Reverting back to original 1.8 version so I can manually merge in patch.
[llvm-complete.git] / lib / Transforms / Scalar / SCCP.cpp
blob9328a251d8a817983fa609b42d8e9b44cbfec75a
1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements sparse conditional constant propagation and merging:
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
18 // Notice that:
19 // * This pass has a habit of making definitions be dead. It is a good idea
20 // to to run a DCE pass sometime after running this pass.
22 //===----------------------------------------------------------------------===//
24 #define DEBUG_TYPE "sccp"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/IPO.h"
27 #include "llvm/Constants.h"
28 #include "llvm/DerivedTypes.h"
29 #include "llvm/Instructions.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/InstVisitor.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Support/CallSite.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/ADT/hash_map"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include <algorithm>
39 #include <iostream>
40 #include <set>
41 using namespace llvm;
43 // LatticeVal class - This class represents the different lattice values that an
44 // instruction may occupy. It is a simple class with value semantics.
46 namespace {
48 class LatticeVal {
49 enum {
50 undefined, // This instruction has no known value
51 constant, // This instruction has a constant value
52 overdefined // This instruction has an unknown value
53 } LatticeValue; // The current lattice position
54 Constant *ConstantVal; // If Constant value, the current value
55 public:
56 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
58 // markOverdefined - Return true if this is a new status to be in...
59 inline bool markOverdefined() {
60 if (LatticeValue != overdefined) {
61 LatticeValue = overdefined;
62 return true;
64 return false;
67 // markConstant - Return true if this is a new status for us...
68 inline bool markConstant(Constant *V) {
69 if (LatticeValue != constant) {
70 LatticeValue = constant;
71 ConstantVal = V;
72 return true;
73 } else {
74 assert(ConstantVal == V && "Marking constant with different value");
76 return false;
79 inline bool isUndefined() const { return LatticeValue == undefined; }
80 inline bool isConstant() const { return LatticeValue == constant; }
81 inline bool isOverdefined() const { return LatticeValue == overdefined; }
83 inline Constant *getConstant() const {
84 assert(isConstant() && "Cannot get the constant of a non-constant!");
85 return ConstantVal;
89 } // end anonymous namespace
92 //===----------------------------------------------------------------------===//
94 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
95 /// Constant Propagation.
96 ///
97 class SCCPSolver : public InstVisitor<SCCPSolver> {
98 std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable
99 hash_map<Value*, LatticeVal> ValueState; // The state each value is in...
101 /// GlobalValue - If we are tracking any values for the contents of a global
102 /// variable, we keep a mapping from the constant accessor to the element of
103 /// the global, to the currently known value. If the value becomes
104 /// overdefined, it's entry is simply removed from this map.
105 hash_map<GlobalVariable*, LatticeVal> TrackedGlobals;
107 /// TrackedFunctionRetVals - If we are tracking arguments into and the return
108 /// value out of a function, it will have an entry in this map, indicating
109 /// what the known return value for the function is.
110 hash_map<Function*, LatticeVal> TrackedFunctionRetVals;
112 // The reason for two worklists is that overdefined is the lowest state
113 // on the lattice, and moving things to overdefined as fast as possible
114 // makes SCCP converge much faster.
115 // By having a separate worklist, we accomplish this because everything
116 // possibly overdefined will become overdefined at the soonest possible
117 // point.
118 std::vector<Value*> OverdefinedInstWorkList;
119 std::vector<Value*> InstWorkList;
122 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list
124 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
125 /// overdefined, despite the fact that the PHI node is overdefined.
126 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
128 /// KnownFeasibleEdges - Entries in this set are edges which have already had
129 /// PHI nodes retriggered.
130 typedef std::pair<BasicBlock*,BasicBlock*> Edge;
131 std::set<Edge> KnownFeasibleEdges;
132 public:
134 /// MarkBlockExecutable - This method can be used by clients to mark all of
135 /// the blocks that are known to be intrinsically live in the processed unit.
136 void MarkBlockExecutable(BasicBlock *BB) {
137 DEBUG(std::cerr << "Marking Block Executable: " << BB->getName() << "\n");
138 BBExecutable.insert(BB); // Basic block is executable!
139 BBWorkList.push_back(BB); // Add the block to the work list!
142 /// TrackValueOfGlobalVariable - Clients can use this method to
143 /// inform the SCCPSolver that it should track loads and stores to the
144 /// specified global variable if it can. This is only legal to call if
145 /// performing Interprocedural SCCP.
146 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
147 const Type *ElTy = GV->getType()->getElementType();
148 if (ElTy->isFirstClassType()) {
149 LatticeVal &IV = TrackedGlobals[GV];
150 if (!isa<UndefValue>(GV->getInitializer()))
151 IV.markConstant(GV->getInitializer());
155 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
156 /// and out of the specified function (which cannot have its address taken),
157 /// this method must be called.
158 void AddTrackedFunction(Function *F) {
159 assert(F->hasInternalLinkage() && "Can only track internal functions!");
160 // Add an entry, F -> undef.
161 TrackedFunctionRetVals[F];
164 /// Solve - Solve for constants and executable blocks.
166 void Solve();
168 /// ResolveBranchesIn - While solving the dataflow for a function, we assume
169 /// that branches on undef values cannot reach any of their successors.
170 /// However, this is not a safe assumption. After we solve dataflow, this
171 /// method should be use to handle this. If this returns true, the solver
172 /// should be rerun.
173 bool ResolveBranchesIn(Function &F);
175 /// getExecutableBlocks - Once we have solved for constants, return the set of
176 /// blocks that is known to be executable.
177 std::set<BasicBlock*> &getExecutableBlocks() {
178 return BBExecutable;
181 /// getValueMapping - Once we have solved for constants, return the mapping of
182 /// LLVM values to LatticeVals.
183 hash_map<Value*, LatticeVal> &getValueMapping() {
184 return ValueState;
187 /// getTrackedFunctionRetVals - Get the inferred return value map.
189 const hash_map<Function*, LatticeVal> &getTrackedFunctionRetVals() {
190 return TrackedFunctionRetVals;
193 /// getTrackedGlobals - Get and return the set of inferred initializers for
194 /// global variables.
195 const hash_map<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
196 return TrackedGlobals;
200 private:
201 // markConstant - Make a value be marked as "constant". If the value
202 // is not already a constant, add it to the instruction work list so that
203 // the users of the instruction are updated later.
205 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
206 if (IV.markConstant(C)) {
207 DEBUG(std::cerr << "markConstant: " << *C << ": " << *V);
208 InstWorkList.push_back(V);
211 inline void markConstant(Value *V, Constant *C) {
212 markConstant(ValueState[V], V, C);
215 // markOverdefined - Make a value be marked as "overdefined". If the
216 // value is not already overdefined, add it to the overdefined instruction
217 // work list so that the users of the instruction are updated later.
219 inline void markOverdefined(LatticeVal &IV, Value *V) {
220 if (IV.markOverdefined()) {
221 DEBUG(std::cerr << "markOverdefined: ";
222 if (Function *F = dyn_cast<Function>(V))
223 std::cerr << "Function '" << F->getName() << "'\n";
224 else
225 std::cerr << *V);
226 // Only instructions go on the work list
227 OverdefinedInstWorkList.push_back(V);
230 inline void markOverdefined(Value *V) {
231 markOverdefined(ValueState[V], V);
234 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
235 if (IV.isOverdefined() || MergeWithV.isUndefined())
236 return; // Noop.
237 if (MergeWithV.isOverdefined())
238 markOverdefined(IV, V);
239 else if (IV.isUndefined())
240 markConstant(IV, V, MergeWithV.getConstant());
241 else if (IV.getConstant() != MergeWithV.getConstant())
242 markOverdefined(IV, V);
245 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
246 return mergeInValue(ValueState[V], V, MergeWithV);
250 // getValueState - Return the LatticeVal object that corresponds to the value.
251 // This function is necessary because not all values should start out in the
252 // underdefined state... Argument's should be overdefined, and
253 // constants should be marked as constants. If a value is not known to be an
254 // Instruction object, then use this accessor to get its value from the map.
256 inline LatticeVal &getValueState(Value *V) {
257 hash_map<Value*, LatticeVal>::iterator I = ValueState.find(V);
258 if (I != ValueState.end()) return I->second; // Common case, in the map
260 if (Constant *CPV = dyn_cast<Constant>(V)) {
261 if (isa<UndefValue>(V)) {
262 // Nothing to do, remain undefined.
263 } else {
264 ValueState[CPV].markConstant(CPV); // Constants are constant
267 // All others are underdefined by default...
268 return ValueState[V];
271 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
272 // work list if it is not already executable...
274 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
275 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
276 return; // This edge is already known to be executable!
278 if (BBExecutable.count(Dest)) {
279 DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName()
280 << " -> " << Dest->getName() << "\n");
282 // The destination is already executable, but we just made an edge
283 // feasible that wasn't before. Revisit the PHI nodes in the block
284 // because they have potentially new operands.
285 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
286 visitPHINode(*cast<PHINode>(I));
288 } else {
289 MarkBlockExecutable(Dest);
293 // getFeasibleSuccessors - Return a vector of booleans to indicate which
294 // successors are reachable from a given terminator instruction.
296 void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
298 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
299 // block to the 'To' basic block is currently feasible...
301 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
303 // OperandChangedState - This method is invoked on all of the users of an
304 // instruction that was just changed state somehow.... Based on this
305 // information, we need to update the specified user of this instruction.
307 void OperandChangedState(User *U) {
308 // Only instructions use other variable values!
309 Instruction &I = cast<Instruction>(*U);
310 if (BBExecutable.count(I.getParent())) // Inst is executable?
311 visit(I);
314 private:
315 friend class InstVisitor<SCCPSolver>;
317 // visit implementations - Something changed in this instruction... Either an
318 // operand made a transition, or the instruction is newly executable. Change
319 // the value type of I to reflect these changes if appropriate.
321 void visitPHINode(PHINode &I);
323 // Terminators
324 void visitReturnInst(ReturnInst &I);
325 void visitTerminatorInst(TerminatorInst &TI);
327 void visitCastInst(CastInst &I);
328 void visitSelectInst(SelectInst &I);
329 void visitBinaryOperator(Instruction &I);
330 void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
331 void visitExtractElementInst(ExtractElementInst &I);
332 void visitInsertElementInst(InsertElementInst &I);
333 void visitShuffleVectorInst(ShuffleVectorInst &I);
335 // Instructions that cannot be folded away...
336 void visitStoreInst (Instruction &I);
337 void visitLoadInst (LoadInst &I);
338 void visitGetElementPtrInst(GetElementPtrInst &I);
339 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); }
340 void visitInvokeInst (InvokeInst &II) {
341 visitCallSite(CallSite::get(&II));
342 visitTerminatorInst(II);
344 void visitCallSite (CallSite CS);
345 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
346 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
347 void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
348 void visitVANextInst (Instruction &I) { markOverdefined(&I); }
349 void visitVAArgInst (Instruction &I) { markOverdefined(&I); }
350 void visitFreeInst (Instruction &I) { /*returns void*/ }
352 void visitInstruction(Instruction &I) {
353 // If a new instruction is added to LLVM that we don't handle...
354 std::cerr << "SCCP: Don't know how to handle: " << I;
355 markOverdefined(&I); // Just in case
359 // getFeasibleSuccessors - Return a vector of booleans to indicate which
360 // successors are reachable from a given terminator instruction.
362 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
363 std::vector<bool> &Succs) {
364 Succs.resize(TI.getNumSuccessors());
365 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
366 if (BI->isUnconditional()) {
367 Succs[0] = true;
368 } else {
369 LatticeVal &BCValue = getValueState(BI->getCondition());
370 if (BCValue.isOverdefined() ||
371 (BCValue.isConstant() && !isa<ConstantBool>(BCValue.getConstant()))) {
372 // Overdefined condition variables, and branches on unfoldable constant
373 // conditions, mean the branch could go either way.
374 Succs[0] = Succs[1] = true;
375 } else if (BCValue.isConstant()) {
376 // Constant condition variables mean the branch can only go a single way
377 Succs[BCValue.getConstant() == ConstantBool::False] = true;
380 } else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
381 // Invoke instructions successors are always executable.
382 Succs[0] = Succs[1] = true;
383 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
384 LatticeVal &SCValue = getValueState(SI->getCondition());
385 if (SCValue.isOverdefined() || // Overdefined condition?
386 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
387 // All destinations are executable!
388 Succs.assign(TI.getNumSuccessors(), true);
389 } else if (SCValue.isConstant()) {
390 Constant *CPV = SCValue.getConstant();
391 // Make sure to skip the "default value" which isn't a value
392 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
393 if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
394 Succs[i] = true;
395 return;
399 // Constant value not equal to any of the branches... must execute
400 // default branch then...
401 Succs[0] = true;
403 } else {
404 std::cerr << "SCCP: Don't know how to handle: " << TI;
405 Succs.assign(TI.getNumSuccessors(), true);
410 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
411 // block to the 'To' basic block is currently feasible...
413 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
414 assert(BBExecutable.count(To) && "Dest should always be alive!");
416 // Make sure the source basic block is executable!!
417 if (!BBExecutable.count(From)) return false;
419 // Check to make sure this edge itself is actually feasible now...
420 TerminatorInst *TI = From->getTerminator();
421 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
422 if (BI->isUnconditional())
423 return true;
424 else {
425 LatticeVal &BCValue = getValueState(BI->getCondition());
426 if (BCValue.isOverdefined()) {
427 // Overdefined condition variables mean the branch could go either way.
428 return true;
429 } else if (BCValue.isConstant()) {
430 // Not branching on an evaluatable constant?
431 if (!isa<ConstantBool>(BCValue.getConstant())) return true;
433 // Constant condition variables mean the branch can only go a single way
434 return BI->getSuccessor(BCValue.getConstant() ==
435 ConstantBool::False) == To;
437 return false;
439 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
440 // Invoke instructions successors are always executable.
441 return true;
442 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
443 LatticeVal &SCValue = getValueState(SI->getCondition());
444 if (SCValue.isOverdefined()) { // Overdefined condition?
445 // All destinations are executable!
446 return true;
447 } else if (SCValue.isConstant()) {
448 Constant *CPV = SCValue.getConstant();
449 if (!isa<ConstantInt>(CPV))
450 return true; // not a foldable constant?
452 // Make sure to skip the "default value" which isn't a value
453 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
454 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
455 return SI->getSuccessor(i) == To;
457 // Constant value not equal to any of the branches... must execute
458 // default branch then...
459 return SI->getDefaultDest() == To;
461 return false;
462 } else {
463 std::cerr << "Unknown terminator instruction: " << *TI;
464 abort();
468 // visit Implementations - Something changed in this instruction... Either an
469 // operand made a transition, or the instruction is newly executable. Change
470 // the value type of I to reflect these changes if appropriate. This method
471 // makes sure to do the following actions:
473 // 1. If a phi node merges two constants in, and has conflicting value coming
474 // from different branches, or if the PHI node merges in an overdefined
475 // value, then the PHI node becomes overdefined.
476 // 2. If a phi node merges only constants in, and they all agree on value, the
477 // PHI node becomes a constant value equal to that.
478 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
479 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
480 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
481 // 6. If a conditional branch has a value that is constant, make the selected
482 // destination executable
483 // 7. If a conditional branch has a value that is overdefined, make all
484 // successors executable.
486 void SCCPSolver::visitPHINode(PHINode &PN) {
487 LatticeVal &PNIV = getValueState(&PN);
488 if (PNIV.isOverdefined()) {
489 // There may be instructions using this PHI node that are not overdefined
490 // themselves. If so, make sure that they know that the PHI node operand
491 // changed.
492 std::multimap<PHINode*, Instruction*>::iterator I, E;
493 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
494 if (I != E) {
495 std::vector<Instruction*> Users;
496 Users.reserve(std::distance(I, E));
497 for (; I != E; ++I) Users.push_back(I->second);
498 while (!Users.empty()) {
499 visit(Users.back());
500 Users.pop_back();
503 return; // Quick exit
506 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
507 // and slow us down a lot. Just mark them overdefined.
508 if (PN.getNumIncomingValues() > 64) {
509 markOverdefined(PNIV, &PN);
510 return;
513 // Look at all of the executable operands of the PHI node. If any of them
514 // are overdefined, the PHI becomes overdefined as well. If they are all
515 // constant, and they agree with each other, the PHI becomes the identical
516 // constant. If they are constant and don't agree, the PHI is overdefined.
517 // If there are no executable operands, the PHI remains undefined.
519 Constant *OperandVal = 0;
520 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
521 LatticeVal &IV = getValueState(PN.getIncomingValue(i));
522 if (IV.isUndefined()) continue; // Doesn't influence PHI node.
524 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
525 if (IV.isOverdefined()) { // PHI node becomes overdefined!
526 markOverdefined(PNIV, &PN);
527 return;
530 if (OperandVal == 0) { // Grab the first value...
531 OperandVal = IV.getConstant();
532 } else { // Another value is being merged in!
533 // There is already a reachable operand. If we conflict with it,
534 // then the PHI node becomes overdefined. If we agree with it, we
535 // can continue on.
537 // Check to see if there are two different constants merging...
538 if (IV.getConstant() != OperandVal) {
539 // Yes there is. This means the PHI node is not constant.
540 // You must be overdefined poor PHI.
542 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined
543 return; // I'm done analyzing you
549 // If we exited the loop, this means that the PHI node only has constant
550 // arguments that agree with each other(and OperandVal is the constant) or
551 // OperandVal is null because there are no defined incoming arguments. If
552 // this is the case, the PHI remains undefined.
554 if (OperandVal)
555 markConstant(PNIV, &PN, OperandVal); // Acquire operand value
558 void SCCPSolver::visitReturnInst(ReturnInst &I) {
559 if (I.getNumOperands() == 0) return; // Ret void
561 // If we are tracking the return value of this function, merge it in.
562 Function *F = I.getParent()->getParent();
563 if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) {
564 hash_map<Function*, LatticeVal>::iterator TFRVI =
565 TrackedFunctionRetVals.find(F);
566 if (TFRVI != TrackedFunctionRetVals.end() &&
567 !TFRVI->second.isOverdefined()) {
568 LatticeVal &IV = getValueState(I.getOperand(0));
569 mergeInValue(TFRVI->second, F, IV);
575 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
576 std::vector<bool> SuccFeasible;
577 getFeasibleSuccessors(TI, SuccFeasible);
579 BasicBlock *BB = TI.getParent();
581 // Mark all feasible successors executable...
582 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
583 if (SuccFeasible[i])
584 markEdgeExecutable(BB, TI.getSuccessor(i));
587 void SCCPSolver::visitCastInst(CastInst &I) {
588 Value *V = I.getOperand(0);
589 LatticeVal &VState = getValueState(V);
590 if (VState.isOverdefined()) // Inherit overdefinedness of operand
591 markOverdefined(&I);
592 else if (VState.isConstant()) // Propagate constant value
593 markConstant(&I, ConstantExpr::getCast(VState.getConstant(), I.getType()));
596 void SCCPSolver::visitSelectInst(SelectInst &I) {
597 LatticeVal &CondValue = getValueState(I.getCondition());
598 if (CondValue.isUndefined())
599 return;
600 if (CondValue.isConstant()) {
601 Value *InVal = 0;
602 if (CondValue.getConstant() == ConstantBool::True) {
603 mergeInValue(&I, getValueState(I.getTrueValue()));
604 return;
605 } else if (CondValue.getConstant() == ConstantBool::False) {
606 mergeInValue(&I, getValueState(I.getFalseValue()));
607 return;
611 // Otherwise, the condition is overdefined or a constant we can't evaluate.
612 // See if we can produce something better than overdefined based on the T/F
613 // value.
614 LatticeVal &TVal = getValueState(I.getTrueValue());
615 LatticeVal &FVal = getValueState(I.getFalseValue());
617 // select ?, C, C -> C.
618 if (TVal.isConstant() && FVal.isConstant() &&
619 TVal.getConstant() == FVal.getConstant()) {
620 markConstant(&I, FVal.getConstant());
621 return;
624 if (TVal.isUndefined()) { // select ?, undef, X -> X.
625 mergeInValue(&I, FVal);
626 } else if (FVal.isUndefined()) { // select ?, X, undef -> X.
627 mergeInValue(&I, TVal);
628 } else {
629 markOverdefined(&I);
633 // Handle BinaryOperators and Shift Instructions...
634 void SCCPSolver::visitBinaryOperator(Instruction &I) {
635 LatticeVal &IV = ValueState[&I];
636 if (IV.isOverdefined()) return;
638 LatticeVal &V1State = getValueState(I.getOperand(0));
639 LatticeVal &V2State = getValueState(I.getOperand(1));
641 if (V1State.isOverdefined() || V2State.isOverdefined()) {
642 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
643 // operand is overdefined.
644 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
645 LatticeVal *NonOverdefVal = 0;
646 if (!V1State.isOverdefined()) {
647 NonOverdefVal = &V1State;
648 } else if (!V2State.isOverdefined()) {
649 NonOverdefVal = &V2State;
652 if (NonOverdefVal) {
653 if (NonOverdefVal->isUndefined()) {
654 // Could annihilate value.
655 if (I.getOpcode() == Instruction::And)
656 markConstant(IV, &I, Constant::getNullValue(I.getType()));
657 else
658 markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
659 return;
660 } else {
661 if (I.getOpcode() == Instruction::And) {
662 if (NonOverdefVal->getConstant()->isNullValue()) {
663 markConstant(IV, &I, NonOverdefVal->getConstant());
664 return; // X or 0 = -1
666 } else {
667 if (ConstantIntegral *CI =
668 dyn_cast<ConstantIntegral>(NonOverdefVal->getConstant()))
669 if (CI->isAllOnesValue()) {
670 markConstant(IV, &I, NonOverdefVal->getConstant());
671 return; // X or -1 = -1
679 // If both operands are PHI nodes, it is possible that this instruction has
680 // a constant value, despite the fact that the PHI node doesn't. Check for
681 // this condition now.
682 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
683 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
684 if (PN1->getParent() == PN2->getParent()) {
685 // Since the two PHI nodes are in the same basic block, they must have
686 // entries for the same predecessors. Walk the predecessor list, and
687 // if all of the incoming values are constants, and the result of
688 // evaluating this expression with all incoming value pairs is the
689 // same, then this expression is a constant even though the PHI node
690 // is not a constant!
691 LatticeVal Result;
692 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
693 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
694 BasicBlock *InBlock = PN1->getIncomingBlock(i);
695 LatticeVal &In2 =
696 getValueState(PN2->getIncomingValueForBlock(InBlock));
698 if (In1.isOverdefined() || In2.isOverdefined()) {
699 Result.markOverdefined();
700 break; // Cannot fold this operation over the PHI nodes!
701 } else if (In1.isConstant() && In2.isConstant()) {
702 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
703 In2.getConstant());
704 if (Result.isUndefined())
705 Result.markConstant(V);
706 else if (Result.isConstant() && Result.getConstant() != V) {
707 Result.markOverdefined();
708 break;
713 // If we found a constant value here, then we know the instruction is
714 // constant despite the fact that the PHI nodes are overdefined.
715 if (Result.isConstant()) {
716 markConstant(IV, &I, Result.getConstant());
717 // Remember that this instruction is virtually using the PHI node
718 // operands.
719 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
720 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
721 return;
722 } else if (Result.isUndefined()) {
723 return;
726 // Okay, this really is overdefined now. Since we might have
727 // speculatively thought that this was not overdefined before, and
728 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
729 // make sure to clean out any entries that we put there, for
730 // efficiency.
731 std::multimap<PHINode*, Instruction*>::iterator It, E;
732 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
733 while (It != E) {
734 if (It->second == &I) {
735 UsersOfOverdefinedPHIs.erase(It++);
736 } else
737 ++It;
739 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
740 while (It != E) {
741 if (It->second == &I) {
742 UsersOfOverdefinedPHIs.erase(It++);
743 } else
744 ++It;
748 markOverdefined(IV, &I);
749 } else if (V1State.isConstant() && V2State.isConstant()) {
750 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
751 V2State.getConstant()));
755 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
756 LatticeVal &ValState = getValueState(I.getOperand(0));
757 LatticeVal &IdxState = getValueState(I.getOperand(1));
759 if (ValState.isOverdefined() || IdxState.isOverdefined())
760 markOverdefined(&I);
761 else if(ValState.isConstant() && IdxState.isConstant())
762 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
763 IdxState.getConstant()));
766 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
767 LatticeVal &ValState = getValueState(I.getOperand(0));
768 LatticeVal &EltState = getValueState(I.getOperand(1));
769 LatticeVal &IdxState = getValueState(I.getOperand(2));
771 if (ValState.isOverdefined() || EltState.isOverdefined() ||
772 IdxState.isOverdefined())
773 markOverdefined(&I);
774 else if(ValState.isConstant() && EltState.isConstant() &&
775 IdxState.isConstant())
776 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
777 EltState.getConstant(),
778 IdxState.getConstant()));
779 else if (ValState.isUndefined() && EltState.isConstant() &&
780 IdxState.isConstant())
781 markConstant(&I, ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
782 EltState.getConstant(),
783 IdxState.getConstant()));
786 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
787 LatticeVal &V1State = getValueState(I.getOperand(0));
788 LatticeVal &V2State = getValueState(I.getOperand(1));
789 LatticeVal &MaskState = getValueState(I.getOperand(2));
791 if (MaskState.isUndefined() ||
792 (V1State.isUndefined() && V2State.isUndefined()))
793 return; // Undefined output if mask or both inputs undefined.
795 if (V1State.isOverdefined() || V2State.isOverdefined() ||
796 MaskState.isOverdefined()) {
797 markOverdefined(&I);
798 } else {
799 // A mix of constant/undef inputs.
800 Constant *V1 = V1State.isConstant() ?
801 V1State.getConstant() : UndefValue::get(I.getType());
802 Constant *V2 = V2State.isConstant() ?
803 V2State.getConstant() : UndefValue::get(I.getType());
804 Constant *Mask = MaskState.isConstant() ?
805 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
806 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
810 // Handle getelementptr instructions... if all operands are constants then we
811 // can turn this into a getelementptr ConstantExpr.
813 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
814 LatticeVal &IV = ValueState[&I];
815 if (IV.isOverdefined()) return;
817 std::vector<Constant*> Operands;
818 Operands.reserve(I.getNumOperands());
820 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
821 LatticeVal &State = getValueState(I.getOperand(i));
822 if (State.isUndefined())
823 return; // Operands are not resolved yet...
824 else if (State.isOverdefined()) {
825 markOverdefined(IV, &I);
826 return;
828 assert(State.isConstant() && "Unknown state!");
829 Operands.push_back(State.getConstant());
832 Constant *Ptr = Operands[0];
833 Operands.erase(Operands.begin()); // Erase the pointer from idx list...
835 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, Operands));
838 void SCCPSolver::visitStoreInst(Instruction &SI) {
839 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
840 return;
841 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
842 hash_map<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
843 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
845 // Get the value we are storing into the global.
846 LatticeVal &PtrVal = getValueState(SI.getOperand(0));
848 mergeInValue(I->second, GV, PtrVal);
849 if (I->second.isOverdefined())
850 TrackedGlobals.erase(I); // No need to keep tracking this!
854 // Handle load instructions. If the operand is a constant pointer to a constant
855 // global, we can replace the load with the loaded constant value!
856 void SCCPSolver::visitLoadInst(LoadInst &I) {
857 LatticeVal &IV = ValueState[&I];
858 if (IV.isOverdefined()) return;
860 LatticeVal &PtrVal = getValueState(I.getOperand(0));
861 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
862 if (PtrVal.isConstant() && !I.isVolatile()) {
863 Value *Ptr = PtrVal.getConstant();
864 if (isa<ConstantPointerNull>(Ptr)) {
865 // load null -> null
866 markConstant(IV, &I, Constant::getNullValue(I.getType()));
867 return;
870 // Transform load (constant global) into the value loaded.
871 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
872 if (GV->isConstant()) {
873 if (!GV->isExternal()) {
874 markConstant(IV, &I, GV->getInitializer());
875 return;
877 } else if (!TrackedGlobals.empty()) {
878 // If we are tracking this global, merge in the known value for it.
879 hash_map<GlobalVariable*, LatticeVal>::iterator It =
880 TrackedGlobals.find(GV);
881 if (It != TrackedGlobals.end()) {
882 mergeInValue(IV, &I, It->second);
883 return;
888 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
889 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
890 if (CE->getOpcode() == Instruction::GetElementPtr)
891 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
892 if (GV->isConstant() && !GV->isExternal())
893 if (Constant *V =
894 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
895 markConstant(IV, &I, V);
896 return;
900 // Otherwise we cannot say for certain what value this load will produce.
901 // Bail out.
902 markOverdefined(IV, &I);
905 void SCCPSolver::visitCallSite(CallSite CS) {
906 Function *F = CS.getCalledFunction();
908 // If we are tracking this function, we must make sure to bind arguments as
909 // appropriate.
910 hash_map<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end();
911 if (F && F->hasInternalLinkage())
912 TFRVI = TrackedFunctionRetVals.find(F);
914 if (TFRVI != TrackedFunctionRetVals.end()) {
915 // If this is the first call to the function hit, mark its entry block
916 // executable.
917 if (!BBExecutable.count(F->begin()))
918 MarkBlockExecutable(F->begin());
920 CallSite::arg_iterator CAI = CS.arg_begin();
921 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
922 AI != E; ++AI, ++CAI) {
923 LatticeVal &IV = ValueState[AI];
924 if (!IV.isOverdefined())
925 mergeInValue(IV, AI, getValueState(*CAI));
928 Instruction *I = CS.getInstruction();
929 if (I->getType() == Type::VoidTy) return;
931 LatticeVal &IV = ValueState[I];
932 if (IV.isOverdefined()) return;
934 // Propagate the return value of the function to the value of the instruction.
935 if (TFRVI != TrackedFunctionRetVals.end()) {
936 mergeInValue(IV, I, TFRVI->second);
937 return;
940 if (F == 0 || !F->isExternal() || !canConstantFoldCallTo(F)) {
941 markOverdefined(IV, I);
942 return;
945 std::vector<Constant*> Operands;
946 Operands.reserve(I->getNumOperands()-1);
948 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
949 AI != E; ++AI) {
950 LatticeVal &State = getValueState(*AI);
951 if (State.isUndefined())
952 return; // Operands are not resolved yet...
953 else if (State.isOverdefined()) {
954 markOverdefined(IV, I);
955 return;
957 assert(State.isConstant() && "Unknown state!");
958 Operands.push_back(State.getConstant());
961 if (Constant *C = ConstantFoldCall(F, Operands))
962 markConstant(IV, I, C);
963 else
964 markOverdefined(IV, I);
968 void SCCPSolver::Solve() {
969 // Process the work lists until they are empty!
970 while (!BBWorkList.empty() || !InstWorkList.empty() ||
971 !OverdefinedInstWorkList.empty()) {
972 // Process the instruction work list...
973 while (!OverdefinedInstWorkList.empty()) {
974 Value *I = OverdefinedInstWorkList.back();
975 OverdefinedInstWorkList.pop_back();
977 DEBUG(std::cerr << "\nPopped off OI-WL: " << *I);
979 // "I" got into the work list because it either made the transition from
980 // bottom to constant
982 // Anything on this worklist that is overdefined need not be visited
983 // since all of its users will have already been marked as overdefined
984 // Update all of the users of this instruction's value...
986 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
987 UI != E; ++UI)
988 OperandChangedState(*UI);
990 // Process the instruction work list...
991 while (!InstWorkList.empty()) {
992 Value *I = InstWorkList.back();
993 InstWorkList.pop_back();
995 DEBUG(std::cerr << "\nPopped off I-WL: " << *I);
997 // "I" got into the work list because it either made the transition from
998 // bottom to constant
1000 // Anything on this worklist that is overdefined need not be visited
1001 // since all of its users will have already been marked as overdefined.
1002 // Update all of the users of this instruction's value...
1004 if (!getValueState(I).isOverdefined())
1005 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1006 UI != E; ++UI)
1007 OperandChangedState(*UI);
1010 // Process the basic block work list...
1011 while (!BBWorkList.empty()) {
1012 BasicBlock *BB = BBWorkList.back();
1013 BBWorkList.pop_back();
1015 DEBUG(std::cerr << "\nPopped off BBWL: " << *BB);
1017 // Notify all instructions in this basic block that they are newly
1018 // executable.
1019 visit(BB);
1024 /// ResolveBranchesIn - While solving the dataflow for a function, we assume
1025 /// that branches on undef values cannot reach any of their successors.
1026 /// However, this is not a safe assumption. After we solve dataflow, this
1027 /// method should be use to handle this. If this returns true, the solver
1028 /// should be rerun.
1029 bool SCCPSolver::ResolveBranchesIn(Function &F) {
1030 bool BranchesResolved = false;
1031 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1032 if (BBExecutable.count(BB)) {
1033 TerminatorInst *TI = BB->getTerminator();
1034 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1035 if (BI->isConditional()) {
1036 LatticeVal &BCValue = getValueState(BI->getCondition());
1037 if (BCValue.isUndefined()) {
1038 BI->setCondition(ConstantBool::True);
1039 BranchesResolved = true;
1040 visit(BI);
1043 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1044 LatticeVal &SCValue = getValueState(SI->getCondition());
1045 if (SCValue.isUndefined()) {
1046 const Type *CondTy = SI->getCondition()->getType();
1047 SI->setCondition(Constant::getNullValue(CondTy));
1048 BranchesResolved = true;
1049 visit(SI);
1054 return BranchesResolved;
1058 namespace {
1059 Statistic<> NumInstRemoved("sccp", "Number of instructions removed");
1060 Statistic<> NumDeadBlocks ("sccp", "Number of basic blocks unreachable");
1062 //===--------------------------------------------------------------------===//
1064 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1065 /// Sparse Conditional COnstant Propagator.
1067 struct SCCP : public FunctionPass {
1068 // runOnFunction - Run the Sparse Conditional Constant Propagation
1069 // algorithm, and return true if the function was modified.
1071 bool runOnFunction(Function &F);
1073 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1074 AU.setPreservesCFG();
1078 RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
1079 } // end anonymous namespace
1082 // createSCCPPass - This is the public interface to this file...
1083 FunctionPass *llvm::createSCCPPass() {
1084 return new SCCP();
1088 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1089 // and return true if the function was modified.
1091 bool SCCP::runOnFunction(Function &F) {
1092 DEBUG(std::cerr << "SCCP on function '" << F.getName() << "'\n");
1093 SCCPSolver Solver;
1095 // Mark the first block of the function as being executable.
1096 Solver.MarkBlockExecutable(F.begin());
1098 // Mark all arguments to the function as being overdefined.
1099 hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1100 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI)
1101 Values[AI].markOverdefined();
1103 // Solve for constants.
1104 bool ResolvedBranches = true;
1105 while (ResolvedBranches) {
1106 Solver.Solve();
1107 DEBUG(std::cerr << "RESOLVING UNDEF BRANCHES\n");
1108 ResolvedBranches = Solver.ResolveBranchesIn(F);
1111 bool MadeChanges = false;
1113 // If we decided that there are basic blocks that are dead in this function,
1114 // delete their contents now. Note that we cannot actually delete the blocks,
1115 // as we cannot modify the CFG of the function.
1117 std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
1118 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1119 if (!ExecutableBBs.count(BB)) {
1120 DEBUG(std::cerr << " BasicBlock Dead:" << *BB);
1121 ++NumDeadBlocks;
1123 // Delete the instructions backwards, as it has a reduced likelihood of
1124 // having to update as many def-use and use-def chains.
1125 std::vector<Instruction*> Insts;
1126 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1127 I != E; ++I)
1128 Insts.push_back(I);
1129 while (!Insts.empty()) {
1130 Instruction *I = Insts.back();
1131 Insts.pop_back();
1132 if (!I->use_empty())
1133 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1134 BB->getInstList().erase(I);
1135 MadeChanges = true;
1136 ++NumInstRemoved;
1138 } else {
1139 // Iterate over all of the instructions in a function, replacing them with
1140 // constants if we have found them to be of constant values.
1142 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1143 Instruction *Inst = BI++;
1144 if (Inst->getType() != Type::VoidTy) {
1145 LatticeVal &IV = Values[Inst];
1146 if (IV.isConstant() || IV.isUndefined() &&
1147 !isa<TerminatorInst>(Inst)) {
1148 Constant *Const = IV.isConstant()
1149 ? IV.getConstant() : UndefValue::get(Inst->getType());
1150 DEBUG(std::cerr << " Constant: " << *Const << " = " << *Inst);
1152 // Replaces all of the uses of a variable with uses of the constant.
1153 Inst->replaceAllUsesWith(Const);
1155 // Delete the instruction.
1156 BB->getInstList().erase(Inst);
1158 // Hey, we just changed something!
1159 MadeChanges = true;
1160 ++NumInstRemoved;
1166 return MadeChanges;
1169 namespace {
1170 Statistic<> IPNumInstRemoved("ipsccp", "Number of instructions removed");
1171 Statistic<> IPNumDeadBlocks ("ipsccp", "Number of basic blocks unreachable");
1172 Statistic<> IPNumArgsElimed ("ipsccp",
1173 "Number of arguments constant propagated");
1174 Statistic<> IPNumGlobalConst("ipsccp",
1175 "Number of globals found to be constant");
1177 //===--------------------------------------------------------------------===//
1179 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1180 /// Constant Propagation.
1182 struct IPSCCP : public ModulePass {
1183 bool runOnModule(Module &M);
1186 RegisterOpt<IPSCCP>
1187 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1188 } // end anonymous namespace
1190 // createIPSCCPPass - This is the public interface to this file...
1191 ModulePass *llvm::createIPSCCPPass() {
1192 return new IPSCCP();
1196 static bool AddressIsTaken(GlobalValue *GV) {
1197 // Delete any dead constantexpr klingons.
1198 GV->removeDeadConstantUsers();
1200 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1201 UI != E; ++UI)
1202 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1203 if (SI->getOperand(0) == GV || SI->isVolatile())
1204 return true; // Storing addr of GV.
1205 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1206 // Make sure we are calling the function, not passing the address.
1207 CallSite CS = CallSite::get(cast<Instruction>(*UI));
1208 for (CallSite::arg_iterator AI = CS.arg_begin(),
1209 E = CS.arg_end(); AI != E; ++AI)
1210 if (*AI == GV)
1211 return true;
1212 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1213 if (LI->isVolatile())
1214 return true;
1215 } else {
1216 return true;
1218 return false;
1221 bool IPSCCP::runOnModule(Module &M) {
1222 SCCPSolver Solver;
1224 // Loop over all functions, marking arguments to those with their addresses
1225 // taken or that are external as overdefined.
1227 hash_map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1228 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1229 if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
1230 if (!F->isExternal())
1231 Solver.MarkBlockExecutable(F->begin());
1232 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1233 AI != E; ++AI)
1234 Values[AI].markOverdefined();
1235 } else {
1236 Solver.AddTrackedFunction(F);
1239 // Loop over global variables. We inform the solver about any internal global
1240 // variables that do not have their 'addresses taken'. If they don't have
1241 // their addresses taken, we can propagate constants through them.
1242 for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1243 G != E; ++G)
1244 if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
1245 Solver.TrackValueOfGlobalVariable(G);
1247 // Solve for constants.
1248 bool ResolvedBranches = true;
1249 while (ResolvedBranches) {
1250 Solver.Solve();
1252 DEBUG(std::cerr << "RESOLVING UNDEF BRANCHES\n");
1253 ResolvedBranches = false;
1254 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1255 ResolvedBranches |= Solver.ResolveBranchesIn(*F);
1258 bool MadeChanges = false;
1260 // Iterate over all of the instructions in the module, replacing them with
1261 // constants if we have found them to be of constant values.
1263 std::set<BasicBlock*> &ExecutableBBs = Solver.getExecutableBlocks();
1264 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1265 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1266 AI != E; ++AI)
1267 if (!AI->use_empty()) {
1268 LatticeVal &IV = Values[AI];
1269 if (IV.isConstant() || IV.isUndefined()) {
1270 Constant *CST = IV.isConstant() ?
1271 IV.getConstant() : UndefValue::get(AI->getType());
1272 DEBUG(std::cerr << "*** Arg " << *AI << " = " << *CST <<"\n");
1274 // Replaces all of the uses of a variable with uses of the
1275 // constant.
1276 AI->replaceAllUsesWith(CST);
1277 ++IPNumArgsElimed;
1281 std::vector<BasicBlock*> BlocksToErase;
1282 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1283 if (!ExecutableBBs.count(BB)) {
1284 DEBUG(std::cerr << " BasicBlock Dead:" << *BB);
1285 ++IPNumDeadBlocks;
1287 // Delete the instructions backwards, as it has a reduced likelihood of
1288 // having to update as many def-use and use-def chains.
1289 std::vector<Instruction*> Insts;
1290 TerminatorInst *TI = BB->getTerminator();
1291 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1292 Insts.push_back(I);
1294 while (!Insts.empty()) {
1295 Instruction *I = Insts.back();
1296 Insts.pop_back();
1297 if (!I->use_empty())
1298 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1299 BB->getInstList().erase(I);
1300 MadeChanges = true;
1301 ++IPNumInstRemoved;
1304 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1305 BasicBlock *Succ = TI->getSuccessor(i);
1306 if (Succ->begin() != Succ->end() && isa<PHINode>(Succ->begin()))
1307 TI->getSuccessor(i)->removePredecessor(BB);
1309 if (!TI->use_empty())
1310 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1311 BB->getInstList().erase(TI);
1313 if (&*BB != &F->front())
1314 BlocksToErase.push_back(BB);
1315 else
1316 new UnreachableInst(BB);
1318 } else {
1319 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1320 Instruction *Inst = BI++;
1321 if (Inst->getType() != Type::VoidTy) {
1322 LatticeVal &IV = Values[Inst];
1323 if (IV.isConstant() || IV.isUndefined() &&
1324 !isa<TerminatorInst>(Inst)) {
1325 Constant *Const = IV.isConstant()
1326 ? IV.getConstant() : UndefValue::get(Inst->getType());
1327 DEBUG(std::cerr << " Constant: " << *Const << " = " << *Inst);
1329 // Replaces all of the uses of a variable with uses of the
1330 // constant.
1331 Inst->replaceAllUsesWith(Const);
1333 // Delete the instruction.
1334 if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst))
1335 BB->getInstList().erase(Inst);
1337 // Hey, we just changed something!
1338 MadeChanges = true;
1339 ++IPNumInstRemoved;
1345 // Now that all instructions in the function are constant folded, erase dead
1346 // blocks, because we can now use ConstantFoldTerminator to get rid of
1347 // in-edges.
1348 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1349 // If there are any PHI nodes in this successor, drop entries for BB now.
1350 BasicBlock *DeadBB = BlocksToErase[i];
1351 while (!DeadBB->use_empty()) {
1352 Instruction *I = cast<Instruction>(DeadBB->use_back());
1353 bool Folded = ConstantFoldTerminator(I->getParent());
1354 assert(Folded && "Didn't fold away reference to block!");
1357 // Finally, delete the basic block.
1358 F->getBasicBlockList().erase(DeadBB);
1362 // If we inferred constant or undef return values for a function, we replaced
1363 // all call uses with the inferred value. This means we don't need to bother
1364 // actually returning anything from the function. Replace all return
1365 // instructions with return undef.
1366 const hash_map<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals();
1367 for (hash_map<Function*, LatticeVal>::const_iterator I = RV.begin(),
1368 E = RV.end(); I != E; ++I)
1369 if (!I->second.isOverdefined() &&
1370 I->first->getReturnType() != Type::VoidTy) {
1371 Function *F = I->first;
1372 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1373 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1374 if (!isa<UndefValue>(RI->getOperand(0)))
1375 RI->setOperand(0, UndefValue::get(F->getReturnType()));
1378 // If we infered constant or undef values for globals variables, we can delete
1379 // the global and any stores that remain to it.
1380 const hash_map<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1381 for (hash_map<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1382 E = TG.end(); I != E; ++I) {
1383 GlobalVariable *GV = I->first;
1384 assert(!I->second.isOverdefined() &&
1385 "Overdefined values should have been taken out of the map!");
1386 DEBUG(std::cerr << "Found that GV '" << GV->getName()<< "' is constant!\n");
1387 while (!GV->use_empty()) {
1388 StoreInst *SI = cast<StoreInst>(GV->use_back());
1389 SI->eraseFromParent();
1391 M.getGlobalList().erase(GV);
1392 ++IPNumGlobalConst;
1395 return MadeChanges;