1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LiveVariable analysis pass. For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
17 // This class computes live variables using are sparse implementation based on
18 // the machine code SSA form. This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function. It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block). If a physical
24 // register is not register allocatable, it is not tracked. This is useful for
25 // things like the stack pointer and condition codes.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/Target/MRegisterInfo.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/ADT/DepthFirstIterator.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Config/alloca.h"
41 static RegisterAnalysis
<LiveVariables
> X("livevars", "Live Variable Analysis");
43 void LiveVariables::VarInfo::dump() const {
44 std::cerr
<< "Register Defined by: ";
46 std::cerr
<< *DefInst
;
48 std::cerr
<< "<null>\n";
49 std::cerr
<< " Alive in blocks: ";
50 for (unsigned i
= 0, e
= AliveBlocks
.size(); i
!= e
; ++i
)
51 if (AliveBlocks
[i
]) std::cerr
<< i
<< ", ";
52 std::cerr
<< "\n Killed by:";
54 std::cerr
<< " No instructions.\n";
56 for (unsigned i
= 0, e
= Kills
.size(); i
!= e
; ++i
)
57 std::cerr
<< "\n #" << i
<< ": " << *Kills
[i
];
62 LiveVariables::VarInfo
&LiveVariables::getVarInfo(unsigned RegIdx
) {
63 assert(MRegisterInfo::isVirtualRegister(RegIdx
) &&
64 "getVarInfo: not a virtual register!");
65 RegIdx
-= MRegisterInfo::FirstVirtualRegister
;
66 if (RegIdx
>= VirtRegInfo
.size()) {
67 if (RegIdx
>= 2*VirtRegInfo
.size())
68 VirtRegInfo
.resize(RegIdx
*2);
70 VirtRegInfo
.resize(2*VirtRegInfo
.size());
72 return VirtRegInfo
[RegIdx
];
75 bool LiveVariables::KillsRegister(MachineInstr
*MI
, unsigned Reg
) const {
76 std::map
<MachineInstr
*, std::vector
<unsigned> >::const_iterator I
=
77 RegistersKilled
.find(MI
);
78 if (I
== RegistersKilled
.end()) return false;
80 // Do a binary search, as these lists can grow pretty big, particularly for
81 // call instructions on targets with lots of call-clobbered registers.
82 return std::binary_search(I
->second
.begin(), I
->second
.end(), Reg
);
85 bool LiveVariables::RegisterDefIsDead(MachineInstr
*MI
, unsigned Reg
) const {
86 std::map
<MachineInstr
*, std::vector
<unsigned> >::const_iterator I
=
87 RegistersDead
.find(MI
);
88 if (I
== RegistersDead
.end()) return false;
90 // Do a binary search, as these lists can grow pretty big, particularly for
91 // call instructions on targets with lots of call-clobbered registers.
92 return std::binary_search(I
->second
.begin(), I
->second
.end(), Reg
);
96 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo
&VRInfo
,
97 MachineBasicBlock
*MBB
) {
98 unsigned BBNum
= MBB
->getNumber();
100 // Check to see if this basic block is one of the killing blocks. If so,
102 for (unsigned i
= 0, e
= VRInfo
.Kills
.size(); i
!= e
; ++i
)
103 if (VRInfo
.Kills
[i
]->getParent() == MBB
) {
104 VRInfo
.Kills
.erase(VRInfo
.Kills
.begin()+i
); // Erase entry
108 if (MBB
== VRInfo
.DefInst
->getParent()) return; // Terminate recursion
110 if (VRInfo
.AliveBlocks
.size() <= BBNum
)
111 VRInfo
.AliveBlocks
.resize(BBNum
+1); // Make space...
113 if (VRInfo
.AliveBlocks
[BBNum
])
114 return; // We already know the block is live
116 // Mark the variable known alive in this bb
117 VRInfo
.AliveBlocks
[BBNum
] = true;
119 for (MachineBasicBlock::const_pred_iterator PI
= MBB
->pred_begin(),
120 E
= MBB
->pred_end(); PI
!= E
; ++PI
)
121 MarkVirtRegAliveInBlock(VRInfo
, *PI
);
124 void LiveVariables::HandleVirtRegUse(VarInfo
&VRInfo
, MachineBasicBlock
*MBB
,
126 assert(VRInfo
.DefInst
&& "Register use before def!");
128 // Check to see if this basic block is already a kill block...
129 if (!VRInfo
.Kills
.empty() && VRInfo
.Kills
.back()->getParent() == MBB
) {
130 // Yes, this register is killed in this basic block already. Increase the
131 // live range by updating the kill instruction.
132 VRInfo
.Kills
.back() = MI
;
137 for (unsigned i
= 0, e
= VRInfo
.Kills
.size(); i
!= e
; ++i
)
138 assert(VRInfo
.Kills
[i
]->getParent() != MBB
&& "entry should be at end!");
141 assert(MBB
!= VRInfo
.DefInst
->getParent() &&
142 "Should have kill for defblock!");
144 // Add a new kill entry for this basic block.
145 VRInfo
.Kills
.push_back(MI
);
147 // Update all dominating blocks to mark them known live.
148 for (MachineBasicBlock::const_pred_iterator PI
= MBB
->pred_begin(),
149 E
= MBB
->pred_end(); PI
!= E
; ++PI
)
150 MarkVirtRegAliveInBlock(VRInfo
, *PI
);
153 void LiveVariables::HandlePhysRegUse(unsigned Reg
, MachineInstr
*MI
) {
154 PhysRegInfo
[Reg
] = MI
;
155 PhysRegUsed
[Reg
] = true;
157 for (const unsigned *AliasSet
= RegInfo
->getAliasSet(Reg
);
158 unsigned Alias
= *AliasSet
; ++AliasSet
) {
159 PhysRegInfo
[Alias
] = MI
;
160 PhysRegUsed
[Alias
] = true;
164 void LiveVariables::HandlePhysRegDef(unsigned Reg
, MachineInstr
*MI
) {
165 // Does this kill a previous version of this register?
166 if (MachineInstr
*LastUse
= PhysRegInfo
[Reg
]) {
167 if (PhysRegUsed
[Reg
])
168 RegistersKilled
[LastUse
].push_back(Reg
);
170 RegistersDead
[LastUse
].push_back(Reg
);
172 PhysRegInfo
[Reg
] = MI
;
173 PhysRegUsed
[Reg
] = false;
175 for (const unsigned *AliasSet
= RegInfo
->getAliasSet(Reg
);
176 unsigned Alias
= *AliasSet
; ++AliasSet
) {
177 if (MachineInstr
*LastUse
= PhysRegInfo
[Alias
]) {
178 if (PhysRegUsed
[Alias
])
179 RegistersKilled
[LastUse
].push_back(Alias
);
181 RegistersDead
[LastUse
].push_back(Alias
);
183 PhysRegInfo
[Alias
] = MI
;
184 PhysRegUsed
[Alias
] = false;
188 bool LiveVariables::runOnMachineFunction(MachineFunction
&MF
) {
189 const TargetInstrInfo
&TII
= *MF
.getTarget().getInstrInfo();
190 RegInfo
= MF
.getTarget().getRegisterInfo();
191 assert(RegInfo
&& "Target doesn't have register information?");
193 AllocatablePhysicalRegisters
= RegInfo
->getAllocatableSet(MF
);
195 // PhysRegInfo - Keep track of which instruction was the last use of a
196 // physical register. This is a purely local property, because all physical
197 // register references as presumed dead across basic blocks.
199 PhysRegInfo
= (MachineInstr
**)alloca(sizeof(MachineInstr
*) *
200 RegInfo
->getNumRegs());
201 PhysRegUsed
= (bool*)alloca(sizeof(bool)*RegInfo
->getNumRegs());
202 std::fill(PhysRegInfo
, PhysRegInfo
+RegInfo
->getNumRegs(), (MachineInstr
*)0);
204 /// Get some space for a respectable number of registers...
205 VirtRegInfo
.resize(64);
207 // Mark live-in registers as live-in.
208 for (MachineFunction::livein_iterator I
= MF
.livein_begin(),
209 E
= MF
.livein_end(); I
!= E
; ++I
) {
210 assert(MRegisterInfo::isPhysicalRegister(I
->first
) &&
211 "Cannot have a live-in virtual register!");
212 HandlePhysRegDef(I
->first
, 0);
215 // Calculate live variable information in depth first order on the CFG of the
216 // function. This guarantees that we will see the definition of a virtual
217 // register before its uses due to dominance properties of SSA (except for PHI
218 // nodes, which are treated as a special case).
220 MachineBasicBlock
*Entry
= MF
.begin();
221 std::set
<MachineBasicBlock
*> Visited
;
222 for (df_ext_iterator
<MachineBasicBlock
*> DFI
= df_ext_begin(Entry
, Visited
),
223 E
= df_ext_end(Entry
, Visited
); DFI
!= E
; ++DFI
) {
224 MachineBasicBlock
*MBB
= *DFI
;
225 unsigned BBNum
= MBB
->getNumber();
227 // Loop over all of the instructions, processing them.
228 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end();
230 MachineInstr
*MI
= I
;
231 const TargetInstrDescriptor
&MID
= TII
.get(MI
->getOpcode());
233 // Process all of the operands of the instruction...
234 unsigned NumOperandsToProcess
= MI
->getNumOperands();
236 // Unless it is a PHI node. In this case, ONLY process the DEF, not any
237 // of the uses. They will be handled in other basic blocks.
238 if (MI
->getOpcode() == TargetInstrInfo::PHI
)
239 NumOperandsToProcess
= 1;
241 // Loop over implicit uses, using them.
242 if (MID
.ImplicitUses
) {
243 for (const unsigned *ImplicitUses
= MID
.ImplicitUses
;
244 *ImplicitUses
; ++ImplicitUses
)
245 HandlePhysRegUse(*ImplicitUses
, MI
);
248 // Process all explicit uses...
249 for (unsigned i
= 0; i
!= NumOperandsToProcess
; ++i
) {
250 MachineOperand
&MO
= MI
->getOperand(i
);
251 if (MO
.isUse() && MO
.isRegister() && MO
.getReg()) {
252 if (MRegisterInfo::isVirtualRegister(MO
.getReg())){
253 HandleVirtRegUse(getVarInfo(MO
.getReg()), MBB
, MI
);
254 } else if (MRegisterInfo::isPhysicalRegister(MO
.getReg()) &&
255 AllocatablePhysicalRegisters
[MO
.getReg()]) {
256 HandlePhysRegUse(MO
.getReg(), MI
);
261 // Loop over implicit defs, defining them.
262 if (MID
.ImplicitDefs
) {
263 for (const unsigned *ImplicitDefs
= MID
.ImplicitDefs
;
264 *ImplicitDefs
; ++ImplicitDefs
)
265 HandlePhysRegDef(*ImplicitDefs
, MI
);
268 // Process all explicit defs...
269 for (unsigned i
= 0; i
!= NumOperandsToProcess
; ++i
) {
270 MachineOperand
&MO
= MI
->getOperand(i
);
271 if (MO
.isDef() && MO
.isRegister() && MO
.getReg()) {
272 if (MRegisterInfo::isVirtualRegister(MO
.getReg())) {
273 VarInfo
&VRInfo
= getVarInfo(MO
.getReg());
275 assert(VRInfo
.DefInst
== 0 && "Variable multiply defined!");
278 VRInfo
.Kills
.push_back(MI
);
279 } else if (MRegisterInfo::isPhysicalRegister(MO
.getReg()) &&
280 AllocatablePhysicalRegisters
[MO
.getReg()]) {
281 HandlePhysRegDef(MO
.getReg(), MI
);
287 // Handle any virtual assignments from PHI nodes which might be at the
288 // bottom of this basic block. We check all of our successor blocks to see
289 // if they have PHI nodes, and if so, we simulate an assignment at the end
290 // of the current block.
291 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
292 E
= MBB
->succ_end(); SI
!= E
; ++SI
) {
293 MachineBasicBlock
*Succ
= *SI
;
295 // PHI nodes are guaranteed to be at the top of the block...
296 for (MachineBasicBlock::iterator MI
= Succ
->begin(), ME
= Succ
->end();
297 MI
!= ME
&& MI
->getOpcode() == TargetInstrInfo::PHI
; ++MI
) {
298 for (unsigned i
= 1; ; i
+= 2) {
299 assert(MI
->getNumOperands() > i
+1 &&
300 "Didn't find an entry for our predecessor??");
301 if (MI
->getOperand(i
+1).getMachineBasicBlock() == MBB
) {
302 MachineOperand
&MO
= MI
->getOperand(i
);
303 VarInfo
&VRInfo
= getVarInfo(MO
.getReg());
304 assert(VRInfo
.DefInst
&& "Register use before def (or no def)!");
306 // Only mark it alive only in the block we are representing.
307 MarkVirtRegAliveInBlock(VRInfo
, MBB
);
308 break; // Found the PHI entry for this block.
314 // Finally, if the last block in the function is a return, make sure to mark
315 // it as using all of the live-out values in the function.
316 if (!MBB
->empty() && TII
.isReturn(MBB
->back().getOpcode())) {
317 MachineInstr
*Ret
= &MBB
->back();
318 for (MachineFunction::liveout_iterator I
= MF
.liveout_begin(),
319 E
= MF
.liveout_end(); I
!= E
; ++I
) {
320 assert(MRegisterInfo::isPhysicalRegister(*I
) &&
321 "Cannot have a live-in virtual register!");
322 HandlePhysRegUse(*I
, Ret
);
326 // Loop over PhysRegInfo, killing any registers that are available at the
327 // end of the basic block. This also resets the PhysRegInfo map.
328 for (unsigned i
= 0, e
= RegInfo
->getNumRegs(); i
!= e
; ++i
)
330 HandlePhysRegDef(i
, 0);
333 // Convert the information we have gathered into VirtRegInfo and transform it
334 // into a form usable by RegistersKilled.
336 for (unsigned i
= 0, e
= VirtRegInfo
.size(); i
!= e
; ++i
)
337 for (unsigned j
= 0, e
= VirtRegInfo
[i
].Kills
.size(); j
!= e
; ++j
) {
338 if (VirtRegInfo
[i
].Kills
[j
] == VirtRegInfo
[i
].DefInst
)
339 RegistersDead
[VirtRegInfo
[i
].Kills
[j
]].push_back(
340 i
+ MRegisterInfo::FirstVirtualRegister
);
343 RegistersKilled
[VirtRegInfo
[i
].Kills
[j
]].push_back(
344 i
+ MRegisterInfo::FirstVirtualRegister
);
347 // Walk through the RegistersKilled/Dead sets, and sort the registers killed
348 // or dead. This allows us to use efficient binary search for membership
350 for (std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator
351 I
= RegistersKilled
.begin(), E
= RegistersKilled
.end(); I
!= E
; ++I
)
352 std::sort(I
->second
.begin(), I
->second
.end());
353 for (std::map
<MachineInstr
*, std::vector
<unsigned> >::iterator
354 I
= RegistersDead
.begin(), E
= RegistersDead
.end(); I
!= E
; ++I
)
355 std::sort(I
->second
.begin(), I
->second
.end());
357 // Check to make sure there are no unreachable blocks in the MC CFG for the
358 // function. If so, it is due to a bug in the instruction selector or some
359 // other part of the code generator if this happens.
361 for(MachineFunction::iterator i
= MF
.begin(), e
= MF
.end(); i
!= e
; ++i
)
362 assert(Visited
.count(&*i
) != 0 && "unreachable basic block found");
368 /// instructionChanged - When the address of an instruction changes, this
369 /// method should be called so that live variables can update its internal
370 /// data structures. This removes the records for OldMI, transfering them to
371 /// the records for NewMI.
372 void LiveVariables::instructionChanged(MachineInstr
*OldMI
,
373 MachineInstr
*NewMI
) {
374 // If the instruction defines any virtual registers, update the VarInfo for
376 for (unsigned i
= 0, e
= OldMI
->getNumOperands(); i
!= e
; ++i
) {
377 MachineOperand
&MO
= OldMI
->getOperand(i
);
378 if (MO
.isRegister() && MO
.getReg() &&
379 MRegisterInfo::isVirtualRegister(MO
.getReg())) {
380 unsigned Reg
= MO
.getReg();
381 VarInfo
&VI
= getVarInfo(Reg
);
383 // Update the defining instruction.
384 if (VI
.DefInst
== OldMI
)
388 // If this is a kill of the value, update the VI kills list.
389 if (VI
.removeKill(OldMI
))
390 VI
.Kills
.push_back(NewMI
); // Yes, there was a kill of it
395 // Move the killed information over...
396 killed_iterator I
, E
;
397 tie(I
, E
) = killed_range(OldMI
);
399 std::vector
<unsigned> &V
= RegistersKilled
[NewMI
];
400 bool WasEmpty
= V
.empty();
401 V
.insert(V
.end(), I
, E
);
403 std::sort(V
.begin(), V
.end()); // Keep the reg list sorted.
404 RegistersKilled
.erase(OldMI
);
407 // Move the dead information over...
408 tie(I
, E
) = dead_range(OldMI
);
410 std::vector
<unsigned> &V
= RegistersDead
[NewMI
];
411 bool WasEmpty
= V
.empty();
412 V
.insert(V
.end(), I
, E
);
414 std::sort(V
.begin(), V
.end()); // Keep the reg list sorted.
415 RegistersDead
.erase(OldMI
);