ID is being
378 /// * If isDefinition is true, this is a reference to a basic block, which may
379 /// or may not be a forward reference.
381 static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
382 assert(inFunctionScope() && "Can't get basic block at global scope!");
387 default: ThrowException("Illegal label reference " + ID.getName());
388 case ValID::NumberVal: // Is it a numbered definition?
389 if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
390 CurFun.NumberedBlocks.resize(ID.Num+1);
391 BB = CurFun.NumberedBlocks[ID.Num];
393 case ValID::NameVal: // Is it a named definition?
395 if (Value *N = CurFun.CurrentFunction->
396 getSymbolTable().lookup(Type::LabelTy, Name))
397 BB = cast<BasicBlock>(N);
401 // See if the block has already been defined.
403 // If this is the definition of the block, make sure the existing value was
404 // just a forward reference. If it was a forward reference, there will be
405 // an entry for it in the PlaceHolderInfo map.
406 if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
407 // The existing value was a definition, not a forward reference.
408 ThrowException("Redefinition of label " + ID.getName());
410 ID.destroy(); // Free strdup'd memory.
414 // Otherwise this block has not been seen before.
415 BB = new BasicBlock("", CurFun.CurrentFunction);
416 if (ID.Type == ValID::NameVal) {
417 BB->setName(ID.Name);
419 CurFun.NumberedBlocks[ID.Num] = BB;
422 // If this is not a definition, keep track of it so we can use it as a forward
425 // Remember where this forward reference came from.
426 CurFun.BBForwardRefs[BB] = std::make_pair(ID, llvmAsmlineno);
428 // The forward declaration could have been inserted anywhere in the
429 // function: insert it into the correct place now.
430 CurFun.CurrentFunction->getBasicBlockList().remove(BB);
431 CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
438 //===----------------------------------------------------------------------===//
439 // Code to handle forward references in instructions
440 //===----------------------------------------------------------------------===//
442 // This code handles the late binding needed with statements that reference
443 // values not defined yet... for example, a forward branch, or the PHI node for
446 // This keeps a table (CurFun.LateResolveValues) of all such forward references
447 // and back patchs after we are done.
450 // ResolveDefinitions - If we could not resolve some defs at parsing
451 // time (forward branches, phi functions for loops, etc...) resolve the
455 ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
456 std::map<const Type*,ValueList> *FutureLateResolvers) {
457 // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
458 for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
459 E = LateResolvers.end(); LRI != E; ++LRI) {
460 ValueList &List = LRI->second;
461 while (!List.empty()) {
462 Value *V = List.back();
465 std::map<Value*, std::pair<ValID, int> >::iterator PHI =
466 CurModule.PlaceHolderInfo.find(V);
467 assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
469 ValID &DID = PHI->second.first;
471 Value *TheRealValue = getValNonImprovising(LRI->first, DID);
473 V->replaceAllUsesWith(TheRealValue);
475 CurModule.PlaceHolderInfo.erase(PHI);
476 } else if (FutureLateResolvers) {
477 // Functions have their unresolved items forwarded to the module late
479 InsertValue(V, *FutureLateResolvers);
481 if (DID.Type == ValID::NameVal)
482 ThrowException("Reference to an invalid definition: '" +DID.getName()+
483 "' of type '" + V->getType()->getDescription() + "'",
486 ThrowException("Reference to an invalid definition: #" +
487 itostr(DID.Num) + " of type '" +
488 V->getType()->getDescription() + "'",
494 LateResolvers.clear();
497 // ResolveTypeTo - A brand new type was just declared. This means that (if
498 // name is not null) things referencing Name can be resolved. Otherwise, things
499 // refering to the number can be resolved. Do this now.
501 static void ResolveTypeTo(char *Name, const Type *ToTy) {
503 if (Name) D = ValID::create(Name);
504 else D = ValID::create((int)CurModule.Types.size());
506 std::map<ValID, PATypeHolder>::iterator I =
507 CurModule.LateResolveTypes.find(D);
508 if (I != CurModule.LateResolveTypes.end()) {
509 ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
510 CurModule.LateResolveTypes.erase(I);
514 // setValueName - Set the specified value to the name given. The name may be
515 // null potentially, in which case this is a noop. The string passed in is
516 // assumed to be a malloc'd string buffer, and is free'd by this function.
518 static void setValueName(Value *V, char *NameStr) {
520 std::string Name(NameStr); // Copy string
521 free(NameStr); // Free old string
523 if (V->getType() == Type::VoidTy)
524 ThrowException("Can't assign name '" + Name+"' to value with void type!");
526 assert(inFunctionScope() && "Must be in function scope!");
527 SymbolTable &ST = CurFun.CurrentFunction->getSymbolTable();
528 if (ST.lookup(V->getType(), Name))
529 ThrowException("Redefinition of value named '" + Name + "' in the '" +
530 V->getType()->getDescription() + "' type plane!");
537 /// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
538 /// this is a declaration, otherwise it is a definition.
539 static GlobalVariable *
540 ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
541 bool isConstantGlobal, const Type *Ty,
542 Constant *Initializer) {
543 if (isa<FunctionType>(Ty))
544 ThrowException("Cannot declare global vars of function type!");
546 const PointerType *PTy = PointerType::get(Ty);
550 Name = NameStr; // Copy string
551 free(NameStr); // Free old string
554 // See if this global value was forward referenced. If so, recycle the
558 ID = ValID::create((char*)Name.c_str());
560 ID = ValID::create((int)CurModule.Values[PTy].size());
563 if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
564 // Move the global to the end of the list, from whereever it was
565 // previously inserted.
566 GlobalVariable *GV = cast<GlobalVariable>(FWGV);
567 CurModule.CurrentModule->getGlobalList().remove(GV);
568 CurModule.CurrentModule->getGlobalList().push_back(GV);
569 GV->setInitializer(Initializer);
570 GV->setLinkage(Linkage);
571 GV->setConstant(isConstantGlobal);
572 InsertValue(GV, CurModule.Values);
576 // If this global has a name, check to see if there is already a definition
577 // of this global in the module. If so, merge as appropriate. Note that
578 // this is really just a hack around problems in the CFE. :(
580 // We are a simple redefinition of a value, check to see if it is defined
581 // the same as the old one.
582 if (GlobalVariable *EGV =
583 CurModule.CurrentModule->getGlobalVariable(Name, Ty)) {
584 // We are allowed to redefine a global variable in two circumstances:
585 // 1. If at least one of the globals is uninitialized or
586 // 2. If both initializers have the same value.
588 if (!EGV->hasInitializer() || !Initializer ||
589 EGV->getInitializer() == Initializer) {
591 // Make sure the existing global version gets the initializer! Make
592 // sure that it also gets marked const if the new version is.
593 if (Initializer && !EGV->hasInitializer())
594 EGV->setInitializer(Initializer);
595 if (isConstantGlobal)
596 EGV->setConstant(true);
597 EGV->setLinkage(Linkage);
601 ThrowException("Redefinition of global variable named '" + Name +
602 "' in the '" + Ty->getDescription() + "' type plane!");
606 // Otherwise there is no existing GV to use, create one now.
608 new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
609 CurModule.CurrentModule);
610 InsertValue(GV, CurModule.Values);
614 // setTypeName - Set the specified type to the name given. The name may be
615 // null potentially, in which case this is a noop. The string passed in is
616 // assumed to be a malloc'd string buffer, and is freed by this function.
618 // This function returns true if the type has already been defined, but is
619 // allowed to be redefined in the specified context. If the name is a new name
620 // for the type plane, it is inserted and false is returned.
621 static bool setTypeName(const Type *T, char *NameStr) {
622 assert(!inFunctionScope() && "Can't give types function-local names!");
623 if (NameStr == 0) return false;
625 std::string Name(NameStr); // Copy string
626 free(NameStr); // Free old string
628 // We don't allow assigning names to void type
629 if (T == Type::VoidTy)
630 ThrowException("Can't assign name '" + Name + "' to the void type!");
632 // Set the type name, checking for conflicts as we do so.
633 bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
635 if (AlreadyExists) { // Inserting a name that is already defined???
636 const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
637 assert(Existing && "Conflict but no matching type?");
639 // There is only one case where this is allowed: when we are refining an
640 // opaque type. In this case, Existing will be an opaque type.
641 if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
642 // We ARE replacing an opaque type!
643 const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
647 // Otherwise, this is an attempt to redefine a type. That's okay if
648 // the redefinition is identical to the original. This will be so if
649 // Existing and T point to the same Type object. In this one case we
650 // allow the equivalent redefinition.
651 if (Existing == T) return true; // Yes, it's equal.
653 // Any other kind of (non-equivalent) redefinition is an error.
654 ThrowException("Redefinition of type named '" + Name + "' in the '" +
655 T->getDescription() + "' type plane!");
661 //===----------------------------------------------------------------------===//
662 // Code for handling upreferences in type names...
665 // TypeContains - Returns true if Ty directly contains E in it.
667 static bool TypeContains(const Type *Ty, const Type *E) {
668 return std::find(Ty->subtype_begin(), Ty->subtype_end(),
669 E) != Ty->subtype_end();
674 // NestingLevel - The number of nesting levels that need to be popped before
675 // this type is resolved.
676 unsigned NestingLevel;
678 // LastContainedTy - This is the type at the current binding level for the
679 // type. Every time we reduce the nesting level, this gets updated.
680 const Type *LastContainedTy;
682 // UpRefTy - This is the actual opaque type that the upreference is
686 UpRefRecord(unsigned NL, OpaqueType *URTy)
687 : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
691 // UpRefs - A list of the outstanding upreferences that need to be resolved.
692 static std::vector<UpRefRecord> UpRefs;
694 /// HandleUpRefs - Every time we finish a new layer of types, this function is
695 /// called. It loops through the UpRefs vector, which is a list of the
696 /// currently active types. For each type, if the up reference is contained in
697 /// the newly completed type, we decrement the level count. When the level
698 /// count reaches zero, the upreferenced type is the type that is passed in:
699 /// thus we can complete the cycle.
701 static PATypeHolder HandleUpRefs(const Type *ty) {
702 if (!ty->isAbstract()) return ty;
704 UR_OUT("Type '" << Ty->getDescription() <<
705 "' newly formed. Resolving upreferences.\n" <<
706 UpRefs.size() << " upreferences active!\n");
708 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
709 // to zero), we resolve them all together before we resolve them to Ty. At
710 // the end of the loop, if there is anything to resolve to Ty, it will be in
712 OpaqueType *TypeToResolve = 0;
714 for (unsigned i = 0; i != UpRefs.size(); ++i) {
715 UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
716 << UpRefs[i].second->getDescription() << ") = "
717 << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
718 if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
719 // Decrement level of upreference
720 unsigned Level = --UpRefs[i].NestingLevel;
721 UpRefs[i].LastContainedTy = Ty;
722 UR_OUT(" Uplevel Ref Level = " << Level << "\n");
723 if (Level == 0) { // Upreference should be resolved!
724 if (!TypeToResolve) {
725 TypeToResolve = UpRefs[i].UpRefTy;
727 UR_OUT(" * Resolving upreference for "
728 << UpRefs[i].second->getDescription() << "\n";
729 std::string OldName = UpRefs[i].UpRefTy->getDescription());
730 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
731 UR_OUT(" * Type '" << OldName << "' refined upreference to: "
732 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
734 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
735 --i; // Do not skip the next element...
741 UR_OUT(" * Resolving upreference for "
742 << UpRefs[i].second->getDescription() << "\n";
743 std::string OldName = TypeToResolve->getDescription());
744 TypeToResolve->refineAbstractTypeTo(Ty);
751 // common code from the two 'RunVMAsmParser' functions
752 static Module * RunParser(Module * M) {
754 llvmAsmlineno = 1; // Reset the current line number...
755 ObsoleteVarArgs = false;
758 CurModule.CurrentModule = M;
759 yyparse(); // Parse the file, potentially throwing exception
761 Module *Result = ParserResult;
764 //Not all functions use vaarg, so make a second check for ObsoleteVarArgs
767 if ((F = Result->getNamedFunction("llvm.va_start"))
768 && F->getFunctionType()->getNumParams() == 0)
769 ObsoleteVarArgs = true;
770 if((F = Result->getNamedFunction("llvm.va_copy"))
771 && F->getFunctionType()->getNumParams() == 1)
772 ObsoleteVarArgs = true;
775 if (ObsoleteVarArgs && NewVarArgs)
776 ThrowException("This file is corrupt: it uses both new and old style varargs");
778 if(ObsoleteVarArgs) {
779 if(Function* F = Result->getNamedFunction("llvm.va_start")) {
780 if (F->arg_size() != 0)
781 ThrowException("Obsolete va_start takes 0 argument!");
785 //bar = alloca typeof(foo)
789 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
790 const Type* ArgTy = F->getFunctionType()->getReturnType();
791 const Type* ArgTyPtr = PointerType::get(ArgTy);
792 Function* NF = Result->getOrInsertFunction("llvm.va_start",
793 RetTy, ArgTyPtr, (Type *)0);
795 while (!F->use_empty()) {
796 CallInst* CI = cast<CallInst>(F->use_back());
797 AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI);
798 new CallInst(NF, bar, "", CI);
799 Value* foo = new LoadInst(bar, "vastart.fix.2", CI);
800 CI->replaceAllUsesWith(foo);
801 CI->getParent()->getInstList().erase(CI);
803 Result->getFunctionList().erase(F);
806 if(Function* F = Result->getNamedFunction("llvm.va_end")) {
807 if(F->arg_size() != 1)
808 ThrowException("Obsolete va_end takes 1 argument!");
812 //bar = alloca 1 of typeof(foo)
814 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
815 const Type* ArgTy = F->getFunctionType()->getParamType(0);
816 const Type* ArgTyPtr = PointerType::get(ArgTy);
817 Function* NF = Result->getOrInsertFunction("llvm.va_end",
818 RetTy, ArgTyPtr, (Type *)0);
820 while (!F->use_empty()) {
821 CallInst* CI = cast<CallInst>(F->use_back());
822 AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI);
823 new StoreInst(CI->getOperand(1), bar, CI);
824 new CallInst(NF, bar, "", CI);
825 CI->getParent()->getInstList().erase(CI);
827 Result->getFunctionList().erase(F);
830 if(Function* F = Result->getNamedFunction("llvm.va_copy")) {
831 if(F->arg_size() != 1)
832 ThrowException("Obsolete va_copy takes 1 argument!");
835 //a = alloca 1 of typeof(foo)
836 //b = alloca 1 of typeof(foo)
841 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
842 const Type* ArgTy = F->getFunctionType()->getReturnType();
843 const Type* ArgTyPtr = PointerType::get(ArgTy);
844 Function* NF = Result->getOrInsertFunction("llvm.va_copy",
845 RetTy, ArgTyPtr, ArgTyPtr,
848 while (!F->use_empty()) {
849 CallInst* CI = cast<CallInst>(F->use_back());
850 AllocaInst* a = new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI);
851 AllocaInst* b = new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI);
852 new StoreInst(CI->getOperand(1), b, CI);
853 new CallInst(NF, a, b, "", CI);
854 Value* foo = new LoadInst(a, "vacopy.fix.3", CI);
855 CI->replaceAllUsesWith(foo);
856 CI->getParent()->getInstList().erase(CI);
858 Result->getFunctionList().erase(F);
866 //===----------------------------------------------------------------------===//
867 // RunVMAsmParser - Define an interface to this parser
868 //===----------------------------------------------------------------------===//
870 Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
873 CurFilename = Filename;
874 return RunParser(new Module(CurFilename));
877 Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
878 set_scan_string(AsmString);
880 CurFilename = "from_memory";
882 return RunParser(new Module (CurFilename));
891 llvm::Module *ModuleVal;
892 llvm::Function *FunctionVal;
893 std::pair<llvm::PATypeHolder*, char*> *ArgVal;
894 llvm::BasicBlock *BasicBlockVal;
895 llvm::TerminatorInst *TermInstVal;
896 llvm::Instruction *InstVal;
897 llvm::Constant *ConstVal;
899 const llvm::Type *PrimType;
900 llvm::PATypeHolder *TypeVal;
901 llvm::Value *ValueVal;
903 std::vector<std::pair<llvm::PATypeHolder*,char*> > *ArgList;
904 std::vector<llvm::Value*> *ValueList;
905 std::list<llvm::PATypeHolder> *TypeList;
906 // Represent the RHS of PHI node
907 std::list<std::pair<llvm::Value*,
908 llvm::BasicBlock*> > *PHIList;
909 std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
910 std::vector<llvm::Constant*> *ConstVector;
912 llvm::GlobalValue::LinkageTypes Linkage;
920 char *StrVal; // This memory is strdup'd!
921 llvm::ValID ValIDVal; // strdup'd memory maybe!
923 llvm::Instruction::BinaryOps BinaryOpVal;
924 llvm::Instruction::TermOps TermOpVal;
925 llvm::Instruction::MemoryOps MemOpVal;
926 llvm::Instruction::OtherOps OtherOpVal;
927 llvm::Module::Endianness Endianness;
930 %type <ModuleVal> Module FunctionList
931 %type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
932 %type <BasicBlockVal> BasicBlock InstructionList
933 %type <TermInstVal> BBTerminatorInst
934 %type <InstVal> Inst InstVal MemoryInst
935 %type <ConstVal> ConstVal ConstExpr
936 %type <ConstVector> ConstVector
937 %type <ArgList> ArgList ArgListH
938 %type <ArgVal> ArgVal
939 %type <PHIList> PHIList
940 %type <ValueList> ValueRefList ValueRefListE // For call param lists
941 %type <ValueList> IndexList // For GEP derived indices
942 %type <TypeList> TypeListI ArgTypeListI
943 %type <JumpTable> JumpTable
944 %type <BoolVal> GlobalType // GLOBAL or CONSTANT?
945 %type <BoolVal> OptVolatile // 'volatile' or not
946 %type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
947 %type <BoolVal> OptSideEffect // 'sideeffect' or not.
948 %type <Linkage> OptLinkage
949 %type <Endianness> BigOrLittle
951 // ValueRef - Unresolved reference to a definition or BB
952 %type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
953 %type <ValueVal> ResolvedVal // <type> <valref> pair
954 // Tokens and types for handling constant integer values
956 // ESINT64VAL - A negative number within long long range
957 %token <SInt64Val> ESINT64VAL
959 // EUINT64VAL - A positive number within uns. long long range
960 %token <UInt64Val> EUINT64VAL
961 %type <SInt64Val> EINT64VAL
963 %token <SIntVal> SINTVAL // Signed 32 bit ints...
964 %token <UIntVal> UINTVAL // Unsigned 32 bit ints...
965 %type <SIntVal> INTVAL
966 %token <FPVal> FPVAL // Float or Double constant
969 %type <TypeVal> Types TypesV UpRTypes UpRTypesV
970 %type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
971 %token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
972 %token <PrimType> FLOAT DOUBLE TYPE LABEL
974 %token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
975 %type <StrVal> Name OptName OptAssign
976 %type <UIntVal> OptAlign OptCAlign
977 %type <StrVal> OptSection SectionString
979 %token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
980 %token DECLARE GLOBAL CONSTANT SECTION VOLATILE
981 %token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
982 %token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN
983 %token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
984 %token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
985 %type <UIntVal> OptCallingConv
987 // Basic Block Terminating Operators
988 %token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
991 %type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
992 %token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
993 %token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators
995 // Memory Instructions
996 %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
999 %type <OtherOpVal> ShiftOps
1000 %token <OtherOpVal> PHI_TOK CAST SELECT SHL SHR VAARG
1001 %token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
1002 %token VAARG_old VANEXT_old //OBSOLETE
1008 // Handle constant integer size restriction and conversion...
1012 if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
1013 ThrowException("Value too large for type!");
1018 EINT64VAL : ESINT64VAL; // These have same type and can't cause problems...
1019 EINT64VAL : EUINT64VAL {
1020 if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
1021 ThrowException("Value too large for type!");
1025 // Operations that are notably excluded from this list include:
1026 // RET, BR, & SWITCH because they end basic blocks and are treated specially.
1028 ArithmeticOps: ADD | SUB | MUL | DIV | REM;
1029 LogicalOps : AND | OR | XOR;
1030 SetCondOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
1032 ShiftOps : SHL | SHR;
1034 // These are some types that allow classification if we only want a particular
1035 // thing... for example, only a signed, unsigned, or integral type.
1036 SIntType : LONG | INT | SHORT | SBYTE;
1037 UIntType : ULONG | UINT | USHORT | UBYTE;
1038 IntType : SIntType | UIntType;
1039 FPType : FLOAT | DOUBLE;
1041 // OptAssign - Value producing statements have an optional assignment component
1042 OptAssign : Name '=' {
1049 OptLinkage : INTERNAL { $$ = GlobalValue::InternalLinkage; } |
1050 LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } |
1051 WEAK { $$ = GlobalValue::WeakLinkage; } |
1052 APPENDING { $$ = GlobalValue::AppendingLinkage; } |
1053 /*empty*/ { $$ = GlobalValue::ExternalLinkage; };
1055 OptCallingConv : /*empty*/ { $$ = CallingConv::C; } |
1056 CCC_TOK { $$ = CallingConv::C; } |
1057 CSRETCC_TOK { $$ = CallingConv::CSRet; } |
1058 FASTCC_TOK { $$ = CallingConv::Fast; } |
1059 COLDCC_TOK { $$ = CallingConv::Cold; } |
1061 if ((unsigned)$2 != $2)
1062 ThrowException("Calling conv too large!");
1066 // OptAlign/OptCAlign - An optional alignment, and an optional alignment with
1067 // a comma before it.
1068 OptAlign : /*empty*/ { $$ = 0; } |
1071 if ($$ != 0 && !isPowerOf2_32($$))
1072 ThrowException("Alignment must be a power of two!");
1074 OptCAlign : /*empty*/ { $$ = 0; } |
1075 ',' ALIGN EUINT64VAL {
1077 if ($$ != 0 && !isPowerOf2_32($$))
1078 ThrowException("Alignment must be a power of two!");
1082 SectionString : SECTION STRINGCONSTANT {
1083 for (unsigned i = 0, e = strlen($2); i != e; ++i)
1084 if ($2[i] == '"' || $2[i] == '\\')
1085 ThrowException("Invalid character in section name!");
1089 OptSection : /*empty*/ { $$ = 0; } |
1090 SectionString { $$ = $1; };
1092 // GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
1093 // is set to be the global we are processing.
1095 GlobalVarAttributes : /* empty */ {} |
1096 ',' GlobalVarAttribute GlobalVarAttributes {};
1097 GlobalVarAttribute : SectionString {
1098 CurGV->setSection($1);
1101 | ALIGN EUINT64VAL {
1102 if ($2 != 0 && !isPowerOf2_32($2))
1103 ThrowException("Alignment must be a power of two!");
1104 CurGV->setAlignment($2);
1107 //===----------------------------------------------------------------------===//
1108 // Types includes all predefined types... except void, because it can only be
1109 // used in specific contexts (function returning void for example). To have
1110 // access to it, a user must explicitly use TypesV.
1113 // TypesV includes all of 'Types', but it also includes the void type.
1114 TypesV : Types | VOID { $$ = new PATypeHolder($1); };
1115 UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); };
1118 if (!UpRefs.empty())
1119 ThrowException("Invalid upreference in type: " + (*$1)->getDescription());
1124 // Derived types are added later...
1126 PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT ;
1127 PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE | LABEL;
1129 $$ = new PATypeHolder(OpaqueType::get());
1132 $$ = new PATypeHolder($1);
1134 UpRTypes : SymbolicValueRef { // Named types are also simple types...
1135 $$ = new PATypeHolder(getTypeVal($1));
1138 // Include derived types in the Types production.
1140 UpRTypes : '\\' EUINT64VAL { // Type UpReference
1141 if ($2 > (uint64_t)~0U) ThrowException("Value out of range!");
1142 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
1143 UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
1144 $$ = new PATypeHolder(OT);
1145 UR_OUT("New Upreference!\n");
1147 | UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
1148 std::vector<const Type*> Params;
1149 for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
1150 E = $3->end(); I != E; ++I)
1151 Params.push_back(*I);
1152 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1153 if (isVarArg) Params.pop_back();
1155 $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
1156 delete $3; // Delete the argument list
1157 delete $1; // Delete the return type handle
1159 | '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
1160 $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
1163 | '<' EUINT64VAL 'x' UpRTypes '>' { // Packed array type?
1164 const llvm::Type* ElemTy = $4->get();
1165 if ((unsigned)$2 != $2)
1166 ThrowException("Unsigned result not equal to signed result");
1167 if (!ElemTy->isPrimitiveType())
1168 ThrowException("Elemental type of a PackedType must be primitive");
1169 if (!isPowerOf2_32($2))
1170 ThrowException("Vector length should be a power of 2!");
1171 $$ = new PATypeHolder(HandleUpRefs(PackedType::get(*$4, (unsigned)$2)));
1174 | '{' TypeListI '}' { // Structure type?
1175 std::vector<const Type*> Elements;
1176 for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
1177 E = $2->end(); I != E; ++I)
1178 Elements.push_back(*I);
1180 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
1183 | '{' '}' { // Empty structure type?
1184 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
1186 | UpRTypes '*' { // Pointer type?
1187 $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
1191 // TypeList - Used for struct declarations and as a basis for function type
1192 // declaration type lists
1194 TypeListI : UpRTypes {
1195 $$ = new std::list<PATypeHolder>();
1196 $$->push_back(*$1); delete $1;
1198 | TypeListI ',' UpRTypes {
1199 ($$=$1)->push_back(*$3); delete $3;
1202 // ArgTypeList - List of types for a function type declaration...
1203 ArgTypeListI : TypeListI
1204 | TypeListI ',' DOTDOTDOT {
1205 ($$=$1)->push_back(Type::VoidTy);
1208 ($$ = new std::list<PATypeHolder>())->push_back(Type::VoidTy);
1211 $$ = new std::list<PATypeHolder>();
1214 // ConstVal - The various declarations that go into the constant pool. This
1215 // production is used ONLY to represent constants that show up AFTER a 'const',
1216 // 'constant' or 'global' token at global scope. Constants that can be inlined
1217 // into other expressions (such as integers and constexprs) are handled by the
1218 // ResolvedVal, ValueRef and ConstValueRef productions.
1220 ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
1221 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1223 ThrowException("Cannot make array constant with type: '" +
1224 (*$1)->getDescription() + "'!");
1225 const Type *ETy = ATy->getElementType();
1226 int NumElements = ATy->getNumElements();
1228 // Verify that we have the correct size...
1229 if (NumElements != -1 && NumElements != (int)$3->size())
1230 ThrowException("Type mismatch: constant sized array initialized with " +
1231 utostr($3->size()) + " arguments, but has size of " +
1232 itostr(NumElements) + "!");
1234 // Verify all elements are correct type!
1235 for (unsigned i = 0; i < $3->size(); i++) {
1236 if (ETy != (*$3)[i]->getType())
1237 ThrowException("Element #" + utostr(i) + " is not of type '" +
1238 ETy->getDescription() +"' as required!\nIt is of type '"+
1239 (*$3)[i]->getType()->getDescription() + "'.");
1242 $$ = ConstantArray::get(ATy, *$3);
1243 delete $1; delete $3;
1246 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1248 ThrowException("Cannot make array constant with type: '" +
1249 (*$1)->getDescription() + "'!");
1251 int NumElements = ATy->getNumElements();
1252 if (NumElements != -1 && NumElements != 0)
1253 ThrowException("Type mismatch: constant sized array initialized with 0"
1254 " arguments, but has size of " + itostr(NumElements) +"!");
1255 $$ = ConstantArray::get(ATy, std::vector<Constant*>());
1258 | Types 'c' STRINGCONSTANT {
1259 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1261 ThrowException("Cannot make array constant with type: '" +
1262 (*$1)->getDescription() + "'!");
1264 int NumElements = ATy->getNumElements();
1265 const Type *ETy = ATy->getElementType();
1266 char *EndStr = UnEscapeLexed($3, true);
1267 if (NumElements != -1 && NumElements != (EndStr-$3))
1268 ThrowException("Can't build string constant of size " +
1269 itostr((int)(EndStr-$3)) +
1270 " when array has size " + itostr(NumElements) + "!");
1271 std::vector<Constant*> Vals;
1272 if (ETy == Type::SByteTy) {
1273 for (signed char *C = (signed char *)$3; C != (signed char *)EndStr; ++C)
1274 Vals.push_back(ConstantSInt::get(ETy, *C));
1275 } else if (ETy == Type::UByteTy) {
1276 for (unsigned char *C = (unsigned char *)$3;
1277 C != (unsigned char*)EndStr; ++C)
1278 Vals.push_back(ConstantUInt::get(ETy, *C));
1281 ThrowException("Cannot build string arrays of non byte sized elements!");
1284 $$ = ConstantArray::get(ATy, Vals);
1287 | Types '<' ConstVector '>' { // Nonempty unsized arr
1288 const PackedType *PTy = dyn_cast<PackedType>($1->get());
1290 ThrowException("Cannot make packed constant with type: '" +
1291 (*$1)->getDescription() + "'!");
1292 const Type *ETy = PTy->getElementType();
1293 int NumElements = PTy->getNumElements();
1295 // Verify that we have the correct size...
1296 if (NumElements != -1 && NumElements != (int)$3->size())
1297 ThrowException("Type mismatch: constant sized packed initialized with " +
1298 utostr($3->size()) + " arguments, but has size of " +
1299 itostr(NumElements) + "!");
1301 // Verify all elements are correct type!
1302 for (unsigned i = 0; i < $3->size(); i++) {
1303 if (ETy != (*$3)[i]->getType())
1304 ThrowException("Element #" + utostr(i) + " is not of type '" +
1305 ETy->getDescription() +"' as required!\nIt is of type '"+
1306 (*$3)[i]->getType()->getDescription() + "'.");
1309 $$ = ConstantPacked::get(PTy, *$3);
1310 delete $1; delete $3;
1312 | Types '{' ConstVector '}' {
1313 const StructType *STy = dyn_cast<StructType>($1->get());
1315 ThrowException("Cannot make struct constant with type: '" +
1316 (*$1)->getDescription() + "'!");
1318 if ($3->size() != STy->getNumContainedTypes())
1319 ThrowException("Illegal number of initializers for structure type!");
1321 // Check to ensure that constants are compatible with the type initializer!
1322 for (unsigned i = 0, e = $3->size(); i != e; ++i)
1323 if ((*$3)[i]->getType() != STy->getElementType(i))
1324 ThrowException("Expected type '" +
1325 STy->getElementType(i)->getDescription() +
1326 "' for element #" + utostr(i) +
1327 " of structure initializer!");
1329 $$ = ConstantStruct::get(STy, *$3);
1330 delete $1; delete $3;
1333 const StructType *STy = dyn_cast<StructType>($1->get());
1335 ThrowException("Cannot make struct constant with type: '" +
1336 (*$1)->getDescription() + "'!");
1338 if (STy->getNumContainedTypes() != 0)
1339 ThrowException("Illegal number of initializers for structure type!");
1341 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1345 const PointerType *PTy = dyn_cast<PointerType>($1->get());
1347 ThrowException("Cannot make null pointer constant with type: '" +
1348 (*$1)->getDescription() + "'!");
1350 $$ = ConstantPointerNull::get(PTy);
1354 $$ = UndefValue::get($1->get());
1357 | Types SymbolicValueRef {
1358 const PointerType *Ty = dyn_cast<PointerType>($1->get());
1360 ThrowException("Global const reference must be a pointer type!");
1362 // ConstExprs can exist in the body of a function, thus creating
1363 // GlobalValues whenever they refer to a variable. Because we are in
1364 // the context of a function, getValNonImprovising will search the functions
1365 // symbol table instead of the module symbol table for the global symbol,
1366 // which throws things all off. To get around this, we just tell
1367 // getValNonImprovising that we are at global scope here.
1369 Function *SavedCurFn = CurFun.CurrentFunction;
1370 CurFun.CurrentFunction = 0;
1372 Value *V = getValNonImprovising(Ty, $2);
1374 CurFun.CurrentFunction = SavedCurFn;
1376 // If this is an initializer for a constant pointer, which is referencing a
1377 // (currently) undefined variable, create a stub now that shall be replaced
1378 // in the future with the right type of variable.
1381 assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
1382 const PointerType *PT = cast<PointerType>(Ty);
1384 // First check to see if the forward references value is already created!
1385 PerModuleInfo::GlobalRefsType::iterator I =
1386 CurModule.GlobalRefs.find(std::make_pair(PT, $2));
1388 if (I != CurModule.GlobalRefs.end()) {
1389 V = I->second; // Placeholder already exists, use it...
1393 if ($2.Type == ValID::NameVal) Name = $2.Name;
1395 // Create the forward referenced global.
1397 if (const FunctionType *FTy =
1398 dyn_cast<FunctionType>(PT->getElementType())) {
1399 GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
1400 CurModule.CurrentModule);
1402 GV = new GlobalVariable(PT->getElementType(), false,
1403 GlobalValue::ExternalLinkage, 0,
1404 Name, CurModule.CurrentModule);
1407 // Keep track of the fact that we have a forward ref to recycle it
1408 CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
1413 $$ = cast<GlobalValue>(V);
1414 delete $1; // Free the type handle
1417 if ($1->get() != $2->getType())
1418 ThrowException("Mismatched types for constant expression!");
1422 | Types ZEROINITIALIZER {
1423 const Type *Ty = $1->get();
1424 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
1425 ThrowException("Cannot create a null initialized value of this type!");
1426 $$ = Constant::getNullValue(Ty);
1430 ConstVal : SIntType EINT64VAL { // integral constants
1431 if (!ConstantSInt::isValueValidForType($1, $2))
1432 ThrowException("Constant value doesn't fit in type!");
1433 $$ = ConstantSInt::get($1, $2);
1435 | UIntType EUINT64VAL { // integral constants
1436 if (!ConstantUInt::isValueValidForType($1, $2))
1437 ThrowException("Constant value doesn't fit in type!");
1438 $$ = ConstantUInt::get($1, $2);
1440 | BOOL TRUETOK { // Boolean constants
1441 $$ = ConstantBool::True;
1443 | BOOL FALSETOK { // Boolean constants
1444 $$ = ConstantBool::False;
1446 | FPType FPVAL { // Float & Double constants
1447 if (!ConstantFP::isValueValidForType($1, $2))
1448 ThrowException("Floating point constant invalid for type!!");
1449 $$ = ConstantFP::get($1, $2);
1453 ConstExpr: CAST '(' ConstVal TO Types ')' {
1454 if (!$3->getType()->isFirstClassType())
1455 ThrowException("cast constant expression from a non-primitive type: '" +
1456 $3->getType()->getDescription() + "'!");
1457 if (!$5->get()->isFirstClassType())
1458 ThrowException("cast constant expression to a non-primitive type: '" +
1459 $5->get()->getDescription() + "'!");
1460 $$ = ConstantExpr::getCast($3, $5->get());
1463 | GETELEMENTPTR '(' ConstVal IndexList ')' {
1464 if (!isa<PointerType>($3->getType()))
1465 ThrowException("GetElementPtr requires a pointer operand!");
1467 // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct
1468 // indices to uint struct indices for compatibility.
1469 generic_gep_type_iterator<std::vector<Value*>::iterator>
1470 GTI = gep_type_begin($3->getType(), $4->begin(), $4->end()),
1471 GTE = gep_type_end($3->getType(), $4->begin(), $4->end());
1472 for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
1473 if (isa<StructType>(*GTI)) // Only change struct indices
1474 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
1475 if (CUI->getType() == Type::UByteTy)
1476 (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
1479 GetElementPtrInst::getIndexedType($3->getType(), *$4, true);
1481 ThrowException("Index list invalid for constant getelementptr!");
1483 std::vector<Constant*> IdxVec;
1484 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1485 if (Constant *C = dyn_cast<Constant>((*$4)[i]))
1486 IdxVec.push_back(C);
1488 ThrowException("Indices to constant getelementptr must be constants!");
1492 $$ = ConstantExpr::getGetElementPtr($3, IdxVec);
1494 | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1495 if ($3->getType() != Type::BoolTy)
1496 ThrowException("Select condition must be of boolean type!");
1497 if ($5->getType() != $7->getType())
1498 ThrowException("Select operand types must match!");
1499 $$ = ConstantExpr::getSelect($3, $5, $7);
1501 | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
1502 if ($3->getType() != $5->getType())
1503 ThrowException("Binary operator types must match!");
1504 // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
1505 // To retain backward compatibility with these early compilers, we emit a
1506 // cast to the appropriate integer type automatically if we are in the
1507 // broken case. See PR424 for more information.
1508 if (!isa<PointerType>($3->getType())) {
1509 $$ = ConstantExpr::get($1, $3, $5);
1511 const Type *IntPtrTy = 0;
1512 switch (CurModule.CurrentModule->getPointerSize()) {
1513 case Module::Pointer32: IntPtrTy = Type::IntTy; break;
1514 case Module::Pointer64: IntPtrTy = Type::LongTy; break;
1515 default: ThrowException("invalid pointer binary constant expr!");
1517 $$ = ConstantExpr::get($1, ConstantExpr::getCast($3, IntPtrTy),
1518 ConstantExpr::getCast($5, IntPtrTy));
1519 $$ = ConstantExpr::getCast($$, $3->getType());
1522 | LogicalOps '(' ConstVal ',' ConstVal ')' {
1523 if ($3->getType() != $5->getType())
1524 ThrowException("Logical operator types must match!");
1525 if (!$3->getType()->isIntegral()) {
1526 if (!isa<PackedType>($3->getType()) ||
1527 !cast<PackedType>($3->getType())->getElementType()->isIntegral())
1528 ThrowException("Logical operator requires integral operands!");
1530 $$ = ConstantExpr::get($1, $3, $5);
1532 | SetCondOps '(' ConstVal ',' ConstVal ')' {
1533 if ($3->getType() != $5->getType())
1534 ThrowException("setcc operand types must match!");
1535 $$ = ConstantExpr::get($1, $3, $5);
1537 | ShiftOps '(' ConstVal ',' ConstVal ')' {
1538 if ($5->getType() != Type::UByteTy)
1539 ThrowException("Shift count for shift constant must be unsigned byte!");
1540 if (!$3->getType()->isInteger())
1541 ThrowException("Shift constant expression requires integer operand!");
1542 $$ = ConstantExpr::get($1, $3, $5);
1544 | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
1545 if (!ExtractElementInst::isValidOperands($3, $5))
1546 ThrowException("Invalid extractelement operands!");
1547 $$ = ConstantExpr::getExtractElement($3, $5);
1549 | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1550 if (!InsertElementInst::isValidOperands($3, $5, $7))
1551 ThrowException("Invalid insertelement operands!");
1552 $$ = ConstantExpr::getInsertElement($3, $5, $7);
1554 | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1555 if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
1556 ThrowException("Invalid shufflevector operands!");
1557 $$ = ConstantExpr::getShuffleVector($3, $5, $7);
1561 // ConstVector - A list of comma separated constants.
1562 ConstVector : ConstVector ',' ConstVal {
1563 ($$ = $1)->push_back($3);
1566 $$ = new std::vector<Constant*>();
1571 // GlobalType - Match either GLOBAL or CONSTANT for global declarations...
1572 GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
1575 //===----------------------------------------------------------------------===//
1576 // Rules to match Modules
1577 //===----------------------------------------------------------------------===//
1579 // Module rule: Capture the result of parsing the whole file into a result
1582 Module : FunctionList {
1583 $$ = ParserResult = $1;
1584 CurModule.ModuleDone();
1587 // FunctionList - A list of functions, preceeded by a constant pool.
1589 FunctionList : FunctionList Function {
1591 CurFun.FunctionDone();
1593 | FunctionList FunctionProto {
1596 | FunctionList MODULE ASM_TOK AsmBlock {
1599 | FunctionList IMPLEMENTATION {
1603 $$ = CurModule.CurrentModule;
1604 // Emit an error if there are any unresolved types left.
1605 if (!CurModule.LateResolveTypes.empty()) {
1606 const ValID &DID = CurModule.LateResolveTypes.begin()->first;
1607 if (DID.Type == ValID::NameVal)
1608 ThrowException("Reference to an undefined type: '"+DID.getName() + "'");
1610 ThrowException("Reference to an undefined type: #" + itostr(DID.Num));
1614 // ConstPool - Constants with optional names assigned to them.
1615 ConstPool : ConstPool OptAssign TYPE TypesV {
1616 // Eagerly resolve types. This is not an optimization, this is a
1617 // requirement that is due to the fact that we could have this:
1619 // %list = type { %list * }
1620 // %list = type { %list * } ; repeated type decl
1622 // If types are not resolved eagerly, then the two types will not be
1623 // determined to be the same type!
1625 ResolveTypeTo($2, *$4);
1627 if (!setTypeName(*$4, $2) && !$2) {
1628 // If this is a named type that is not a redefinition, add it to the slot
1630 CurModule.Types.push_back(*$4);
1635 | ConstPool FunctionProto { // Function prototypes can be in const pool
1637 | ConstPool MODULE ASM_TOK AsmBlock { // Asm blocks can be in the const pool
1639 | ConstPool OptAssign OptLinkage GlobalType ConstVal {
1640 if ($5 == 0) ThrowException("Global value initializer is not a constant!");
1641 CurGV = ParseGlobalVariable($2, $3, $4, $5->getType(), $5);
1642 } GlobalVarAttributes {
1645 | ConstPool OptAssign EXTERNAL GlobalType Types {
1646 CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage,
1649 } GlobalVarAttributes {
1652 | ConstPool TARGET TargetDefinition {
1654 | ConstPool DEPLIBS '=' LibrariesDefinition {
1656 | /* empty: end of list */ {
1660 AsmBlock : STRINGCONSTANT {
1661 const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
1662 char *EndStr = UnEscapeLexed($1, true);
1663 std::string NewAsm($1, EndStr);
1666 if (AsmSoFar.empty())
1667 CurModule.CurrentModule->setModuleInlineAsm(NewAsm);
1669 CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm);
1672 BigOrLittle : BIG { $$ = Module::BigEndian; };
1673 BigOrLittle : LITTLE { $$ = Module::LittleEndian; };
1675 TargetDefinition : ENDIAN '=' BigOrLittle {
1676 CurModule.CurrentModule->setEndianness($3);
1678 | POINTERSIZE '=' EUINT64VAL {
1680 CurModule.CurrentModule->setPointerSize(Module::Pointer32);
1682 CurModule.CurrentModule->setPointerSize(Module::Pointer64);
1684 ThrowException("Invalid pointer size: '" + utostr($3) + "'!");
1686 | TRIPLE '=' STRINGCONSTANT {
1687 CurModule.CurrentModule->setTargetTriple($3);
1691 LibrariesDefinition : '[' LibList ']';
1693 LibList : LibList ',' STRINGCONSTANT {
1694 CurModule.CurrentModule->addLibrary($3);
1698 CurModule.CurrentModule->addLibrary($1);
1701 | /* empty: end of list */ {
1705 //===----------------------------------------------------------------------===//
1706 // Rules to match Function Headers
1707 //===----------------------------------------------------------------------===//
1709 Name : VAR_ID | STRINGCONSTANT;
1710 OptName : Name | /*empty*/ { $$ = 0; };
1712 ArgVal : Types OptName {
1713 if (*$1 == Type::VoidTy)
1714 ThrowException("void typed arguments are invalid!");
1715 $$ = new std::pair<PATypeHolder*, char*>($1, $2);
1718 ArgListH : ArgListH ',' ArgVal {
1724 $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
1729 ArgList : ArgListH {
1732 | ArgListH ',' DOTDOTDOT {
1734 $$->push_back(std::pair<PATypeHolder*,
1735 char*>(new PATypeHolder(Type::VoidTy), 0));
1738 $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
1739 $$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0));
1745 FunctionHeaderH : OptCallingConv TypesV Name '(' ArgList ')'
1746 OptSection OptAlign {
1748 std::string FunctionName($3);
1749 free($3); // Free strdup'd memory!
1751 if (!(*$2)->isFirstClassType() && *$2 != Type::VoidTy)
1752 ThrowException("LLVM functions cannot return aggregate types!");
1754 std::vector<const Type*> ParamTypeList;
1755 if ($5) { // If there are arguments...
1756 for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin();
1757 I != $5->end(); ++I)
1758 ParamTypeList.push_back(I->first->get());
1761 bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
1762 if (isVarArg) ParamTypeList.pop_back();
1764 const FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg);
1765 const PointerType *PFT = PointerType::get(FT);
1769 if (!FunctionName.empty()) {
1770 ID = ValID::create((char*)FunctionName.c_str());
1772 ID = ValID::create((int)CurModule.Values[PFT].size());
1776 // See if this function was forward referenced. If so, recycle the object.
1777 if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
1778 // Move the function to the end of the list, from whereever it was
1779 // previously inserted.
1780 Fn = cast<Function>(FWRef);
1781 CurModule.CurrentModule->getFunctionList().remove(Fn);
1782 CurModule.CurrentModule->getFunctionList().push_back(Fn);
1783 } else if (!FunctionName.empty() && // Merge with an earlier prototype?
1784 (Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) {
1785 // If this is the case, either we need to be a forward decl, or it needs
1787 if (!CurFun.isDeclare && !Fn->isExternal())
1788 ThrowException("Redefinition of function '" + FunctionName + "'!");
1790 // Make sure to strip off any argument names so we can't get conflicts.
1791 if (Fn->isExternal())
1792 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
1796 } else { // Not already defined?
1797 Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName,
1798 CurModule.CurrentModule);
1799 InsertValue(Fn, CurModule.Values);
1802 CurFun.FunctionStart(Fn);
1803 Fn->setCallingConv($1);
1804 Fn->setAlignment($8);
1810 // Add all of the arguments we parsed to the function...
1811 if ($5) { // Is null if empty...
1812 if (isVarArg) { // Nuke the last entry
1813 assert($5->back().first->get() == Type::VoidTy && $5->back().second == 0&&
1814 "Not a varargs marker!");
1815 delete $5->back().first;
1816 $5->pop_back(); // Delete the last entry
1818 Function::arg_iterator ArgIt = Fn->arg_begin();
1819 for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin();
1820 I != $5->end(); ++I, ++ArgIt) {
1821 delete I->first; // Delete the typeholder...
1823 setValueName(ArgIt, I->second); // Insert arg into symtab...
1827 delete $5; // We're now done with the argument list
1831 BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
1833 FunctionHeader : OptLinkage FunctionHeaderH BEGIN {
1834 $$ = CurFun.CurrentFunction;
1836 // Make sure that we keep track of the linkage type even if there was a
1837 // previous "declare".
1841 END : ENDTOK | '}'; // Allow end of '}' to end a function
1843 Function : BasicBlockList END {
1847 FunctionProto : DECLARE { CurFun.isDeclare = true; } FunctionHeaderH {
1848 $$ = CurFun.CurrentFunction;
1849 CurFun.FunctionDone();
1852 //===----------------------------------------------------------------------===//
1853 // Rules to match Basic Blocks
1854 //===----------------------------------------------------------------------===//
1856 OptSideEffect : /* empty */ {
1863 ConstValueRef : ESINT64VAL { // A reference to a direct constant
1864 $$ = ValID::create($1);
1867 $$ = ValID::create($1);
1869 | FPVAL { // Perhaps it's an FP constant?
1870 $$ = ValID::create($1);
1873 $$ = ValID::create(ConstantBool::True);
1876 $$ = ValID::create(ConstantBool::False);
1879 $$ = ValID::createNull();
1882 $$ = ValID::createUndef();
1884 | ZEROINITIALIZER { // A vector zero constant.
1885 $$ = ValID::createZeroInit();
1887 | '<' ConstVector '>' { // Nonempty unsized packed vector
1888 const Type *ETy = (*$2)[0]->getType();
1889 int NumElements = $2->size();
1891 PackedType* pt = PackedType::get(ETy, NumElements);
1892 PATypeHolder* PTy = new PATypeHolder(
1900 // Verify all elements are correct type!
1901 for (unsigned i = 0; i < $2->size(); i++) {
1902 if (ETy != (*$2)[i]->getType())
1903 ThrowException("Element #" + utostr(i) + " is not of type '" +
1904 ETy->getDescription() +"' as required!\nIt is of type '" +
1905 (*$2)[i]->getType()->getDescription() + "'.");
1908 $$ = ValID::create(ConstantPacked::get(pt, *$2));
1909 delete PTy; delete $2;
1912 $$ = ValID::create($1);
1914 | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
1915 char *End = UnEscapeLexed($3, true);
1916 std::string AsmStr = std::string($3, End);
1917 End = UnEscapeLexed($5, true);
1918 std::string Constraints = std::string($5, End);
1919 $$ = ValID::createInlineAsm(AsmStr, Constraints, $2);
1924 // SymbolicValueRef - Reference to one of two ways of symbolically refering to
1927 SymbolicValueRef : INTVAL { // Is it an integer reference...?
1928 $$ = ValID::create($1);
1930 | Name { // Is it a named reference...?
1931 $$ = ValID::create($1);
1934 // ValueRef - A reference to a definition... either constant or symbolic
1935 ValueRef : SymbolicValueRef | ConstValueRef;
1938 // ResolvedVal - a <type> <value> pair. This is used only in cases where the
1939 // type immediately preceeds the value reference, and allows complex constant
1940 // pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
1941 ResolvedVal : Types ValueRef {
1942 $$ = getVal(*$1, $2); delete $1;
1945 BasicBlockList : BasicBlockList BasicBlock {
1948 | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
1953 // Basic blocks are terminated by branching instructions:
1954 // br, br/cc, switch, ret
1956 BasicBlock : InstructionList OptAssign BBTerminatorInst {
1957 setValueName($3, $2);
1960 $1->getInstList().push_back($3);
1965 InstructionList : InstructionList Inst {
1966 $1->getInstList().push_back($2);
1970 $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++), true);
1972 // Make sure to move the basic block to the correct location in the
1973 // function, instead of leaving it inserted wherever it was first
1975 Function::BasicBlockListType &BBL =
1976 CurFun.CurrentFunction->getBasicBlockList();
1977 BBL.splice(BBL.end(), BBL, $$);
1980 $$ = CurBB = getBBVal(ValID::create($1), true);
1982 // Make sure to move the basic block to the correct location in the
1983 // function, instead of leaving it inserted wherever it was first
1985 Function::BasicBlockListType &BBL =
1986 CurFun.CurrentFunction->getBasicBlockList();
1987 BBL.splice(BBL.end(), BBL, $$);
1990 BBTerminatorInst : RET ResolvedVal { // Return with a result...
1991 $$ = new ReturnInst($2);
1993 | RET VOID { // Return with no result...
1994 $$ = new ReturnInst();
1996 | BR LABEL ValueRef { // Unconditional Branch...
1997 $$ = new BranchInst(getBBVal($3));
1998 } // Conditional Branch...
1999 | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
2000 $$ = new BranchInst(getBBVal($6), getBBVal($9), getVal(Type::BoolTy, $3));
2002 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
2003 SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), $8->size());
2006 std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
2008 for (; I != E; ++I) {
2009 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
2010 S->addCase(CI, I->second);
2012 ThrowException("Switch case is constant, but not a simple integer!");
2016 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
2017 SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), 0);
2020 | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
2021 TO LABEL ValueRef UNWIND LABEL ValueRef {
2022 const PointerType *PFTy;
2023 const FunctionType *Ty;
2025 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2026 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2027 // Pull out the types of all of the arguments...
2028 std::vector<const Type*> ParamTypes;
2030 for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end();
2032 ParamTypes.push_back((*I)->getType());
2035 bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
2036 if (isVarArg) ParamTypes.pop_back();
2038 Ty = FunctionType::get($3->get(), ParamTypes, isVarArg);
2039 PFTy = PointerType::get(Ty);
2042 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2044 BasicBlock *Normal = getBBVal($10);
2045 BasicBlock *Except = getBBVal($13);
2047 // Create the call node...
2048 if (!$6) { // Has no arguments?
2049 $$ = new InvokeInst(V, Normal, Except, std::vector<Value*>());
2050 } else { // Has arguments?
2051 // Loop through FunctionType's arguments and ensure they are specified
2054 FunctionType::param_iterator I = Ty->param_begin();
2055 FunctionType::param_iterator E = Ty->param_end();
2056 std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end();
2058 for (; ArgI != ArgE && I != E; ++ArgI, ++I)
2059 if ((*ArgI)->getType() != *I)
2060 ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
2061 (*I)->getDescription() + "'!");
2063 if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
2064 ThrowException("Invalid number of parameters detected!");
2066 $$ = new InvokeInst(V, Normal, Except, *$6);
2068 cast<InvokeInst>($$)->setCallingConv($2);
2074 $$ = new UnwindInst();
2077 $$ = new UnreachableInst();
2082 JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
2084 Constant *V = cast<Constant>(getValNonImprovising($2, $3));
2086 ThrowException("May only switch on a constant pool value!");
2088 $$->push_back(std::make_pair(V, getBBVal($6)));
2090 | IntType ConstValueRef ',' LABEL ValueRef {
2091 $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
2092 Constant *V = cast<Constant>(getValNonImprovising($1, $2));
2095 ThrowException("May only switch on a constant pool value!");
2097 $$->push_back(std::make_pair(V, getBBVal($5)));
2100 Inst : OptAssign InstVal {
2101 // Is this definition named?? if so, assign the name...
2102 setValueName($2, $1);
2107 PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
2108 $$ = new std::list<std::pair<Value*, BasicBlock*> >();
2109 $$->push_back(std::make_pair(getVal(*$1, $3), getBBVal($5)));
2112 | PHIList ',' '[' ValueRef ',' ValueRef ']' {
2114 $1->push_back(std::make_pair(getVal($1->front().first->getType(), $4),
2119 ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
2120 $$ = new std::vector<Value*>();
2123 | ValueRefList ',' ResolvedVal {
2128 // ValueRefListE - Just like ValueRefList, except that it may also be empty!
2129 ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; };
2131 OptTailCall : TAIL CALL {
2140 InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
2141 if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
2142 !isa<PackedType>((*$2).get()))
2144 "Arithmetic operator requires integer, FP, or packed operands!");
2145 if (isa<PackedType>((*$2).get()) && $1 == Instruction::Rem)
2146 ThrowException("Rem not supported on packed types!");
2147 $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
2149 ThrowException("binary operator returned null!");
2152 | LogicalOps Types ValueRef ',' ValueRef {
2153 if (!(*$2)->isIntegral()) {
2154 if (!isa<PackedType>($2->get()) ||
2155 !cast<PackedType>($2->get())->getElementType()->isIntegral())
2156 ThrowException("Logical operator requires integral operands!");
2158 $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
2160 ThrowException("binary operator returned null!");
2163 | SetCondOps Types ValueRef ',' ValueRef {
2164 if(isa<PackedType>((*$2).get())) {
2166 "PackedTypes currently not supported in setcc instructions!");
2168 $$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5));
2170 ThrowException("binary operator returned null!");
2174 std::cerr << "WARNING: Use of eliminated 'not' instruction:"
2175 << " Replacing with 'xor'.\n";
2177 Value *Ones = ConstantIntegral::getAllOnesValue($2->getType());
2179 ThrowException("Expected integral type for not instruction!");
2181 $$ = BinaryOperator::create(Instruction::Xor, $2, Ones);
2183 ThrowException("Could not create a xor instruction!");
2185 | ShiftOps ResolvedVal ',' ResolvedVal {
2186 if ($4->getType() != Type::UByteTy)
2187 ThrowException("Shift amount must be ubyte!");
2188 if (!$2->getType()->isInteger())
2189 ThrowException("Shift constant expression requires integer operand!");
2190 $$ = new ShiftInst($1, $2, $4);
2192 | CAST ResolvedVal TO Types {
2193 if (!$4->get()->isFirstClassType())
2194 ThrowException("cast instruction to a non-primitive type: '" +
2195 $4->get()->getDescription() + "'!");
2196 $$ = new CastInst($2, *$4);
2199 | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2200 if ($2->getType() != Type::BoolTy)
2201 ThrowException("select condition must be boolean!");
2202 if ($4->getType() != $6->getType())
2203 ThrowException("select value types should match!");
2204 $$ = new SelectInst($2, $4, $6);
2206 | VAARG ResolvedVal ',' Types {
2208 $$ = new VAArgInst($2, *$4);
2211 | VAARG_old ResolvedVal ',' Types {
2212 ObsoleteVarArgs = true;
2213 const Type* ArgTy = $2->getType();
2214 Function* NF = CurModule.CurrentModule->
2215 getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0);
2218 //foo = alloca 1 of t
2222 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
2223 CurBB->getInstList().push_back(foo);
2224 CallInst* bar = new CallInst(NF, $2);
2225 CurBB->getInstList().push_back(bar);
2226 CurBB->getInstList().push_back(new StoreInst(bar, foo));
2227 $$ = new VAArgInst(foo, *$4);
2230 | VANEXT_old ResolvedVal ',' Types {
2231 ObsoleteVarArgs = true;
2232 const Type* ArgTy = $2->getType();
2233 Function* NF = CurModule.CurrentModule->
2234 getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0);
2236 //b = vanext a, t ->
2237 //foo = alloca 1 of t
2240 //tmp = vaarg foo, t
2242 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
2243 CurBB->getInstList().push_back(foo);
2244 CallInst* bar = new CallInst(NF, $2);
2245 CurBB->getInstList().push_back(bar);
2246 CurBB->getInstList().push_back(new StoreInst(bar, foo));
2247 Instruction* tmp = new VAArgInst(foo, *$4);
2248 CurBB->getInstList().push_back(tmp);
2249 $$ = new LoadInst(foo);
2252 | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
2253 if (!ExtractElementInst::isValidOperands($2, $4))
2254 ThrowException("Invalid extractelement operands!");
2255 $$ = new ExtractElementInst($2, $4);
2257 | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2258 if (!InsertElementInst::isValidOperands($2, $4, $6))
2259 ThrowException("Invalid insertelement operands!");
2260 $$ = new InsertElementInst($2, $4, $6);
2262 | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2263 if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
2264 ThrowException("Invalid shufflevector operands!");
2265 $$ = new ShuffleVectorInst($2, $4, $6);
2268 const Type *Ty = $2->front().first->getType();
2269 if (!Ty->isFirstClassType())
2270 ThrowException("PHI node operands must be of first class type!");
2271 $$ = new PHINode(Ty);
2272 ((PHINode*)$$)->reserveOperandSpace($2->size());
2273 while ($2->begin() != $2->end()) {
2274 if ($2->front().first->getType() != Ty)
2275 ThrowException("All elements of a PHI node must be of the same type!");
2276 cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
2279 delete $2; // Free the list...
2281 | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' {
2282 const PointerType *PFTy;
2283 const FunctionType *Ty;
2285 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2286 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2287 // Pull out the types of all of the arguments...
2288 std::vector<const Type*> ParamTypes;
2290 for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end();
2292 ParamTypes.push_back((*I)->getType());
2295 bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
2296 if (isVarArg) ParamTypes.pop_back();
2298 if (!(*$3)->isFirstClassType() && *$3 != Type::VoidTy)
2299 ThrowException("LLVM functions cannot return aggregate types!");
2301 Ty = FunctionType::get($3->get(), ParamTypes, isVarArg);
2302 PFTy = PointerType::get(Ty);
2305 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2307 // Create the call node...
2308 if (!$6) { // Has no arguments?
2309 // Make sure no arguments is a good thing!
2310 if (Ty->getNumParams() != 0)
2311 ThrowException("No arguments passed to a function that "
2312 "expects arguments!");
2314 $$ = new CallInst(V, std::vector<Value*>());
2315 } else { // Has arguments?
2316 // Loop through FunctionType's arguments and ensure they are specified
2319 FunctionType::param_iterator I = Ty->param_begin();
2320 FunctionType::param_iterator E = Ty->param_end();
2321 std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end();
2323 for (; ArgI != ArgE && I != E; ++ArgI, ++I)
2324 if ((*ArgI)->getType() != *I)
2325 ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
2326 (*I)->getDescription() + "'!");
2328 if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
2329 ThrowException("Invalid number of parameters detected!");
2331 $$ = new CallInst(V, *$6);
2333 cast<CallInst>($$)->setTailCall($1);
2334 cast<CallInst>($$)->setCallingConv($2);
2343 // IndexList - List of indices for GEP based instructions...
2344 IndexList : ',' ValueRefList {
2347 $$ = new std::vector<Value*>();
2350 OptVolatile : VOLATILE {
2359 MemoryInst : MALLOC Types OptCAlign {
2360 $$ = new MallocInst(*$2, 0, $3);
2363 | MALLOC Types ',' UINT ValueRef OptCAlign {
2364 $$ = new MallocInst(*$2, getVal($4, $5), $6);
2367 | ALLOCA Types OptCAlign {
2368 $$ = new AllocaInst(*$2, 0, $3);
2371 | ALLOCA Types ',' UINT ValueRef OptCAlign {
2372 $$ = new AllocaInst(*$2, getVal($4, $5), $6);
2375 | FREE ResolvedVal {
2376 if (!isa<PointerType>($2->getType()))
2377 ThrowException("Trying to free nonpointer type " +
2378 $2->getType()->getDescription() + "!");
2379 $$ = new FreeInst($2);
2382 | OptVolatile LOAD Types ValueRef {
2383 if (!isa<PointerType>($3->get()))
2384 ThrowException("Can't load from nonpointer type: " +
2385 (*$3)->getDescription());
2386 if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
2387 ThrowException("Can't load from pointer of non-first-class type: " +
2388 (*$3)->getDescription());
2389 $$ = new LoadInst(getVal(*$3, $4), "", $1);
2392 | OptVolatile STORE ResolvedVal ',' Types ValueRef {
2393 const PointerType *PT = dyn_cast<PointerType>($5->get());
2395 ThrowException("Can't store to a nonpointer type: " +
2396 (*$5)->getDescription());
2397 const Type *ElTy = PT->getElementType();
2398 if (ElTy != $3->getType())
2399 ThrowException("Can't store '" + $3->getType()->getDescription() +
2400 "' into space of type '" + ElTy->getDescription() + "'!");
2402 $$ = new StoreInst($3, getVal(*$5, $6), $1);
2405 | GETELEMENTPTR Types ValueRef IndexList {
2406 if (!isa<PointerType>($2->get()))
2407 ThrowException("getelementptr insn requires pointer operand!");
2409 // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct
2410 // indices to uint struct indices for compatibility.
2411 generic_gep_type_iterator<std::vector<Value*>::iterator>
2412 GTI = gep_type_begin($2->get(), $4->begin(), $4->end()),
2413 GTE = gep_type_end($2->get(), $4->begin(), $4->end());
2414 for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
2415 if (isa<StructType>(*GTI)) // Only change struct indices
2416 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
2417 if (CUI->getType() == Type::UByteTy)
2418 (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
2420 if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
2421 ThrowException("Invalid getelementptr indices for type '" +
2422 (*$2)->getDescription()+ "'!");
2423 $$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
2424 delete $2; delete $4;
2429 int yyerror(const char *ErrorMsg) {
2431 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
2432 + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
2433 std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading ";
2434 if (yychar == YYEMPTY || yychar == 0)
2435 errMsg += "end-of-file.";
2437 errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'";
2438 ThrowException(errMsg);