1 //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/CodeGen/MachineFunctionPass.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/SSARegMap.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/RegAllocRegistry.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/Visibility.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/Statistic.h"
35 static Statistic
<> NumStores("ra-local", "Number of stores added");
36 static Statistic
<> NumLoads ("ra-local", "Number of loads added");
37 static Statistic
<> NumFolded("ra-local", "Number of loads/stores folded "
40 static RegisterRegAlloc
41 localRegAlloc("local", " local register allocator",
42 createLocalRegisterAllocator
);
45 class VISIBILITY_HIDDEN RA
: public MachineFunctionPass
{
46 const TargetMachine
*TM
;
48 const MRegisterInfo
*RegInfo
;
50 bool *PhysRegsEverUsed
;
52 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
53 // values are spilled.
54 std::map
<unsigned, int> StackSlotForVirtReg
;
56 // Virt2PhysRegMap - This map contains entries for each virtual register
57 // that is currently available in a physical register.
58 DenseMap
<unsigned, VirtReg2IndexFunctor
> Virt2PhysRegMap
;
60 unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg
) {
61 return Virt2PhysRegMap
[VirtReg
];
64 // PhysRegsUsed - This array is effectively a map, containing entries for
65 // each physical register that currently has a value (ie, it is in
66 // Virt2PhysRegMap). The value mapped to is the virtual register
67 // corresponding to the physical register (the inverse of the
68 // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
69 // because it is used by a future instruction. If the entry for a physical
70 // register is -1, then the physical register is "not in the map".
72 std::vector
<int> PhysRegsUsed
;
74 // PhysRegsUseOrder - This contains a list of the physical registers that
75 // currently have a virtual register value in them. This list provides an
76 // ordering of registers, imposing a reallocation order. This list is only
77 // used if all registers are allocated and we have to spill one, in which
78 // case we spill the least recently used register. Entries at the front of
79 // the list are the least recently used registers, entries at the back are
80 // the most recently used.
82 std::vector
<unsigned> PhysRegsUseOrder
;
84 // VirtRegModified - This bitset contains information about which virtual
85 // registers need to be spilled back to memory when their registers are
86 // scavenged. If a virtual register has simply been rematerialized, there
87 // is no reason to spill it to memory when we need the register back.
89 std::vector
<bool> VirtRegModified
;
91 void markVirtRegModified(unsigned Reg
, bool Val
= true) {
92 assert(MRegisterInfo::isVirtualRegister(Reg
) && "Illegal VirtReg!");
93 Reg
-= MRegisterInfo::FirstVirtualRegister
;
94 if (VirtRegModified
.size() <= Reg
) VirtRegModified
.resize(Reg
+1);
95 VirtRegModified
[Reg
] = Val
;
98 bool isVirtRegModified(unsigned Reg
) const {
99 assert(MRegisterInfo::isVirtualRegister(Reg
) && "Illegal VirtReg!");
100 assert(Reg
- MRegisterInfo::FirstVirtualRegister
< VirtRegModified
.size()
101 && "Illegal virtual register!");
102 return VirtRegModified
[Reg
- MRegisterInfo::FirstVirtualRegister
];
105 void MarkPhysRegRecentlyUsed(unsigned Reg
) {
106 if(PhysRegsUseOrder
.empty() ||
107 PhysRegsUseOrder
.back() == Reg
) return; // Already most recently used
109 for (unsigned i
= PhysRegsUseOrder
.size(); i
!= 0; --i
)
110 if (areRegsEqual(Reg
, PhysRegsUseOrder
[i
-1])) {
111 unsigned RegMatch
= PhysRegsUseOrder
[i
-1]; // remove from middle
112 PhysRegsUseOrder
.erase(PhysRegsUseOrder
.begin()+i
-1);
113 // Add it to the end of the list
114 PhysRegsUseOrder
.push_back(RegMatch
);
116 return; // Found an exact match, exit early
121 virtual const char *getPassName() const {
122 return "Local Register Allocator";
125 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
126 AU
.addRequired
<LiveVariables
>();
127 AU
.addRequiredID(PHIEliminationID
);
128 AU
.addRequiredID(TwoAddressInstructionPassID
);
129 MachineFunctionPass::getAnalysisUsage(AU
);
133 /// runOnMachineFunction - Register allocate the whole function
134 bool runOnMachineFunction(MachineFunction
&Fn
);
136 /// AllocateBasicBlock - Register allocate the specified basic block.
137 void AllocateBasicBlock(MachineBasicBlock
&MBB
);
140 /// areRegsEqual - This method returns true if the specified registers are
141 /// related to each other. To do this, it checks to see if they are equal
142 /// or if the first register is in the alias set of the second register.
144 bool areRegsEqual(unsigned R1
, unsigned R2
) const {
145 if (R1
== R2
) return true;
146 for (const unsigned *AliasSet
= RegInfo
->getAliasSet(R2
);
147 *AliasSet
; ++AliasSet
) {
148 if (*AliasSet
== R1
) return true;
153 /// getStackSpaceFor - This returns the frame index of the specified virtual
154 /// register on the stack, allocating space if necessary.
155 int getStackSpaceFor(unsigned VirtReg
, const TargetRegisterClass
*RC
);
157 /// removePhysReg - This method marks the specified physical register as no
158 /// longer being in use.
160 void removePhysReg(unsigned PhysReg
);
162 /// spillVirtReg - This method spills the value specified by PhysReg into
163 /// the virtual register slot specified by VirtReg. It then updates the RA
164 /// data structures to indicate the fact that PhysReg is now available.
166 void spillVirtReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
167 unsigned VirtReg
, unsigned PhysReg
);
169 /// spillPhysReg - This method spills the specified physical register into
170 /// the virtual register slot associated with it. If OnlyVirtRegs is set to
171 /// true, then the request is ignored if the physical register does not
172 /// contain a virtual register.
174 void spillPhysReg(MachineBasicBlock
&MBB
, MachineInstr
*I
,
175 unsigned PhysReg
, bool OnlyVirtRegs
= false);
177 /// assignVirtToPhysReg - This method updates local state so that we know
178 /// that PhysReg is the proper container for VirtReg now. The physical
179 /// register must not be used for anything else when this is called.
181 void assignVirtToPhysReg(unsigned VirtReg
, unsigned PhysReg
);
183 /// liberatePhysReg - Make sure the specified physical register is available
184 /// for use. If there is currently a value in it, it is either moved out of
185 /// the way or spilled to memory.
187 void liberatePhysReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&I
,
190 /// isPhysRegAvailable - Return true if the specified physical register is
191 /// free and available for use. This also includes checking to see if
192 /// aliased registers are all free...
194 bool isPhysRegAvailable(unsigned PhysReg
) const;
196 /// getFreeReg - Look to see if there is a free register available in the
197 /// specified register class. If not, return 0.
199 unsigned getFreeReg(const TargetRegisterClass
*RC
);
201 /// getReg - Find a physical register to hold the specified virtual
202 /// register. If all compatible physical registers are used, this method
203 /// spills the last used virtual register to the stack, and uses that
206 unsigned getReg(MachineBasicBlock
&MBB
, MachineInstr
*MI
,
209 /// reloadVirtReg - This method transforms the specified specified virtual
210 /// register use to refer to a physical register. This method may do this
211 /// in one of several ways: if the register is available in a physical
212 /// register already, it uses that physical register. If the value is not
213 /// in a physical register, and if there are physical registers available,
214 /// it loads it into a register. If register pressure is high, and it is
215 /// possible, it tries to fold the load of the virtual register into the
216 /// instruction itself. It avoids doing this if register pressure is low to
217 /// improve the chance that subsequent instructions can use the reloaded
218 /// value. This method returns the modified instruction.
220 MachineInstr
*reloadVirtReg(MachineBasicBlock
&MBB
, MachineInstr
*MI
,
224 void reloadPhysReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&I
,
229 /// getStackSpaceFor - This allocates space for the specified virtual register
230 /// to be held on the stack.
231 int RA::getStackSpaceFor(unsigned VirtReg
, const TargetRegisterClass
*RC
) {
232 // Find the location Reg would belong...
233 std::map
<unsigned, int>::iterator I
=StackSlotForVirtReg
.lower_bound(VirtReg
);
235 if (I
!= StackSlotForVirtReg
.end() && I
->first
== VirtReg
)
236 return I
->second
; // Already has space allocated?
238 // Allocate a new stack object for this spill location...
239 int FrameIdx
= MF
->getFrameInfo()->CreateStackObject(RC
->getSize(),
242 // Assign the slot...
243 StackSlotForVirtReg
.insert(I
, std::make_pair(VirtReg
, FrameIdx
));
248 /// removePhysReg - This method marks the specified physical register as no
249 /// longer being in use.
251 void RA::removePhysReg(unsigned PhysReg
) {
252 PhysRegsUsed
[PhysReg
] = -1; // PhyReg no longer used
254 std::vector
<unsigned>::iterator It
=
255 std::find(PhysRegsUseOrder
.begin(), PhysRegsUseOrder
.end(), PhysReg
);
256 if (It
!= PhysRegsUseOrder
.end())
257 PhysRegsUseOrder
.erase(It
);
261 /// spillVirtReg - This method spills the value specified by PhysReg into the
262 /// virtual register slot specified by VirtReg. It then updates the RA data
263 /// structures to indicate the fact that PhysReg is now available.
265 void RA::spillVirtReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
,
266 unsigned VirtReg
, unsigned PhysReg
) {
267 assert(VirtReg
&& "Spilling a physical register is illegal!"
268 " Must not have appropriate kill for the register or use exists beyond"
269 " the intended one.");
270 DEBUG(std::cerr
<< " Spilling register " << RegInfo
->getName(PhysReg
);
271 std::cerr
<< " containing %reg" << VirtReg
;
272 if (!isVirtRegModified(VirtReg
))
273 std::cerr
<< " which has not been modified, so no store necessary!");
275 // Otherwise, there is a virtual register corresponding to this physical
276 // register. We only need to spill it into its stack slot if it has been
278 if (isVirtRegModified(VirtReg
)) {
279 const TargetRegisterClass
*RC
= MF
->getSSARegMap()->getRegClass(VirtReg
);
280 int FrameIndex
= getStackSpaceFor(VirtReg
, RC
);
281 DEBUG(std::cerr
<< " to stack slot #" << FrameIndex
);
282 RegInfo
->storeRegToStackSlot(MBB
, I
, PhysReg
, FrameIndex
, RC
);
283 ++NumStores
; // Update statistics
286 getVirt2PhysRegMapSlot(VirtReg
) = 0; // VirtReg no longer available
288 DEBUG(std::cerr
<< "\n");
289 removePhysReg(PhysReg
);
293 /// spillPhysReg - This method spills the specified physical register into the
294 /// virtual register slot associated with it. If OnlyVirtRegs is set to true,
295 /// then the request is ignored if the physical register does not contain a
296 /// virtual register.
298 void RA::spillPhysReg(MachineBasicBlock
&MBB
, MachineInstr
*I
,
299 unsigned PhysReg
, bool OnlyVirtRegs
) {
300 if (PhysRegsUsed
[PhysReg
] != -1) { // Only spill it if it's used!
301 if (PhysRegsUsed
[PhysReg
] || !OnlyVirtRegs
)
302 spillVirtReg(MBB
, I
, PhysRegsUsed
[PhysReg
], PhysReg
);
304 // If the selected register aliases any other registers, we must make
305 // sure that one of the aliases isn't alive...
306 for (const unsigned *AliasSet
= RegInfo
->getAliasSet(PhysReg
);
307 *AliasSet
; ++AliasSet
)
308 if (PhysRegsUsed
[*AliasSet
] != -1) // Spill aliased register...
309 if (PhysRegsUsed
[*AliasSet
] || !OnlyVirtRegs
)
310 spillVirtReg(MBB
, I
, PhysRegsUsed
[*AliasSet
], *AliasSet
);
315 /// assignVirtToPhysReg - This method updates local state so that we know
316 /// that PhysReg is the proper container for VirtReg now. The physical
317 /// register must not be used for anything else when this is called.
319 void RA::assignVirtToPhysReg(unsigned VirtReg
, unsigned PhysReg
) {
320 assert(PhysRegsUsed
[PhysReg
] == -1 && "Phys reg already assigned!");
321 // Update information to note the fact that this register was just used, and
323 PhysRegsUsed
[PhysReg
] = VirtReg
;
324 getVirt2PhysRegMapSlot(VirtReg
) = PhysReg
;
325 PhysRegsUseOrder
.push_back(PhysReg
); // New use of PhysReg
329 /// isPhysRegAvailable - Return true if the specified physical register is free
330 /// and available for use. This also includes checking to see if aliased
331 /// registers are all free...
333 bool RA::isPhysRegAvailable(unsigned PhysReg
) const {
334 if (PhysRegsUsed
[PhysReg
] != -1) return false;
336 // If the selected register aliases any other allocated registers, it is
338 for (const unsigned *AliasSet
= RegInfo
->getAliasSet(PhysReg
);
339 *AliasSet
; ++AliasSet
)
340 if (PhysRegsUsed
[*AliasSet
] != -1) // Aliased register in use?
341 return false; // Can't use this reg then.
346 /// getFreeReg - Look to see if there is a free register available in the
347 /// specified register class. If not, return 0.
349 unsigned RA::getFreeReg(const TargetRegisterClass
*RC
) {
350 // Get iterators defining the range of registers that are valid to allocate in
351 // this class, which also specifies the preferred allocation order.
352 TargetRegisterClass::iterator RI
= RC
->allocation_order_begin(*MF
);
353 TargetRegisterClass::iterator RE
= RC
->allocation_order_end(*MF
);
355 for (; RI
!= RE
; ++RI
)
356 if (isPhysRegAvailable(*RI
)) { // Is reg unused?
357 assert(*RI
!= 0 && "Cannot use register!");
358 return *RI
; // Found an unused register!
364 /// liberatePhysReg - Make sure the specified physical register is available for
365 /// use. If there is currently a value in it, it is either moved out of the way
366 /// or spilled to memory.
368 void RA::liberatePhysReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&I
,
370 spillPhysReg(MBB
, I
, PhysReg
);
374 /// getReg - Find a physical register to hold the specified virtual
375 /// register. If all compatible physical registers are used, this method spills
376 /// the last used virtual register to the stack, and uses that register.
378 unsigned RA::getReg(MachineBasicBlock
&MBB
, MachineInstr
*I
,
380 const TargetRegisterClass
*RC
= MF
->getSSARegMap()->getRegClass(VirtReg
);
382 // First check to see if we have a free register of the requested type...
383 unsigned PhysReg
= getFreeReg(RC
);
385 // If we didn't find an unused register, scavenge one now!
387 assert(!PhysRegsUseOrder
.empty() && "No allocated registers??");
389 // Loop over all of the preallocated registers from the least recently used
390 // to the most recently used. When we find one that is capable of holding
391 // our register, use it.
392 for (unsigned i
= 0; PhysReg
== 0; ++i
) {
393 assert(i
!= PhysRegsUseOrder
.size() &&
394 "Couldn't find a register of the appropriate class!");
396 unsigned R
= PhysRegsUseOrder
[i
];
398 // We can only use this register if it holds a virtual register (ie, it
399 // can be spilled). Do not use it if it is an explicitly allocated
400 // physical register!
401 assert(PhysRegsUsed
[R
] != -1 &&
402 "PhysReg in PhysRegsUseOrder, but is not allocated?");
403 if (PhysRegsUsed
[R
]) {
404 // If the current register is compatible, use it.
405 if (RC
->contains(R
)) {
409 // If one of the registers aliased to the current register is
410 // compatible, use it.
411 for (const unsigned *AliasSet
= RegInfo
->getAliasSet(R
);
412 *AliasSet
; ++AliasSet
) {
413 if (RC
->contains(*AliasSet
)) {
414 PhysReg
= *AliasSet
; // Take an aliased register
422 assert(PhysReg
&& "Physical register not assigned!?!?");
424 // At this point PhysRegsUseOrder[i] is the least recently used register of
425 // compatible register class. Spill it to memory and reap its remains.
426 spillPhysReg(MBB
, I
, PhysReg
);
429 // Now that we know which register we need to assign this to, do it now!
430 assignVirtToPhysReg(VirtReg
, PhysReg
);
435 /// reloadVirtReg - This method transforms the specified specified virtual
436 /// register use to refer to a physical register. This method may do this in
437 /// one of several ways: if the register is available in a physical register
438 /// already, it uses that physical register. If the value is not in a physical
439 /// register, and if there are physical registers available, it loads it into a
440 /// register. If register pressure is high, and it is possible, it tries to
441 /// fold the load of the virtual register into the instruction itself. It
442 /// avoids doing this if register pressure is low to improve the chance that
443 /// subsequent instructions can use the reloaded value. This method returns the
444 /// modified instruction.
446 MachineInstr
*RA::reloadVirtReg(MachineBasicBlock
&MBB
, MachineInstr
*MI
,
448 unsigned VirtReg
= MI
->getOperand(OpNum
).getReg();
450 // If the virtual register is already available, just update the instruction
452 if (unsigned PR
= getVirt2PhysRegMapSlot(VirtReg
)) {
453 MarkPhysRegRecentlyUsed(PR
); // Already have this value available!
454 MI
->getOperand(OpNum
).setReg(PR
); // Assign the input register
458 // Otherwise, we need to fold it into the current instruction, or reload it.
459 // If we have registers available to hold the value, use them.
460 const TargetRegisterClass
*RC
= MF
->getSSARegMap()->getRegClass(VirtReg
);
461 unsigned PhysReg
= getFreeReg(RC
);
462 int FrameIndex
= getStackSpaceFor(VirtReg
, RC
);
464 if (PhysReg
) { // Register is available, allocate it!
465 assignVirtToPhysReg(VirtReg
, PhysReg
);
466 } else { // No registers available.
467 // If we can fold this spill into this instruction, do so now.
468 if (MachineInstr
* FMI
= RegInfo
->foldMemoryOperand(MI
, OpNum
, FrameIndex
)){
470 // Since we changed the address of MI, make sure to update live variables
471 // to know that the new instruction has the properties of the old one.
472 LV
->instructionChanged(MI
, FMI
);
473 return MBB
.insert(MBB
.erase(MI
), FMI
);
476 // It looks like we can't fold this virtual register load into this
477 // instruction. Force some poor hapless value out of the register file to
478 // make room for the new register, and reload it.
479 PhysReg
= getReg(MBB
, MI
, VirtReg
);
482 markVirtRegModified(VirtReg
, false); // Note that this reg was just reloaded
484 DEBUG(std::cerr
<< " Reloading %reg" << VirtReg
<< " into "
485 << RegInfo
->getName(PhysReg
) << "\n");
487 // Add move instruction(s)
488 RegInfo
->loadRegFromStackSlot(MBB
, MI
, PhysReg
, FrameIndex
, RC
);
489 ++NumLoads
; // Update statistics
491 PhysRegsEverUsed
[PhysReg
] = true;
492 MI
->getOperand(OpNum
).setReg(PhysReg
); // Assign the input register
498 void RA::AllocateBasicBlock(MachineBasicBlock
&MBB
) {
499 // loop over each instruction
500 MachineBasicBlock::iterator MII
= MBB
.begin();
501 const TargetInstrInfo
&TII
= *TM
->getInstrInfo();
503 // If this is the first basic block in the machine function, add live-in
504 // registers as active.
505 if (&MBB
== &*MF
->begin()) {
506 for (MachineFunction::livein_iterator I
= MF
->livein_begin(),
507 E
= MF
->livein_end(); I
!= E
; ++I
) {
508 unsigned Reg
= I
->first
;
509 PhysRegsEverUsed
[Reg
] = true;
510 PhysRegsUsed
[Reg
] = 0; // It is free and reserved now
511 PhysRegsUseOrder
.push_back(Reg
);
512 for (const unsigned *AliasSet
= RegInfo
->getAliasSet(Reg
);
513 *AliasSet
; ++AliasSet
) {
514 PhysRegsUseOrder
.push_back(*AliasSet
);
515 PhysRegsUsed
[*AliasSet
] = 0; // It is free and reserved now
516 PhysRegsEverUsed
[*AliasSet
] = true;
521 // Otherwise, sequentially allocate each instruction in the MBB.
522 while (MII
!= MBB
.end()) {
523 MachineInstr
*MI
= MII
++;
524 const TargetInstrDescriptor
&TID
= TII
.get(MI
->getOpcode());
525 DEBUG(std::cerr
<< "\nStarting RegAlloc of: " << *MI
;
526 std::cerr
<< " Regs have values: ";
527 for (unsigned i
= 0; i
!= RegInfo
->getNumRegs(); ++i
)
528 if (PhysRegsUsed
[i
] != -1)
529 std::cerr
<< "[" << RegInfo
->getName(i
)
530 << ",%reg" << PhysRegsUsed
[i
] << "] ";
533 // Loop over the implicit uses, making sure that they are at the head of the
534 // use order list, so they don't get reallocated.
535 if (TID
.ImplicitUses
) {
536 for (const unsigned *ImplicitUses
= TID
.ImplicitUses
;
537 *ImplicitUses
; ++ImplicitUses
)
538 MarkPhysRegRecentlyUsed(*ImplicitUses
);
541 // Get the used operands into registers. This has the potential to spill
542 // incoming values if we are out of registers. Note that we completely
543 // ignore physical register uses here. We assume that if an explicit
544 // physical register is referenced by the instruction, that it is guaranteed
545 // to be live-in, or the input is badly hosed.
547 for (unsigned i
= 0; i
!= MI
->getNumOperands(); ++i
) {
548 MachineOperand
& MO
= MI
->getOperand(i
);
549 // here we are looking for only used operands (never def&use)
550 if (!MO
.isDef() && MO
.isRegister() && MO
.getReg() &&
551 MRegisterInfo::isVirtualRegister(MO
.getReg()))
552 MI
= reloadVirtReg(MBB
, MI
, i
);
555 // If this instruction is the last user of anything in registers, kill the
556 // value, freeing the register being used, so it doesn't need to be
557 // spilled to memory.
559 for (LiveVariables::killed_iterator KI
= LV
->killed_begin(MI
),
560 KE
= LV
->killed_end(MI
); KI
!= KE
; ++KI
) {
561 unsigned VirtReg
= *KI
;
562 unsigned PhysReg
= VirtReg
;
563 if (MRegisterInfo::isVirtualRegister(VirtReg
)) {
564 // If the virtual register was never materialized into a register, it
565 // might not be in the map, but it won't hurt to zero it out anyway.
566 unsigned &PhysRegSlot
= getVirt2PhysRegMapSlot(VirtReg
);
567 PhysReg
= PhysRegSlot
;
572 DEBUG(std::cerr
<< " Last use of " << RegInfo
->getName(PhysReg
)
573 << "[%reg" << VirtReg
<<"], removing it from live set\n");
574 removePhysReg(PhysReg
);
578 // Loop over all of the operands of the instruction, spilling registers that
579 // are defined, and marking explicit destinations in the PhysRegsUsed map.
580 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
581 MachineOperand
& MO
= MI
->getOperand(i
);
582 if (MO
.isDef() && MO
.isRegister() && MO
.getReg() &&
583 MRegisterInfo::isPhysicalRegister(MO
.getReg())) {
584 unsigned Reg
= MO
.getReg();
585 PhysRegsEverUsed
[Reg
] = true;
586 spillPhysReg(MBB
, MI
, Reg
, true); // Spill any existing value in the reg
587 PhysRegsUsed
[Reg
] = 0; // It is free and reserved now
588 PhysRegsUseOrder
.push_back(Reg
);
589 for (const unsigned *AliasSet
= RegInfo
->getAliasSet(Reg
);
590 *AliasSet
; ++AliasSet
) {
591 PhysRegsUseOrder
.push_back(*AliasSet
);
592 PhysRegsUsed
[*AliasSet
] = 0; // It is free and reserved now
593 PhysRegsEverUsed
[*AliasSet
] = true;
598 // Loop over the implicit defs, spilling them as well.
599 if (TID
.ImplicitDefs
) {
600 for (const unsigned *ImplicitDefs
= TID
.ImplicitDefs
;
601 *ImplicitDefs
; ++ImplicitDefs
) {
602 unsigned Reg
= *ImplicitDefs
;
603 spillPhysReg(MBB
, MI
, Reg
, true);
604 PhysRegsUseOrder
.push_back(Reg
);
605 PhysRegsUsed
[Reg
] = 0; // It is free and reserved now
606 PhysRegsEverUsed
[Reg
] = true;
608 for (const unsigned *AliasSet
= RegInfo
->getAliasSet(Reg
);
609 *AliasSet
; ++AliasSet
) {
610 PhysRegsUseOrder
.push_back(*AliasSet
);
611 PhysRegsUsed
[*AliasSet
] = 0; // It is free and reserved now
612 PhysRegsEverUsed
[*AliasSet
] = true;
617 // Okay, we have allocated all of the source operands and spilled any values
618 // that would be destroyed by defs of this instruction. Loop over the
619 // explicit defs and assign them to a register, spilling incoming values if
620 // we need to scavenge a register.
622 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
623 MachineOperand
& MO
= MI
->getOperand(i
);
624 if (MO
.isDef() && MO
.isRegister() && MO
.getReg() &&
625 MRegisterInfo::isVirtualRegister(MO
.getReg())) {
626 unsigned DestVirtReg
= MO
.getReg();
627 unsigned DestPhysReg
;
629 // If DestVirtReg already has a value, use it.
630 if (!(DestPhysReg
= getVirt2PhysRegMapSlot(DestVirtReg
)))
631 DestPhysReg
= getReg(MBB
, MI
, DestVirtReg
);
632 PhysRegsEverUsed
[DestPhysReg
] = true;
633 markVirtRegModified(DestVirtReg
);
634 MI
->getOperand(i
).setReg(DestPhysReg
); // Assign the output register
638 // If this instruction defines any registers that are immediately dead,
641 for (LiveVariables::killed_iterator KI
= LV
->dead_begin(MI
),
642 KE
= LV
->dead_end(MI
); KI
!= KE
; ++KI
) {
643 unsigned VirtReg
= *KI
;
644 unsigned PhysReg
= VirtReg
;
645 if (MRegisterInfo::isVirtualRegister(VirtReg
)) {
646 unsigned &PhysRegSlot
= getVirt2PhysRegMapSlot(VirtReg
);
647 PhysReg
= PhysRegSlot
;
648 assert(PhysReg
!= 0);
653 DEBUG(std::cerr
<< " Register " << RegInfo
->getName(PhysReg
)
654 << " [%reg" << VirtReg
655 << "] is never used, removing it frame live list\n");
656 removePhysReg(PhysReg
);
660 // Finally, if this is a noop copy instruction, zap it.
661 unsigned SrcReg
, DstReg
;
662 if (TII
.isMoveInstr(*MI
, SrcReg
, DstReg
) && SrcReg
== DstReg
)
666 MachineBasicBlock::iterator MI
= MBB
.getFirstTerminator();
668 // Spill all physical registers holding virtual registers now.
669 for (unsigned i
= 0, e
= RegInfo
->getNumRegs(); i
!= e
; ++i
)
670 if (PhysRegsUsed
[i
] != -1)
671 if (unsigned VirtReg
= PhysRegsUsed
[i
])
672 spillVirtReg(MBB
, MI
, VirtReg
, i
);
677 // This checking code is very expensive.
679 for (unsigned i
= MRegisterInfo::FirstVirtualRegister
,
680 e
= MF
->getSSARegMap()->getLastVirtReg(); i
<= e
; ++i
)
681 if (unsigned PR
= Virt2PhysRegMap
[i
]) {
682 std::cerr
<< "Register still mapped: " << i
<< " -> " << PR
<< "\n";
685 assert(AllOk
&& "Virtual registers still in phys regs?");
688 // Clear any physical register which appear live at the end of the basic
689 // block, but which do not hold any virtual registers. e.g., the stack
691 PhysRegsUseOrder
.clear();
695 /// runOnMachineFunction - Register allocate the whole function
697 bool RA::runOnMachineFunction(MachineFunction
&Fn
) {
698 DEBUG(std::cerr
<< "Machine Function " << "\n");
700 TM
= &Fn
.getTarget();
701 RegInfo
= TM
->getRegisterInfo();
702 LV
= &getAnalysis
<LiveVariables
>();
704 PhysRegsEverUsed
= new bool[RegInfo
->getNumRegs()];
705 std::fill(PhysRegsEverUsed
, PhysRegsEverUsed
+RegInfo
->getNumRegs(), false);
706 Fn
.setUsedPhysRegs(PhysRegsEverUsed
);
708 PhysRegsUsed
.assign(RegInfo
->getNumRegs(), -1);
710 // initialize the virtual->physical register map to have a 'null'
711 // mapping for all virtual registers
712 Virt2PhysRegMap
.grow(MF
->getSSARegMap()->getLastVirtReg());
714 // Loop over all of the basic blocks, eliminating virtual register references
715 for (MachineFunction::iterator MBB
= Fn
.begin(), MBBe
= Fn
.end();
717 AllocateBasicBlock(*MBB
);
719 StackSlotForVirtReg
.clear();
720 PhysRegsUsed
.clear();
721 VirtRegModified
.clear();
722 Virt2PhysRegMap
.clear();
726 FunctionPass
*llvm::createLocalRegisterAllocator() {