1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass implements a simple loop unroller. It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
14 // This pass is currently extremely limited. It only currently only unrolls
15 // single basic block loops that execute a constant number of times.
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "loop-unroll"
20 #include "llvm/Transforms/Scalar.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Transforms/Utils/Cloning.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/IntrinsicInst.h"
39 Statistic
<> NumUnrolled("loop-unroll", "Number of loops completely unrolled");
42 UnrollThreshold("unroll-threshold", cl::init(100), cl::Hidden
,
43 cl::desc("The cut-off point for loop unrolling"));
45 class LoopUnroll
: public FunctionPass
{
46 LoopInfo
*LI
; // The current loop information
48 virtual bool runOnFunction(Function
&F
);
49 bool visitLoop(Loop
*L
);
51 /// This transformation requires natural loop information & requires that
52 /// loop preheaders be inserted into the CFG...
54 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
55 AU
.addRequiredID(LoopSimplifyID
);
56 AU
.addRequired
<LoopInfo
>();
57 AU
.addPreserved
<LoopInfo
>();
60 RegisterOpt
<LoopUnroll
> X("loop-unroll", "Unroll loops");
63 FunctionPass
*llvm::createLoopUnrollPass() { return new LoopUnroll(); }
65 bool LoopUnroll::runOnFunction(Function
&F
) {
67 LI
= &getAnalysis
<LoopInfo
>();
69 // Transform all the top-level loops. Copy the loop list so that the child
70 // can update the loop tree if it needs to delete the loop.
71 std::vector
<Loop
*> SubLoops(LI
->begin(), LI
->end());
72 for (unsigned i
= 0, e
= SubLoops
.size(); i
!= e
; ++i
)
73 Changed
|= visitLoop(SubLoops
[i
]);
78 /// ApproximateLoopSize - Approximate the size of the loop after it has been
80 static unsigned ApproximateLoopSize(const Loop
*L
) {
82 for (unsigned i
= 0, e
= L
->getBlocks().size(); i
!= e
; ++i
) {
83 BasicBlock
*BB
= L
->getBlocks()[i
];
84 Instruction
*Term
= BB
->getTerminator();
85 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
86 if (isa
<PHINode
>(I
) && BB
== L
->getHeader()) {
87 // Ignore PHI nodes in the header.
88 } else if (I
->hasOneUse() && I
->use_back() == Term
) {
89 // Ignore instructions only used by the loop terminator.
90 } else if (DbgInfoIntrinsic
*DbgI
= dyn_cast
<DbgInfoIntrinsic
>(I
)) {
91 // Ignore debug instructions
96 // TODO: Ignore expressions derived from PHI and constants if inval of phi
97 // is a constant, or if operation is associative. This will get induction
105 // RemapInstruction - Convert the instruction operands from referencing the
106 // current values into those specified by ValueMap.
108 static inline void RemapInstruction(Instruction
*I
,
109 std::map
<const Value
*, Value
*> &ValueMap
) {
110 for (unsigned op
= 0, E
= I
->getNumOperands(); op
!= E
; ++op
) {
111 Value
*Op
= I
->getOperand(op
);
112 std::map
<const Value
*, Value
*>::iterator It
= ValueMap
.find(Op
);
113 if (It
!= ValueMap
.end()) Op
= It
->second
;
114 I
->setOperand(op
, Op
);
118 bool LoopUnroll::visitLoop(Loop
*L
) {
119 bool Changed
= false;
121 // Recurse through all subloops before we process this loop. Copy the loop
122 // list so that the child can update the loop tree if it needs to delete the
124 std::vector
<Loop
*> SubLoops(L
->begin(), L
->end());
125 for (unsigned i
= 0, e
= SubLoops
.size(); i
!= e
; ++i
)
126 Changed
|= visitLoop(SubLoops
[i
]);
128 // We only handle single basic block loops right now.
129 if (L
->getBlocks().size() != 1)
132 BasicBlock
*BB
= L
->getHeader();
133 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
134 if (BI
== 0) return Changed
; // Must end in a conditional branch
136 ConstantInt
*TripCountC
= dyn_cast_or_null
<ConstantInt
>(L
->getTripCount());
137 if (!TripCountC
) return Changed
; // Must have constant trip count!
139 uint64_t TripCountFull
= TripCountC
->getRawValue();
140 if (TripCountFull
!= TripCountC
->getRawValue() || TripCountFull
== 0)
141 return Changed
; // More than 2^32 iterations???
143 unsigned LoopSize
= ApproximateLoopSize(L
);
144 DEBUG(std::cerr
<< "Loop Unroll: F[" << BB
->getParent()->getName()
145 << "] Loop %" << BB
->getName() << " Loop Size = " << LoopSize
146 << " Trip Count = " << TripCountFull
<< " - ");
147 uint64_t Size
= (uint64_t)LoopSize
*TripCountFull
;
148 if (Size
> UnrollThreshold
) {
149 DEBUG(std::cerr
<< "TOO LARGE: " << Size
<< ">" << UnrollThreshold
<< "\n");
152 DEBUG(std::cerr
<< "UNROLLING!\n");
154 unsigned TripCount
= (unsigned)TripCountFull
;
156 BasicBlock
*LoopExit
= BI
->getSuccessor(L
->contains(BI
->getSuccessor(0)));
158 // Create a new basic block to temporarily hold all of the cloned code.
159 BasicBlock
*NewBlock
= new BasicBlock();
161 // For the first iteration of the loop, we should use the precloned values for
162 // PHI nodes. Insert associations now.
163 std::map
<const Value
*, Value
*> LastValueMap
;
164 std::vector
<PHINode
*> OrigPHINode
;
165 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++I
) {
166 PHINode
*PN
= cast
<PHINode
>(I
);
167 OrigPHINode
.push_back(PN
);
168 if (Instruction
*I
=dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(BB
)))
169 if (I
->getParent() == BB
)
173 // Remove the exit branch from the loop
174 BB
->getInstList().erase(BI
);
176 assert(TripCount
!= 0 && "Trip count of 0 is impossible!");
177 for (unsigned It
= 1; It
!= TripCount
; ++It
) {
178 char SuffixBuffer
[100];
179 sprintf(SuffixBuffer
, ".%d", It
);
180 std::map
<const Value
*, Value
*> ValueMap
;
181 BasicBlock
*New
= CloneBasicBlock(BB
, ValueMap
, SuffixBuffer
);
183 // Loop over all of the PHI nodes in the block, changing them to use the
184 // incoming values from the previous block.
185 for (unsigned i
= 0, e
= OrigPHINode
.size(); i
!= e
; ++i
) {
186 PHINode
*NewPHI
= cast
<PHINode
>(ValueMap
[OrigPHINode
[i
]]);
187 Value
*InVal
= NewPHI
->getIncomingValueForBlock(BB
);
188 if (Instruction
*InValI
= dyn_cast
<Instruction
>(InVal
))
189 if (InValI
->getParent() == BB
)
190 InVal
= LastValueMap
[InValI
];
191 ValueMap
[OrigPHINode
[i
]] = InVal
;
192 New
->getInstList().erase(NewPHI
);
195 for (BasicBlock::iterator I
= New
->begin(), E
= New
->end(); I
!= E
; ++I
)
196 RemapInstruction(I
, ValueMap
);
198 // Now that all of the instructions are remapped, splice them into the end
200 NewBlock
->getInstList().splice(NewBlock
->end(), New
->getInstList());
203 // LastValue map now contains values from this iteration.
204 std::swap(LastValueMap
, ValueMap
);
207 // If there was more than one iteration, replace any uses of values computed
208 // in the loop with values computed during the last iteration of the loop.
209 if (TripCount
!= 1) {
210 std::set
<User
*> Users
;
211 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
212 Users
.insert(I
->use_begin(), I
->use_end());
214 // We don't want to reprocess entries with PHI nodes in them. For this
215 // reason, we look at each operand of each user exactly once, performing the
216 // substitution exactly once.
217 for (std::set
<User
*>::iterator UI
= Users
.begin(), E
= Users
.end(); UI
!= E
;
219 Instruction
*I
= cast
<Instruction
>(*UI
);
220 if (I
->getParent() != BB
&& I
->getParent() != NewBlock
)
221 RemapInstruction(I
, LastValueMap
);
225 // Now that we cloned the block as many times as we needed, stitch the new
226 // code into the original block and delete the temporary block.
227 BB
->getInstList().splice(BB
->end(), NewBlock
->getInstList());
230 // Now loop over the PHI nodes in the original block, setting them to their
232 BasicBlock
*Preheader
= L
->getLoopPreheader();
233 for (unsigned i
= 0, e
= OrigPHINode
.size(); i
!= e
; ++i
) {
234 PHINode
*PN
= OrigPHINode
[i
];
235 PN
->replaceAllUsesWith(PN
->getIncomingValueForBlock(Preheader
));
236 BB
->getInstList().erase(PN
);
239 // Finally, add an unconditional branch to the block to continue into the exit
241 new BranchInst(LoopExit
, BB
);
243 // At this point, the code is well formed. We now do a quick sweep over the
244 // inserted code, doing constant propagation and dead code elimination as we
246 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ) {
247 Instruction
*Inst
= I
++;
249 if (isInstructionTriviallyDead(Inst
))
250 BB
->getInstList().erase(Inst
);
251 else if (Constant
*C
= ConstantFoldInstruction(Inst
)) {
252 Inst
->replaceAllUsesWith(C
);
253 BB
->getInstList().erase(Inst
);
257 // Update the loop information for this loop.
258 Loop
*Parent
= L
->getParentLoop();
260 // Move all of the basic blocks in the loop into the parent loop.
261 LI
->changeLoopFor(BB
, Parent
);
263 // Remove the loop from the parent.
265 delete Parent
->removeChildLoop(std::find(Parent
->begin(), Parent
->end(),L
));
267 delete LI
->removeLoop(std::find(LI
->begin(), LI
->end(), L
));
269 // Remove single-entry Phis from the exit block.
270 for (BasicBlock::iterator ExitInstr
= LoopExit
->begin();
271 PHINode
* PN
= dyn_cast
<PHINode
>(ExitInstr
); ++ExitInstr
) {
272 assert(PN
->getNumIncomingValues() == 1
273 && "Block should only have one pred, so Phi's must be single entry");
274 PN
->replaceAllUsesWith(PN
->getOperand(0));
275 PN
->eraseFromParent();
278 // FIXME: Should update dominator analyses
280 // Now that everything is up-to-date that will be, we fold the loop block into
281 // the preheader and exit block, updating our analyses as we go.
282 LoopExit
->getInstList().splice(LoopExit
->begin(), BB
->getInstList(),
283 BB
->getInstList().begin(),
284 prior(BB
->getInstList().end()));
285 LoopExit
->getInstList().splice(LoopExit
->begin(), Preheader
->getInstList(),
286 Preheader
->getInstList().begin(),
287 prior(Preheader
->getInstList().end()));
289 // Make all other blocks in the program branch to LoopExit now instead of
291 Preheader
->replaceAllUsesWith(LoopExit
);
293 Function
*F
= LoopExit
->getParent();
295 // Otherwise, if this is a sub-loop, and the preheader was the loop header
296 // of the parent loop, move the exit block to be the new parent loop header.
297 if (Parent
->getHeader() == Preheader
) {
298 assert(Parent
->contains(LoopExit
) &&
299 "Exit block isn't contained in parent?");
300 Parent
->moveToHeader(LoopExit
);
303 // If the preheader was the entry block of this function, move the exit
304 // block to be the new entry of the function.
305 if (Preheader
== &F
->front())
306 F
->getBasicBlockList().splice(F
->begin(),
307 F
->getBasicBlockList(), LoopExit
);
310 // Remove BB and LoopExit from our analyses.
311 LI
->removeBlock(Preheader
);
314 // Actually delete the blocks now.
315 F
->getBasicBlockList().erase(Preheader
);
316 F
->getBasicBlockList().erase(BB
);