Reverting back to original 1.8 version so I can manually merge in patch.
[llvm-complete.git] / lib / ExecutionEngine / ExecutionEngine.cpp
blob4ea62307113c638fe36d480b9cf641c5f1940c02
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Module.h"
19 #include "llvm/ModuleProvider.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ExecutionEngine/ExecutionEngine.h"
22 #include "llvm/ExecutionEngine/GenericValue.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/MutexGuard.h"
25 #include "llvm/System/DynamicLibrary.h"
26 #include "llvm/Target/TargetData.h"
27 #include <iostream>
28 using namespace llvm;
30 namespace {
31 Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized");
32 Statistic<> NumGlobals ("lli", "Number of global vars initialized");
35 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
36 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
38 ExecutionEngine::ExecutionEngine(ModuleProvider *P) :
39 CurMod(*P->getModule()), MP(P) {
40 assert(P && "ModuleProvider is null?");
43 ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) {
44 assert(M && "Module is null?");
47 ExecutionEngine::~ExecutionEngine() {
48 delete MP;
51 /// addGlobalMapping - Tell the execution engine that the specified global is
52 /// at the specified location. This is used internally as functions are JIT'd
53 /// and as global variables are laid out in memory. It can and should also be
54 /// used by clients of the EE that want to have an LLVM global overlay
55 /// existing data in memory.
56 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
57 MutexGuard locked(lock);
59 void *&CurVal = state.getGlobalAddressMap(locked)[GV];
60 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
61 CurVal = Addr;
63 // If we are using the reverse mapping, add it too
64 if (!state.getGlobalAddressReverseMap(locked).empty()) {
65 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
66 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
67 V = GV;
71 /// clearAllGlobalMappings - Clear all global mappings and start over again
72 /// use in dynamic compilation scenarios when you want to move globals
73 void ExecutionEngine::clearAllGlobalMappings() {
74 MutexGuard locked(lock);
76 state.getGlobalAddressMap(locked).clear();
77 state.getGlobalAddressReverseMap(locked).clear();
80 /// updateGlobalMapping - Replace an existing mapping for GV with a new
81 /// address. This updates both maps as required. If "Addr" is null, the
82 /// entry for the global is removed from the mappings.
83 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
84 MutexGuard locked(lock);
86 // Deleting from the mapping?
87 if (Addr == 0) {
88 state.getGlobalAddressMap(locked).erase(GV);
89 if (!state.getGlobalAddressReverseMap(locked).empty())
90 state.getGlobalAddressReverseMap(locked).erase(Addr);
91 return;
94 void *&CurVal = state.getGlobalAddressMap(locked)[GV];
95 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty())
96 state.getGlobalAddressReverseMap(locked).erase(CurVal);
97 CurVal = Addr;
99 // If we are using the reverse mapping, add it too
100 if (!state.getGlobalAddressReverseMap(locked).empty()) {
101 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr];
102 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
103 V = GV;
107 /// getPointerToGlobalIfAvailable - This returns the address of the specified
108 /// global value if it is has already been codegen'd, otherwise it returns null.
110 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
111 MutexGuard locked(lock);
113 std::map<const GlobalValue*, void*>::iterator I =
114 state.getGlobalAddressMap(locked).find(GV);
115 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0;
118 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
119 /// at the specified address.
121 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
122 MutexGuard locked(lock);
124 // If we haven't computed the reverse mapping yet, do so first.
125 if (state.getGlobalAddressReverseMap(locked).empty()) {
126 for (std::map<const GlobalValue*, void *>::iterator
127 I = state.getGlobalAddressMap(locked).begin(),
128 E = state.getGlobalAddressMap(locked).end(); I != E; ++I)
129 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
130 I->first));
133 std::map<void *, const GlobalValue*>::iterator I =
134 state.getGlobalAddressReverseMap(locked).find(Addr);
135 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
138 // CreateArgv - Turn a vector of strings into a nice argv style array of
139 // pointers to null terminated strings.
141 static void *CreateArgv(ExecutionEngine *EE,
142 const std::vector<std::string> &InputArgv) {
143 unsigned PtrSize = EE->getTargetData()->getPointerSize();
144 char *Result = new char[(InputArgv.size()+1)*PtrSize];
146 DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n");
147 const Type *SBytePtr = PointerType::get(Type::SByteTy);
149 for (unsigned i = 0; i != InputArgv.size(); ++i) {
150 unsigned Size = InputArgv[i].size()+1;
151 char *Dest = new char[Size];
152 DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n");
154 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
155 Dest[Size-1] = 0;
157 // Endian safe: Result[i] = (PointerTy)Dest;
158 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize),
159 SBytePtr);
162 // Null terminate it
163 EE->StoreValueToMemory(PTOGV(0),
164 (GenericValue*)(Result+InputArgv.size()*PtrSize),
165 SBytePtr);
166 return Result;
170 /// runStaticConstructorsDestructors - This method is used to execute all of
171 /// the static constructors or destructors for a module, depending on the
172 /// value of isDtors.
173 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
174 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
175 GlobalVariable *GV = CurMod.getNamedGlobal(Name);
177 // If this global has internal linkage, or if it has a use, then it must be
178 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
179 // this is the case, don't execute any of the global ctors, __main will do it.
180 if (!GV || GV->isExternal() || GV->hasInternalLinkage()) return;
182 // Should be an array of '{ int, void ()* }' structs. The first value is the
183 // init priority, which we ignore.
184 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
185 if (!InitList) return;
186 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
187 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
188 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
190 Constant *FP = CS->getOperand(1);
191 if (FP->isNullValue())
192 return; // Found a null terminator, exit.
194 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
195 if (CE->getOpcode() == Instruction::Cast)
196 FP = CE->getOperand(0);
197 if (Function *F = dyn_cast<Function>(FP)) {
198 // Execute the ctor/dtor function!
199 runFunction(F, std::vector<GenericValue>());
204 /// runFunctionAsMain - This is a helper function which wraps runFunction to
205 /// handle the common task of starting up main with the specified argc, argv,
206 /// and envp parameters.
207 int ExecutionEngine::runFunctionAsMain(Function *Fn,
208 const std::vector<std::string> &argv,
209 const char * const * envp) {
210 std::vector<GenericValue> GVArgs;
211 GenericValue GVArgc;
212 GVArgc.IntVal = argv.size();
213 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
214 if (NumArgs) {
215 GVArgs.push_back(GVArgc); // Arg #0 = argc.
216 if (NumArgs > 1) {
217 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv.
218 assert(((char **)GVTOP(GVArgs[1]))[0] &&
219 "argv[0] was null after CreateArgv");
220 if (NumArgs > 2) {
221 std::vector<std::string> EnvVars;
222 for (unsigned i = 0; envp[i]; ++i)
223 EnvVars.push_back(envp[i]);
224 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp.
228 return runFunction(Fn, GVArgs).IntVal;
231 /// If possible, create a JIT, unless the caller specifically requests an
232 /// Interpreter or there's an error. If even an Interpreter cannot be created,
233 /// NULL is returned.
235 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP,
236 bool ForceInterpreter) {
237 ExecutionEngine *EE = 0;
239 // Unless the interpreter was explicitly selected, try making a JIT.
240 if (!ForceInterpreter && JITCtor)
241 EE = JITCtor(MP);
243 // If we can't make a JIT, make an interpreter instead.
244 if (EE == 0 && InterpCtor)
245 EE = InterpCtor(MP);
247 if (EE) {
248 // Make sure we can resolve symbols in the program as well. The zero arg
249 // to the function tells DynamicLibrary to load the program, not a library.
250 try {
251 sys::DynamicLibrary::LoadLibraryPermanently(0);
252 } catch (...) {
256 return EE;
259 /// getPointerToGlobal - This returns the address of the specified global
260 /// value. This may involve code generation if it's a function.
262 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
263 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
264 return getPointerToFunction(F);
266 MutexGuard locked(lock);
267 void *p = state.getGlobalAddressMap(locked)[GV];
268 if (p)
269 return p;
271 // Global variable might have been added since interpreter started.
272 if (GlobalVariable *GVar =
273 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
274 EmitGlobalVariable(GVar);
275 else
276 assert("Global hasn't had an address allocated yet!");
277 return state.getGlobalAddressMap(locked)[GV];
280 /// FIXME: document
282 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
283 GenericValue Result;
284 if (isa<UndefValue>(C)) return Result;
286 if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) {
287 switch (CE->getOpcode()) {
288 case Instruction::GetElementPtr: {
289 Result = getConstantValue(CE->getOperand(0));
290 std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end());
291 uint64_t Offset =
292 TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes);
294 if (getTargetData()->getPointerSize() == 4)
295 Result.IntVal += Offset;
296 else
297 Result.LongVal += Offset;
298 return Result;
300 case Instruction::Cast: {
301 // We only need to handle a few cases here. Almost all casts will
302 // automatically fold, just the ones involving pointers won't.
304 Constant *Op = CE->getOperand(0);
305 GenericValue GV = getConstantValue(Op);
307 // Handle cast of pointer to pointer...
308 if (Op->getType()->getTypeID() == C->getType()->getTypeID())
309 return GV;
311 // Handle a cast of pointer to any integral type...
312 if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral())
313 return GV;
315 // Handle cast of integer to a pointer...
316 if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral())
317 switch (Op->getType()->getTypeID()) {
318 case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal);
319 case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal);
320 case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal);
321 case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal);
322 case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal);
323 case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal);
324 case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal);
325 case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal);
326 case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal);
327 default: assert(0 && "Unknown integral type!");
329 break;
332 case Instruction::Add:
333 switch (CE->getOperand(0)->getType()->getTypeID()) {
334 default: assert(0 && "Bad add type!"); abort();
335 case Type::LongTyID:
336 case Type::ULongTyID:
337 Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal +
338 getConstantValue(CE->getOperand(1)).LongVal;
339 break;
340 case Type::IntTyID:
341 case Type::UIntTyID:
342 Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal +
343 getConstantValue(CE->getOperand(1)).IntVal;
344 break;
345 case Type::ShortTyID:
346 case Type::UShortTyID:
347 Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal +
348 getConstantValue(CE->getOperand(1)).ShortVal;
349 break;
350 case Type::SByteTyID:
351 case Type::UByteTyID:
352 Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal +
353 getConstantValue(CE->getOperand(1)).SByteVal;
354 break;
355 case Type::FloatTyID:
356 Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal +
357 getConstantValue(CE->getOperand(1)).FloatVal;
358 break;
359 case Type::DoubleTyID:
360 Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal +
361 getConstantValue(CE->getOperand(1)).DoubleVal;
362 break;
364 return Result;
365 default:
366 break;
368 std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
369 abort();
372 switch (C->getType()->getTypeID()) {
373 #define GET_CONST_VAL(TY, CTY, CLASS) \
374 case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->getValue(); break
375 GET_CONST_VAL(Bool , bool , ConstantBool);
376 GET_CONST_VAL(UByte , unsigned char , ConstantUInt);
377 GET_CONST_VAL(SByte , signed char , ConstantSInt);
378 GET_CONST_VAL(UShort , unsigned short, ConstantUInt);
379 GET_CONST_VAL(Short , signed short , ConstantSInt);
380 GET_CONST_VAL(UInt , unsigned int , ConstantUInt);
381 GET_CONST_VAL(Int , signed int , ConstantSInt);
382 GET_CONST_VAL(ULong , uint64_t , ConstantUInt);
383 GET_CONST_VAL(Long , int64_t , ConstantSInt);
384 GET_CONST_VAL(Float , float , ConstantFP);
385 GET_CONST_VAL(Double , double , ConstantFP);
386 #undef GET_CONST_VAL
387 case Type::PointerTyID:
388 if (isa<ConstantPointerNull>(C))
389 Result.PointerVal = 0;
390 else if (const Function *F = dyn_cast<Function>(C))
391 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
392 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
393 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
394 else
395 assert(0 && "Unknown constant pointer type!");
396 break;
397 default:
398 std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n";
399 abort();
401 return Result;
404 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr
405 /// is the address of the memory at which to store Val, cast to GenericValue *.
406 /// It is not a pointer to a GenericValue containing the address at which to
407 /// store Val.
409 void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr,
410 const Type *Ty) {
411 if (getTargetData()->isLittleEndian()) {
412 switch (Ty->getTypeID()) {
413 case Type::BoolTyID:
414 case Type::UByteTyID:
415 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
416 case Type::UShortTyID:
417 case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255;
418 Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255;
419 break;
420 Store4BytesLittleEndian:
421 case Type::FloatTyID:
422 case Type::UIntTyID:
423 case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255;
424 Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255;
425 Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255;
426 Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255;
427 break;
428 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4)
429 goto Store4BytesLittleEndian;
430 case Type::DoubleTyID:
431 case Type::ULongTyID:
432 case Type::LongTyID:
433 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal );
434 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8);
435 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16);
436 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24);
437 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32);
438 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40);
439 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48);
440 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56);
441 break;
442 default:
443 std::cout << "Cannot store value of type " << *Ty << "!\n";
445 } else {
446 switch (Ty->getTypeID()) {
447 case Type::BoolTyID:
448 case Type::UByteTyID:
449 case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break;
450 case Type::UShortTyID:
451 case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255;
452 Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255;
453 break;
454 Store4BytesBigEndian:
455 case Type::FloatTyID:
456 case Type::UIntTyID:
457 case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255;
458 Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255;
459 Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255;
460 Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255;
461 break;
462 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4)
463 goto Store4BytesBigEndian;
464 case Type::DoubleTyID:
465 case Type::ULongTyID:
466 case Type::LongTyID:
467 Ptr->Untyped[7] = (unsigned char)(Val.ULongVal );
468 Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8);
469 Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16);
470 Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24);
471 Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32);
472 Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40);
473 Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48);
474 Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56);
475 break;
476 default:
477 std::cout << "Cannot store value of type " << *Ty << "!\n";
482 /// FIXME: document
484 GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr,
485 const Type *Ty) {
486 GenericValue Result;
487 if (getTargetData()->isLittleEndian()) {
488 switch (Ty->getTypeID()) {
489 case Type::BoolTyID:
490 case Type::UByteTyID:
491 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
492 case Type::UShortTyID:
493 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] |
494 ((unsigned)Ptr->Untyped[1] << 8);
495 break;
496 Load4BytesLittleEndian:
497 case Type::FloatTyID:
498 case Type::UIntTyID:
499 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] |
500 ((unsigned)Ptr->Untyped[1] << 8) |
501 ((unsigned)Ptr->Untyped[2] << 16) |
502 ((unsigned)Ptr->Untyped[3] << 24);
503 break;
504 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4)
505 goto Load4BytesLittleEndian;
506 case Type::DoubleTyID:
507 case Type::ULongTyID:
508 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] |
509 ((uint64_t)Ptr->Untyped[1] << 8) |
510 ((uint64_t)Ptr->Untyped[2] << 16) |
511 ((uint64_t)Ptr->Untyped[3] << 24) |
512 ((uint64_t)Ptr->Untyped[4] << 32) |
513 ((uint64_t)Ptr->Untyped[5] << 40) |
514 ((uint64_t)Ptr->Untyped[6] << 48) |
515 ((uint64_t)Ptr->Untyped[7] << 56);
516 break;
517 default:
518 std::cout << "Cannot load value of type " << *Ty << "!\n";
519 abort();
521 } else {
522 switch (Ty->getTypeID()) {
523 case Type::BoolTyID:
524 case Type::UByteTyID:
525 case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break;
526 case Type::UShortTyID:
527 case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] |
528 ((unsigned)Ptr->Untyped[0] << 8);
529 break;
530 Load4BytesBigEndian:
531 case Type::FloatTyID:
532 case Type::UIntTyID:
533 case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] |
534 ((unsigned)Ptr->Untyped[2] << 8) |
535 ((unsigned)Ptr->Untyped[1] << 16) |
536 ((unsigned)Ptr->Untyped[0] << 24);
537 break;
538 case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4)
539 goto Load4BytesBigEndian;
540 case Type::DoubleTyID:
541 case Type::ULongTyID:
542 case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] |
543 ((uint64_t)Ptr->Untyped[6] << 8) |
544 ((uint64_t)Ptr->Untyped[5] << 16) |
545 ((uint64_t)Ptr->Untyped[4] << 24) |
546 ((uint64_t)Ptr->Untyped[3] << 32) |
547 ((uint64_t)Ptr->Untyped[2] << 40) |
548 ((uint64_t)Ptr->Untyped[1] << 48) |
549 ((uint64_t)Ptr->Untyped[0] << 56);
550 break;
551 default:
552 std::cout << "Cannot load value of type " << *Ty << "!\n";
553 abort();
556 return Result;
559 // InitializeMemory - Recursive function to apply a Constant value into the
560 // specified memory location...
562 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
563 if (isa<UndefValue>(Init)) {
564 return;
565 } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) {
566 unsigned ElementSize =
567 getTargetData()->getTypeSize(CP->getType()->getElementType());
568 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
569 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
570 return;
571 } else if (Init->getType()->isFirstClassType()) {
572 GenericValue Val = getConstantValue(Init);
573 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
574 return;
575 } else if (isa<ConstantAggregateZero>(Init)) {
576 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType()));
577 return;
580 switch (Init->getType()->getTypeID()) {
581 case Type::ArrayTyID: {
582 const ConstantArray *CPA = cast<ConstantArray>(Init);
583 unsigned ElementSize =
584 getTargetData()->getTypeSize(CPA->getType()->getElementType());
585 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
586 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
587 return;
590 case Type::StructTyID: {
591 const ConstantStruct *CPS = cast<ConstantStruct>(Init);
592 const StructLayout *SL =
593 getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
594 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
595 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]);
596 return;
599 default:
600 std::cerr << "Bad Type: " << *Init->getType() << "\n";
601 assert(0 && "Unknown constant type to initialize memory with!");
605 /// EmitGlobals - Emit all of the global variables to memory, storing their
606 /// addresses into GlobalAddress. This must make sure to copy the contents of
607 /// their initializers into the memory.
609 void ExecutionEngine::emitGlobals() {
610 const TargetData *TD = getTargetData();
612 // Loop over all of the global variables in the program, allocating the memory
613 // to hold them.
614 Module &M = getModule();
615 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
616 I != E; ++I)
617 if (!I->isExternal()) {
618 // Get the type of the global...
619 const Type *Ty = I->getType()->getElementType();
621 // Allocate some memory for it!
622 unsigned Size = TD->getTypeSize(Ty);
623 addGlobalMapping(I, new char[Size]);
624 } else {
625 // External variable reference. Try to use the dynamic loader to
626 // get a pointer to it.
627 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
628 I->getName().c_str()))
629 addGlobalMapping(I, SymAddr);
630 else {
631 std::cerr << "Could not resolve external global address: "
632 << I->getName() << "\n";
633 abort();
637 // Now that all of the globals are set up in memory, loop through them all and
638 // initialize their contents.
639 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
640 I != E; ++I)
641 if (!I->isExternal())
642 EmitGlobalVariable(I);
645 // EmitGlobalVariable - This method emits the specified global variable to the
646 // address specified in GlobalAddresses, or allocates new memory if it's not
647 // already in the map.
648 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
649 void *GA = getPointerToGlobalIfAvailable(GV);
650 DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n");
652 const Type *ElTy = GV->getType()->getElementType();
653 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy);
654 if (GA == 0) {
655 // If it's not already specified, allocate memory for the global.
656 GA = new char[GVSize];
657 addGlobalMapping(GV, GA);
660 InitializeMemory(GV->getInitializer(), GA);
661 NumInitBytes += (unsigned)GVSize;
662 ++NumGlobals;