Reverting back to original 1.8 version so I can manually merge in patch.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / ScheduleDAGSimple.cpp
blobecdd51588c9c774ca42c3dbea79bf3c1482dee09
1 //===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by James M. Laskey and is distributed under the
6 // University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a simple two pass scheduler. The first pass attempts to push
11 // backward any lengthy instructions and critical paths. The second pass packs
12 // instructions into semi-optimal time slots.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "sched"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/ScheduleDAG.h"
19 #include "llvm/CodeGen/SchedulerRegistry.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/SSARegMap.h"
22 #include "llvm/Target/TargetData.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/Visibility.h"
27 #include <algorithm>
28 #include <iostream>
29 using namespace llvm;
32 namespace {
34 static RegisterScheduler
35 bfsDAGScheduler("none", " No scheduling: breadth first sequencing",
36 createBFS_DAGScheduler);
37 static RegisterScheduler
38 simpleDAGScheduler("simple",
39 " Simple two pass scheduling: minimize critical path "
40 "and maximize processor utilization",
41 createSimpleDAGScheduler);
42 static RegisterScheduler
43 noitinDAGScheduler("simple-noitin",
44 " Simple two pass scheduling: Same as simple "
45 "except using generic latency",
46 createNoItinsDAGScheduler);
48 class NodeInfo;
49 typedef NodeInfo *NodeInfoPtr;
50 typedef std::vector<NodeInfoPtr> NIVector;
51 typedef std::vector<NodeInfoPtr>::iterator NIIterator;
53 //===--------------------------------------------------------------------===//
54 ///
55 /// Node group - This struct is used to manage flagged node groups.
56 ///
57 class NodeGroup {
58 public:
59 NodeGroup *Next;
60 private:
61 NIVector Members; // Group member nodes
62 NodeInfo *Dominator; // Node with highest latency
63 unsigned Latency; // Total latency of the group
64 int Pending; // Number of visits pending before
65 // adding to order
67 public:
68 // Ctor.
69 NodeGroup() : Next(NULL), Dominator(NULL), Pending(0) {}
71 // Accessors
72 inline void setDominator(NodeInfo *D) { Dominator = D; }
73 inline NodeInfo *getTop() { return Members.front(); }
74 inline NodeInfo *getBottom() { return Members.back(); }
75 inline NodeInfo *getDominator() { return Dominator; }
76 inline void setLatency(unsigned L) { Latency = L; }
77 inline unsigned getLatency() { return Latency; }
78 inline int getPending() const { return Pending; }
79 inline void setPending(int P) { Pending = P; }
80 inline int addPending(int I) { return Pending += I; }
82 // Pass thru
83 inline bool group_empty() { return Members.empty(); }
84 inline NIIterator group_begin() { return Members.begin(); }
85 inline NIIterator group_end() { return Members.end(); }
86 inline void group_push_back(const NodeInfoPtr &NI) {
87 Members.push_back(NI);
89 inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) {
90 return Members.insert(Pos, NI);
92 inline void group_insert(NIIterator Pos, NIIterator First,
93 NIIterator Last) {
94 Members.insert(Pos, First, Last);
97 static void Add(NodeInfo *D, NodeInfo *U);
100 //===--------------------------------------------------------------------===//
102 /// NodeInfo - This struct tracks information used to schedule the a node.
104 class NodeInfo {
105 private:
106 int Pending; // Number of visits pending before
107 // adding to order
108 public:
109 SDNode *Node; // DAG node
110 InstrStage *StageBegin; // First stage in itinerary
111 InstrStage *StageEnd; // Last+1 stage in itinerary
112 unsigned Latency; // Total cycles to complete instr
113 bool IsCall : 1; // Is function call
114 bool IsLoad : 1; // Is memory load
115 bool IsStore : 1; // Is memory store
116 unsigned Slot; // Node's time slot
117 NodeGroup *Group; // Grouping information
118 #ifndef NDEBUG
119 unsigned Preorder; // Index before scheduling
120 #endif
122 // Ctor.
123 NodeInfo(SDNode *N = NULL)
124 : Pending(0)
125 , Node(N)
126 , StageBegin(NULL)
127 , StageEnd(NULL)
128 , Latency(0)
129 , IsCall(false)
130 , Slot(0)
131 , Group(NULL)
132 #ifndef NDEBUG
133 , Preorder(0)
134 #endif
137 // Accessors
138 inline bool isInGroup() const {
139 assert(!Group || !Group->group_empty() && "Group with no members");
140 return Group != NULL;
142 inline bool isGroupDominator() const {
143 return isInGroup() && Group->getDominator() == this;
145 inline int getPending() const {
146 return Group ? Group->getPending() : Pending;
148 inline void setPending(int P) {
149 if (Group) Group->setPending(P);
150 else Pending = P;
152 inline int addPending(int I) {
153 if (Group) return Group->addPending(I);
154 else return Pending += I;
158 //===--------------------------------------------------------------------===//
160 /// NodeGroupIterator - Iterates over all the nodes indicated by the node
161 /// info. If the node is in a group then iterate over the members of the
162 /// group, otherwise just the node info.
164 class NodeGroupIterator {
165 private:
166 NodeInfo *NI; // Node info
167 NIIterator NGI; // Node group iterator
168 NIIterator NGE; // Node group iterator end
170 public:
171 // Ctor.
172 NodeGroupIterator(NodeInfo *N) : NI(N) {
173 // If the node is in a group then set up the group iterator. Otherwise
174 // the group iterators will trip first time out.
175 if (N->isInGroup()) {
176 // get Group
177 NodeGroup *Group = NI->Group;
178 NGI = Group->group_begin();
179 NGE = Group->group_end();
180 // Prevent this node from being used (will be in members list
181 NI = NULL;
185 /// next - Return the next node info, otherwise NULL.
187 NodeInfo *next() {
188 // If members list
189 if (NGI != NGE) return *NGI++;
190 // Use node as the result (may be NULL)
191 NodeInfo *Result = NI;
192 // Only use once
193 NI = NULL;
194 // Return node or NULL
195 return Result;
198 //===--------------------------------------------------------------------===//
201 //===--------------------------------------------------------------------===//
203 /// NodeGroupOpIterator - Iterates over all the operands of a node. If the
204 /// node is a member of a group, this iterates over all the operands of all
205 /// the members of the group.
207 class NodeGroupOpIterator {
208 private:
209 NodeInfo *NI; // Node containing operands
210 NodeGroupIterator GI; // Node group iterator
211 SDNode::op_iterator OI; // Operand iterator
212 SDNode::op_iterator OE; // Operand iterator end
214 /// CheckNode - Test if node has more operands. If not get the next node
215 /// skipping over nodes that have no operands.
216 void CheckNode() {
217 // Only if operands are exhausted first
218 while (OI == OE) {
219 // Get next node info
220 NodeInfo *NI = GI.next();
221 // Exit if nodes are exhausted
222 if (!NI) return;
223 // Get node itself
224 SDNode *Node = NI->Node;
225 // Set up the operand iterators
226 OI = Node->op_begin();
227 OE = Node->op_end();
231 public:
232 // Ctor.
233 NodeGroupOpIterator(NodeInfo *N)
234 : NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {}
236 /// isEnd - Returns true when not more operands are available.
238 inline bool isEnd() { CheckNode(); return OI == OE; }
240 /// next - Returns the next available operand.
242 inline SDOperand next() {
243 assert(OI != OE &&
244 "Not checking for end of NodeGroupOpIterator correctly");
245 return *OI++;
250 //===----------------------------------------------------------------------===//
252 /// BitsIterator - Provides iteration through individual bits in a bit vector.
254 template<class T>
255 class BitsIterator {
256 private:
257 T Bits; // Bits left to iterate through
259 public:
260 /// Ctor.
261 BitsIterator(T Initial) : Bits(Initial) {}
263 /// Next - Returns the next bit set or zero if exhausted.
264 inline T Next() {
265 // Get the rightmost bit set
266 T Result = Bits & -Bits;
267 // Remove from rest
268 Bits &= ~Result;
269 // Return single bit or zero
270 return Result;
274 //===----------------------------------------------------------------------===//
277 //===----------------------------------------------------------------------===//
279 /// ResourceTally - Manages the use of resources over time intervals. Each
280 /// item (slot) in the tally vector represents the resources used at a given
281 /// moment. A bit set to 1 indicates that a resource is in use, otherwise
282 /// available. An assumption is made that the tally is large enough to schedule
283 /// all current instructions (asserts otherwise.)
285 template<class T>
286 class ResourceTally {
287 private:
288 std::vector<T> Tally; // Resources used per slot
289 typedef typename std::vector<T>::iterator Iter;
290 // Tally iterator
292 /// SlotsAvailable - Returns true if all units are available.
294 bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
295 unsigned &Resource) {
296 assert(N && "Must check availability with N != 0");
297 // Determine end of interval
298 Iter End = Begin + N;
299 assert(End <= Tally.end() && "Tally is not large enough for schedule");
301 // Iterate thru each resource
302 BitsIterator<T> Resources(ResourceSet & ~*Begin);
303 while (unsigned Res = Resources.Next()) {
304 // Check if resource is available for next N slots
305 Iter Interval = End;
306 do {
307 Interval--;
308 if (*Interval & Res) break;
309 } while (Interval != Begin);
311 // If available for N
312 if (Interval == Begin) {
313 // Success
314 Resource = Res;
315 return true;
319 // No luck
320 Resource = 0;
321 return false;
324 /// RetrySlot - Finds a good candidate slot to retry search.
325 Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
326 assert(N && "Must check availability with N != 0");
327 // Determine end of interval
328 Iter End = Begin + N;
329 assert(End <= Tally.end() && "Tally is not large enough for schedule");
331 while (Begin != End--) {
332 // Clear units in use
333 ResourceSet &= ~*End;
334 // If no units left then we should go no further
335 if (!ResourceSet) return End + 1;
337 // Made it all the way through
338 return Begin;
341 /// FindAndReserveStages - Return true if the stages can be completed. If
342 /// so mark as busy.
343 bool FindAndReserveStages(Iter Begin,
344 InstrStage *Stage, InstrStage *StageEnd) {
345 // If at last stage then we're done
346 if (Stage == StageEnd) return true;
347 // Get number of cycles for current stage
348 unsigned N = Stage->Cycles;
349 // Check to see if N slots are available, if not fail
350 unsigned Resource;
351 if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
352 // Check to see if remaining stages are available, if not fail
353 if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
354 // Reserve resource
355 Reserve(Begin, N, Resource);
356 // Success
357 return true;
360 /// Reserve - Mark busy (set) the specified N slots.
361 void Reserve(Iter Begin, unsigned N, unsigned Resource) {
362 // Determine end of interval
363 Iter End = Begin + N;
364 assert(End <= Tally.end() && "Tally is not large enough for schedule");
366 // Set resource bit in each slot
367 for (; Begin < End; Begin++)
368 *Begin |= Resource;
371 /// FindSlots - Starting from Begin, locate consecutive slots where all stages
372 /// can be completed. Returns the address of first slot.
373 Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
374 // Track position
375 Iter Cursor = Begin;
377 // Try all possible slots forward
378 while (true) {
379 // Try at cursor, if successful return position.
380 if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
381 // Locate a better position
382 Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
386 public:
387 /// Initialize - Resize and zero the tally to the specified number of time
388 /// slots.
389 inline void Initialize(unsigned N) {
390 Tally.assign(N, 0); // Initialize tally to all zeros.
393 // FindAndReserve - Locate an ideal slot for the specified stages and mark
394 // as busy.
395 unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
396 InstrStage *StageEnd) {
397 // Where to begin
398 Iter Begin = Tally.begin() + Slot;
399 // Find a free slot
400 Iter Where = FindSlots(Begin, StageBegin, StageEnd);
401 // Distance is slot number
402 unsigned Final = Where - Tally.begin();
403 return Final;
408 //===----------------------------------------------------------------------===//
410 /// ScheduleDAGSimple - Simple two pass scheduler.
412 class VISIBILITY_HIDDEN ScheduleDAGSimple : public ScheduleDAG {
413 private:
414 bool NoSched; // Just do a BFS schedule, nothing fancy
415 bool NoItins; // Don't use itineraries?
416 ResourceTally<unsigned> Tally; // Resource usage tally
417 unsigned NSlots; // Total latency
418 static const unsigned NotFound = ~0U; // Search marker
420 unsigned NodeCount; // Number of nodes in DAG
421 std::map<SDNode *, NodeInfo *> Map; // Map nodes to info
422 bool HasGroups; // True if there are any groups
423 NodeInfo *Info; // Info for nodes being scheduled
424 NIVector Ordering; // Emit ordering of nodes
425 NodeGroup *HeadNG, *TailNG; // Keep track of allocated NodeGroups
427 public:
429 // Ctor.
430 ScheduleDAGSimple(bool noSched, bool noItins, SelectionDAG &dag,
431 MachineBasicBlock *bb, const TargetMachine &tm)
432 : ScheduleDAG(dag, bb, tm), NoSched(noSched), NoItins(noItins), NSlots(0),
433 NodeCount(0), HasGroups(false), Info(NULL), HeadNG(NULL), TailNG(NULL) {
434 assert(&TII && "Target doesn't provide instr info?");
435 assert(&MRI && "Target doesn't provide register info?");
438 virtual ~ScheduleDAGSimple() {
439 if (Info)
440 delete[] Info;
442 NodeGroup *NG = HeadNG;
443 while (NG) {
444 NodeGroup *NextSU = NG->Next;
445 delete NG;
446 NG = NextSU;
450 void Schedule();
452 /// getNI - Returns the node info for the specified node.
454 NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
456 private:
457 static bool isDefiner(NodeInfo *A, NodeInfo *B);
458 void IncludeNode(NodeInfo *NI);
459 void VisitAll();
460 void GatherSchedulingInfo();
461 void FakeGroupDominators();
462 bool isStrongDependency(NodeInfo *A, NodeInfo *B);
463 bool isWeakDependency(NodeInfo *A, NodeInfo *B);
464 void ScheduleBackward();
465 void ScheduleForward();
467 void AddToGroup(NodeInfo *D, NodeInfo *U);
468 /// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
469 ///
470 void PrepareNodeInfo();
472 /// IdentifyGroups - Put flagged nodes into groups.
474 void IdentifyGroups();
476 /// print - Print ordering to specified output stream.
478 void print(std::ostream &O) const;
480 void dump(const char *tag) const;
482 virtual void dump() const;
484 /// EmitAll - Emit all nodes in schedule sorted order.
486 void EmitAll();
488 /// printNI - Print node info.
490 void printNI(std::ostream &O, NodeInfo *NI) const;
492 /// printChanges - Hilight changes in order caused by scheduling.
494 void printChanges(unsigned Index) const;
497 //===----------------------------------------------------------------------===//
498 /// Special case itineraries.
500 enum {
501 CallLatency = 40, // To push calls back in time
503 RSInteger = 0xC0000000, // Two integer units
504 RSFloat = 0x30000000, // Two float units
505 RSLoadStore = 0x0C000000, // Two load store units
506 RSBranch = 0x02000000 // One branch unit
508 static InstrStage CallStage = { CallLatency, RSBranch };
509 static InstrStage LoadStage = { 5, RSLoadStore };
510 static InstrStage StoreStage = { 2, RSLoadStore };
511 static InstrStage IntStage = { 2, RSInteger };
512 static InstrStage FloatStage = { 3, RSFloat };
513 //===----------------------------------------------------------------------===//
515 } // namespace
517 //===----------------------------------------------------------------------===//
519 /// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
520 ///
521 void ScheduleDAGSimple::PrepareNodeInfo() {
522 // Allocate node information
523 Info = new NodeInfo[NodeCount];
525 unsigned i = 0;
526 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
527 E = DAG.allnodes_end(); I != E; ++I, ++i) {
528 // Fast reference to node schedule info
529 NodeInfo* NI = &Info[i];
530 // Set up map
531 Map[I] = NI;
532 // Set node
533 NI->Node = I;
534 // Set pending visit count
535 NI->setPending(I->use_size());
539 /// IdentifyGroups - Put flagged nodes into groups.
541 void ScheduleDAGSimple::IdentifyGroups() {
542 for (unsigned i = 0, N = NodeCount; i < N; i++) {
543 NodeInfo* NI = &Info[i];
544 SDNode *Node = NI->Node;
546 // For each operand (in reverse to only look at flags)
547 for (unsigned N = Node->getNumOperands(); 0 < N--;) {
548 // Get operand
549 SDOperand Op = Node->getOperand(N);
550 // No more flags to walk
551 if (Op.getValueType() != MVT::Flag) break;
552 // Add to node group
553 AddToGroup(getNI(Op.Val), NI);
554 // Let everyone else know
555 HasGroups = true;
560 /// CountInternalUses - Returns the number of edges between the two nodes.
562 static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U) {
563 unsigned N = 0;
564 for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
565 SDOperand Op = U->Node->getOperand(M);
566 if (Op.Val == D->Node) N++;
569 return N;
572 //===----------------------------------------------------------------------===//
573 /// Add - Adds a definer and user pair to a node group.
575 void ScheduleDAGSimple::AddToGroup(NodeInfo *D, NodeInfo *U) {
576 // Get current groups
577 NodeGroup *DGroup = D->Group;
578 NodeGroup *UGroup = U->Group;
579 // If both are members of groups
580 if (DGroup && UGroup) {
581 // There may have been another edge connecting
582 if (DGroup == UGroup) return;
583 // Add the pending users count
584 DGroup->addPending(UGroup->getPending());
585 // For each member of the users group
586 NodeGroupIterator UNGI(U);
587 while (NodeInfo *UNI = UNGI.next() ) {
588 // Change the group
589 UNI->Group = DGroup;
590 // For each member of the definers group
591 NodeGroupIterator DNGI(D);
592 while (NodeInfo *DNI = DNGI.next() ) {
593 // Remove internal edges
594 DGroup->addPending(-CountInternalUses(DNI, UNI));
597 // Merge the two lists
598 DGroup->group_insert(DGroup->group_end(),
599 UGroup->group_begin(), UGroup->group_end());
600 } else if (DGroup) {
601 // Make user member of definers group
602 U->Group = DGroup;
603 // Add users uses to definers group pending
604 DGroup->addPending(U->Node->use_size());
605 // For each member of the definers group
606 NodeGroupIterator DNGI(D);
607 while (NodeInfo *DNI = DNGI.next() ) {
608 // Remove internal edges
609 DGroup->addPending(-CountInternalUses(DNI, U));
611 DGroup->group_push_back(U);
612 } else if (UGroup) {
613 // Make definer member of users group
614 D->Group = UGroup;
615 // Add definers uses to users group pending
616 UGroup->addPending(D->Node->use_size());
617 // For each member of the users group
618 NodeGroupIterator UNGI(U);
619 while (NodeInfo *UNI = UNGI.next() ) {
620 // Remove internal edges
621 UGroup->addPending(-CountInternalUses(D, UNI));
623 UGroup->group_insert(UGroup->group_begin(), D);
624 } else {
625 D->Group = U->Group = DGroup = new NodeGroup();
626 DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
627 CountInternalUses(D, U));
628 DGroup->group_push_back(D);
629 DGroup->group_push_back(U);
631 if (HeadNG == NULL)
632 HeadNG = DGroup;
633 if (TailNG != NULL)
634 TailNG->Next = DGroup;
635 TailNG = DGroup;
640 /// print - Print ordering to specified output stream.
642 void ScheduleDAGSimple::print(std::ostream &O) const {
643 #ifndef NDEBUG
644 O << "Ordering\n";
645 for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
646 NodeInfo *NI = Ordering[i];
647 printNI(O, NI);
648 O << "\n";
649 if (NI->isGroupDominator()) {
650 NodeGroup *Group = NI->Group;
651 for (NIIterator NII = Group->group_begin(), E = Group->group_end();
652 NII != E; NII++) {
653 O << " ";
654 printNI(O, *NII);
655 O << "\n";
659 #endif
662 void ScheduleDAGSimple::dump(const char *tag) const {
663 std::cerr << tag; dump();
666 void ScheduleDAGSimple::dump() const {
667 print(std::cerr);
671 /// EmitAll - Emit all nodes in schedule sorted order.
673 void ScheduleDAGSimple::EmitAll() {
674 // If this is the first basic block in the function, and if it has live ins
675 // that need to be copied into vregs, emit the copies into the top of the
676 // block before emitting the code for the block.
677 MachineFunction &MF = DAG.getMachineFunction();
678 if (&MF.front() == BB && MF.livein_begin() != MF.livein_end()) {
679 for (MachineFunction::livein_iterator LI = MF.livein_begin(),
680 E = MF.livein_end(); LI != E; ++LI)
681 if (LI->second)
682 MRI->copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
683 LI->first, RegMap->getRegClass(LI->second));
686 std::map<SDNode*, unsigned> VRBaseMap;
688 // For each node in the ordering
689 for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
690 // Get the scheduling info
691 NodeInfo *NI = Ordering[i];
692 if (NI->isInGroup()) {
693 NodeGroupIterator NGI(Ordering[i]);
694 while (NodeInfo *NI = NGI.next()) EmitNode(NI->Node, VRBaseMap);
695 } else {
696 EmitNode(NI->Node, VRBaseMap);
701 /// isFlagDefiner - Returns true if the node defines a flag result.
702 static bool isFlagDefiner(SDNode *A) {
703 unsigned N = A->getNumValues();
704 return N && A->getValueType(N - 1) == MVT::Flag;
707 /// isFlagUser - Returns true if the node uses a flag result.
709 static bool isFlagUser(SDNode *A) {
710 unsigned N = A->getNumOperands();
711 return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
714 /// printNI - Print node info.
716 void ScheduleDAGSimple::printNI(std::ostream &O, NodeInfo *NI) const {
717 #ifndef NDEBUG
718 SDNode *Node = NI->Node;
719 O << " "
720 << std::hex << Node << std::dec
721 << ", Lat=" << NI->Latency
722 << ", Slot=" << NI->Slot
723 << ", ARITY=(" << Node->getNumOperands() << ","
724 << Node->getNumValues() << ")"
725 << " " << Node->getOperationName(&DAG);
726 if (isFlagDefiner(Node)) O << "<#";
727 if (isFlagUser(Node)) O << ">#";
728 #endif
731 /// printChanges - Hilight changes in order caused by scheduling.
733 void ScheduleDAGSimple::printChanges(unsigned Index) const {
734 #ifndef NDEBUG
735 // Get the ordered node count
736 unsigned N = Ordering.size();
737 // Determine if any changes
738 unsigned i = 0;
739 for (; i < N; i++) {
740 NodeInfo *NI = Ordering[i];
741 if (NI->Preorder != i) break;
744 if (i < N) {
745 std::cerr << Index << ". New Ordering\n";
747 for (i = 0; i < N; i++) {
748 NodeInfo *NI = Ordering[i];
749 std::cerr << " " << NI->Preorder << ". ";
750 printNI(std::cerr, NI);
751 std::cerr << "\n";
752 if (NI->isGroupDominator()) {
753 NodeGroup *Group = NI->Group;
754 for (NIIterator NII = Group->group_begin(), E = Group->group_end();
755 NII != E; NII++) {
756 std::cerr << " ";
757 printNI(std::cerr, *NII);
758 std::cerr << "\n";
762 } else {
763 std::cerr << Index << ". No Changes\n";
765 #endif
768 //===----------------------------------------------------------------------===//
769 /// isDefiner - Return true if node A is a definer for B.
771 bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
772 // While there are A nodes
773 NodeGroupIterator NII(A);
774 while (NodeInfo *NI = NII.next()) {
775 // Extract node
776 SDNode *Node = NI->Node;
777 // While there operands in nodes of B
778 NodeGroupOpIterator NGOI(B);
779 while (!NGOI.isEnd()) {
780 SDOperand Op = NGOI.next();
781 // If node from A defines a node in B
782 if (Node == Op.Val) return true;
785 return false;
788 /// IncludeNode - Add node to NodeInfo vector.
790 void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
791 // Get node
792 SDNode *Node = NI->Node;
793 // Ignore entry node
794 if (Node->getOpcode() == ISD::EntryToken) return;
795 // Check current count for node
796 int Count = NI->getPending();
797 // If the node is already in list
798 if (Count < 0) return;
799 // Decrement count to indicate a visit
800 Count--;
801 // If count has gone to zero then add node to list
802 if (!Count) {
803 // Add node
804 if (NI->isInGroup()) {
805 Ordering.push_back(NI->Group->getDominator());
806 } else {
807 Ordering.push_back(NI);
809 // indicate node has been added
810 Count--;
812 // Mark as visited with new count
813 NI->setPending(Count);
816 /// GatherSchedulingInfo - Get latency and resource information about each node.
818 void ScheduleDAGSimple::GatherSchedulingInfo() {
819 // Get instruction itineraries for the target
820 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
822 // For each node
823 for (unsigned i = 0, N = NodeCount; i < N; i++) {
824 // Get node info
825 NodeInfo* NI = &Info[i];
826 SDNode *Node = NI->Node;
828 // If there are itineraries and it is a machine instruction
829 if (InstrItins.isEmpty() || NoItins) {
830 // If machine opcode
831 if (Node->isTargetOpcode()) {
832 // Get return type to guess which processing unit
833 MVT::ValueType VT = Node->getValueType(0);
834 // Get machine opcode
835 MachineOpCode TOpc = Node->getTargetOpcode();
836 NI->IsCall = TII->isCall(TOpc);
837 NI->IsLoad = TII->isLoad(TOpc);
838 NI->IsStore = TII->isStore(TOpc);
840 if (TII->isLoad(TOpc)) NI->StageBegin = &LoadStage;
841 else if (TII->isStore(TOpc)) NI->StageBegin = &StoreStage;
842 else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage;
843 else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
844 if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
846 } else if (Node->isTargetOpcode()) {
847 // get machine opcode
848 MachineOpCode TOpc = Node->getTargetOpcode();
849 // Check to see if it is a call
850 NI->IsCall = TII->isCall(TOpc);
851 // Get itinerary stages for instruction
852 unsigned II = TII->getSchedClass(TOpc);
853 NI->StageBegin = InstrItins.begin(II);
854 NI->StageEnd = InstrItins.end(II);
857 // One slot for the instruction itself
858 NI->Latency = 1;
860 // Add long latency for a call to push it back in time
861 if (NI->IsCall) NI->Latency += CallLatency;
863 // Sum up all the latencies
864 for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
865 Stage != E; Stage++) {
866 NI->Latency += Stage->Cycles;
869 // Sum up all the latencies for max tally size
870 NSlots += NI->Latency;
873 // Unify metrics if in a group
874 if (HasGroups) {
875 for (unsigned i = 0, N = NodeCount; i < N; i++) {
876 NodeInfo* NI = &Info[i];
878 if (NI->isInGroup()) {
879 NodeGroup *Group = NI->Group;
881 if (!Group->getDominator()) {
882 NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
883 NodeInfo *Dominator = *NGI;
884 unsigned Latency = 0;
886 for (NGI++; NGI != NGE; NGI++) {
887 NodeInfo* NGNI = *NGI;
888 Latency += NGNI->Latency;
889 if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
892 Dominator->Latency = Latency;
893 Group->setDominator(Dominator);
900 /// VisitAll - Visit each node breadth-wise to produce an initial ordering.
901 /// Note that the ordering in the Nodes vector is reversed.
902 void ScheduleDAGSimple::VisitAll() {
903 // Add first element to list
904 NodeInfo *NI = getNI(DAG.getRoot().Val);
905 if (NI->isInGroup()) {
906 Ordering.push_back(NI->Group->getDominator());
907 } else {
908 Ordering.push_back(NI);
911 // Iterate through all nodes that have been added
912 for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
913 // Visit all operands
914 NodeGroupOpIterator NGI(Ordering[i]);
915 while (!NGI.isEnd()) {
916 // Get next operand
917 SDOperand Op = NGI.next();
918 // Get node
919 SDNode *Node = Op.Val;
920 // Ignore passive nodes
921 if (isPassiveNode(Node)) continue;
922 // Check out node
923 IncludeNode(getNI(Node));
927 // Add entry node last (IncludeNode filters entry nodes)
928 if (DAG.getEntryNode().Val != DAG.getRoot().Val)
929 Ordering.push_back(getNI(DAG.getEntryNode().Val));
931 // Reverse the order
932 std::reverse(Ordering.begin(), Ordering.end());
935 /// FakeGroupDominators - Set dominators for non-scheduling.
936 ///
937 void ScheduleDAGSimple::FakeGroupDominators() {
938 for (unsigned i = 0, N = NodeCount; i < N; i++) {
939 NodeInfo* NI = &Info[i];
941 if (NI->isInGroup()) {
942 NodeGroup *Group = NI->Group;
944 if (!Group->getDominator()) {
945 Group->setDominator(NI);
951 /// isStrongDependency - Return true if node A has results used by node B.
952 /// I.E., B must wait for latency of A.
953 bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) {
954 // If A defines for B then it's a strong dependency or
955 // if a load follows a store (may be dependent but why take a chance.)
956 return isDefiner(A, B) || (A->IsStore && B->IsLoad);
959 /// isWeakDependency Return true if node A produces a result that will
960 /// conflict with operands of B. It is assumed that we have called
961 /// isStrongDependency prior.
962 bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) {
963 // TODO check for conflicting real registers and aliases
964 #if 0 // FIXME - Since we are in SSA form and not checking register aliasing
965 return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
966 #else
967 return A->Node->getOpcode() == ISD::EntryToken;
968 #endif
971 /// ScheduleBackward - Schedule instructions so that any long latency
972 /// instructions and the critical path get pushed back in time. Time is run in
973 /// reverse to allow code reuse of the Tally and eliminate the overhead of
974 /// biasing every slot indices against NSlots.
975 void ScheduleDAGSimple::ScheduleBackward() {
976 // Size and clear the resource tally
977 Tally.Initialize(NSlots);
978 // Get number of nodes to schedule
979 unsigned N = Ordering.size();
981 // For each node being scheduled
982 for (unsigned i = N; 0 < i--;) {
983 NodeInfo *NI = Ordering[i];
984 // Track insertion
985 unsigned Slot = NotFound;
987 // Compare against those previously scheduled nodes
988 unsigned j = i + 1;
989 for (; j < N; j++) {
990 // Get following instruction
991 NodeInfo *Other = Ordering[j];
993 // Check dependency against previously inserted nodes
994 if (isStrongDependency(NI, Other)) {
995 Slot = Other->Slot + Other->Latency;
996 break;
997 } else if (isWeakDependency(NI, Other)) {
998 Slot = Other->Slot;
999 break;
1003 // If independent of others (or first entry)
1004 if (Slot == NotFound) Slot = 0;
1006 #if 0 // FIXME - measure later
1007 // Find a slot where the needed resources are available
1008 if (NI->StageBegin != NI->StageEnd)
1009 Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
1010 #endif
1012 // Set node slot
1013 NI->Slot = Slot;
1015 // Insert sort based on slot
1016 j = i + 1;
1017 for (; j < N; j++) {
1018 // Get following instruction
1019 NodeInfo *Other = Ordering[j];
1020 // Should we look further (remember slots are in reverse time)
1021 if (Slot >= Other->Slot) break;
1022 // Shuffle other into ordering
1023 Ordering[j - 1] = Other;
1025 // Insert node in proper slot
1026 if (j != i + 1) Ordering[j - 1] = NI;
1030 /// ScheduleForward - Schedule instructions to maximize packing.
1032 void ScheduleDAGSimple::ScheduleForward() {
1033 // Size and clear the resource tally
1034 Tally.Initialize(NSlots);
1035 // Get number of nodes to schedule
1036 unsigned N = Ordering.size();
1038 // For each node being scheduled
1039 for (unsigned i = 0; i < N; i++) {
1040 NodeInfo *NI = Ordering[i];
1041 // Track insertion
1042 unsigned Slot = NotFound;
1044 // Compare against those previously scheduled nodes
1045 unsigned j = i;
1046 for (; 0 < j--;) {
1047 // Get following instruction
1048 NodeInfo *Other = Ordering[j];
1050 // Check dependency against previously inserted nodes
1051 if (isStrongDependency(Other, NI)) {
1052 Slot = Other->Slot + Other->Latency;
1053 break;
1054 } else if (Other->IsCall || isWeakDependency(Other, NI)) {
1055 Slot = Other->Slot;
1056 break;
1060 // If independent of others (or first entry)
1061 if (Slot == NotFound) Slot = 0;
1063 // Find a slot where the needed resources are available
1064 if (NI->StageBegin != NI->StageEnd)
1065 Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
1067 // Set node slot
1068 NI->Slot = Slot;
1070 // Insert sort based on slot
1071 j = i;
1072 for (; 0 < j--;) {
1073 // Get prior instruction
1074 NodeInfo *Other = Ordering[j];
1075 // Should we look further
1076 if (Slot >= Other->Slot) break;
1077 // Shuffle other into ordering
1078 Ordering[j + 1] = Other;
1080 // Insert node in proper slot
1081 if (j != i) Ordering[j + 1] = NI;
1085 /// Schedule - Order nodes according to selected style.
1087 void ScheduleDAGSimple::Schedule() {
1088 // Number the nodes
1089 NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
1091 // Set up minimum info for scheduling
1092 PrepareNodeInfo();
1093 // Construct node groups for flagged nodes
1094 IdentifyGroups();
1096 // Test to see if scheduling should occur
1097 bool ShouldSchedule = NodeCount > 3 && !NoSched;
1098 // Don't waste time if is only entry and return
1099 if (ShouldSchedule) {
1100 // Get latency and resource requirements
1101 GatherSchedulingInfo();
1102 } else if (HasGroups) {
1103 // Make sure all the groups have dominators
1104 FakeGroupDominators();
1107 // Breadth first walk of DAG
1108 VisitAll();
1110 #ifndef NDEBUG
1111 static unsigned Count = 0;
1112 Count++;
1113 for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
1114 NodeInfo *NI = Ordering[i];
1115 NI->Preorder = i;
1117 #endif
1119 // Don't waste time if is only entry and return
1120 if (ShouldSchedule) {
1121 // Push back long instructions and critical path
1122 ScheduleBackward();
1124 // Pack instructions to maximize resource utilization
1125 ScheduleForward();
1128 DEBUG(printChanges(Count));
1130 // Emit in scheduled order
1131 EmitAll();
1135 /// createSimpleDAGScheduler - This creates a simple two pass instruction
1136 /// scheduler using instruction itinerary.
1137 llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SelectionDAGISel *IS,
1138 SelectionDAG *DAG,
1139 MachineBasicBlock *BB) {
1140 return new ScheduleDAGSimple(false, false, *DAG, BB, DAG->getTarget());
1143 /// createNoItinsDAGScheduler - This creates a simple two pass instruction
1144 /// scheduler without using instruction itinerary.
1145 llvm::ScheduleDAG* llvm::createNoItinsDAGScheduler(SelectionDAGISel *IS,
1146 SelectionDAG *DAG,
1147 MachineBasicBlock *BB) {
1148 return new ScheduleDAGSimple(false, true, *DAG, BB, DAG->getTarget());
1151 /// createBFS_DAGScheduler - This creates a simple breadth first instruction
1152 /// scheduler.
1153 llvm::ScheduleDAG* llvm::createBFS_DAGScheduler(SelectionDAGISel *IS,
1154 SelectionDAG *DAG,
1155 MachineBasicBlock *BB) {
1156 return new ScheduleDAGSimple(true, false, *DAG, BB, DAG->getTarget());