1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements sparse conditional constant propagation and merging:
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
19 // * This pass has a habit of making definitions be dead. It is a good idea
20 // to to run a DCE pass sometime after running this pass.
22 //===----------------------------------------------------------------------===//
24 #define DEBUG_TYPE "sccp"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/IPO.h"
27 #include "llvm/Constants.h"
28 #include "llvm/DerivedTypes.h"
29 #include "llvm/Instructions.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/InstVisitor.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Support/CallSite.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/ADT/hash_map"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/STLExtras.h"
43 // LatticeVal class - This class represents the different lattice values that an
44 // instruction may occupy. It is a simple class with value semantics.
50 undefined
, // This instruction has no known value
51 constant
, // This instruction has a constant value
52 overdefined
// This instruction has an unknown value
53 } LatticeValue
; // The current lattice position
54 Constant
*ConstantVal
; // If Constant value, the current value
56 inline LatticeVal() : LatticeValue(undefined
), ConstantVal(0) {}
58 // markOverdefined - Return true if this is a new status to be in...
59 inline bool markOverdefined() {
60 if (LatticeValue
!= overdefined
) {
61 LatticeValue
= overdefined
;
67 // markConstant - Return true if this is a new status for us...
68 inline bool markConstant(Constant
*V
) {
69 if (LatticeValue
!= constant
) {
70 LatticeValue
= constant
;
74 assert(ConstantVal
== V
&& "Marking constant with different value");
79 inline bool isUndefined() const { return LatticeValue
== undefined
; }
80 inline bool isConstant() const { return LatticeValue
== constant
; }
81 inline bool isOverdefined() const { return LatticeValue
== overdefined
; }
83 inline Constant
*getConstant() const {
84 assert(isConstant() && "Cannot get the constant of a non-constant!");
89 } // end anonymous namespace
92 //===----------------------------------------------------------------------===//
94 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
95 /// Constant Propagation.
97 class SCCPSolver
: public InstVisitor
<SCCPSolver
> {
98 std::set
<BasicBlock
*> BBExecutable
;// The basic blocks that are executable
99 hash_map
<Value
*, LatticeVal
> ValueState
; // The state each value is in...
101 /// GlobalValue - If we are tracking any values for the contents of a global
102 /// variable, we keep a mapping from the constant accessor to the element of
103 /// the global, to the currently known value. If the value becomes
104 /// overdefined, it's entry is simply removed from this map.
105 hash_map
<GlobalVariable
*, LatticeVal
> TrackedGlobals
;
107 /// TrackedFunctionRetVals - If we are tracking arguments into and the return
108 /// value out of a function, it will have an entry in this map, indicating
109 /// what the known return value for the function is.
110 hash_map
<Function
*, LatticeVal
> TrackedFunctionRetVals
;
112 // The reason for two worklists is that overdefined is the lowest state
113 // on the lattice, and moving things to overdefined as fast as possible
114 // makes SCCP converge much faster.
115 // By having a separate worklist, we accomplish this because everything
116 // possibly overdefined will become overdefined at the soonest possible
118 std::vector
<Value
*> OverdefinedInstWorkList
;
119 std::vector
<Value
*> InstWorkList
;
122 std::vector
<BasicBlock
*> BBWorkList
; // The BasicBlock work list
124 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
125 /// overdefined, despite the fact that the PHI node is overdefined.
126 std::multimap
<PHINode
*, Instruction
*> UsersOfOverdefinedPHIs
;
128 /// KnownFeasibleEdges - Entries in this set are edges which have already had
129 /// PHI nodes retriggered.
130 typedef std::pair
<BasicBlock
*,BasicBlock
*> Edge
;
131 std::set
<Edge
> KnownFeasibleEdges
;
134 /// MarkBlockExecutable - This method can be used by clients to mark all of
135 /// the blocks that are known to be intrinsically live in the processed unit.
136 void MarkBlockExecutable(BasicBlock
*BB
) {
137 DEBUG(std::cerr
<< "Marking Block Executable: " << BB
->getName() << "\n");
138 BBExecutable
.insert(BB
); // Basic block is executable!
139 BBWorkList
.push_back(BB
); // Add the block to the work list!
142 /// TrackValueOfGlobalVariable - Clients can use this method to
143 /// inform the SCCPSolver that it should track loads and stores to the
144 /// specified global variable if it can. This is only legal to call if
145 /// performing Interprocedural SCCP.
146 void TrackValueOfGlobalVariable(GlobalVariable
*GV
) {
147 const Type
*ElTy
= GV
->getType()->getElementType();
148 if (ElTy
->isFirstClassType()) {
149 LatticeVal
&IV
= TrackedGlobals
[GV
];
150 if (!isa
<UndefValue
>(GV
->getInitializer()))
151 IV
.markConstant(GV
->getInitializer());
155 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
156 /// and out of the specified function (which cannot have its address taken),
157 /// this method must be called.
158 void AddTrackedFunction(Function
*F
) {
159 assert(F
->hasInternalLinkage() && "Can only track internal functions!");
160 // Add an entry, F -> undef.
161 TrackedFunctionRetVals
[F
];
164 /// Solve - Solve for constants and executable blocks.
168 /// ResolveBranchesIn - While solving the dataflow for a function, we assume
169 /// that branches on undef values cannot reach any of their successors.
170 /// However, this is not a safe assumption. After we solve dataflow, this
171 /// method should be use to handle this. If this returns true, the solver
173 bool ResolveBranchesIn(Function
&F
);
175 /// getExecutableBlocks - Once we have solved for constants, return the set of
176 /// blocks that is known to be executable.
177 std::set
<BasicBlock
*> &getExecutableBlocks() {
181 /// getValueMapping - Once we have solved for constants, return the mapping of
182 /// LLVM values to LatticeVals.
183 hash_map
<Value
*, LatticeVal
> &getValueMapping() {
187 /// getTrackedFunctionRetVals - Get the inferred return value map.
189 const hash_map
<Function
*, LatticeVal
> &getTrackedFunctionRetVals() {
190 return TrackedFunctionRetVals
;
193 /// getTrackedGlobals - Get and return the set of inferred initializers for
194 /// global variables.
195 const hash_map
<GlobalVariable
*, LatticeVal
> &getTrackedGlobals() {
196 return TrackedGlobals
;
201 // markConstant - Make a value be marked as "constant". If the value
202 // is not already a constant, add it to the instruction work list so that
203 // the users of the instruction are updated later.
205 inline void markConstant(LatticeVal
&IV
, Value
*V
, Constant
*C
) {
206 if (IV
.markConstant(C
)) {
207 DEBUG(std::cerr
<< "markConstant: " << *C
<< ": " << *V
);
208 InstWorkList
.push_back(V
);
211 inline void markConstant(Value
*V
, Constant
*C
) {
212 markConstant(ValueState
[V
], V
, C
);
215 // markOverdefined - Make a value be marked as "overdefined". If the
216 // value is not already overdefined, add it to the overdefined instruction
217 // work list so that the users of the instruction are updated later.
219 inline void markOverdefined(LatticeVal
&IV
, Value
*V
) {
220 if (IV
.markOverdefined()) {
221 DEBUG(std::cerr
<< "markOverdefined: ";
222 if (Function
*F
= dyn_cast
<Function
>(V
))
223 std::cerr
<< "Function '" << F
->getName() << "'\n";
226 // Only instructions go on the work list
227 OverdefinedInstWorkList
.push_back(V
);
230 inline void markOverdefined(Value
*V
) {
231 markOverdefined(ValueState
[V
], V
);
234 inline void mergeInValue(LatticeVal
&IV
, Value
*V
, LatticeVal
&MergeWithV
) {
235 if (IV
.isOverdefined() || MergeWithV
.isUndefined())
237 if (MergeWithV
.isOverdefined())
238 markOverdefined(IV
, V
);
239 else if (IV
.isUndefined())
240 markConstant(IV
, V
, MergeWithV
.getConstant());
241 else if (IV
.getConstant() != MergeWithV
.getConstant())
242 markOverdefined(IV
, V
);
245 inline void mergeInValue(Value
*V
, LatticeVal
&MergeWithV
) {
246 return mergeInValue(ValueState
[V
], V
, MergeWithV
);
250 // getValueState - Return the LatticeVal object that corresponds to the value.
251 // This function is necessary because not all values should start out in the
252 // underdefined state... Argument's should be overdefined, and
253 // constants should be marked as constants. If a value is not known to be an
254 // Instruction object, then use this accessor to get its value from the map.
256 inline LatticeVal
&getValueState(Value
*V
) {
257 hash_map
<Value
*, LatticeVal
>::iterator I
= ValueState
.find(V
);
258 if (I
!= ValueState
.end()) return I
->second
; // Common case, in the map
260 if (Constant
*CPV
= dyn_cast
<Constant
>(V
)) {
261 if (isa
<UndefValue
>(V
)) {
262 // Nothing to do, remain undefined.
264 ValueState
[CPV
].markConstant(CPV
); // Constants are constant
267 // All others are underdefined by default...
268 return ValueState
[V
];
271 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
272 // work list if it is not already executable...
274 void markEdgeExecutable(BasicBlock
*Source
, BasicBlock
*Dest
) {
275 if (!KnownFeasibleEdges
.insert(Edge(Source
, Dest
)).second
)
276 return; // This edge is already known to be executable!
278 if (BBExecutable
.count(Dest
)) {
279 DEBUG(std::cerr
<< "Marking Edge Executable: " << Source
->getName()
280 << " -> " << Dest
->getName() << "\n");
282 // The destination is already executable, but we just made an edge
283 // feasible that wasn't before. Revisit the PHI nodes in the block
284 // because they have potentially new operands.
285 for (BasicBlock::iterator I
= Dest
->begin(); isa
<PHINode
>(I
); ++I
)
286 visitPHINode(*cast
<PHINode
>(I
));
289 MarkBlockExecutable(Dest
);
293 // getFeasibleSuccessors - Return a vector of booleans to indicate which
294 // successors are reachable from a given terminator instruction.
296 void getFeasibleSuccessors(TerminatorInst
&TI
, std::vector
<bool> &Succs
);
298 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
299 // block to the 'To' basic block is currently feasible...
301 bool isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
);
303 // OperandChangedState - This method is invoked on all of the users of an
304 // instruction that was just changed state somehow.... Based on this
305 // information, we need to update the specified user of this instruction.
307 void OperandChangedState(User
*U
) {
308 // Only instructions use other variable values!
309 Instruction
&I
= cast
<Instruction
>(*U
);
310 if (BBExecutable
.count(I
.getParent())) // Inst is executable?
315 friend class InstVisitor
<SCCPSolver
>;
317 // visit implementations - Something changed in this instruction... Either an
318 // operand made a transition, or the instruction is newly executable. Change
319 // the value type of I to reflect these changes if appropriate.
321 void visitPHINode(PHINode
&I
);
324 void visitReturnInst(ReturnInst
&I
);
325 void visitTerminatorInst(TerminatorInst
&TI
);
327 void visitCastInst(CastInst
&I
);
328 void visitSelectInst(SelectInst
&I
);
329 void visitBinaryOperator(Instruction
&I
);
330 void visitShiftInst(ShiftInst
&I
) { visitBinaryOperator(I
); }
331 void visitExtractElementInst(ExtractElementInst
&I
);
332 void visitInsertElementInst(InsertElementInst
&I
);
333 void visitShuffleVectorInst(ShuffleVectorInst
&I
);
335 // Instructions that cannot be folded away...
336 void visitStoreInst (Instruction
&I
);
337 void visitLoadInst (LoadInst
&I
);
338 void visitGetElementPtrInst(GetElementPtrInst
&I
);
339 void visitCallInst (CallInst
&I
) { visitCallSite(CallSite::get(&I
)); }
340 void visitInvokeInst (InvokeInst
&II
) {
341 visitCallSite(CallSite::get(&II
));
342 visitTerminatorInst(II
);
344 void visitCallSite (CallSite CS
);
345 void visitUnwindInst (TerminatorInst
&I
) { /*returns void*/ }
346 void visitUnreachableInst(TerminatorInst
&I
) { /*returns void*/ }
347 void visitAllocationInst(Instruction
&I
) { markOverdefined(&I
); }
348 void visitVANextInst (Instruction
&I
) { markOverdefined(&I
); }
349 void visitVAArgInst (Instruction
&I
) { markOverdefined(&I
); }
350 void visitFreeInst (Instruction
&I
) { /*returns void*/ }
352 void visitInstruction(Instruction
&I
) {
353 // If a new instruction is added to LLVM that we don't handle...
354 std::cerr
<< "SCCP: Don't know how to handle: " << I
;
355 markOverdefined(&I
); // Just in case
359 // getFeasibleSuccessors - Return a vector of booleans to indicate which
360 // successors are reachable from a given terminator instruction.
362 void SCCPSolver::getFeasibleSuccessors(TerminatorInst
&TI
,
363 std::vector
<bool> &Succs
) {
364 Succs
.resize(TI
.getNumSuccessors());
365 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
)) {
366 if (BI
->isUnconditional()) {
369 LatticeVal
&BCValue
= getValueState(BI
->getCondition());
370 if (BCValue
.isOverdefined() ||
371 (BCValue
.isConstant() && !isa
<ConstantBool
>(BCValue
.getConstant()))) {
372 // Overdefined condition variables, and branches on unfoldable constant
373 // conditions, mean the branch could go either way.
374 Succs
[0] = Succs
[1] = true;
375 } else if (BCValue
.isConstant()) {
376 // Constant condition variables mean the branch can only go a single way
377 Succs
[BCValue
.getConstant() == ConstantBool::False
] = true;
380 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(&TI
)) {
381 // Invoke instructions successors are always executable.
382 Succs
[0] = Succs
[1] = true;
383 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(&TI
)) {
384 LatticeVal
&SCValue
= getValueState(SI
->getCondition());
385 if (SCValue
.isOverdefined() || // Overdefined condition?
386 (SCValue
.isConstant() && !isa
<ConstantInt
>(SCValue
.getConstant()))) {
387 // All destinations are executable!
388 Succs
.assign(TI
.getNumSuccessors(), true);
389 } else if (SCValue
.isConstant()) {
390 Constant
*CPV
= SCValue
.getConstant();
391 // Make sure to skip the "default value" which isn't a value
392 for (unsigned i
= 1, E
= SI
->getNumSuccessors(); i
!= E
; ++i
) {
393 if (SI
->getSuccessorValue(i
) == CPV
) {// Found the right branch...
399 // Constant value not equal to any of the branches... must execute
400 // default branch then...
404 std::cerr
<< "SCCP: Don't know how to handle: " << TI
;
405 Succs
.assign(TI
.getNumSuccessors(), true);
410 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
411 // block to the 'To' basic block is currently feasible...
413 bool SCCPSolver::isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
) {
414 assert(BBExecutable
.count(To
) && "Dest should always be alive!");
416 // Make sure the source basic block is executable!!
417 if (!BBExecutable
.count(From
)) return false;
419 // Check to make sure this edge itself is actually feasible now...
420 TerminatorInst
*TI
= From
->getTerminator();
421 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
422 if (BI
->isUnconditional())
425 LatticeVal
&BCValue
= getValueState(BI
->getCondition());
426 if (BCValue
.isOverdefined()) {
427 // Overdefined condition variables mean the branch could go either way.
429 } else if (BCValue
.isConstant()) {
430 // Not branching on an evaluatable constant?
431 if (!isa
<ConstantBool
>(BCValue
.getConstant())) return true;
433 // Constant condition variables mean the branch can only go a single way
434 return BI
->getSuccessor(BCValue
.getConstant() ==
435 ConstantBool::False
) == To
;
439 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TI
)) {
440 // Invoke instructions successors are always executable.
442 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
443 LatticeVal
&SCValue
= getValueState(SI
->getCondition());
444 if (SCValue
.isOverdefined()) { // Overdefined condition?
445 // All destinations are executable!
447 } else if (SCValue
.isConstant()) {
448 Constant
*CPV
= SCValue
.getConstant();
449 if (!isa
<ConstantInt
>(CPV
))
450 return true; // not a foldable constant?
452 // Make sure to skip the "default value" which isn't a value
453 for (unsigned i
= 1, E
= SI
->getNumSuccessors(); i
!= E
; ++i
)
454 if (SI
->getSuccessorValue(i
) == CPV
) // Found the taken branch...
455 return SI
->getSuccessor(i
) == To
;
457 // Constant value not equal to any of the branches... must execute
458 // default branch then...
459 return SI
->getDefaultDest() == To
;
463 std::cerr
<< "Unknown terminator instruction: " << *TI
;
468 // visit Implementations - Something changed in this instruction... Either an
469 // operand made a transition, or the instruction is newly executable. Change
470 // the value type of I to reflect these changes if appropriate. This method
471 // makes sure to do the following actions:
473 // 1. If a phi node merges two constants in, and has conflicting value coming
474 // from different branches, or if the PHI node merges in an overdefined
475 // value, then the PHI node becomes overdefined.
476 // 2. If a phi node merges only constants in, and they all agree on value, the
477 // PHI node becomes a constant value equal to that.
478 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
479 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
480 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
481 // 6. If a conditional branch has a value that is constant, make the selected
482 // destination executable
483 // 7. If a conditional branch has a value that is overdefined, make all
484 // successors executable.
486 void SCCPSolver::visitPHINode(PHINode
&PN
) {
487 LatticeVal
&PNIV
= getValueState(&PN
);
488 if (PNIV
.isOverdefined()) {
489 // There may be instructions using this PHI node that are not overdefined
490 // themselves. If so, make sure that they know that the PHI node operand
492 std::multimap
<PHINode
*, Instruction
*>::iterator I
, E
;
493 tie(I
, E
) = UsersOfOverdefinedPHIs
.equal_range(&PN
);
495 std::vector
<Instruction
*> Users
;
496 Users
.reserve(std::distance(I
, E
));
497 for (; I
!= E
; ++I
) Users
.push_back(I
->second
);
498 while (!Users
.empty()) {
503 return; // Quick exit
506 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
507 // and slow us down a lot. Just mark them overdefined.
508 if (PN
.getNumIncomingValues() > 64) {
509 markOverdefined(PNIV
, &PN
);
513 // Look at all of the executable operands of the PHI node. If any of them
514 // are overdefined, the PHI becomes overdefined as well. If they are all
515 // constant, and they agree with each other, the PHI becomes the identical
516 // constant. If they are constant and don't agree, the PHI is overdefined.
517 // If there are no executable operands, the PHI remains undefined.
519 Constant
*OperandVal
= 0;
520 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
521 LatticeVal
&IV
= getValueState(PN
.getIncomingValue(i
));
522 if (IV
.isUndefined()) continue; // Doesn't influence PHI node.
524 if (isEdgeFeasible(PN
.getIncomingBlock(i
), PN
.getParent())) {
525 if (IV
.isOverdefined()) { // PHI node becomes overdefined!
526 markOverdefined(PNIV
, &PN
);
530 if (OperandVal
== 0) { // Grab the first value...
531 OperandVal
= IV
.getConstant();
532 } else { // Another value is being merged in!
533 // There is already a reachable operand. If we conflict with it,
534 // then the PHI node becomes overdefined. If we agree with it, we
537 // Check to see if there are two different constants merging...
538 if (IV
.getConstant() != OperandVal
) {
539 // Yes there is. This means the PHI node is not constant.
540 // You must be overdefined poor PHI.
542 markOverdefined(PNIV
, &PN
); // The PHI node now becomes overdefined
543 return; // I'm done analyzing you
549 // If we exited the loop, this means that the PHI node only has constant
550 // arguments that agree with each other(and OperandVal is the constant) or
551 // OperandVal is null because there are no defined incoming arguments. If
552 // this is the case, the PHI remains undefined.
555 markConstant(PNIV
, &PN
, OperandVal
); // Acquire operand value
558 void SCCPSolver::visitReturnInst(ReturnInst
&I
) {
559 if (I
.getNumOperands() == 0) return; // Ret void
561 // If we are tracking the return value of this function, merge it in.
562 Function
*F
= I
.getParent()->getParent();
563 if (F
->hasInternalLinkage() && !TrackedFunctionRetVals
.empty()) {
564 hash_map
<Function
*, LatticeVal
>::iterator TFRVI
=
565 TrackedFunctionRetVals
.find(F
);
566 if (TFRVI
!= TrackedFunctionRetVals
.end() &&
567 !TFRVI
->second
.isOverdefined()) {
568 LatticeVal
&IV
= getValueState(I
.getOperand(0));
569 mergeInValue(TFRVI
->second
, F
, IV
);
575 void SCCPSolver::visitTerminatorInst(TerminatorInst
&TI
) {
576 std::vector
<bool> SuccFeasible
;
577 getFeasibleSuccessors(TI
, SuccFeasible
);
579 BasicBlock
*BB
= TI
.getParent();
581 // Mark all feasible successors executable...
582 for (unsigned i
= 0, e
= SuccFeasible
.size(); i
!= e
; ++i
)
584 markEdgeExecutable(BB
, TI
.getSuccessor(i
));
587 void SCCPSolver::visitCastInst(CastInst
&I
) {
588 Value
*V
= I
.getOperand(0);
589 LatticeVal
&VState
= getValueState(V
);
590 if (VState
.isOverdefined()) // Inherit overdefinedness of operand
592 else if (VState
.isConstant()) // Propagate constant value
593 markConstant(&I
, ConstantExpr::getCast(VState
.getConstant(), I
.getType()));
596 void SCCPSolver::visitSelectInst(SelectInst
&I
) {
597 LatticeVal
&CondValue
= getValueState(I
.getCondition());
598 if (CondValue
.isUndefined())
600 if (CondValue
.isConstant()) {
602 if (CondValue
.getConstant() == ConstantBool::True
) {
603 mergeInValue(&I
, getValueState(I
.getTrueValue()));
605 } else if (CondValue
.getConstant() == ConstantBool::False
) {
606 mergeInValue(&I
, getValueState(I
.getFalseValue()));
611 // Otherwise, the condition is overdefined or a constant we can't evaluate.
612 // See if we can produce something better than overdefined based on the T/F
614 LatticeVal
&TVal
= getValueState(I
.getTrueValue());
615 LatticeVal
&FVal
= getValueState(I
.getFalseValue());
617 // select ?, C, C -> C.
618 if (TVal
.isConstant() && FVal
.isConstant() &&
619 TVal
.getConstant() == FVal
.getConstant()) {
620 markConstant(&I
, FVal
.getConstant());
624 if (TVal
.isUndefined()) { // select ?, undef, X -> X.
625 mergeInValue(&I
, FVal
);
626 } else if (FVal
.isUndefined()) { // select ?, X, undef -> X.
627 mergeInValue(&I
, TVal
);
633 // Handle BinaryOperators and Shift Instructions...
634 void SCCPSolver::visitBinaryOperator(Instruction
&I
) {
635 LatticeVal
&IV
= ValueState
[&I
];
636 if (IV
.isOverdefined()) return;
638 LatticeVal
&V1State
= getValueState(I
.getOperand(0));
639 LatticeVal
&V2State
= getValueState(I
.getOperand(1));
641 if (V1State
.isOverdefined() || V2State
.isOverdefined()) {
642 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
643 // operand is overdefined.
644 if (I
.getOpcode() == Instruction::And
|| I
.getOpcode() == Instruction::Or
) {
645 LatticeVal
*NonOverdefVal
= 0;
646 if (!V1State
.isOverdefined()) {
647 NonOverdefVal
= &V1State
;
648 } else if (!V2State
.isOverdefined()) {
649 NonOverdefVal
= &V2State
;
653 if (NonOverdefVal
->isUndefined()) {
654 // Could annihilate value.
655 if (I
.getOpcode() == Instruction::And
)
656 markConstant(IV
, &I
, Constant::getNullValue(I
.getType()));
658 markConstant(IV
, &I
, ConstantInt::getAllOnesValue(I
.getType()));
661 if (I
.getOpcode() == Instruction::And
) {
662 if (NonOverdefVal
->getConstant()->isNullValue()) {
663 markConstant(IV
, &I
, NonOverdefVal
->getConstant());
664 return; // X or 0 = -1
667 if (ConstantIntegral
*CI
=
668 dyn_cast
<ConstantIntegral
>(NonOverdefVal
->getConstant()))
669 if (CI
->isAllOnesValue()) {
670 markConstant(IV
, &I
, NonOverdefVal
->getConstant());
671 return; // X or -1 = -1
679 // If both operands are PHI nodes, it is possible that this instruction has
680 // a constant value, despite the fact that the PHI node doesn't. Check for
681 // this condition now.
682 if (PHINode
*PN1
= dyn_cast
<PHINode
>(I
.getOperand(0)))
683 if (PHINode
*PN2
= dyn_cast
<PHINode
>(I
.getOperand(1)))
684 if (PN1
->getParent() == PN2
->getParent()) {
685 // Since the two PHI nodes are in the same basic block, they must have
686 // entries for the same predecessors. Walk the predecessor list, and
687 // if all of the incoming values are constants, and the result of
688 // evaluating this expression with all incoming value pairs is the
689 // same, then this expression is a constant even though the PHI node
690 // is not a constant!
692 for (unsigned i
= 0, e
= PN1
->getNumIncomingValues(); i
!= e
; ++i
) {
693 LatticeVal
&In1
= getValueState(PN1
->getIncomingValue(i
));
694 BasicBlock
*InBlock
= PN1
->getIncomingBlock(i
);
696 getValueState(PN2
->getIncomingValueForBlock(InBlock
));
698 if (In1
.isOverdefined() || In2
.isOverdefined()) {
699 Result
.markOverdefined();
700 break; // Cannot fold this operation over the PHI nodes!
701 } else if (In1
.isConstant() && In2
.isConstant()) {
702 Constant
*V
= ConstantExpr::get(I
.getOpcode(), In1
.getConstant(),
704 if (Result
.isUndefined())
705 Result
.markConstant(V
);
706 else if (Result
.isConstant() && Result
.getConstant() != V
) {
707 Result
.markOverdefined();
713 // If we found a constant value here, then we know the instruction is
714 // constant despite the fact that the PHI nodes are overdefined.
715 if (Result
.isConstant()) {
716 markConstant(IV
, &I
, Result
.getConstant());
717 // Remember that this instruction is virtually using the PHI node
719 UsersOfOverdefinedPHIs
.insert(std::make_pair(PN1
, &I
));
720 UsersOfOverdefinedPHIs
.insert(std::make_pair(PN2
, &I
));
722 } else if (Result
.isUndefined()) {
726 // Okay, this really is overdefined now. Since we might have
727 // speculatively thought that this was not overdefined before, and
728 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
729 // make sure to clean out any entries that we put there, for
731 std::multimap
<PHINode
*, Instruction
*>::iterator It
, E
;
732 tie(It
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN1
);
734 if (It
->second
== &I
) {
735 UsersOfOverdefinedPHIs
.erase(It
++);
739 tie(It
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN2
);
741 if (It
->second
== &I
) {
742 UsersOfOverdefinedPHIs
.erase(It
++);
748 markOverdefined(IV
, &I
);
749 } else if (V1State
.isConstant() && V2State
.isConstant()) {
750 markConstant(IV
, &I
, ConstantExpr::get(I
.getOpcode(), V1State
.getConstant(),
751 V2State
.getConstant()));
755 void SCCPSolver::visitExtractElementInst(ExtractElementInst
&I
) {
756 LatticeVal
&ValState
= getValueState(I
.getOperand(0));
757 LatticeVal
&IdxState
= getValueState(I
.getOperand(1));
759 if (ValState
.isOverdefined() || IdxState
.isOverdefined())
761 else if(ValState
.isConstant() && IdxState
.isConstant())
762 markConstant(&I
, ConstantExpr::getExtractElement(ValState
.getConstant(),
763 IdxState
.getConstant()));
766 void SCCPSolver::visitInsertElementInst(InsertElementInst
&I
) {
767 LatticeVal
&ValState
= getValueState(I
.getOperand(0));
768 LatticeVal
&EltState
= getValueState(I
.getOperand(1));
769 LatticeVal
&IdxState
= getValueState(I
.getOperand(2));
771 if (ValState
.isOverdefined() || EltState
.isOverdefined() ||
772 IdxState
.isOverdefined())
774 else if(ValState
.isConstant() && EltState
.isConstant() &&
775 IdxState
.isConstant())
776 markConstant(&I
, ConstantExpr::getInsertElement(ValState
.getConstant(),
777 EltState
.getConstant(),
778 IdxState
.getConstant()));
779 else if (ValState
.isUndefined() && EltState
.isConstant() &&
780 IdxState
.isConstant())
781 markConstant(&I
, ConstantExpr::getInsertElement(UndefValue::get(I
.getType()),
782 EltState
.getConstant(),
783 IdxState
.getConstant()));
786 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst
&I
) {
787 LatticeVal
&V1State
= getValueState(I
.getOperand(0));
788 LatticeVal
&V2State
= getValueState(I
.getOperand(1));
789 LatticeVal
&MaskState
= getValueState(I
.getOperand(2));
791 if (MaskState
.isUndefined() ||
792 (V1State
.isUndefined() && V2State
.isUndefined()))
793 return; // Undefined output if mask or both inputs undefined.
795 if (V1State
.isOverdefined() || V2State
.isOverdefined() ||
796 MaskState
.isOverdefined()) {
799 // A mix of constant/undef inputs.
800 Constant
*V1
= V1State
.isConstant() ?
801 V1State
.getConstant() : UndefValue::get(I
.getType());
802 Constant
*V2
= V2State
.isConstant() ?
803 V2State
.getConstant() : UndefValue::get(I
.getType());
804 Constant
*Mask
= MaskState
.isConstant() ?
805 MaskState
.getConstant() : UndefValue::get(I
.getOperand(2)->getType());
806 markConstant(&I
, ConstantExpr::getShuffleVector(V1
, V2
, Mask
));
810 // Handle getelementptr instructions... if all operands are constants then we
811 // can turn this into a getelementptr ConstantExpr.
813 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst
&I
) {
814 LatticeVal
&IV
= ValueState
[&I
];
815 if (IV
.isOverdefined()) return;
817 std::vector
<Constant
*> Operands
;
818 Operands
.reserve(I
.getNumOperands());
820 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
821 LatticeVal
&State
= getValueState(I
.getOperand(i
));
822 if (State
.isUndefined())
823 return; // Operands are not resolved yet...
824 else if (State
.isOverdefined()) {
825 markOverdefined(IV
, &I
);
828 assert(State
.isConstant() && "Unknown state!");
829 Operands
.push_back(State
.getConstant());
832 Constant
*Ptr
= Operands
[0];
833 Operands
.erase(Operands
.begin()); // Erase the pointer from idx list...
835 markConstant(IV
, &I
, ConstantExpr::getGetElementPtr(Ptr
, Operands
));
838 void SCCPSolver::visitStoreInst(Instruction
&SI
) {
839 if (TrackedGlobals
.empty() || !isa
<GlobalVariable
>(SI
.getOperand(1)))
841 GlobalVariable
*GV
= cast
<GlobalVariable
>(SI
.getOperand(1));
842 hash_map
<GlobalVariable
*, LatticeVal
>::iterator I
= TrackedGlobals
.find(GV
);
843 if (I
== TrackedGlobals
.end() || I
->second
.isOverdefined()) return;
845 // Get the value we are storing into the global.
846 LatticeVal
&PtrVal
= getValueState(SI
.getOperand(0));
848 mergeInValue(I
->second
, GV
, PtrVal
);
849 if (I
->second
.isOverdefined())
850 TrackedGlobals
.erase(I
); // No need to keep tracking this!
854 // Handle load instructions. If the operand is a constant pointer to a constant
855 // global, we can replace the load with the loaded constant value!
856 void SCCPSolver::visitLoadInst(LoadInst
&I
) {
857 LatticeVal
&IV
= ValueState
[&I
];
858 if (IV
.isOverdefined()) return;
860 LatticeVal
&PtrVal
= getValueState(I
.getOperand(0));
861 if (PtrVal
.isUndefined()) return; // The pointer is not resolved yet!
862 if (PtrVal
.isConstant() && !I
.isVolatile()) {
863 Value
*Ptr
= PtrVal
.getConstant();
864 if (isa
<ConstantPointerNull
>(Ptr
)) {
866 markConstant(IV
, &I
, Constant::getNullValue(I
.getType()));
870 // Transform load (constant global) into the value loaded.
871 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Ptr
)) {
872 if (GV
->isConstant()) {
873 if (!GV
->isExternal()) {
874 markConstant(IV
, &I
, GV
->getInitializer());
877 } else if (!TrackedGlobals
.empty()) {
878 // If we are tracking this global, merge in the known value for it.
879 hash_map
<GlobalVariable
*, LatticeVal
>::iterator It
=
880 TrackedGlobals
.find(GV
);
881 if (It
!= TrackedGlobals
.end()) {
882 mergeInValue(IV
, &I
, It
->second
);
888 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
889 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Ptr
))
890 if (CE
->getOpcode() == Instruction::GetElementPtr
)
891 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(CE
->getOperand(0)))
892 if (GV
->isConstant() && !GV
->isExternal())
894 ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
)) {
895 markConstant(IV
, &I
, V
);
900 // Otherwise we cannot say for certain what value this load will produce.
902 markOverdefined(IV
, &I
);
905 void SCCPSolver::visitCallSite(CallSite CS
) {
906 Function
*F
= CS
.getCalledFunction();
908 // If we are tracking this function, we must make sure to bind arguments as
910 hash_map
<Function
*, LatticeVal
>::iterator TFRVI
=TrackedFunctionRetVals
.end();
911 if (F
&& F
->hasInternalLinkage())
912 TFRVI
= TrackedFunctionRetVals
.find(F
);
914 if (TFRVI
!= TrackedFunctionRetVals
.end()) {
915 // If this is the first call to the function hit, mark its entry block
917 if (!BBExecutable
.count(F
->begin()))
918 MarkBlockExecutable(F
->begin());
920 CallSite::arg_iterator CAI
= CS
.arg_begin();
921 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
922 AI
!= E
; ++AI
, ++CAI
) {
923 LatticeVal
&IV
= ValueState
[AI
];
924 if (!IV
.isOverdefined())
925 mergeInValue(IV
, AI
, getValueState(*CAI
));
928 Instruction
*I
= CS
.getInstruction();
929 if (I
->getType() == Type::VoidTy
) return;
931 LatticeVal
&IV
= ValueState
[I
];
932 if (IV
.isOverdefined()) return;
934 // Propagate the return value of the function to the value of the instruction.
935 if (TFRVI
!= TrackedFunctionRetVals
.end()) {
936 mergeInValue(IV
, I
, TFRVI
->second
);
940 if (F
== 0 || !F
->isExternal() || !canConstantFoldCallTo(F
)) {
941 markOverdefined(IV
, I
);
945 std::vector
<Constant
*> Operands
;
946 Operands
.reserve(I
->getNumOperands()-1);
948 for (CallSite::arg_iterator AI
= CS
.arg_begin(), E
= CS
.arg_end();
950 LatticeVal
&State
= getValueState(*AI
);
951 if (State
.isUndefined())
952 return; // Operands are not resolved yet...
953 else if (State
.isOverdefined()) {
954 markOverdefined(IV
, I
);
957 assert(State
.isConstant() && "Unknown state!");
958 Operands
.push_back(State
.getConstant());
961 if (Constant
*C
= ConstantFoldCall(F
, Operands
))
962 markConstant(IV
, I
, C
);
964 markOverdefined(IV
, I
);
968 void SCCPSolver::Solve() {
969 // Process the work lists until they are empty!
970 while (!BBWorkList
.empty() || !InstWorkList
.empty() ||
971 !OverdefinedInstWorkList
.empty()) {
972 // Process the instruction work list...
973 while (!OverdefinedInstWorkList
.empty()) {
974 Value
*I
= OverdefinedInstWorkList
.back();
975 OverdefinedInstWorkList
.pop_back();
977 DEBUG(std::cerr
<< "\nPopped off OI-WL: " << *I
);
979 // "I" got into the work list because it either made the transition from
980 // bottom to constant
982 // Anything on this worklist that is overdefined need not be visited
983 // since all of its users will have already been marked as overdefined
984 // Update all of the users of this instruction's value...
986 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
988 OperandChangedState(*UI
);
990 // Process the instruction work list...
991 while (!InstWorkList
.empty()) {
992 Value
*I
= InstWorkList
.back();
993 InstWorkList
.pop_back();
995 DEBUG(std::cerr
<< "\nPopped off I-WL: " << *I
);
997 // "I" got into the work list because it either made the transition from
998 // bottom to constant
1000 // Anything on this worklist that is overdefined need not be visited
1001 // since all of its users will have already been marked as overdefined.
1002 // Update all of the users of this instruction's value...
1004 if (!getValueState(I
).isOverdefined())
1005 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1007 OperandChangedState(*UI
);
1010 // Process the basic block work list...
1011 while (!BBWorkList
.empty()) {
1012 BasicBlock
*BB
= BBWorkList
.back();
1013 BBWorkList
.pop_back();
1015 DEBUG(std::cerr
<< "\nPopped off BBWL: " << *BB
);
1017 // Notify all instructions in this basic block that they are newly
1024 /// ResolveBranchesIn - While solving the dataflow for a function, we assume
1025 /// that branches on undef values cannot reach any of their successors.
1026 /// However, this is not a safe assumption. After we solve dataflow, this
1027 /// method should be use to handle this. If this returns true, the solver
1028 /// should be rerun.
1029 bool SCCPSolver::ResolveBranchesIn(Function
&F
) {
1030 bool BranchesResolved
= false;
1031 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
1032 if (BBExecutable
.count(BB
)) {
1033 TerminatorInst
*TI
= BB
->getTerminator();
1034 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
1035 if (BI
->isConditional()) {
1036 LatticeVal
&BCValue
= getValueState(BI
->getCondition());
1037 if (BCValue
.isUndefined()) {
1038 BI
->setCondition(ConstantBool::True
);
1039 BranchesResolved
= true;
1043 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
1044 LatticeVal
&SCValue
= getValueState(SI
->getCondition());
1045 if (SCValue
.isUndefined()) {
1046 const Type
*CondTy
= SI
->getCondition()->getType();
1047 SI
->setCondition(Constant::getNullValue(CondTy
));
1048 BranchesResolved
= true;
1054 return BranchesResolved
;
1059 Statistic
<> NumInstRemoved("sccp", "Number of instructions removed");
1060 Statistic
<> NumDeadBlocks ("sccp", "Number of basic blocks unreachable");
1062 //===--------------------------------------------------------------------===//
1064 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1065 /// Sparse Conditional COnstant Propagator.
1067 struct SCCP
: public FunctionPass
{
1068 // runOnFunction - Run the Sparse Conditional Constant Propagation
1069 // algorithm, and return true if the function was modified.
1071 bool runOnFunction(Function
&F
);
1073 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
1074 AU
.setPreservesCFG();
1078 RegisterOpt
<SCCP
> X("sccp", "Sparse Conditional Constant Propagation");
1079 } // end anonymous namespace
1082 // createSCCPPass - This is the public interface to this file...
1083 FunctionPass
*llvm::createSCCPPass() {
1088 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1089 // and return true if the function was modified.
1091 bool SCCP::runOnFunction(Function
&F
) {
1092 DEBUG(std::cerr
<< "SCCP on function '" << F
.getName() << "'\n");
1095 // Mark the first block of the function as being executable.
1096 Solver
.MarkBlockExecutable(F
.begin());
1098 // Mark all arguments to the function as being overdefined.
1099 hash_map
<Value
*, LatticeVal
> &Values
= Solver
.getValueMapping();
1100 for (Function::arg_iterator AI
= F
.arg_begin(), E
= F
.arg_end(); AI
!= E
; ++AI
)
1101 Values
[AI
].markOverdefined();
1103 // Solve for constants.
1104 bool ResolvedBranches
= true;
1105 while (ResolvedBranches
) {
1107 DEBUG(std::cerr
<< "RESOLVING UNDEF BRANCHES\n");
1108 ResolvedBranches
= Solver
.ResolveBranchesIn(F
);
1111 bool MadeChanges
= false;
1113 // If we decided that there are basic blocks that are dead in this function,
1114 // delete their contents now. Note that we cannot actually delete the blocks,
1115 // as we cannot modify the CFG of the function.
1117 std::set
<BasicBlock
*> &ExecutableBBs
= Solver
.getExecutableBlocks();
1118 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
1119 if (!ExecutableBBs
.count(BB
)) {
1120 DEBUG(std::cerr
<< " BasicBlock Dead:" << *BB
);
1123 // Delete the instructions backwards, as it has a reduced likelihood of
1124 // having to update as many def-use and use-def chains.
1125 std::vector
<Instruction
*> Insts
;
1126 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->getTerminator();
1129 while (!Insts
.empty()) {
1130 Instruction
*I
= Insts
.back();
1132 if (!I
->use_empty())
1133 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
1134 BB
->getInstList().erase(I
);
1139 // Iterate over all of the instructions in a function, replacing them with
1140 // constants if we have found them to be of constant values.
1142 for (BasicBlock::iterator BI
= BB
->begin(), E
= BB
->end(); BI
!= E
; ) {
1143 Instruction
*Inst
= BI
++;
1144 if (Inst
->getType() != Type::VoidTy
) {
1145 LatticeVal
&IV
= Values
[Inst
];
1146 if (IV
.isConstant() || IV
.isUndefined() &&
1147 !isa
<TerminatorInst
>(Inst
)) {
1148 Constant
*Const
= IV
.isConstant()
1149 ? IV
.getConstant() : UndefValue::get(Inst
->getType());
1150 DEBUG(std::cerr
<< " Constant: " << *Const
<< " = " << *Inst
);
1152 // Replaces all of the uses of a variable with uses of the constant.
1153 Inst
->replaceAllUsesWith(Const
);
1155 // Delete the instruction.
1156 BB
->getInstList().erase(Inst
);
1158 // Hey, we just changed something!
1170 Statistic
<> IPNumInstRemoved("ipsccp", "Number of instructions removed");
1171 Statistic
<> IPNumDeadBlocks ("ipsccp", "Number of basic blocks unreachable");
1172 Statistic
<> IPNumArgsElimed ("ipsccp",
1173 "Number of arguments constant propagated");
1174 Statistic
<> IPNumGlobalConst("ipsccp",
1175 "Number of globals found to be constant");
1177 //===--------------------------------------------------------------------===//
1179 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1180 /// Constant Propagation.
1182 struct IPSCCP
: public ModulePass
{
1183 bool runOnModule(Module
&M
);
1187 Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1188 } // end anonymous namespace
1190 // createIPSCCPPass - This is the public interface to this file...
1191 ModulePass
*llvm::createIPSCCPPass() {
1192 return new IPSCCP();
1196 static bool AddressIsTaken(GlobalValue
*GV
) {
1197 // Delete any dead constantexpr klingons.
1198 GV
->removeDeadConstantUsers();
1200 for (Value::use_iterator UI
= GV
->use_begin(), E
= GV
->use_end();
1202 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*UI
)) {
1203 if (SI
->getOperand(0) == GV
|| SI
->isVolatile())
1204 return true; // Storing addr of GV.
1205 } else if (isa
<InvokeInst
>(*UI
) || isa
<CallInst
>(*UI
)) {
1206 // Make sure we are calling the function, not passing the address.
1207 CallSite CS
= CallSite::get(cast
<Instruction
>(*UI
));
1208 for (CallSite::arg_iterator AI
= CS
.arg_begin(),
1209 E
= CS
.arg_end(); AI
!= E
; ++AI
)
1212 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
1213 if (LI
->isVolatile())
1221 bool IPSCCP::runOnModule(Module
&M
) {
1224 // Loop over all functions, marking arguments to those with their addresses
1225 // taken or that are external as overdefined.
1227 hash_map
<Value
*, LatticeVal
> &Values
= Solver
.getValueMapping();
1228 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
)
1229 if (!F
->hasInternalLinkage() || AddressIsTaken(F
)) {
1230 if (!F
->isExternal())
1231 Solver
.MarkBlockExecutable(F
->begin());
1232 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1234 Values
[AI
].markOverdefined();
1236 Solver
.AddTrackedFunction(F
);
1239 // Loop over global variables. We inform the solver about any internal global
1240 // variables that do not have their 'addresses taken'. If they don't have
1241 // their addresses taken, we can propagate constants through them.
1242 for (Module::global_iterator G
= M
.global_begin(), E
= M
.global_end();
1244 if (!G
->isConstant() && G
->hasInternalLinkage() && !AddressIsTaken(G
))
1245 Solver
.TrackValueOfGlobalVariable(G
);
1247 // Solve for constants.
1248 bool ResolvedBranches
= true;
1249 while (ResolvedBranches
) {
1252 DEBUG(std::cerr
<< "RESOLVING UNDEF BRANCHES\n");
1253 ResolvedBranches
= false;
1254 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
)
1255 ResolvedBranches
|= Solver
.ResolveBranchesIn(*F
);
1258 bool MadeChanges
= false;
1260 // Iterate over all of the instructions in the module, replacing them with
1261 // constants if we have found them to be of constant values.
1263 std::set
<BasicBlock
*> &ExecutableBBs
= Solver
.getExecutableBlocks();
1264 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
) {
1265 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1267 if (!AI
->use_empty()) {
1268 LatticeVal
&IV
= Values
[AI
];
1269 if (IV
.isConstant() || IV
.isUndefined()) {
1270 Constant
*CST
= IV
.isConstant() ?
1271 IV
.getConstant() : UndefValue::get(AI
->getType());
1272 DEBUG(std::cerr
<< "*** Arg " << *AI
<< " = " << *CST
<<"\n");
1274 // Replaces all of the uses of a variable with uses of the
1276 AI
->replaceAllUsesWith(CST
);
1281 std::vector
<BasicBlock
*> BlocksToErase
;
1282 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
1283 if (!ExecutableBBs
.count(BB
)) {
1284 DEBUG(std::cerr
<< " BasicBlock Dead:" << *BB
);
1287 // Delete the instructions backwards, as it has a reduced likelihood of
1288 // having to update as many def-use and use-def chains.
1289 std::vector
<Instruction
*> Insts
;
1290 TerminatorInst
*TI
= BB
->getTerminator();
1291 for (BasicBlock::iterator I
= BB
->begin(), E
= TI
; I
!= E
; ++I
)
1294 while (!Insts
.empty()) {
1295 Instruction
*I
= Insts
.back();
1297 if (!I
->use_empty())
1298 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
1299 BB
->getInstList().erase(I
);
1304 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
1305 BasicBlock
*Succ
= TI
->getSuccessor(i
);
1306 if (Succ
->begin() != Succ
->end() && isa
<PHINode
>(Succ
->begin()))
1307 TI
->getSuccessor(i
)->removePredecessor(BB
);
1309 if (!TI
->use_empty())
1310 TI
->replaceAllUsesWith(UndefValue::get(TI
->getType()));
1311 BB
->getInstList().erase(TI
);
1313 if (&*BB
!= &F
->front())
1314 BlocksToErase
.push_back(BB
);
1316 new UnreachableInst(BB
);
1319 for (BasicBlock::iterator BI
= BB
->begin(), E
= BB
->end(); BI
!= E
; ) {
1320 Instruction
*Inst
= BI
++;
1321 if (Inst
->getType() != Type::VoidTy
) {
1322 LatticeVal
&IV
= Values
[Inst
];
1323 if (IV
.isConstant() || IV
.isUndefined() &&
1324 !isa
<TerminatorInst
>(Inst
)) {
1325 Constant
*Const
= IV
.isConstant()
1326 ? IV
.getConstant() : UndefValue::get(Inst
->getType());
1327 DEBUG(std::cerr
<< " Constant: " << *Const
<< " = " << *Inst
);
1329 // Replaces all of the uses of a variable with uses of the
1331 Inst
->replaceAllUsesWith(Const
);
1333 // Delete the instruction.
1334 if (!isa
<TerminatorInst
>(Inst
) && !isa
<CallInst
>(Inst
))
1335 BB
->getInstList().erase(Inst
);
1337 // Hey, we just changed something!
1345 // Now that all instructions in the function are constant folded, erase dead
1346 // blocks, because we can now use ConstantFoldTerminator to get rid of
1348 for (unsigned i
= 0, e
= BlocksToErase
.size(); i
!= e
; ++i
) {
1349 // If there are any PHI nodes in this successor, drop entries for BB now.
1350 BasicBlock
*DeadBB
= BlocksToErase
[i
];
1351 while (!DeadBB
->use_empty()) {
1352 Instruction
*I
= cast
<Instruction
>(DeadBB
->use_back());
1353 bool Folded
= ConstantFoldTerminator(I
->getParent());
1354 assert(Folded
&& "Didn't fold away reference to block!");
1357 // Finally, delete the basic block.
1358 F
->getBasicBlockList().erase(DeadBB
);
1362 // If we inferred constant or undef return values for a function, we replaced
1363 // all call uses with the inferred value. This means we don't need to bother
1364 // actually returning anything from the function. Replace all return
1365 // instructions with return undef.
1366 const hash_map
<Function
*, LatticeVal
> &RV
=Solver
.getTrackedFunctionRetVals();
1367 for (hash_map
<Function
*, LatticeVal
>::const_iterator I
= RV
.begin(),
1368 E
= RV
.end(); I
!= E
; ++I
)
1369 if (!I
->second
.isOverdefined() &&
1370 I
->first
->getReturnType() != Type::VoidTy
) {
1371 Function
*F
= I
->first
;
1372 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
1373 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator()))
1374 if (!isa
<UndefValue
>(RI
->getOperand(0)))
1375 RI
->setOperand(0, UndefValue::get(F
->getReturnType()));
1378 // If we infered constant or undef values for globals variables, we can delete
1379 // the global and any stores that remain to it.
1380 const hash_map
<GlobalVariable
*, LatticeVal
> &TG
= Solver
.getTrackedGlobals();
1381 for (hash_map
<GlobalVariable
*, LatticeVal
>::const_iterator I
= TG
.begin(),
1382 E
= TG
.end(); I
!= E
; ++I
) {
1383 GlobalVariable
*GV
= I
->first
;
1384 assert(!I
->second
.isOverdefined() &&
1385 "Overdefined values should have been taken out of the map!");
1386 DEBUG(std::cerr
<< "Found that GV '" << GV
->getName()<< "' is constant!\n");
1387 while (!GV
->use_empty()) {
1388 StoreInst
*SI
= cast
<StoreInst
>(GV
->use_back());
1389 SI
->eraseFromParent();
1391 M
.getGlobalList().erase(GV
);