Reverting back to original 1.8 version so I can manually merge in patch.
[llvm-complete.git] / lib / CodeGen / PHIElimination.cpp
blobffbae2a7ff726c19147aa54a3ce5483202e90671
1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/SSARegMap.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetMachine.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Support/Visibility.h"
27 #include <set>
28 #include <algorithm>
29 using namespace llvm;
31 namespace {
32 static Statistic<> NumAtomic("phielim", "Number of atomic phis lowered");
33 static Statistic<> NumSimple("phielim", "Number of simple phis lowered");
35 struct VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
36 bool runOnMachineFunction(MachineFunction &Fn) {
37 bool Changed = false;
39 // Eliminate PHI instructions by inserting copies into predecessor blocks.
40 for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
41 Changed |= EliminatePHINodes(Fn, *I);
43 return Changed;
46 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47 AU.addPreserved<LiveVariables>();
48 MachineFunctionPass::getAnalysisUsage(AU);
51 private:
52 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
53 /// in predecessor basic blocks.
54 ///
55 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
56 void LowerAtomicPHINode(MachineBasicBlock &MBB,
57 MachineBasicBlock::iterator AfterPHIsIt,
58 DenseMap<unsigned, VirtReg2IndexFunctor> &VUC);
61 RegisterPass<PNE> X("phi-node-elimination",
62 "Eliminate PHI nodes for register allocation");
66 const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
68 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
69 /// predecessor basic blocks.
70 ///
71 bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
72 if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
73 return false; // Quick exit for basic blocks without PHIs.
75 // VRegPHIUseCount - Keep track of the number of times each virtual register
76 // is used by PHI nodes in successors of this block.
77 DenseMap<unsigned, VirtReg2IndexFunctor> VRegPHIUseCount;
78 VRegPHIUseCount.grow(MF.getSSARegMap()->getLastVirtReg());
80 for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin(),
81 E = MBB.pred_end(); PI != E; ++PI)
82 for (MachineBasicBlock::succ_iterator SI = (*PI)->succ_begin(),
83 E = (*PI)->succ_end(); SI != E; ++SI)
84 for (MachineBasicBlock::iterator BBI = (*SI)->begin(), E = (*SI)->end();
85 BBI != E && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
86 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
87 VRegPHIUseCount[BBI->getOperand(i).getReg()]++;
89 // Get an iterator to the first instruction after the last PHI node (this may
90 // also be the end of the basic block).
91 MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
92 while (AfterPHIsIt != MBB.end() &&
93 AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
94 ++AfterPHIsIt; // Skip over all of the PHI nodes...
96 while (MBB.front().getOpcode() == TargetInstrInfo::PHI) {
97 LowerAtomicPHINode(MBB, AfterPHIsIt, VRegPHIUseCount);
99 return true;
102 /// InstructionUsesRegister - Return true if the specified machine instr has a
103 /// use of the specified register.
104 static bool InstructionUsesRegister(MachineInstr *MI, unsigned SrcReg) {
105 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
106 if (MI->getOperand(0).isRegister() &&
107 MI->getOperand(0).getReg() == SrcReg &&
108 MI->getOperand(0).isUse())
109 return true;
110 return false;
113 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
114 /// under the assuption that it needs to be lowered in a way that supports
115 /// atomic execution of PHIs. This lowering method is always correct all of the
116 /// time.
117 void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
118 MachineBasicBlock::iterator AfterPHIsIt,
119 DenseMap<unsigned, VirtReg2IndexFunctor> &VRegPHIUseCount) {
120 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
121 MachineInstr *MPhi = MBB.remove(MBB.begin());
123 unsigned DestReg = MPhi->getOperand(0).getReg();
125 // Create a new register for the incoming PHI arguments/
126 MachineFunction &MF = *MBB.getParent();
127 const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
128 unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);
130 // Insert a register to register copy in the top of the current block (but
131 // after any remaining phi nodes) which copies the new incoming register
132 // into the phi node destination.
134 const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
135 RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);
137 // Update live variable information if there is any...
138 LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
139 if (LV) {
140 MachineInstr *PHICopy = prior(AfterPHIsIt);
142 // Add information to LiveVariables to know that the incoming value is
143 // killed. Note that because the value is defined in several places (once
144 // each for each incoming block), the "def" block and instruction fields
145 // for the VarInfo is not filled in.
147 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
149 // Since we are going to be deleting the PHI node, if it is the last use
150 // of any registers, or if the value itself is dead, we need to move this
151 // information over to the new copy we just inserted.
153 LV->removeVirtualRegistersKilled(MPhi);
155 // If the result is dead, update LV.
156 if (LV->RegisterDefIsDead(MPhi, DestReg)) {
157 LV->addVirtualRegisterDead(DestReg, PHICopy);
158 LV->removeVirtualRegistersDead(MPhi);
161 // Realize that the destination register is defined by the PHI copy now, not
162 // the PHI itself.
163 LV->getVarInfo(DestReg).DefInst = PHICopy;
166 // Adjust the VRegPHIUseCount map to account for the removal of this PHI
167 // node.
168 unsigned NumPreds = (MPhi->getNumOperands()-1)/2;
169 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
170 VRegPHIUseCount[MPhi->getOperand(i).getReg()] -= NumPreds;
172 // Now loop over all of the incoming arguments, changing them to copy into
173 // the IncomingReg register in the corresponding predecessor basic block.
175 std::set<MachineBasicBlock*> MBBsInsertedInto;
176 for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
177 unsigned SrcReg = MPhi->getOperand(i-1).getReg();
178 assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
179 "Machine PHI Operands must all be virtual registers!");
181 // Get the MachineBasicBlock equivalent of the BasicBlock that is the
182 // source path the PHI.
183 MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock();
185 // Check to make sure we haven't already emitted the copy for this block.
186 // This can happen because PHI nodes may have multiple entries for the
187 // same basic block.
188 if (!MBBsInsertedInto.insert(&opBlock).second)
189 continue; // If the copy has already been emitted, we're done.
191 // Get an iterator pointing to the first terminator in the block (or end()).
192 // This is the point where we can insert a copy if we'd like to.
193 MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
195 // Insert the copy.
196 RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);
198 // Now update live variable information if we have it. Otherwise we're done
199 if (!LV) continue;
201 // We want to be able to insert a kill of the register if this PHI
202 // (aka, the copy we just inserted) is the last use of the source
203 // value. Live variable analysis conservatively handles this by
204 // saying that the value is live until the end of the block the PHI
205 // entry lives in. If the value really is dead at the PHI copy, there
206 // will be no successor blocks which have the value live-in.
208 // Check to see if the copy is the last use, and if so, update the
209 // live variables information so that it knows the copy source
210 // instruction kills the incoming value.
212 LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
214 // Loop over all of the successors of the basic block, checking to see
215 // if the value is either live in the block, or if it is killed in the
216 // block. Also check to see if this register is in use by another PHI
217 // node which has not yet been eliminated. If so, it will be killed
218 // at an appropriate point later.
221 // Is it used by any PHI instructions in this block?
222 bool ValueIsLive = VRegPHIUseCount[SrcReg] != 0;
224 std::vector<MachineBasicBlock*> OpSuccBlocks;
226 // Otherwise, scan successors, including the BB the PHI node lives in.
227 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
228 E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
229 MachineBasicBlock *SuccMBB = *SI;
231 // Is it alive in this successor?
232 unsigned SuccIdx = SuccMBB->getNumber();
233 if (SuccIdx < InRegVI.AliveBlocks.size() &&
234 InRegVI.AliveBlocks[SuccIdx]) {
235 ValueIsLive = true;
236 break;
239 OpSuccBlocks.push_back(SuccMBB);
242 // Check to see if this value is live because there is a use in a successor
243 // that kills it.
244 if (!ValueIsLive) {
245 switch (OpSuccBlocks.size()) {
246 case 1: {
247 MachineBasicBlock *MBB = OpSuccBlocks[0];
248 for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
249 if (InRegVI.Kills[i]->getParent() == MBB) {
250 ValueIsLive = true;
251 break;
253 break;
255 case 2: {
256 MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
257 for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
258 if (InRegVI.Kills[i]->getParent() == MBB1 ||
259 InRegVI.Kills[i]->getParent() == MBB2) {
260 ValueIsLive = true;
261 break;
263 break;
265 default:
266 std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
267 for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
268 if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
269 InRegVI.Kills[i]->getParent())) {
270 ValueIsLive = true;
271 break;
276 // Okay, if we now know that the value is not live out of the block,
277 // we can add a kill marker in this block saying that it kills the incoming
278 // value!
279 if (!ValueIsLive) {
280 // In our final twist, we have to decide which instruction kills the
281 // register. In most cases this is the copy, however, the first
282 // terminator instruction at the end of the block may also use the value.
283 // In this case, we should mark *it* as being the killing block, not the
284 // copy.
285 bool FirstTerminatorUsesValue = false;
286 if (I != opBlock.end()) {
287 FirstTerminatorUsesValue = InstructionUsesRegister(I, SrcReg);
289 // Check that no other terminators use values.
290 #ifndef NDEBUG
291 for (MachineBasicBlock::iterator TI = next(I); TI != opBlock.end();
292 ++TI) {
293 assert(!InstructionUsesRegister(TI, SrcReg) &&
294 "Terminator instructions cannot use virtual registers unless"
295 "they are the first terminator in a block!");
297 #endif
300 MachineBasicBlock::iterator KillInst;
301 if (!FirstTerminatorUsesValue)
302 KillInst = prior(I);
303 else
304 KillInst = I;
306 // Finally, mark it killed.
307 LV->addVirtualRegisterKilled(SrcReg, KillInst);
309 // This vreg no longer lives all of the way through opBlock.
310 unsigned opBlockNum = opBlock.getNumber();
311 if (opBlockNum < InRegVI.AliveBlocks.size())
312 InRegVI.AliveBlocks[opBlockNum] = false;
316 // Really delete the PHI instruction now!
317 delete MPhi;
318 ++NumAtomic;