1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop. This pass also implements the following extensions to the basic
15 // 1. Trivial instructions between the call and return do not prevent the
16 // transformation from taking place, though currently the analysis cannot
17 // support moving any really useful instructions (only dead ones).
18 // 2. This pass transforms functions that are prevented from being tail
19 // recursive by an associative expression to use an accumulator variable,
20 // thus compiling the typical naive factorial or 'fib' implementation into
22 // 3. TRE is performed if the function returns void, if the return
23 // returns the result returned by the call, or if the function returns a
24 // run-time constant on all exits from the function. It is possible, though
25 // unlikely, that the return returns something else (like constant 0), and
26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27 // the function return the exact same value.
28 // 4. If it can prove that callees do not access theier caller stack frame,
29 // they are marked as eligible for tail call elimination (by the code
32 // There are several improvements that could be made:
34 // 1. If the function has any alloca instructions, these instructions will be
35 // moved out of the entry block of the function, causing them to be
36 // evaluated each time through the tail recursion. Safely keeping allocas
37 // in the entry block requires analysis to proves that the tail-called
38 // function does not read or write the stack object.
39 // 2. Tail recursion is only performed if the call immediately preceeds the
40 // return instruction. It's possible that there could be a jump between
41 // the call and the return.
42 // 3. There can be intervening operations between the call and the return that
43 // prevent the TRE from occurring. For example, there could be GEP's and
44 // stores to memory that will not be read or written by the call. This
45 // requires some substantial analysis (such as with DSA) to prove safe to
46 // move ahead of the call, but doing so could allow many more TREs to be
47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 // 4. The algorithm we use to detect if callees access their caller stack
49 // frames is very primitive.
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/Constants.h"
55 #include "llvm/DerivedTypes.h"
56 #include "llvm/Function.h"
57 #include "llvm/Instructions.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/CFG.h"
60 #include "llvm/ADT/Statistic.h"
64 Statistic
<> NumEliminated("tailcallelim", "Number of tail calls removed");
65 Statistic
<> NumAccumAdded("tailcallelim","Number of accumulators introduced");
67 struct TailCallElim
: public FunctionPass
{
68 virtual bool runOnFunction(Function
&F
);
71 bool ProcessReturningBlock(ReturnInst
*RI
, BasicBlock
*&OldEntry
,
72 bool &TailCallsAreMarkedTail
,
73 std::vector
<PHINode
*> &ArgumentPHIs
,
74 bool CannotTailCallElimCallsMarkedTail
);
75 bool CanMoveAboveCall(Instruction
*I
, CallInst
*CI
);
76 Value
*CanTransformAccumulatorRecursion(Instruction
*I
, CallInst
*CI
);
78 RegisterOpt
<TailCallElim
> X("tailcallelim", "Tail Call Elimination");
81 // Public interface to the TailCallElimination pass
82 FunctionPass
*llvm::createTailCallEliminationPass() {
83 return new TailCallElim();
87 /// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
88 /// callees of this function. We only do very simple analysis right now, this
89 /// could be expanded in the future to use mod/ref information for particular
90 /// call sites if desired.
91 static bool AllocaMightEscapeToCalls(AllocaInst
*AI
) {
92 // FIXME: do simple 'address taken' analysis.
96 /// FunctionContainsAllocas - Scan the specified basic block for alloca
97 /// instructions. If it contains any that might be accessed by calls, return
99 static bool CheckForEscapingAllocas(BasicBlock
*BB
,
100 bool &CannotTCETailMarkedCall
) {
102 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
103 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) {
104 RetVal
|= AllocaMightEscapeToCalls(AI
);
106 // If this alloca is in the body of the function, or if it is a variable
107 // sized allocation, we cannot tail call eliminate calls marked 'tail'
108 // with this mechanism.
109 if (BB
!= &BB
->getParent()->front() ||
110 !isa
<ConstantInt
>(AI
->getArraySize()))
111 CannotTCETailMarkedCall
= true;
116 bool TailCallElim::runOnFunction(Function
&F
) {
117 // If this function is a varargs function, we won't be able to PHI the args
118 // right, so don't even try to convert it...
119 if (F
.getFunctionType()->isVarArg()) return false;
121 BasicBlock
*OldEntry
= 0;
122 bool TailCallsAreMarkedTail
= false;
123 std::vector
<PHINode
*> ArgumentPHIs
;
124 bool MadeChange
= false;
126 bool FunctionContainsEscapingAllocas
= false;
128 // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
129 // marked with the 'tail' attribute, because doing so would cause the stack
130 // size to increase (real TCE would deallocate variable sized allocas, TCE
132 bool CannotTCETailMarkedCall
= false;
134 // Loop over the function, looking for any returning blocks, and keeping track
135 // of whether this function has any non-trivially used allocas.
136 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
137 if (FunctionContainsEscapingAllocas
&& CannotTCETailMarkedCall
)
140 FunctionContainsEscapingAllocas
|=
141 CheckForEscapingAllocas(BB
, CannotTCETailMarkedCall
);
144 // Second pass, change any tail calls to loops.
145 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
146 if (ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(BB
->getTerminator()))
147 MadeChange
|= ProcessReturningBlock(Ret
, OldEntry
, TailCallsAreMarkedTail
,
148 ArgumentPHIs
,CannotTCETailMarkedCall
);
150 // If we eliminated any tail recursions, it's possible that we inserted some
151 // silly PHI nodes which just merge an initial value (the incoming operand)
152 // with themselves. Check to see if we did and clean up our mess if so. This
153 // occurs when a function passes an argument straight through to its tail
155 if (!ArgumentPHIs
.empty()) {
156 unsigned NumIncoming
= ArgumentPHIs
[0]->getNumIncomingValues();
157 for (unsigned i
= 0, e
= ArgumentPHIs
.size(); i
!= e
; ++i
) {
158 PHINode
*PN
= ArgumentPHIs
[i
];
160 // If the PHI Node is a dynamic constant, replace it with the value it is.
161 if (Value
*PNV
= PN
->hasConstantValue()) {
162 PN
->replaceAllUsesWith(PNV
);
163 PN
->eraseFromParent();
168 // Finally, if this function contains no non-escaping allocas, mark all calls
169 // in the function as eligible for tail calls (there is no stack memory for
171 if (!FunctionContainsEscapingAllocas
)
172 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
173 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
174 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
))
181 /// CanMoveAboveCall - Return true if it is safe to move the specified
182 /// instruction from after the call to before the call, assuming that all
183 /// instructions between the call and this instruction are movable.
185 bool TailCallElim::CanMoveAboveCall(Instruction
*I
, CallInst
*CI
) {
186 // FIXME: We can move load/store/call/free instructions above the call if the
187 // call does not mod/ref the memory location being processed.
188 if (I
->mayWriteToMemory() || isa
<LoadInst
>(I
))
191 // Otherwise, if this is a side-effect free instruction, check to make sure
192 // that it does not use the return value of the call. If it doesn't use the
193 // return value of the call, it must only use things that are defined before
194 // the call, or movable instructions between the call and the instruction
196 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
197 if (I
->getOperand(i
) == CI
)
202 // isDynamicConstant - Return true if the specified value is the same when the
203 // return would exit as it was when the initial iteration of the recursive
204 // function was executed.
206 // We currently handle static constants and arguments that are not modified as
207 // part of the recursion.
209 static bool isDynamicConstant(Value
*V
, CallInst
*CI
) {
210 if (isa
<Constant
>(V
)) return true; // Static constants are always dyn consts
212 // Check to see if this is an immutable argument, if so, the value
213 // will be available to initialize the accumulator.
214 if (Argument
*Arg
= dyn_cast
<Argument
>(V
)) {
215 // Figure out which argument number this is...
217 Function
*F
= CI
->getParent()->getParent();
218 for (Function::arg_iterator AI
= F
->arg_begin(); &*AI
!= Arg
; ++AI
)
221 // If we are passing this argument into call as the corresponding
222 // argument operand, then the argument is dynamically constant.
223 // Otherwise, we cannot transform this function safely.
224 if (CI
->getOperand(ArgNo
+1) == Arg
)
227 // Not a constant or immutable argument, we can't safely transform.
231 // getCommonReturnValue - Check to see if the function containing the specified
232 // return instruction and tail call consistently returns the same
233 // runtime-constant value at all exit points. If so, return the returned value.
235 static Value
*getCommonReturnValue(ReturnInst
*TheRI
, CallInst
*CI
) {
236 Function
*F
= TheRI
->getParent()->getParent();
237 Value
*ReturnedValue
= 0;
239 for (Function::iterator BBI
= F
->begin(), E
= F
->end(); BBI
!= E
; ++BBI
)
240 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
->getTerminator()))
242 Value
*RetOp
= RI
->getOperand(0);
244 // We can only perform this transformation if the value returned is
245 // evaluatable at the start of the initial invocation of the function,
246 // instead of at the end of the evaluation.
248 if (!isDynamicConstant(RetOp
, CI
))
251 if (ReturnedValue
&& RetOp
!= ReturnedValue
)
252 return 0; // Cannot transform if differing values are returned.
253 ReturnedValue
= RetOp
;
255 return ReturnedValue
;
258 /// CanTransformAccumulatorRecursion - If the specified instruction can be
259 /// transformed using accumulator recursion elimination, return the constant
260 /// which is the start of the accumulator value. Otherwise return null.
262 Value
*TailCallElim::CanTransformAccumulatorRecursion(Instruction
*I
,
264 if (!I
->isAssociative()) return 0;
265 assert(I
->getNumOperands() == 2 &&
266 "Associative operations should have 2 args!");
268 // Exactly one operand should be the result of the call instruction...
269 if (I
->getOperand(0) == CI
&& I
->getOperand(1) == CI
||
270 I
->getOperand(0) != CI
&& I
->getOperand(1) != CI
)
273 // The only user of this instruction we allow is a single return instruction.
274 if (!I
->hasOneUse() || !isa
<ReturnInst
>(I
->use_back()))
277 // Ok, now we have to check all of the other return instructions in this
278 // function. If they return non-constants or differing values, then we cannot
279 // transform the function safely.
280 return getCommonReturnValue(cast
<ReturnInst
>(I
->use_back()), CI
);
283 bool TailCallElim::ProcessReturningBlock(ReturnInst
*Ret
, BasicBlock
*&OldEntry
,
284 bool &TailCallsAreMarkedTail
,
285 std::vector
<PHINode
*> &ArgumentPHIs
,
286 bool CannotTailCallElimCallsMarkedTail
) {
287 BasicBlock
*BB
= Ret
->getParent();
288 Function
*F
= BB
->getParent();
290 if (&BB
->front() == Ret
) // Make sure there is something before the ret...
293 // Scan backwards from the return, checking to see if there is a tail call in
294 // this block. If so, set CI to it.
296 BasicBlock::iterator BBI
= Ret
;
298 CI
= dyn_cast
<CallInst
>(BBI
);
299 if (CI
&& CI
->getCalledFunction() == F
)
302 if (BBI
== BB
->begin())
303 return false; // Didn't find a potential tail call.
307 // If this call is marked as a tail call, and if there are dynamic allocas in
308 // the function, we cannot perform this optimization.
309 if (CI
->isTailCall() && CannotTailCallElimCallsMarkedTail
)
312 // If we are introducing accumulator recursion to eliminate associative
313 // operations after the call instruction, this variable contains the initial
314 // value for the accumulator. If this value is set, we actually perform
315 // accumulator recursion elimination instead of simple tail recursion
317 Value
*AccumulatorRecursionEliminationInitVal
= 0;
318 Instruction
*AccumulatorRecursionInstr
= 0;
320 // Ok, we found a potential tail call. We can currently only transform the
321 // tail call if all of the instructions between the call and the return are
322 // movable to above the call itself, leaving the call next to the return.
323 // Check that this is the case now.
324 for (BBI
= CI
, ++BBI
; &*BBI
!= Ret
; ++BBI
)
325 if (!CanMoveAboveCall(BBI
, CI
)) {
326 // If we can't move the instruction above the call, it might be because it
327 // is an associative operation that could be tranformed using accumulator
328 // recursion elimination. Check to see if this is the case, and if so,
329 // remember the initial accumulator value for later.
330 if ((AccumulatorRecursionEliminationInitVal
=
331 CanTransformAccumulatorRecursion(BBI
, CI
))) {
332 // Yes, this is accumulator recursion. Remember which instruction
334 AccumulatorRecursionInstr
= BBI
;
336 return false; // Otherwise, we cannot eliminate the tail recursion!
340 // We can only transform call/return pairs that either ignore the return value
341 // of the call and return void, ignore the value of the call and return a
342 // constant, return the value returned by the tail call, or that are being
343 // accumulator recursion variable eliminated.
344 if (Ret
->getNumOperands() != 0 && Ret
->getReturnValue() != CI
&&
345 !isa
<UndefValue
>(Ret
->getReturnValue()) &&
346 AccumulatorRecursionEliminationInitVal
== 0 &&
347 !getCommonReturnValue(Ret
, CI
))
350 // OK! We can transform this tail call. If this is the first one found,
351 // create the new entry block, allowing us to branch back to the old entry.
353 OldEntry
= &F
->getEntryBlock();
354 std::string OldName
= OldEntry
->getName(); OldEntry
->setName("tailrecurse");
355 BasicBlock
*NewEntry
= new BasicBlock(OldName
, F
, OldEntry
);
356 new BranchInst(OldEntry
, NewEntry
);
358 // If this tail call is marked 'tail' and if there are any allocas in the
359 // entry block, move them up to the new entry block.
360 TailCallsAreMarkedTail
= CI
->isTailCall();
361 if (TailCallsAreMarkedTail
)
362 // Move all fixed sized allocas from OldEntry to NewEntry.
363 for (BasicBlock::iterator OEBI
= OldEntry
->begin(), E
= OldEntry
->end(),
364 NEBI
= NewEntry
->begin(); OEBI
!= E
; )
365 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(OEBI
++))
366 if (isa
<ConstantInt
>(AI
->getArraySize()))
367 AI
->moveBefore(NEBI
);
369 // Now that we have created a new block, which jumps to the entry
370 // block, insert a PHI node for each argument of the function.
371 // For now, we initialize each PHI to only have the real arguments
372 // which are passed in.
373 Instruction
*InsertPos
= OldEntry
->begin();
374 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
376 PHINode
*PN
= new PHINode(I
->getType(), I
->getName()+".tr", InsertPos
);
377 I
->replaceAllUsesWith(PN
); // Everyone use the PHI node now!
378 PN
->addIncoming(I
, NewEntry
);
379 ArgumentPHIs
.push_back(PN
);
383 // If this function has self recursive calls in the tail position where some
384 // are marked tail and some are not, only transform one flavor or another. We
385 // have to choose whether we move allocas in the entry block to the new entry
386 // block or not, so we can't make a good choice for both. NOTE: We could do
387 // slightly better here in the case that the function has no entry block
389 if (TailCallsAreMarkedTail
&& !CI
->isTailCall())
392 // Ok, now that we know we have a pseudo-entry block WITH all of the
393 // required PHI nodes, add entries into the PHI node for the actual
394 // parameters passed into the tail-recursive call.
395 for (unsigned i
= 0, e
= CI
->getNumOperands()-1; i
!= e
; ++i
)
396 ArgumentPHIs
[i
]->addIncoming(CI
->getOperand(i
+1), BB
);
398 // If we are introducing an accumulator variable to eliminate the recursion,
399 // do so now. Note that we _know_ that no subsequent tail recursion
400 // eliminations will happen on this function because of the way the
401 // accumulator recursion predicate is set up.
403 if (AccumulatorRecursionEliminationInitVal
) {
404 Instruction
*AccRecInstr
= AccumulatorRecursionInstr
;
405 // Start by inserting a new PHI node for the accumulator.
406 PHINode
*AccPN
= new PHINode(AccRecInstr
->getType(), "accumulator.tr",
409 // Loop over all of the predecessors of the tail recursion block. For the
410 // real entry into the function we seed the PHI with the initial value,
411 // computed earlier. For any other existing branches to this block (due to
412 // other tail recursions eliminated) the accumulator is not modified.
413 // Because we haven't added the branch in the current block to OldEntry yet,
414 // it will not show up as a predecessor.
415 for (pred_iterator PI
= pred_begin(OldEntry
), PE
= pred_end(OldEntry
);
417 if (*PI
== &F
->getEntryBlock())
418 AccPN
->addIncoming(AccumulatorRecursionEliminationInitVal
, *PI
);
420 AccPN
->addIncoming(AccPN
, *PI
);
423 // Add an incoming argument for the current block, which is computed by our
424 // associative accumulator instruction.
425 AccPN
->addIncoming(AccRecInstr
, BB
);
427 // Next, rewrite the accumulator recursion instruction so that it does not
428 // use the result of the call anymore, instead, use the PHI node we just
430 AccRecInstr
->setOperand(AccRecInstr
->getOperand(0) != CI
, AccPN
);
432 // Finally, rewrite any return instructions in the program to return the PHI
433 // node instead of the "initval" that they do currently. This loop will
434 // actually rewrite the return value we are destroying, but that's ok.
435 for (Function::iterator BBI
= F
->begin(), E
= F
->end(); BBI
!= E
; ++BBI
)
436 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
->getTerminator()))
437 RI
->setOperand(0, AccPN
);
441 // Now that all of the PHI nodes are in place, remove the call and
442 // ret instructions, replacing them with an unconditional branch.
443 new BranchInst(OldEntry
, Ret
);
444 BB
->getInstList().erase(Ret
); // Remove return.
445 BB
->getInstList().erase(CI
); // Remove call.