Reverting back to original 1.8 version so I can manually merge in patch.
[llvm-complete.git] / lib / CodeGen / RegAllocLocal.cpp
blob9148d002474ba115f9a936254f5118ba4ee1a088
1 //===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regalloc"
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/CodeGen/MachineFunctionPass.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/SSARegMap.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/RegAllocRegistry.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/Visibility.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/Statistic.h"
30 #include <algorithm>
31 #include <iostream>
32 using namespace llvm;
34 namespace {
35 static Statistic<> NumStores("ra-local", "Number of stores added");
36 static Statistic<> NumLoads ("ra-local", "Number of loads added");
37 static Statistic<> NumFolded("ra-local", "Number of loads/stores folded "
38 "into instructions");
40 static RegisterRegAlloc
41 localRegAlloc("local", " local register allocator",
42 createLocalRegisterAllocator);
45 class VISIBILITY_HIDDEN RA : public MachineFunctionPass {
46 const TargetMachine *TM;
47 MachineFunction *MF;
48 const MRegisterInfo *RegInfo;
49 LiveVariables *LV;
50 bool *PhysRegsEverUsed;
52 // StackSlotForVirtReg - Maps virtual regs to the frame index where these
53 // values are spilled.
54 std::map<unsigned, int> StackSlotForVirtReg;
56 // Virt2PhysRegMap - This map contains entries for each virtual register
57 // that is currently available in a physical register.
58 DenseMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
60 unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
61 return Virt2PhysRegMap[VirtReg];
64 // PhysRegsUsed - This array is effectively a map, containing entries for
65 // each physical register that currently has a value (ie, it is in
66 // Virt2PhysRegMap). The value mapped to is the virtual register
67 // corresponding to the physical register (the inverse of the
68 // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
69 // because it is used by a future instruction. If the entry for a physical
70 // register is -1, then the physical register is "not in the map".
72 std::vector<int> PhysRegsUsed;
74 // PhysRegsUseOrder - This contains a list of the physical registers that
75 // currently have a virtual register value in them. This list provides an
76 // ordering of registers, imposing a reallocation order. This list is only
77 // used if all registers are allocated and we have to spill one, in which
78 // case we spill the least recently used register. Entries at the front of
79 // the list are the least recently used registers, entries at the back are
80 // the most recently used.
82 std::vector<unsigned> PhysRegsUseOrder;
84 // VirtRegModified - This bitset contains information about which virtual
85 // registers need to be spilled back to memory when their registers are
86 // scavenged. If a virtual register has simply been rematerialized, there
87 // is no reason to spill it to memory when we need the register back.
89 std::vector<bool> VirtRegModified;
91 void markVirtRegModified(unsigned Reg, bool Val = true) {
92 assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
93 Reg -= MRegisterInfo::FirstVirtualRegister;
94 if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
95 VirtRegModified[Reg] = Val;
98 bool isVirtRegModified(unsigned Reg) const {
99 assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
100 assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
101 && "Illegal virtual register!");
102 return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
105 void MarkPhysRegRecentlyUsed(unsigned Reg) {
106 if(PhysRegsUseOrder.empty() ||
107 PhysRegsUseOrder.back() == Reg) return; // Already most recently used
109 for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
110 if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
111 unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle
112 PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
113 // Add it to the end of the list
114 PhysRegsUseOrder.push_back(RegMatch);
115 if (RegMatch == Reg)
116 return; // Found an exact match, exit early
120 public:
121 virtual const char *getPassName() const {
122 return "Local Register Allocator";
125 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
126 AU.addRequired<LiveVariables>();
127 AU.addRequiredID(PHIEliminationID);
128 AU.addRequiredID(TwoAddressInstructionPassID);
129 MachineFunctionPass::getAnalysisUsage(AU);
132 private:
133 /// runOnMachineFunction - Register allocate the whole function
134 bool runOnMachineFunction(MachineFunction &Fn);
136 /// AllocateBasicBlock - Register allocate the specified basic block.
137 void AllocateBasicBlock(MachineBasicBlock &MBB);
140 /// areRegsEqual - This method returns true if the specified registers are
141 /// related to each other. To do this, it checks to see if they are equal
142 /// or if the first register is in the alias set of the second register.
144 bool areRegsEqual(unsigned R1, unsigned R2) const {
145 if (R1 == R2) return true;
146 for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
147 *AliasSet; ++AliasSet) {
148 if (*AliasSet == R1) return true;
150 return false;
153 /// getStackSpaceFor - This returns the frame index of the specified virtual
154 /// register on the stack, allocating space if necessary.
155 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
157 /// removePhysReg - This method marks the specified physical register as no
158 /// longer being in use.
160 void removePhysReg(unsigned PhysReg);
162 /// spillVirtReg - This method spills the value specified by PhysReg into
163 /// the virtual register slot specified by VirtReg. It then updates the RA
164 /// data structures to indicate the fact that PhysReg is now available.
166 void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
167 unsigned VirtReg, unsigned PhysReg);
169 /// spillPhysReg - This method spills the specified physical register into
170 /// the virtual register slot associated with it. If OnlyVirtRegs is set to
171 /// true, then the request is ignored if the physical register does not
172 /// contain a virtual register.
174 void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
175 unsigned PhysReg, bool OnlyVirtRegs = false);
177 /// assignVirtToPhysReg - This method updates local state so that we know
178 /// that PhysReg is the proper container for VirtReg now. The physical
179 /// register must not be used for anything else when this is called.
181 void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
183 /// liberatePhysReg - Make sure the specified physical register is available
184 /// for use. If there is currently a value in it, it is either moved out of
185 /// the way or spilled to memory.
187 void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
188 unsigned PhysReg);
190 /// isPhysRegAvailable - Return true if the specified physical register is
191 /// free and available for use. This also includes checking to see if
192 /// aliased registers are all free...
194 bool isPhysRegAvailable(unsigned PhysReg) const;
196 /// getFreeReg - Look to see if there is a free register available in the
197 /// specified register class. If not, return 0.
199 unsigned getFreeReg(const TargetRegisterClass *RC);
201 /// getReg - Find a physical register to hold the specified virtual
202 /// register. If all compatible physical registers are used, this method
203 /// spills the last used virtual register to the stack, and uses that
204 /// register.
206 unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI,
207 unsigned VirtReg);
209 /// reloadVirtReg - This method transforms the specified specified virtual
210 /// register use to refer to a physical register. This method may do this
211 /// in one of several ways: if the register is available in a physical
212 /// register already, it uses that physical register. If the value is not
213 /// in a physical register, and if there are physical registers available,
214 /// it loads it into a register. If register pressure is high, and it is
215 /// possible, it tries to fold the load of the virtual register into the
216 /// instruction itself. It avoids doing this if register pressure is low to
217 /// improve the chance that subsequent instructions can use the reloaded
218 /// value. This method returns the modified instruction.
220 MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
221 unsigned OpNum);
224 void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
225 unsigned PhysReg);
229 /// getStackSpaceFor - This allocates space for the specified virtual register
230 /// to be held on the stack.
231 int RA::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
232 // Find the location Reg would belong...
233 std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg);
235 if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
236 return I->second; // Already has space allocated?
238 // Allocate a new stack object for this spill location...
239 int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
240 RC->getAlignment());
242 // Assign the slot...
243 StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
244 return FrameIdx;
248 /// removePhysReg - This method marks the specified physical register as no
249 /// longer being in use.
251 void RA::removePhysReg(unsigned PhysReg) {
252 PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
254 std::vector<unsigned>::iterator It =
255 std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
256 if (It != PhysRegsUseOrder.end())
257 PhysRegsUseOrder.erase(It);
261 /// spillVirtReg - This method spills the value specified by PhysReg into the
262 /// virtual register slot specified by VirtReg. It then updates the RA data
263 /// structures to indicate the fact that PhysReg is now available.
265 void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
266 unsigned VirtReg, unsigned PhysReg) {
267 assert(VirtReg && "Spilling a physical register is illegal!"
268 " Must not have appropriate kill for the register or use exists beyond"
269 " the intended one.");
270 DEBUG(std::cerr << " Spilling register " << RegInfo->getName(PhysReg);
271 std::cerr << " containing %reg" << VirtReg;
272 if (!isVirtRegModified(VirtReg))
273 std::cerr << " which has not been modified, so no store necessary!");
275 // Otherwise, there is a virtual register corresponding to this physical
276 // register. We only need to spill it into its stack slot if it has been
277 // modified.
278 if (isVirtRegModified(VirtReg)) {
279 const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
280 int FrameIndex = getStackSpaceFor(VirtReg, RC);
281 DEBUG(std::cerr << " to stack slot #" << FrameIndex);
282 RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RC);
283 ++NumStores; // Update statistics
286 getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
288 DEBUG(std::cerr << "\n");
289 removePhysReg(PhysReg);
293 /// spillPhysReg - This method spills the specified physical register into the
294 /// virtual register slot associated with it. If OnlyVirtRegs is set to true,
295 /// then the request is ignored if the physical register does not contain a
296 /// virtual register.
298 void RA::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
299 unsigned PhysReg, bool OnlyVirtRegs) {
300 if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
301 if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
302 spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
303 } else {
304 // If the selected register aliases any other registers, we must make
305 // sure that one of the aliases isn't alive...
306 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
307 *AliasSet; ++AliasSet)
308 if (PhysRegsUsed[*AliasSet] != -1) // Spill aliased register...
309 if (PhysRegsUsed[*AliasSet] || !OnlyVirtRegs)
310 spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
315 /// assignVirtToPhysReg - This method updates local state so that we know
316 /// that PhysReg is the proper container for VirtReg now. The physical
317 /// register must not be used for anything else when this is called.
319 void RA::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
320 assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
321 // Update information to note the fact that this register was just used, and
322 // it holds VirtReg.
323 PhysRegsUsed[PhysReg] = VirtReg;
324 getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
325 PhysRegsUseOrder.push_back(PhysReg); // New use of PhysReg
329 /// isPhysRegAvailable - Return true if the specified physical register is free
330 /// and available for use. This also includes checking to see if aliased
331 /// registers are all free...
333 bool RA::isPhysRegAvailable(unsigned PhysReg) const {
334 if (PhysRegsUsed[PhysReg] != -1) return false;
336 // If the selected register aliases any other allocated registers, it is
337 // not free!
338 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
339 *AliasSet; ++AliasSet)
340 if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
341 return false; // Can't use this reg then.
342 return true;
346 /// getFreeReg - Look to see if there is a free register available in the
347 /// specified register class. If not, return 0.
349 unsigned RA::getFreeReg(const TargetRegisterClass *RC) {
350 // Get iterators defining the range of registers that are valid to allocate in
351 // this class, which also specifies the preferred allocation order.
352 TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
353 TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
355 for (; RI != RE; ++RI)
356 if (isPhysRegAvailable(*RI)) { // Is reg unused?
357 assert(*RI != 0 && "Cannot use register!");
358 return *RI; // Found an unused register!
360 return 0;
364 /// liberatePhysReg - Make sure the specified physical register is available for
365 /// use. If there is currently a value in it, it is either moved out of the way
366 /// or spilled to memory.
368 void RA::liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
369 unsigned PhysReg) {
370 spillPhysReg(MBB, I, PhysReg);
374 /// getReg - Find a physical register to hold the specified virtual
375 /// register. If all compatible physical registers are used, this method spills
376 /// the last used virtual register to the stack, and uses that register.
378 unsigned RA::getReg(MachineBasicBlock &MBB, MachineInstr *I,
379 unsigned VirtReg) {
380 const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
382 // First check to see if we have a free register of the requested type...
383 unsigned PhysReg = getFreeReg(RC);
385 // If we didn't find an unused register, scavenge one now!
386 if (PhysReg == 0) {
387 assert(!PhysRegsUseOrder.empty() && "No allocated registers??");
389 // Loop over all of the preallocated registers from the least recently used
390 // to the most recently used. When we find one that is capable of holding
391 // our register, use it.
392 for (unsigned i = 0; PhysReg == 0; ++i) {
393 assert(i != PhysRegsUseOrder.size() &&
394 "Couldn't find a register of the appropriate class!");
396 unsigned R = PhysRegsUseOrder[i];
398 // We can only use this register if it holds a virtual register (ie, it
399 // can be spilled). Do not use it if it is an explicitly allocated
400 // physical register!
401 assert(PhysRegsUsed[R] != -1 &&
402 "PhysReg in PhysRegsUseOrder, but is not allocated?");
403 if (PhysRegsUsed[R]) {
404 // If the current register is compatible, use it.
405 if (RC->contains(R)) {
406 PhysReg = R;
407 break;
408 } else {
409 // If one of the registers aliased to the current register is
410 // compatible, use it.
411 for (const unsigned *AliasSet = RegInfo->getAliasSet(R);
412 *AliasSet; ++AliasSet) {
413 if (RC->contains(*AliasSet)) {
414 PhysReg = *AliasSet; // Take an aliased register
415 break;
422 assert(PhysReg && "Physical register not assigned!?!?");
424 // At this point PhysRegsUseOrder[i] is the least recently used register of
425 // compatible register class. Spill it to memory and reap its remains.
426 spillPhysReg(MBB, I, PhysReg);
429 // Now that we know which register we need to assign this to, do it now!
430 assignVirtToPhysReg(VirtReg, PhysReg);
431 return PhysReg;
435 /// reloadVirtReg - This method transforms the specified specified virtual
436 /// register use to refer to a physical register. This method may do this in
437 /// one of several ways: if the register is available in a physical register
438 /// already, it uses that physical register. If the value is not in a physical
439 /// register, and if there are physical registers available, it loads it into a
440 /// register. If register pressure is high, and it is possible, it tries to
441 /// fold the load of the virtual register into the instruction itself. It
442 /// avoids doing this if register pressure is low to improve the chance that
443 /// subsequent instructions can use the reloaded value. This method returns the
444 /// modified instruction.
446 MachineInstr *RA::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
447 unsigned OpNum) {
448 unsigned VirtReg = MI->getOperand(OpNum).getReg();
450 // If the virtual register is already available, just update the instruction
451 // and return.
452 if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
453 MarkPhysRegRecentlyUsed(PR); // Already have this value available!
454 MI->getOperand(OpNum).setReg(PR); // Assign the input register
455 return MI;
458 // Otherwise, we need to fold it into the current instruction, or reload it.
459 // If we have registers available to hold the value, use them.
460 const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
461 unsigned PhysReg = getFreeReg(RC);
462 int FrameIndex = getStackSpaceFor(VirtReg, RC);
464 if (PhysReg) { // Register is available, allocate it!
465 assignVirtToPhysReg(VirtReg, PhysReg);
466 } else { // No registers available.
467 // If we can fold this spill into this instruction, do so now.
468 if (MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)){
469 ++NumFolded;
470 // Since we changed the address of MI, make sure to update live variables
471 // to know that the new instruction has the properties of the old one.
472 LV->instructionChanged(MI, FMI);
473 return MBB.insert(MBB.erase(MI), FMI);
476 // It looks like we can't fold this virtual register load into this
477 // instruction. Force some poor hapless value out of the register file to
478 // make room for the new register, and reload it.
479 PhysReg = getReg(MBB, MI, VirtReg);
482 markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded
484 DEBUG(std::cerr << " Reloading %reg" << VirtReg << " into "
485 << RegInfo->getName(PhysReg) << "\n");
487 // Add move instruction(s)
488 RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
489 ++NumLoads; // Update statistics
491 PhysRegsEverUsed[PhysReg] = true;
492 MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
493 return MI;
498 void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
499 // loop over each instruction
500 MachineBasicBlock::iterator MII = MBB.begin();
501 const TargetInstrInfo &TII = *TM->getInstrInfo();
503 // If this is the first basic block in the machine function, add live-in
504 // registers as active.
505 if (&MBB == &*MF->begin()) {
506 for (MachineFunction::livein_iterator I = MF->livein_begin(),
507 E = MF->livein_end(); I != E; ++I) {
508 unsigned Reg = I->first;
509 PhysRegsEverUsed[Reg] = true;
510 PhysRegsUsed[Reg] = 0; // It is free and reserved now
511 PhysRegsUseOrder.push_back(Reg);
512 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
513 *AliasSet; ++AliasSet) {
514 PhysRegsUseOrder.push_back(*AliasSet);
515 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
516 PhysRegsEverUsed[*AliasSet] = true;
521 // Otherwise, sequentially allocate each instruction in the MBB.
522 while (MII != MBB.end()) {
523 MachineInstr *MI = MII++;
524 const TargetInstrDescriptor &TID = TII.get(MI->getOpcode());
525 DEBUG(std::cerr << "\nStarting RegAlloc of: " << *MI;
526 std::cerr << " Regs have values: ";
527 for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
528 if (PhysRegsUsed[i] != -1)
529 std::cerr << "[" << RegInfo->getName(i)
530 << ",%reg" << PhysRegsUsed[i] << "] ";
531 std::cerr << "\n");
533 // Loop over the implicit uses, making sure that they are at the head of the
534 // use order list, so they don't get reallocated.
535 if (TID.ImplicitUses) {
536 for (const unsigned *ImplicitUses = TID.ImplicitUses;
537 *ImplicitUses; ++ImplicitUses)
538 MarkPhysRegRecentlyUsed(*ImplicitUses);
541 // Get the used operands into registers. This has the potential to spill
542 // incoming values if we are out of registers. Note that we completely
543 // ignore physical register uses here. We assume that if an explicit
544 // physical register is referenced by the instruction, that it is guaranteed
545 // to be live-in, or the input is badly hosed.
547 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
548 MachineOperand& MO = MI->getOperand(i);
549 // here we are looking for only used operands (never def&use)
550 if (!MO.isDef() && MO.isRegister() && MO.getReg() &&
551 MRegisterInfo::isVirtualRegister(MO.getReg()))
552 MI = reloadVirtReg(MBB, MI, i);
555 // If this instruction is the last user of anything in registers, kill the
556 // value, freeing the register being used, so it doesn't need to be
557 // spilled to memory.
559 for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
560 KE = LV->killed_end(MI); KI != KE; ++KI) {
561 unsigned VirtReg = *KI;
562 unsigned PhysReg = VirtReg;
563 if (MRegisterInfo::isVirtualRegister(VirtReg)) {
564 // If the virtual register was never materialized into a register, it
565 // might not be in the map, but it won't hurt to zero it out anyway.
566 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
567 PhysReg = PhysRegSlot;
568 PhysRegSlot = 0;
571 if (PhysReg) {
572 DEBUG(std::cerr << " Last use of " << RegInfo->getName(PhysReg)
573 << "[%reg" << VirtReg <<"], removing it from live set\n");
574 removePhysReg(PhysReg);
578 // Loop over all of the operands of the instruction, spilling registers that
579 // are defined, and marking explicit destinations in the PhysRegsUsed map.
580 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
581 MachineOperand& MO = MI->getOperand(i);
582 if (MO.isDef() && MO.isRegister() && MO.getReg() &&
583 MRegisterInfo::isPhysicalRegister(MO.getReg())) {
584 unsigned Reg = MO.getReg();
585 PhysRegsEverUsed[Reg] = true;
586 spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in the reg
587 PhysRegsUsed[Reg] = 0; // It is free and reserved now
588 PhysRegsUseOrder.push_back(Reg);
589 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
590 *AliasSet; ++AliasSet) {
591 PhysRegsUseOrder.push_back(*AliasSet);
592 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
593 PhysRegsEverUsed[*AliasSet] = true;
598 // Loop over the implicit defs, spilling them as well.
599 if (TID.ImplicitDefs) {
600 for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
601 *ImplicitDefs; ++ImplicitDefs) {
602 unsigned Reg = *ImplicitDefs;
603 spillPhysReg(MBB, MI, Reg, true);
604 PhysRegsUseOrder.push_back(Reg);
605 PhysRegsUsed[Reg] = 0; // It is free and reserved now
606 PhysRegsEverUsed[Reg] = true;
608 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
609 *AliasSet; ++AliasSet) {
610 PhysRegsUseOrder.push_back(*AliasSet);
611 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
612 PhysRegsEverUsed[*AliasSet] = true;
617 // Okay, we have allocated all of the source operands and spilled any values
618 // that would be destroyed by defs of this instruction. Loop over the
619 // explicit defs and assign them to a register, spilling incoming values if
620 // we need to scavenge a register.
622 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
623 MachineOperand& MO = MI->getOperand(i);
624 if (MO.isDef() && MO.isRegister() && MO.getReg() &&
625 MRegisterInfo::isVirtualRegister(MO.getReg())) {
626 unsigned DestVirtReg = MO.getReg();
627 unsigned DestPhysReg;
629 // If DestVirtReg already has a value, use it.
630 if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
631 DestPhysReg = getReg(MBB, MI, DestVirtReg);
632 PhysRegsEverUsed[DestPhysReg] = true;
633 markVirtRegModified(DestVirtReg);
634 MI->getOperand(i).setReg(DestPhysReg); // Assign the output register
638 // If this instruction defines any registers that are immediately dead,
639 // kill them now.
641 for (LiveVariables::killed_iterator KI = LV->dead_begin(MI),
642 KE = LV->dead_end(MI); KI != KE; ++KI) {
643 unsigned VirtReg = *KI;
644 unsigned PhysReg = VirtReg;
645 if (MRegisterInfo::isVirtualRegister(VirtReg)) {
646 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
647 PhysReg = PhysRegSlot;
648 assert(PhysReg != 0);
649 PhysRegSlot = 0;
652 if (PhysReg) {
653 DEBUG(std::cerr << " Register " << RegInfo->getName(PhysReg)
654 << " [%reg" << VirtReg
655 << "] is never used, removing it frame live list\n");
656 removePhysReg(PhysReg);
660 // Finally, if this is a noop copy instruction, zap it.
661 unsigned SrcReg, DstReg;
662 if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg)
663 MBB.erase(MI);
666 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
668 // Spill all physical registers holding virtual registers now.
669 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
670 if (PhysRegsUsed[i] != -1)
671 if (unsigned VirtReg = PhysRegsUsed[i])
672 spillVirtReg(MBB, MI, VirtReg, i);
673 else
674 removePhysReg(i);
676 #if 0
677 // This checking code is very expensive.
678 bool AllOk = true;
679 for (unsigned i = MRegisterInfo::FirstVirtualRegister,
680 e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i)
681 if (unsigned PR = Virt2PhysRegMap[i]) {
682 std::cerr << "Register still mapped: " << i << " -> " << PR << "\n";
683 AllOk = false;
685 assert(AllOk && "Virtual registers still in phys regs?");
686 #endif
688 // Clear any physical register which appear live at the end of the basic
689 // block, but which do not hold any virtual registers. e.g., the stack
690 // pointer.
691 PhysRegsUseOrder.clear();
695 /// runOnMachineFunction - Register allocate the whole function
697 bool RA::runOnMachineFunction(MachineFunction &Fn) {
698 DEBUG(std::cerr << "Machine Function " << "\n");
699 MF = &Fn;
700 TM = &Fn.getTarget();
701 RegInfo = TM->getRegisterInfo();
702 LV = &getAnalysis<LiveVariables>();
704 PhysRegsEverUsed = new bool[RegInfo->getNumRegs()];
705 std::fill(PhysRegsEverUsed, PhysRegsEverUsed+RegInfo->getNumRegs(), false);
706 Fn.setUsedPhysRegs(PhysRegsEverUsed);
708 PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
710 // initialize the virtual->physical register map to have a 'null'
711 // mapping for all virtual registers
712 Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg());
714 // Loop over all of the basic blocks, eliminating virtual register references
715 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
716 MBB != MBBe; ++MBB)
717 AllocateBasicBlock(*MBB);
719 StackSlotForVirtReg.clear();
720 PhysRegsUsed.clear();
721 VirtRegModified.clear();
722 Virt2PhysRegMap.clear();
723 return true;
726 FunctionPass *llvm::createLocalRegisterAllocator() {
727 return new RA();