1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LiveInterval analysis pass which is used
11 // by the Linear Scan Register allocator. This pass linearizes the
12 // basic blocks of the function in DFS order and uses the
13 // LiveVariables pass to conservatively compute live intervals for
14 // each virtual and physical register.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "liveintervals"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "VirtRegMap.h"
21 #include "llvm/Value.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/SSARegMap.h"
28 #include "llvm/Target/MRegisterInfo.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/STLExtras.h"
41 RegisterAnalysis
<LiveIntervals
> X("liveintervals", "Live Interval Analysis");
43 static Statistic
<> numIntervals
44 ("liveintervals", "Number of original intervals");
46 static Statistic
<> numIntervalsAfter
47 ("liveintervals", "Number of intervals after coalescing");
49 static Statistic
<> numJoins
50 ("liveintervals", "Number of interval joins performed");
52 static Statistic
<> numPeep
53 ("liveintervals", "Number of identity moves eliminated after coalescing");
55 static Statistic
<> numFolded
56 ("liveintervals", "Number of loads/stores folded into instructions");
59 EnableJoining("join-liveintervals",
60 cl::desc("Join compatible live intervals"),
64 void LiveIntervals::getAnalysisUsage(AnalysisUsage
&AU
) const
66 AU
.addRequired
<LiveVariables
>();
67 AU
.addPreservedID(PHIEliminationID
);
68 AU
.addRequiredID(PHIEliminationID
);
69 AU
.addRequiredID(TwoAddressInstructionPassID
);
70 AU
.addRequired
<LoopInfo
>();
71 MachineFunctionPass::getAnalysisUsage(AU
);
74 void LiveIntervals::releaseMemory()
83 static bool isZeroLengthInterval(LiveInterval
*li
) {
84 for (LiveInterval::Ranges::const_iterator
85 i
= li
->ranges
.begin(), e
= li
->ranges
.end(); i
!= e
; ++i
)
86 if (i
->end
- i
->start
> LiveIntervals::InstrSlots::NUM
)
92 /// runOnMachineFunction - Register allocate the whole function
94 bool LiveIntervals::runOnMachineFunction(MachineFunction
&fn
) {
96 tm_
= &fn
.getTarget();
97 mri_
= tm_
->getRegisterInfo();
98 tii_
= tm_
->getInstrInfo();
99 lv_
= &getAnalysis
<LiveVariables
>();
100 allocatableRegs_
= mri_
->getAllocatableSet(fn
);
101 r2rMap_
.grow(mf_
->getSSARegMap()->getLastVirtReg());
103 // If this function has any live ins, insert a dummy instruction at the
104 // beginning of the function that we will pretend "defines" the values. This
105 // is to make the interval analysis simpler by providing a number.
106 if (fn
.livein_begin() != fn
.livein_end()) {
107 unsigned FirstLiveIn
= fn
.livein_begin()->first
;
109 // Find a reg class that contains this live in.
110 const TargetRegisterClass
*RC
= 0;
111 for (MRegisterInfo::regclass_iterator RCI
= mri_
->regclass_begin(),
112 E
= mri_
->regclass_end(); RCI
!= E
; ++RCI
)
113 if ((*RCI
)->contains(FirstLiveIn
)) {
118 MachineInstr
*OldFirstMI
= fn
.begin()->begin();
119 mri_
->copyRegToReg(*fn
.begin(), fn
.begin()->begin(),
120 FirstLiveIn
, FirstLiveIn
, RC
);
121 assert(OldFirstMI
!= fn
.begin()->begin() &&
122 "copyRetToReg didn't insert anything!");
125 // number MachineInstrs
126 unsigned miIndex
= 0;
127 for (MachineFunction::iterator mbb
= mf_
->begin(), mbbEnd
= mf_
->end();
128 mbb
!= mbbEnd
; ++mbb
)
129 for (MachineBasicBlock::iterator mi
= mbb
->begin(), miEnd
= mbb
->end();
131 bool inserted
= mi2iMap_
.insert(std::make_pair(mi
, miIndex
)).second
;
132 assert(inserted
&& "multiple MachineInstr -> index mappings");
133 i2miMap_
.push_back(mi
);
134 miIndex
+= InstrSlots::NUM
;
137 // Note intervals due to live-in values.
138 if (fn
.livein_begin() != fn
.livein_end()) {
139 MachineBasicBlock
*Entry
= fn
.begin();
140 for (MachineFunction::livein_iterator I
= fn
.livein_begin(),
141 E
= fn
.livein_end(); I
!= E
; ++I
) {
142 handlePhysicalRegisterDef(Entry
, Entry
->begin(),
143 getOrCreateInterval(I
->first
), 0, 0, true);
144 for (const unsigned* AS
= mri_
->getAliasSet(I
->first
); *AS
; ++AS
)
145 handlePhysicalRegisterDef(Entry
, Entry
->begin(),
146 getOrCreateInterval(*AS
), 0, 0, true);
152 numIntervals
+= getNumIntervals();
154 DEBUG(std::cerr
<< "********** INTERVALS **********\n";
155 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
) {
156 I
->second
.print(std::cerr
, mri_
);
160 // join intervals if requested
161 if (EnableJoining
) joinIntervals();
163 numIntervalsAfter
+= getNumIntervals();
165 // perform a final pass over the instructions and compute spill
166 // weights, coalesce virtual registers and remove identity moves
167 const LoopInfo
& loopInfo
= getAnalysis
<LoopInfo
>();
169 for (MachineFunction::iterator mbbi
= mf_
->begin(), mbbe
= mf_
->end();
170 mbbi
!= mbbe
; ++mbbi
) {
171 MachineBasicBlock
* mbb
= mbbi
;
172 unsigned loopDepth
= loopInfo
.getLoopDepth(mbb
->getBasicBlock());
174 for (MachineBasicBlock::iterator mii
= mbb
->begin(), mie
= mbb
->end();
176 // if the move will be an identity move delete it
177 unsigned srcReg
, dstReg
, RegRep
;
178 if (tii_
->isMoveInstr(*mii
, srcReg
, dstReg
) &&
179 (RegRep
= rep(srcReg
)) == rep(dstReg
)) {
180 // remove from def list
181 LiveInterval
&interval
= getOrCreateInterval(RegRep
);
182 // remove index -> MachineInstr and
183 // MachineInstr -> index mappings
184 Mi2IndexMap::iterator mi2i
= mi2iMap_
.find(mii
);
185 if (mi2i
!= mi2iMap_
.end()) {
186 i2miMap_
[mi2i
->second
/InstrSlots::NUM
] = 0;
187 mi2iMap_
.erase(mi2i
);
189 mii
= mbbi
->erase(mii
);
193 for (unsigned i
= 0; i
< mii
->getNumOperands(); ++i
) {
194 const MachineOperand
& mop
= mii
->getOperand(i
);
195 if (mop
.isRegister() && mop
.getReg() &&
196 MRegisterInfo::isVirtualRegister(mop
.getReg())) {
197 // replace register with representative register
198 unsigned reg
= rep(mop
.getReg());
199 mii
->getOperand(i
).setReg(reg
);
201 LiveInterval
&RegInt
= getInterval(reg
);
203 (mop
.isUse() + mop
.isDef()) * pow(10.0F
, (int)loopDepth
);
211 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
) {
212 LiveInterval
&li
= I
->second
;
213 if (MRegisterInfo::isVirtualRegister(li
.reg
))
214 // If the live interval legnth is essentially zero, i.e. in every live
215 // range the use follows def immediately, it doesn't make sense to spill
216 // it and hope it will be easier to allocate for this li.
217 if (isZeroLengthInterval(&li
))
218 li
.weight
= float(HUGE_VAL
);
225 /// print - Implement the dump method.
226 void LiveIntervals::print(std::ostream
&O
, const Module
* ) const {
227 O
<< "********** INTERVALS **********\n";
228 for (const_iterator I
= begin(), E
= end(); I
!= E
; ++I
) {
229 I
->second
.print(std::cerr
, mri_
);
233 O
<< "********** MACHINEINSTRS **********\n";
234 for (MachineFunction::iterator mbbi
= mf_
->begin(), mbbe
= mf_
->end();
235 mbbi
!= mbbe
; ++mbbi
) {
236 O
<< ((Value
*)mbbi
->getBasicBlock())->getName() << ":\n";
237 for (MachineBasicBlock::iterator mii
= mbbi
->begin(),
238 mie
= mbbi
->end(); mii
!= mie
; ++mii
) {
239 O
<< getInstructionIndex(mii
) << '\t' << *mii
;
244 std::vector
<LiveInterval
*> LiveIntervals::
245 addIntervalsForSpills(const LiveInterval
&li
, VirtRegMap
&vrm
, int slot
) {
246 // since this is called after the analysis is done we don't know if
247 // LiveVariables is available
248 lv_
= getAnalysisToUpdate
<LiveVariables
>();
250 std::vector
<LiveInterval
*> added
;
252 assert(li
.weight
!= HUGE_VAL
&&
253 "attempt to spill already spilled interval!");
255 DEBUG(std::cerr
<< "\t\t\t\tadding intervals for spills for interval: "
258 const TargetRegisterClass
* rc
= mf_
->getSSARegMap()->getRegClass(li
.reg
);
260 for (LiveInterval::Ranges::const_iterator
261 i
= li
.ranges
.begin(), e
= li
.ranges
.end(); i
!= e
; ++i
) {
262 unsigned index
= getBaseIndex(i
->start
);
263 unsigned end
= getBaseIndex(i
->end
-1) + InstrSlots::NUM
;
264 for (; index
!= end
; index
+= InstrSlots::NUM
) {
265 // skip deleted instructions
266 while (index
!= end
&& !getInstructionFromIndex(index
))
267 index
+= InstrSlots::NUM
;
268 if (index
== end
) break;
270 MachineInstr
*MI
= getInstructionFromIndex(index
);
272 // NewRegLiveIn - This instruction might have multiple uses of the spilled
273 // register. In this case, for the first use, keep track of the new vreg
274 // that we reload it into. If we see a second use, reuse this vreg
275 // instead of creating live ranges for two reloads.
276 unsigned NewRegLiveIn
= 0;
279 for (unsigned i
= 0; i
!= MI
->getNumOperands(); ++i
) {
280 MachineOperand
& mop
= MI
->getOperand(i
);
281 if (mop
.isRegister() && mop
.getReg() == li
.reg
) {
282 if (NewRegLiveIn
&& mop
.isUse()) {
283 // We already emitted a reload of this value, reuse it for
284 // subsequent operands.
285 MI
->getOperand(i
).setReg(NewRegLiveIn
);
286 DEBUG(std::cerr
<< "\t\t\t\treused reload into reg" << NewRegLiveIn
287 << " for operand #" << i
<< '\n');
288 } else if (MachineInstr
* fmi
= mri_
->foldMemoryOperand(MI
, i
, slot
)) {
289 // Attempt to fold the memory reference into the instruction. If we
290 // can do this, we don't need to insert spill code.
292 lv_
->instructionChanged(MI
, fmi
);
293 MachineBasicBlock
&MBB
= *MI
->getParent();
294 vrm
.virtFolded(li
.reg
, MI
, i
, fmi
);
296 i2miMap_
[index
/InstrSlots::NUM
] = fmi
;
297 mi2iMap_
[fmi
] = index
;
298 MI
= MBB
.insert(MBB
.erase(MI
), fmi
);
300 // Folding the load/store can completely change the instruction in
301 // unpredictable ways, rescan it from the beginning.
304 // This is tricky. We need to add information in the interval about
305 // the spill code so we have to use our extra load/store slots.
307 // If we have a use we are going to have a load so we start the
308 // interval from the load slot onwards. Otherwise we start from the
310 unsigned start
= (mop
.isUse() ?
311 getLoadIndex(index
) :
313 // If we have a def we are going to have a store right after it so
314 // we end the interval after the use of the next
315 // instruction. Otherwise we end after the use of this instruction.
316 unsigned end
= 1 + (mop
.isDef() ?
317 getStoreIndex(index
) :
320 // create a new register for this spill
321 NewRegLiveIn
= mf_
->getSSARegMap()->createVirtualRegister(rc
);
322 MI
->getOperand(i
).setReg(NewRegLiveIn
);
324 vrm
.assignVirt2StackSlot(NewRegLiveIn
, slot
);
325 LiveInterval
& nI
= getOrCreateInterval(NewRegLiveIn
);
328 // the spill weight is now infinity as it
329 // cannot be spilled again
330 nI
.weight
= float(HUGE_VAL
);
331 LiveRange
LR(start
, end
, nI
.getNextValue());
332 DEBUG(std::cerr
<< " +" << LR
);
334 added
.push_back(&nI
);
336 // update live variables if it is available
338 lv_
->addVirtualRegisterKilled(NewRegLiveIn
, MI
);
340 // If this is a live in, reuse it for subsequent live-ins. If it's
341 // a def, we can't do this.
342 if (!mop
.isUse()) NewRegLiveIn
= 0;
344 DEBUG(std::cerr
<< "\t\t\t\tadded new interval: " << nI
<< '\n');
354 void LiveIntervals::printRegName(unsigned reg
) const
356 if (MRegisterInfo::isPhysicalRegister(reg
))
357 std::cerr
<< mri_
->getName(reg
);
359 std::cerr
<< "%reg" << reg
;
362 void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock
* mbb
,
363 MachineBasicBlock::iterator mi
,
364 LiveInterval
& interval
)
366 DEBUG(std::cerr
<< "\t\tregister: "; printRegName(interval
.reg
));
367 LiveVariables::VarInfo
& vi
= lv_
->getVarInfo(interval
.reg
);
369 // Virtual registers may be defined multiple times (due to phi
370 // elimination and 2-addr elimination). Much of what we do only has to be
371 // done once for the vreg. We use an empty interval to detect the first
372 // time we see a vreg.
373 if (interval
.empty()) {
374 // Get the Idx of the defining instructions.
375 unsigned defIndex
= getDefIndex(getInstructionIndex(mi
));
377 unsigned ValNum
= interval
.getNextValue();
378 assert(ValNum
== 0 && "First value in interval is not 0?");
379 ValNum
= 0; // Clue in the optimizer.
381 // Loop over all of the blocks that the vreg is defined in. There are
382 // two cases we have to handle here. The most common case is a vreg
383 // whose lifetime is contained within a basic block. In this case there
384 // will be a single kill, in MBB, which comes after the definition.
385 if (vi
.Kills
.size() == 1 && vi
.Kills
[0]->getParent() == mbb
) {
386 // FIXME: what about dead vars?
388 if (vi
.Kills
[0] != mi
)
389 killIdx
= getUseIndex(getInstructionIndex(vi
.Kills
[0]))+1;
391 killIdx
= defIndex
+1;
393 // If the kill happens after the definition, we have an intra-block
395 if (killIdx
> defIndex
) {
396 assert(vi
.AliveBlocks
.empty() &&
397 "Shouldn't be alive across any blocks!");
398 LiveRange
LR(defIndex
, killIdx
, ValNum
);
399 interval
.addRange(LR
);
400 DEBUG(std::cerr
<< " +" << LR
<< "\n");
405 // The other case we handle is when a virtual register lives to the end
406 // of the defining block, potentially live across some blocks, then is
407 // live into some number of blocks, but gets killed. Start by adding a
408 // range that goes from this definition to the end of the defining block.
409 LiveRange
NewLR(defIndex
,
410 getInstructionIndex(&mbb
->back()) + InstrSlots::NUM
,
412 DEBUG(std::cerr
<< " +" << NewLR
);
413 interval
.addRange(NewLR
);
415 // Iterate over all of the blocks that the variable is completely
416 // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
418 for (unsigned i
= 0, e
= vi
.AliveBlocks
.size(); i
!= e
; ++i
) {
419 if (vi
.AliveBlocks
[i
]) {
420 MachineBasicBlock
* mbb
= mf_
->getBlockNumbered(i
);
422 LiveRange
LR(getInstructionIndex(&mbb
->front()),
423 getInstructionIndex(&mbb
->back()) + InstrSlots::NUM
,
425 interval
.addRange(LR
);
426 DEBUG(std::cerr
<< " +" << LR
);
431 // Finally, this virtual register is live from the start of any killing
432 // block to the 'use' slot of the killing instruction.
433 for (unsigned i
= 0, e
= vi
.Kills
.size(); i
!= e
; ++i
) {
434 MachineInstr
*Kill
= vi
.Kills
[i
];
435 LiveRange
LR(getInstructionIndex(Kill
->getParent()->begin()),
436 getUseIndex(getInstructionIndex(Kill
))+1,
438 interval
.addRange(LR
);
439 DEBUG(std::cerr
<< " +" << LR
);
443 // If this is the second time we see a virtual register definition, it
444 // must be due to phi elimination or two addr elimination. If this is
445 // the result of two address elimination, then the vreg is the first
446 // operand, and is a def-and-use.
447 if (mi
->getOperand(0).isRegister() &&
448 mi
->getOperand(0).getReg() == interval
.reg
&&
449 mi
->getOperand(0).isDef() && mi
->getOperand(0).isUse()) {
450 // If this is a two-address definition, then we have already processed
451 // the live range. The only problem is that we didn't realize there
452 // are actually two values in the live interval. Because of this we
453 // need to take the LiveRegion that defines this register and split it
455 unsigned DefIndex
= getDefIndex(getInstructionIndex(vi
.DefInst
));
456 unsigned RedefIndex
= getDefIndex(getInstructionIndex(mi
));
458 // Delete the initial value, which should be short and continuous,
459 // becuase the 2-addr copy must be in the same MBB as the redef.
460 interval
.removeRange(DefIndex
, RedefIndex
);
462 LiveRange
LR(DefIndex
, RedefIndex
, interval
.getNextValue());
463 DEBUG(std::cerr
<< " replace range with " << LR
);
464 interval
.addRange(LR
);
466 // If this redefinition is dead, we need to add a dummy unit live
467 // range covering the def slot.
468 if (lv_
->RegisterDefIsDead(mi
, interval
.reg
))
469 interval
.addRange(LiveRange(RedefIndex
, RedefIndex
+1, 0));
471 DEBUG(std::cerr
<< "RESULT: " << interval
);
474 // Otherwise, this must be because of phi elimination. If this is the
475 // first redefinition of the vreg that we have seen, go back and change
476 // the live range in the PHI block to be a different value number.
477 if (interval
.containsOneValue()) {
478 assert(vi
.Kills
.size() == 1 &&
479 "PHI elimination vreg should have one kill, the PHI itself!");
481 // Remove the old range that we now know has an incorrect number.
482 MachineInstr
*Killer
= vi
.Kills
[0];
483 unsigned Start
= getInstructionIndex(Killer
->getParent()->begin());
484 unsigned End
= getUseIndex(getInstructionIndex(Killer
))+1;
485 DEBUG(std::cerr
<< "Removing [" << Start
<< "," << End
<< "] from: "
486 << interval
<< "\n");
487 interval
.removeRange(Start
, End
);
488 DEBUG(std::cerr
<< "RESULT: " << interval
);
490 // Replace the interval with one of a NEW value number.
491 LiveRange
LR(Start
, End
, interval
.getNextValue());
492 DEBUG(std::cerr
<< " replace range with " << LR
);
493 interval
.addRange(LR
);
494 DEBUG(std::cerr
<< "RESULT: " << interval
);
497 // In the case of PHI elimination, each variable definition is only
498 // live until the end of the block. We've already taken care of the
499 // rest of the live range.
500 unsigned defIndex
= getDefIndex(getInstructionIndex(mi
));
501 LiveRange
LR(defIndex
,
502 getInstructionIndex(&mbb
->back()) + InstrSlots::NUM
,
503 interval
.getNextValue());
504 interval
.addRange(LR
);
505 DEBUG(std::cerr
<< " +" << LR
);
509 DEBUG(std::cerr
<< '\n');
512 void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock
*MBB
,
513 MachineBasicBlock::iterator mi
,
514 LiveInterval
& interval
,
515 unsigned SrcReg
, unsigned DestReg
,
518 // A physical register cannot be live across basic block, so its
519 // lifetime must end somewhere in its defining basic block.
520 DEBUG(std::cerr
<< "\t\tregister: "; printRegName(interval
.reg
));
521 typedef LiveVariables::killed_iterator KillIter
;
523 unsigned baseIndex
= getInstructionIndex(mi
);
524 unsigned start
= getDefIndex(baseIndex
);
525 unsigned end
= start
;
527 // If it is not used after definition, it is considered dead at
528 // the instruction defining it. Hence its interval is:
529 // [defSlot(def), defSlot(def)+1)
530 if (lv_
->RegisterDefIsDead(mi
, interval
.reg
)) {
531 DEBUG(std::cerr
<< " dead");
532 end
= getDefIndex(start
) + 1;
536 // If it is not dead on definition, it must be killed by a
537 // subsequent instruction. Hence its interval is:
538 // [defSlot(def), useSlot(kill)+1)
539 while (++mi
!= MBB
->end()) {
540 baseIndex
+= InstrSlots::NUM
;
541 if (lv_
->KillsRegister(mi
, interval
.reg
)) {
542 DEBUG(std::cerr
<< " killed");
543 end
= getUseIndex(baseIndex
) + 1;
548 // The only case we should have a dead physreg here without a killing or
549 // instruction where we know it's dead is if it is live-in to the function
551 assert(isLiveIn
&& "physreg was not killed in defining block!");
552 end
= getDefIndex(start
) + 1; // It's dead.
555 assert(start
< end
&& "did not find end of interval?");
557 // Finally, if this is defining a new range for the physical register, and if
558 // that physreg is just a copy from a vreg, and if THAT vreg was a copy from
559 // the physreg, then the new fragment has the same value as the one copied
561 if (interval
.reg
== DestReg
&& !interval
.empty() &&
562 MRegisterInfo::isVirtualRegister(SrcReg
)) {
564 // Get the live interval for the vreg, see if it is defined by a copy.
565 LiveInterval
&SrcInterval
= getOrCreateInterval(SrcReg
);
567 if (SrcInterval
.containsOneValue()) {
568 assert(!SrcInterval
.empty() && "Can't contain a value and be empty!");
570 // Get the first index of the first range. Though the interval may have
571 // multiple liveranges in it, we only check the first.
572 unsigned StartIdx
= SrcInterval
.begin()->start
;
573 MachineInstr
*SrcDefMI
= getInstructionFromIndex(StartIdx
);
575 // Check to see if the vreg was defined by a copy instruction, and that
576 // the source was this physreg.
577 unsigned VRegSrcSrc
, VRegSrcDest
;
578 if (tii_
->isMoveInstr(*SrcDefMI
, VRegSrcSrc
, VRegSrcDest
) &&
579 SrcReg
== VRegSrcDest
&& VRegSrcSrc
== DestReg
) {
580 // Okay, now we know that the vreg was defined by a copy from this
581 // physreg. Find the value number being copied and use it as the value
583 const LiveRange
*DefRange
= interval
.getLiveRangeContaining(StartIdx
-1);
585 LiveRange
LR(start
, end
, DefRange
->ValId
);
586 interval
.addRange(LR
);
587 DEBUG(std::cerr
<< " +" << LR
<< '\n');
595 LiveRange
LR(start
, end
, interval
.getNextValue());
596 interval
.addRange(LR
);
597 DEBUG(std::cerr
<< " +" << LR
<< '\n');
600 void LiveIntervals::handleRegisterDef(MachineBasicBlock
*MBB
,
601 MachineBasicBlock::iterator MI
,
603 if (MRegisterInfo::isVirtualRegister(reg
))
604 handleVirtualRegisterDef(MBB
, MI
, getOrCreateInterval(reg
));
605 else if (allocatableRegs_
[reg
]) {
606 unsigned SrcReg
= 0, DestReg
= 0;
607 if (!tii_
->isMoveInstr(*MI
, SrcReg
, DestReg
))
608 SrcReg
= DestReg
= 0;
610 handlePhysicalRegisterDef(MBB
, MI
, getOrCreateInterval(reg
),
612 for (const unsigned* AS
= mri_
->getAliasSet(reg
); *AS
; ++AS
)
613 handlePhysicalRegisterDef(MBB
, MI
, getOrCreateInterval(*AS
),
618 /// computeIntervals - computes the live intervals for virtual
619 /// registers. for some ordering of the machine instructions [1,N] a
620 /// live interval is an interval [i, j) where 1 <= i <= j < N for
621 /// which a variable is live
622 void LiveIntervals::computeIntervals()
624 DEBUG(std::cerr
<< "********** COMPUTING LIVE INTERVALS **********\n");
625 DEBUG(std::cerr
<< "********** Function: "
626 << ((Value
*)mf_
->getFunction())->getName() << '\n');
627 bool IgnoreFirstInstr
= mf_
->livein_begin() != mf_
->livein_end();
629 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
631 MachineBasicBlock
* mbb
= I
;
632 DEBUG(std::cerr
<< ((Value
*)mbb
->getBasicBlock())->getName() << ":\n");
634 MachineBasicBlock::iterator mi
= mbb
->begin(), miEnd
= mbb
->end();
635 if (IgnoreFirstInstr
) { ++mi
; IgnoreFirstInstr
= false; }
636 for (; mi
!= miEnd
; ++mi
) {
637 const TargetInstrDescriptor
& tid
=
638 tm_
->getInstrInfo()->get(mi
->getOpcode());
639 DEBUG(std::cerr
<< getInstructionIndex(mi
) << "\t" << *mi
);
641 // handle implicit defs
642 if (tid
.ImplicitDefs
) {
643 for (const unsigned* id
= tid
.ImplicitDefs
; *id
; ++id
)
644 handleRegisterDef(mbb
, mi
, *id
);
647 // handle explicit defs
648 for (int i
= mi
->getNumOperands() - 1; i
>= 0; --i
) {
649 MachineOperand
& mop
= mi
->getOperand(i
);
650 // handle register defs - build intervals
651 if (mop
.isRegister() && mop
.getReg() && mop
.isDef())
652 handleRegisterDef(mbb
, mi
, mop
.getReg());
658 /// IntA is defined as a copy from IntB and we know it only has one value
659 /// number. If all of the places that IntA and IntB overlap are defined by
660 /// copies from IntA to IntB, we know that these two ranges can really be
661 /// merged if we adjust the value numbers. If it is safe, adjust the value
662 /// numbers and return true, allowing coalescing to occur.
664 AdjustIfAllOverlappingRangesAreCopiesFrom(LiveInterval
&IntA
,
667 std::vector
<LiveRange
*> Ranges
;
668 IntA
.getOverlapingRanges(IntB
, CopyIdx
, Ranges
);
670 assert(!Ranges
.empty() && "Why didn't we do a simple join of this?");
672 unsigned IntBRep
= rep(IntB
.reg
);
674 // Check to see if all of the overlaps (entries in Ranges) are defined by a
675 // copy from IntA. If not, exit.
676 for (unsigned i
= 0, e
= Ranges
.size(); i
!= e
; ++i
) {
677 unsigned Idx
= Ranges
[i
]->start
;
678 MachineInstr
*MI
= getInstructionFromIndex(Idx
);
679 unsigned SrcReg
, DestReg
;
680 if (!tii_
->isMoveInstr(*MI
, SrcReg
, DestReg
)) return false;
682 // If this copy isn't actually defining this range, it must be a live
683 // range spanning basic blocks or something.
684 if (rep(DestReg
) != rep(IntA
.reg
)) return false;
686 // Check to see if this is coming from IntB. If not, bail out.
687 if (rep(SrcReg
) != IntBRep
) return false;
690 // Okay, we can change this one. Get the IntB value number that IntA is
692 unsigned ActualValNo
= IntA
.getLiveRangeContaining(CopyIdx
-1)->ValId
;
694 // Change all of the value numbers to the same as what we IntA is copied from.
695 for (unsigned i
= 0, e
= Ranges
.size(); i
!= e
; ++i
)
696 Ranges
[i
]->ValId
= ActualValNo
;
701 void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock
*MBB
) {
702 DEBUG(std::cerr
<< ((Value
*)MBB
->getBasicBlock())->getName() << ":\n");
704 for (MachineBasicBlock::iterator mi
= MBB
->begin(), mie
= MBB
->end();
706 DEBUG(std::cerr
<< getInstructionIndex(mi
) << '\t' << *mi
);
708 // we only join virtual registers with allocatable
709 // physical registers since we do not have liveness information
710 // on not allocatable physical registers
711 unsigned SrcReg
, DestReg
;
712 if (tii_
->isMoveInstr(*mi
, SrcReg
, DestReg
) &&
713 (MRegisterInfo::isVirtualRegister(SrcReg
) || allocatableRegs_
[SrcReg
])&&
714 (MRegisterInfo::isVirtualRegister(DestReg
)||allocatableRegs_
[DestReg
])){
716 // Get representative registers.
717 SrcReg
= rep(SrcReg
);
718 DestReg
= rep(DestReg
);
720 // If they are already joined we continue.
721 if (SrcReg
== DestReg
)
724 // If they are both physical registers, we cannot join them.
725 if (MRegisterInfo::isPhysicalRegister(SrcReg
) &&
726 MRegisterInfo::isPhysicalRegister(DestReg
))
729 // If they are not of the same register class, we cannot join them.
730 if (differingRegisterClasses(SrcReg
, DestReg
))
733 LiveInterval
&SrcInt
= getInterval(SrcReg
);
734 LiveInterval
&DestInt
= getInterval(DestReg
);
735 assert(SrcInt
.reg
== SrcReg
&& DestInt
.reg
== DestReg
&&
736 "Register mapping is horribly broken!");
738 DEBUG(std::cerr
<< "\t\tInspecting " << SrcInt
<< " and " << DestInt
741 // If two intervals contain a single value and are joined by a copy, it
742 // does not matter if the intervals overlap, they can always be joined.
743 bool Joinable
= SrcInt
.containsOneValue() && DestInt
.containsOneValue();
745 unsigned MIDefIdx
= getDefIndex(getInstructionIndex(mi
));
747 // If the intervals think that this is joinable, do so now.
748 if (!Joinable
&& DestInt
.joinable(SrcInt
, MIDefIdx
))
751 // If DestInt is actually a copy from SrcInt (which we know) that is used
752 // to define another value of SrcInt, we can change the other range of
753 // SrcInt to be the value of the range that defines DestInt, allowing a
755 if (!Joinable
&& DestInt
.containsOneValue() &&
756 AdjustIfAllOverlappingRangesAreCopiesFrom(SrcInt
, DestInt
, MIDefIdx
))
759 if (!Joinable
|| overlapsAliases(&SrcInt
, &DestInt
)) {
760 DEBUG(std::cerr
<< "Interference!\n");
762 DestInt
.join(SrcInt
, MIDefIdx
);
763 DEBUG(std::cerr
<< "Joined. Result = " << DestInt
<< "\n");
765 if (!MRegisterInfo::isPhysicalRegister(SrcReg
)) {
766 r2iMap_
.erase(SrcReg
);
767 r2rMap_
[SrcReg
] = DestReg
;
769 // Otherwise merge the data structures the other way so we don't lose
770 // the physreg information.
771 r2rMap_
[DestReg
] = SrcReg
;
772 DestInt
.reg
= SrcReg
;
773 SrcInt
.swap(DestInt
);
774 r2iMap_
.erase(DestReg
);
783 // DepthMBBCompare - Comparison predicate that sort first based on the loop
784 // depth of the basic block (the unsigned), and then on the MBB number.
785 struct DepthMBBCompare
{
786 typedef std::pair
<unsigned, MachineBasicBlock
*> DepthMBBPair
;
787 bool operator()(const DepthMBBPair
&LHS
, const DepthMBBPair
&RHS
) const {
788 if (LHS
.first
> RHS
.first
) return true; // Deeper loops first
789 return LHS
.first
== RHS
.first
&&
790 LHS
.second
->getNumber() < RHS
.second
->getNumber();
795 void LiveIntervals::joinIntervals() {
796 DEBUG(std::cerr
<< "********** JOINING INTERVALS ***********\n");
798 const LoopInfo
&LI
= getAnalysis
<LoopInfo
>();
799 if (LI
.begin() == LI
.end()) {
800 // If there are no loops in the function, join intervals in function order.
801 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
803 joinIntervalsInMachineBB(I
);
805 // Otherwise, join intervals in inner loops before other intervals.
806 // Unfortunately we can't just iterate over loop hierarchy here because
807 // there may be more MBB's than BB's. Collect MBB's for sorting.
808 std::vector
<std::pair
<unsigned, MachineBasicBlock
*> > MBBs
;
809 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
811 MBBs
.push_back(std::make_pair(LI
.getLoopDepth(I
->getBasicBlock()), I
));
813 // Sort by loop depth.
814 std::sort(MBBs
.begin(), MBBs
.end(), DepthMBBCompare());
816 // Finally, join intervals in loop nest order.
817 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
)
818 joinIntervalsInMachineBB(MBBs
[i
].second
);
821 DEBUG(std::cerr
<< "*** Register mapping ***\n");
822 DEBUG(for (int i
= 0, e
= r2rMap_
.size(); i
!= e
; ++i
)
824 std::cerr
<< " reg " << i
<< " -> reg " << r2rMap_
[i
] << "\n");
827 /// Return true if the two specified registers belong to different register
828 /// classes. The registers may be either phys or virt regs.
829 bool LiveIntervals::differingRegisterClasses(unsigned RegA
,
830 unsigned RegB
) const {
832 // Get the register classes for the first reg.
833 if (MRegisterInfo::isPhysicalRegister(RegA
)) {
834 assert(MRegisterInfo::isVirtualRegister(RegB
) &&
835 "Shouldn't consider two physregs!");
836 return !mf_
->getSSARegMap()->getRegClass(RegB
)->contains(RegA
);
839 // Compare against the regclass for the second reg.
840 const TargetRegisterClass
*RegClass
= mf_
->getSSARegMap()->getRegClass(RegA
);
841 if (MRegisterInfo::isVirtualRegister(RegB
))
842 return RegClass
!= mf_
->getSSARegMap()->getRegClass(RegB
);
844 return !RegClass
->contains(RegB
);
847 bool LiveIntervals::overlapsAliases(const LiveInterval
*LHS
,
848 const LiveInterval
*RHS
) const {
849 if (!MRegisterInfo::isPhysicalRegister(LHS
->reg
)) {
850 if (!MRegisterInfo::isPhysicalRegister(RHS
->reg
))
851 return false; // vreg-vreg merge has no aliases!
855 assert(MRegisterInfo::isPhysicalRegister(LHS
->reg
) &&
856 MRegisterInfo::isVirtualRegister(RHS
->reg
) &&
857 "first interval must describe a physical register");
859 for (const unsigned *AS
= mri_
->getAliasSet(LHS
->reg
); *AS
; ++AS
)
860 if (RHS
->overlaps(getInterval(*AS
)))
866 LiveInterval
LiveIntervals::createInterval(unsigned reg
) {
867 float Weight
= MRegisterInfo::isPhysicalRegister(reg
) ?
868 (float)HUGE_VAL
:0.0F
;
869 return LiveInterval(reg
, Weight
);