1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/SSARegMap.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetMachine.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Support/Visibility.h"
32 static Statistic
<> NumAtomic("phielim", "Number of atomic phis lowered");
33 static Statistic
<> NumSimple("phielim", "Number of simple phis lowered");
35 struct VISIBILITY_HIDDEN PNE
: public MachineFunctionPass
{
36 bool runOnMachineFunction(MachineFunction
&Fn
) {
39 // Eliminate PHI instructions by inserting copies into predecessor blocks.
40 for (MachineFunction::iterator I
= Fn
.begin(), E
= Fn
.end(); I
!= E
; ++I
)
41 Changed
|= EliminatePHINodes(Fn
, *I
);
46 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
47 AU
.addPreserved
<LiveVariables
>();
48 MachineFunctionPass::getAnalysisUsage(AU
);
52 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
53 /// in predecessor basic blocks.
55 bool EliminatePHINodes(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
56 void LowerAtomicPHINode(MachineBasicBlock
&MBB
,
57 MachineBasicBlock::iterator AfterPHIsIt
,
58 DenseMap
<unsigned, VirtReg2IndexFunctor
> &VUC
);
61 RegisterPass
<PNE
> X("phi-node-elimination",
62 "Eliminate PHI nodes for register allocation");
66 const PassInfo
*llvm::PHIEliminationID
= X
.getPassInfo();
68 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
69 /// predecessor basic blocks.
71 bool PNE::EliminatePHINodes(MachineFunction
&MF
, MachineBasicBlock
&MBB
) {
72 if (MBB
.empty() || MBB
.front().getOpcode() != TargetInstrInfo::PHI
)
73 return false; // Quick exit for basic blocks without PHIs.
75 // VRegPHIUseCount - Keep track of the number of times each virtual register
76 // is used by PHI nodes in successors of this block.
77 DenseMap
<unsigned, VirtReg2IndexFunctor
> VRegPHIUseCount
;
78 VRegPHIUseCount
.grow(MF
.getSSARegMap()->getLastVirtReg());
80 for (MachineBasicBlock::pred_iterator PI
= MBB
.pred_begin(),
81 E
= MBB
.pred_end(); PI
!= E
; ++PI
)
82 for (MachineBasicBlock::succ_iterator SI
= (*PI
)->succ_begin(),
83 E
= (*PI
)->succ_end(); SI
!= E
; ++SI
)
84 for (MachineBasicBlock::iterator BBI
= (*SI
)->begin(), E
= (*SI
)->end();
85 BBI
!= E
&& BBI
->getOpcode() == TargetInstrInfo::PHI
; ++BBI
)
86 for (unsigned i
= 1, e
= BBI
->getNumOperands(); i
!= e
; i
+= 2)
87 VRegPHIUseCount
[BBI
->getOperand(i
).getReg()]++;
89 // Get an iterator to the first instruction after the last PHI node (this may
90 // also be the end of the basic block).
91 MachineBasicBlock::iterator AfterPHIsIt
= MBB
.begin();
92 while (AfterPHIsIt
!= MBB
.end() &&
93 AfterPHIsIt
->getOpcode() == TargetInstrInfo::PHI
)
94 ++AfterPHIsIt
; // Skip over all of the PHI nodes...
96 while (MBB
.front().getOpcode() == TargetInstrInfo::PHI
) {
97 LowerAtomicPHINode(MBB
, AfterPHIsIt
, VRegPHIUseCount
);
102 /// InstructionUsesRegister - Return true if the specified machine instr has a
103 /// use of the specified register.
104 static bool InstructionUsesRegister(MachineInstr
*MI
, unsigned SrcReg
) {
105 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
)
106 if (MI
->getOperand(0).isRegister() &&
107 MI
->getOperand(0).getReg() == SrcReg
&&
108 MI
->getOperand(0).isUse())
113 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
114 /// under the assuption that it needs to be lowered in a way that supports
115 /// atomic execution of PHIs. This lowering method is always correct all of the
117 void PNE::LowerAtomicPHINode(MachineBasicBlock
&MBB
,
118 MachineBasicBlock::iterator AfterPHIsIt
,
119 DenseMap
<unsigned, VirtReg2IndexFunctor
> &VRegPHIUseCount
) {
120 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
121 MachineInstr
*MPhi
= MBB
.remove(MBB
.begin());
123 unsigned DestReg
= MPhi
->getOperand(0).getReg();
125 // Create a new register for the incoming PHI arguments/
126 MachineFunction
&MF
= *MBB
.getParent();
127 const TargetRegisterClass
*RC
= MF
.getSSARegMap()->getRegClass(DestReg
);
128 unsigned IncomingReg
= MF
.getSSARegMap()->createVirtualRegister(RC
);
130 // Insert a register to register copy in the top of the current block (but
131 // after any remaining phi nodes) which copies the new incoming register
132 // into the phi node destination.
134 const MRegisterInfo
*RegInfo
= MF
.getTarget().getRegisterInfo();
135 RegInfo
->copyRegToReg(MBB
, AfterPHIsIt
, DestReg
, IncomingReg
, RC
);
137 // Update live variable information if there is any...
138 LiveVariables
*LV
= getAnalysisToUpdate
<LiveVariables
>();
140 MachineInstr
*PHICopy
= prior(AfterPHIsIt
);
142 // Add information to LiveVariables to know that the incoming value is
143 // killed. Note that because the value is defined in several places (once
144 // each for each incoming block), the "def" block and instruction fields
145 // for the VarInfo is not filled in.
147 LV
->addVirtualRegisterKilled(IncomingReg
, PHICopy
);
149 // Since we are going to be deleting the PHI node, if it is the last use
150 // of any registers, or if the value itself is dead, we need to move this
151 // information over to the new copy we just inserted.
153 LV
->removeVirtualRegistersKilled(MPhi
);
155 // If the result is dead, update LV.
156 if (LV
->RegisterDefIsDead(MPhi
, DestReg
)) {
157 LV
->addVirtualRegisterDead(DestReg
, PHICopy
);
158 LV
->removeVirtualRegistersDead(MPhi
);
161 // Realize that the destination register is defined by the PHI copy now, not
163 LV
->getVarInfo(DestReg
).DefInst
= PHICopy
;
166 // Adjust the VRegPHIUseCount map to account for the removal of this PHI
168 unsigned NumPreds
= (MPhi
->getNumOperands()-1)/2;
169 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2)
170 VRegPHIUseCount
[MPhi
->getOperand(i
).getReg()] -= NumPreds
;
172 // Now loop over all of the incoming arguments, changing them to copy into
173 // the IncomingReg register in the corresponding predecessor basic block.
175 std::set
<MachineBasicBlock
*> MBBsInsertedInto
;
176 for (int i
= MPhi
->getNumOperands() - 1; i
>= 2; i
-=2) {
177 unsigned SrcReg
= MPhi
->getOperand(i
-1).getReg();
178 assert(MRegisterInfo::isVirtualRegister(SrcReg
) &&
179 "Machine PHI Operands must all be virtual registers!");
181 // Get the MachineBasicBlock equivalent of the BasicBlock that is the
182 // source path the PHI.
183 MachineBasicBlock
&opBlock
= *MPhi
->getOperand(i
).getMachineBasicBlock();
185 // Check to make sure we haven't already emitted the copy for this block.
186 // This can happen because PHI nodes may have multiple entries for the
188 if (!MBBsInsertedInto
.insert(&opBlock
).second
)
189 continue; // If the copy has already been emitted, we're done.
191 // Get an iterator pointing to the first terminator in the block (or end()).
192 // This is the point where we can insert a copy if we'd like to.
193 MachineBasicBlock::iterator I
= opBlock
.getFirstTerminator();
196 RegInfo
->copyRegToReg(opBlock
, I
, IncomingReg
, SrcReg
, RC
);
198 // Now update live variable information if we have it. Otherwise we're done
201 // We want to be able to insert a kill of the register if this PHI
202 // (aka, the copy we just inserted) is the last use of the source
203 // value. Live variable analysis conservatively handles this by
204 // saying that the value is live until the end of the block the PHI
205 // entry lives in. If the value really is dead at the PHI copy, there
206 // will be no successor blocks which have the value live-in.
208 // Check to see if the copy is the last use, and if so, update the
209 // live variables information so that it knows the copy source
210 // instruction kills the incoming value.
212 LiveVariables::VarInfo
&InRegVI
= LV
->getVarInfo(SrcReg
);
214 // Loop over all of the successors of the basic block, checking to see
215 // if the value is either live in the block, or if it is killed in the
216 // block. Also check to see if this register is in use by another PHI
217 // node which has not yet been eliminated. If so, it will be killed
218 // at an appropriate point later.
221 // Is it used by any PHI instructions in this block?
222 bool ValueIsLive
= VRegPHIUseCount
[SrcReg
] != 0;
224 std::vector
<MachineBasicBlock
*> OpSuccBlocks
;
226 // Otherwise, scan successors, including the BB the PHI node lives in.
227 for (MachineBasicBlock::succ_iterator SI
= opBlock
.succ_begin(),
228 E
= opBlock
.succ_end(); SI
!= E
&& !ValueIsLive
; ++SI
) {
229 MachineBasicBlock
*SuccMBB
= *SI
;
231 // Is it alive in this successor?
232 unsigned SuccIdx
= SuccMBB
->getNumber();
233 if (SuccIdx
< InRegVI
.AliveBlocks
.size() &&
234 InRegVI
.AliveBlocks
[SuccIdx
]) {
239 OpSuccBlocks
.push_back(SuccMBB
);
242 // Check to see if this value is live because there is a use in a successor
245 switch (OpSuccBlocks
.size()) {
247 MachineBasicBlock
*MBB
= OpSuccBlocks
[0];
248 for (unsigned i
= 0, e
= InRegVI
.Kills
.size(); i
!= e
; ++i
)
249 if (InRegVI
.Kills
[i
]->getParent() == MBB
) {
256 MachineBasicBlock
*MBB1
= OpSuccBlocks
[0], *MBB2
= OpSuccBlocks
[1];
257 for (unsigned i
= 0, e
= InRegVI
.Kills
.size(); i
!= e
; ++i
)
258 if (InRegVI
.Kills
[i
]->getParent() == MBB1
||
259 InRegVI
.Kills
[i
]->getParent() == MBB2
) {
266 std::sort(OpSuccBlocks
.begin(), OpSuccBlocks
.end());
267 for (unsigned i
= 0, e
= InRegVI
.Kills
.size(); i
!= e
; ++i
)
268 if (std::binary_search(OpSuccBlocks
.begin(), OpSuccBlocks
.end(),
269 InRegVI
.Kills
[i
]->getParent())) {
276 // Okay, if we now know that the value is not live out of the block,
277 // we can add a kill marker in this block saying that it kills the incoming
280 // In our final twist, we have to decide which instruction kills the
281 // register. In most cases this is the copy, however, the first
282 // terminator instruction at the end of the block may also use the value.
283 // In this case, we should mark *it* as being the killing block, not the
285 bool FirstTerminatorUsesValue
= false;
286 if (I
!= opBlock
.end()) {
287 FirstTerminatorUsesValue
= InstructionUsesRegister(I
, SrcReg
);
289 // Check that no other terminators use values.
291 for (MachineBasicBlock::iterator TI
= next(I
); TI
!= opBlock
.end();
293 assert(!InstructionUsesRegister(TI
, SrcReg
) &&
294 "Terminator instructions cannot use virtual registers unless"
295 "they are the first terminator in a block!");
300 MachineBasicBlock::iterator KillInst
;
301 if (!FirstTerminatorUsesValue
)
306 // Finally, mark it killed.
307 LV
->addVirtualRegisterKilled(SrcReg
, KillInst
);
309 // This vreg no longer lives all of the way through opBlock.
310 unsigned opBlockNum
= opBlock
.getNumber();
311 if (opBlockNum
< InRegVI
.AliveBlocks
.size())
312 InRegVI
.AliveBlocks
[opBlockNum
] = false;
316 // Really delete the PHI instruction now!