Reverting back to original 1.8 version so I can manually merge in patch.
[llvm-complete.git] / lib / CodeGen / LiveVariables.cpp
blob46a8012ae3abb29f2eab5690732d2fde0e9dc666
1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariable analysis pass. For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
17 // This class computes live variables using are sparse implementation based on
18 // the machine code SSA form. This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function. It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block). If a physical
24 // register is not register allocatable, it is not tracked. This is useful for
25 // things like the stack pointer and condition codes.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/Target/MRegisterInfo.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/ADT/DepthFirstIterator.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Config/alloca.h"
37 #include <algorithm>
38 #include <iostream>
39 using namespace llvm;
41 static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
43 void LiveVariables::VarInfo::dump() const {
44 std::cerr << "Register Defined by: ";
45 if (DefInst)
46 std::cerr << *DefInst;
47 else
48 std::cerr << "<null>\n";
49 std::cerr << " Alive in blocks: ";
50 for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
51 if (AliveBlocks[i]) std::cerr << i << ", ";
52 std::cerr << "\n Killed by:";
53 if (Kills.empty())
54 std::cerr << " No instructions.\n";
55 else {
56 for (unsigned i = 0, e = Kills.size(); i != e; ++i)
57 std::cerr << "\n #" << i << ": " << *Kills[i];
58 std::cerr << "\n";
62 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
63 assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
64 "getVarInfo: not a virtual register!");
65 RegIdx -= MRegisterInfo::FirstVirtualRegister;
66 if (RegIdx >= VirtRegInfo.size()) {
67 if (RegIdx >= 2*VirtRegInfo.size())
68 VirtRegInfo.resize(RegIdx*2);
69 else
70 VirtRegInfo.resize(2*VirtRegInfo.size());
72 return VirtRegInfo[RegIdx];
75 bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
76 std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I =
77 RegistersKilled.find(MI);
78 if (I == RegistersKilled.end()) return false;
80 // Do a binary search, as these lists can grow pretty big, particularly for
81 // call instructions on targets with lots of call-clobbered registers.
82 return std::binary_search(I->second.begin(), I->second.end(), Reg);
85 bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
86 std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I =
87 RegistersDead.find(MI);
88 if (I == RegistersDead.end()) return false;
90 // Do a binary search, as these lists can grow pretty big, particularly for
91 // call instructions on targets with lots of call-clobbered registers.
92 return std::binary_search(I->second.begin(), I->second.end(), Reg);
96 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
97 MachineBasicBlock *MBB) {
98 unsigned BBNum = MBB->getNumber();
100 // Check to see if this basic block is one of the killing blocks. If so,
101 // remove it...
102 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
103 if (VRInfo.Kills[i]->getParent() == MBB) {
104 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
105 break;
108 if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion
110 if (VRInfo.AliveBlocks.size() <= BBNum)
111 VRInfo.AliveBlocks.resize(BBNum+1); // Make space...
113 if (VRInfo.AliveBlocks[BBNum])
114 return; // We already know the block is live
116 // Mark the variable known alive in this bb
117 VRInfo.AliveBlocks[BBNum] = true;
119 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
120 E = MBB->pred_end(); PI != E; ++PI)
121 MarkVirtRegAliveInBlock(VRInfo, *PI);
124 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
125 MachineInstr *MI) {
126 assert(VRInfo.DefInst && "Register use before def!");
128 // Check to see if this basic block is already a kill block...
129 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
130 // Yes, this register is killed in this basic block already. Increase the
131 // live range by updating the kill instruction.
132 VRInfo.Kills.back() = MI;
133 return;
136 #ifndef NDEBUG
137 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
138 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
139 #endif
141 assert(MBB != VRInfo.DefInst->getParent() &&
142 "Should have kill for defblock!");
144 // Add a new kill entry for this basic block.
145 VRInfo.Kills.push_back(MI);
147 // Update all dominating blocks to mark them known live.
148 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
149 E = MBB->pred_end(); PI != E; ++PI)
150 MarkVirtRegAliveInBlock(VRInfo, *PI);
153 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
154 PhysRegInfo[Reg] = MI;
155 PhysRegUsed[Reg] = true;
157 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
158 unsigned Alias = *AliasSet; ++AliasSet) {
159 PhysRegInfo[Alias] = MI;
160 PhysRegUsed[Alias] = true;
164 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
165 // Does this kill a previous version of this register?
166 if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
167 if (PhysRegUsed[Reg])
168 RegistersKilled[LastUse].push_back(Reg);
169 else
170 RegistersDead[LastUse].push_back(Reg);
172 PhysRegInfo[Reg] = MI;
173 PhysRegUsed[Reg] = false;
175 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
176 unsigned Alias = *AliasSet; ++AliasSet) {
177 if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
178 if (PhysRegUsed[Alias])
179 RegistersKilled[LastUse].push_back(Alias);
180 else
181 RegistersDead[LastUse].push_back(Alias);
183 PhysRegInfo[Alias] = MI;
184 PhysRegUsed[Alias] = false;
188 bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
189 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
190 RegInfo = MF.getTarget().getRegisterInfo();
191 assert(RegInfo && "Target doesn't have register information?");
193 AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF);
195 // PhysRegInfo - Keep track of which instruction was the last use of a
196 // physical register. This is a purely local property, because all physical
197 // register references as presumed dead across basic blocks.
199 PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) *
200 RegInfo->getNumRegs());
201 PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs());
202 std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0);
204 /// Get some space for a respectable number of registers...
205 VirtRegInfo.resize(64);
207 // Mark live-in registers as live-in.
208 for (MachineFunction::livein_iterator I = MF.livein_begin(),
209 E = MF.livein_end(); I != E; ++I) {
210 assert(MRegisterInfo::isPhysicalRegister(I->first) &&
211 "Cannot have a live-in virtual register!");
212 HandlePhysRegDef(I->first, 0);
215 // Calculate live variable information in depth first order on the CFG of the
216 // function. This guarantees that we will see the definition of a virtual
217 // register before its uses due to dominance properties of SSA (except for PHI
218 // nodes, which are treated as a special case).
220 MachineBasicBlock *Entry = MF.begin();
221 std::set<MachineBasicBlock*> Visited;
222 for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited),
223 E = df_ext_end(Entry, Visited); DFI != E; ++DFI) {
224 MachineBasicBlock *MBB = *DFI;
225 unsigned BBNum = MBB->getNumber();
227 // Loop over all of the instructions, processing them.
228 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
229 I != E; ++I) {
230 MachineInstr *MI = I;
231 const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
233 // Process all of the operands of the instruction...
234 unsigned NumOperandsToProcess = MI->getNumOperands();
236 // Unless it is a PHI node. In this case, ONLY process the DEF, not any
237 // of the uses. They will be handled in other basic blocks.
238 if (MI->getOpcode() == TargetInstrInfo::PHI)
239 NumOperandsToProcess = 1;
241 // Loop over implicit uses, using them.
242 if (MID.ImplicitUses) {
243 for (const unsigned *ImplicitUses = MID.ImplicitUses;
244 *ImplicitUses; ++ImplicitUses)
245 HandlePhysRegUse(*ImplicitUses, MI);
248 // Process all explicit uses...
249 for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
250 MachineOperand &MO = MI->getOperand(i);
251 if (MO.isUse() && MO.isRegister() && MO.getReg()) {
252 if (MRegisterInfo::isVirtualRegister(MO.getReg())){
253 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
254 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
255 AllocatablePhysicalRegisters[MO.getReg()]) {
256 HandlePhysRegUse(MO.getReg(), MI);
261 // Loop over implicit defs, defining them.
262 if (MID.ImplicitDefs) {
263 for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
264 *ImplicitDefs; ++ImplicitDefs)
265 HandlePhysRegDef(*ImplicitDefs, MI);
268 // Process all explicit defs...
269 for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
270 MachineOperand &MO = MI->getOperand(i);
271 if (MO.isDef() && MO.isRegister() && MO.getReg()) {
272 if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
273 VarInfo &VRInfo = getVarInfo(MO.getReg());
275 assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
276 VRInfo.DefInst = MI;
277 // Defaults to dead
278 VRInfo.Kills.push_back(MI);
279 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
280 AllocatablePhysicalRegisters[MO.getReg()]) {
281 HandlePhysRegDef(MO.getReg(), MI);
287 // Handle any virtual assignments from PHI nodes which might be at the
288 // bottom of this basic block. We check all of our successor blocks to see
289 // if they have PHI nodes, and if so, we simulate an assignment at the end
290 // of the current block.
291 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
292 E = MBB->succ_end(); SI != E; ++SI) {
293 MachineBasicBlock *Succ = *SI;
295 // PHI nodes are guaranteed to be at the top of the block...
296 for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end();
297 MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) {
298 for (unsigned i = 1; ; i += 2) {
299 assert(MI->getNumOperands() > i+1 &&
300 "Didn't find an entry for our predecessor??");
301 if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
302 MachineOperand &MO = MI->getOperand(i);
303 VarInfo &VRInfo = getVarInfo(MO.getReg());
304 assert(VRInfo.DefInst && "Register use before def (or no def)!");
306 // Only mark it alive only in the block we are representing.
307 MarkVirtRegAliveInBlock(VRInfo, MBB);
308 break; // Found the PHI entry for this block.
314 // Finally, if the last block in the function is a return, make sure to mark
315 // it as using all of the live-out values in the function.
316 if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
317 MachineInstr *Ret = &MBB->back();
318 for (MachineFunction::liveout_iterator I = MF.liveout_begin(),
319 E = MF.liveout_end(); I != E; ++I) {
320 assert(MRegisterInfo::isPhysicalRegister(*I) &&
321 "Cannot have a live-in virtual register!");
322 HandlePhysRegUse(*I, Ret);
326 // Loop over PhysRegInfo, killing any registers that are available at the
327 // end of the basic block. This also resets the PhysRegInfo map.
328 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
329 if (PhysRegInfo[i])
330 HandlePhysRegDef(i, 0);
333 // Convert the information we have gathered into VirtRegInfo and transform it
334 // into a form usable by RegistersKilled.
336 for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
337 for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
338 if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
339 RegistersDead[VirtRegInfo[i].Kills[j]].push_back(
340 i + MRegisterInfo::FirstVirtualRegister);
342 else
343 RegistersKilled[VirtRegInfo[i].Kills[j]].push_back(
344 i + MRegisterInfo::FirstVirtualRegister);
347 // Walk through the RegistersKilled/Dead sets, and sort the registers killed
348 // or dead. This allows us to use efficient binary search for membership
349 // testing.
350 for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
351 I = RegistersKilled.begin(), E = RegistersKilled.end(); I != E; ++I)
352 std::sort(I->second.begin(), I->second.end());
353 for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
354 I = RegistersDead.begin(), E = RegistersDead.end(); I != E; ++I)
355 std::sort(I->second.begin(), I->second.end());
357 // Check to make sure there are no unreachable blocks in the MC CFG for the
358 // function. If so, it is due to a bug in the instruction selector or some
359 // other part of the code generator if this happens.
360 #ifndef NDEBUG
361 for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i)
362 assert(Visited.count(&*i) != 0 && "unreachable basic block found");
363 #endif
365 return false;
368 /// instructionChanged - When the address of an instruction changes, this
369 /// method should be called so that live variables can update its internal
370 /// data structures. This removes the records for OldMI, transfering them to
371 /// the records for NewMI.
372 void LiveVariables::instructionChanged(MachineInstr *OldMI,
373 MachineInstr *NewMI) {
374 // If the instruction defines any virtual registers, update the VarInfo for
375 // the instruction.
376 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
377 MachineOperand &MO = OldMI->getOperand(i);
378 if (MO.isRegister() && MO.getReg() &&
379 MRegisterInfo::isVirtualRegister(MO.getReg())) {
380 unsigned Reg = MO.getReg();
381 VarInfo &VI = getVarInfo(Reg);
382 if (MO.isDef()) {
383 // Update the defining instruction.
384 if (VI.DefInst == OldMI)
385 VI.DefInst = NewMI;
387 if (MO.isUse()) {
388 // If this is a kill of the value, update the VI kills list.
389 if (VI.removeKill(OldMI))
390 VI.Kills.push_back(NewMI); // Yes, there was a kill of it
395 // Move the killed information over...
396 killed_iterator I, E;
397 tie(I, E) = killed_range(OldMI);
398 if (I != E) {
399 std::vector<unsigned> &V = RegistersKilled[NewMI];
400 bool WasEmpty = V.empty();
401 V.insert(V.end(), I, E);
402 if (!WasEmpty)
403 std::sort(V.begin(), V.end()); // Keep the reg list sorted.
404 RegistersKilled.erase(OldMI);
407 // Move the dead information over...
408 tie(I, E) = dead_range(OldMI);
409 if (I != E) {
410 std::vector<unsigned> &V = RegistersDead[NewMI];
411 bool WasEmpty = V.empty();
412 V.insert(V.end(), I, E);
413 if (!WasEmpty)
414 std::sort(V.begin(), V.end()); // Keep the reg list sorted.
415 RegistersDead.erase(OldMI);