1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Utils/FunctionUtils.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/Module.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Analysis/Dominators.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/Verifier.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/ADT/StringExtras.h"
35 // Provide a command-line option to aggregate function arguments into a struct
36 // for functions produced by the code extrator. This is useful when converting
37 // extracted functions to pthread-based code, as only one argument (void*) can
38 // be passed in to pthread_create().
40 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden
,
41 cl::desc("Aggregate arguments to code-extracted functions"));
45 typedef std::vector
<Value
*> Values
;
46 std::set
<BasicBlock
*> BlocksToExtract
;
49 unsigned NumExitBlocks
;
52 CodeExtractor(DominatorSet
*ds
= 0, bool AggArgs
= false)
53 : DS(ds
), AggregateArgs(AggArgs
||AggregateArgsOpt
), NumExitBlocks(~0U) {}
55 Function
*ExtractCodeRegion(const std::vector
<BasicBlock
*> &code
);
57 bool isEligible(const std::vector
<BasicBlock
*> &code
);
60 /// definedInRegion - Return true if the specified value is defined in the
62 bool definedInRegion(Value
*V
) const {
63 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
64 if (BlocksToExtract
.count(I
->getParent()))
69 /// definedInCaller - Return true if the specified value is defined in the
70 /// function being code extracted, but not in the region being extracted.
71 /// These values must be passed in as live-ins to the function.
72 bool definedInCaller(Value
*V
) const {
73 if (isa
<Argument
>(V
)) return true;
74 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
75 if (!BlocksToExtract
.count(I
->getParent()))
80 void severSplitPHINodes(BasicBlock
*&Header
);
81 void splitReturnBlocks();
82 void findInputsOutputs(Values
&inputs
, Values
&outputs
);
84 Function
*constructFunction(const Values
&inputs
,
85 const Values
&outputs
,
87 BasicBlock
*newRootNode
, BasicBlock
*newHeader
,
88 Function
*oldFunction
, Module
*M
);
90 void moveCodeToFunction(Function
*newFunction
);
92 void emitCallAndSwitchStatement(Function
*newFunction
,
93 BasicBlock
*newHeader
,
100 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
101 /// region, we need to split the entry block of the region so that the PHI node
102 /// is easier to deal with.
103 void CodeExtractor::severSplitPHINodes(BasicBlock
*&Header
) {
104 bool HasPredsFromRegion
= false;
105 unsigned NumPredsOutsideRegion
= 0;
107 if (Header
!= &Header
->getParent()->front()) {
108 PHINode
*PN
= dyn_cast
<PHINode
>(Header
->begin());
109 if (!PN
) return; // No PHI nodes.
111 // If the header node contains any PHI nodes, check to see if there is more
112 // than one entry from outside the region. If so, we need to sever the
113 // header block into two.
114 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
115 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
)))
116 HasPredsFromRegion
= true;
118 ++NumPredsOutsideRegion
;
120 // If there is one (or fewer) predecessor from outside the region, we don't
121 // need to do anything special.
122 if (NumPredsOutsideRegion
<= 1) return;
125 // Otherwise, we need to split the header block into two pieces: one
126 // containing PHI nodes merging values from outside of the region, and a
127 // second that contains all of the code for the block and merges back any
128 // incoming values from inside of the region.
129 BasicBlock::iterator AfterPHIs
= Header
->begin();
130 while (isa
<PHINode
>(AfterPHIs
)) ++AfterPHIs
;
131 BasicBlock
*NewBB
= Header
->splitBasicBlock(AfterPHIs
,
132 Header
->getName()+".ce");
134 // We only want to code extract the second block now, and it becomes the new
135 // header of the region.
136 BasicBlock
*OldPred
= Header
;
137 BlocksToExtract
.erase(OldPred
);
138 BlocksToExtract
.insert(NewBB
);
141 // Okay, update dominator sets. The blocks that dominate the new one are the
142 // blocks that dominate TIBB plus the new block itself.
144 DominatorSet::DomSetType DomSet
= DS
->getDominators(OldPred
);
145 DomSet
.insert(NewBB
); // A block always dominates itself.
146 DS
->addBasicBlock(NewBB
, DomSet
);
148 // Additionally, NewBB dominates all blocks in the function that are
149 // dominated by OldPred.
150 Function
*F
= Header
->getParent();
151 for (Function::iterator I
= F
->begin(), E
= F
->end(); I
!= E
; ++I
)
152 if (DS
->properlyDominates(OldPred
, I
))
153 DS
->addDominator(I
, NewBB
);
156 // Okay, now we need to adjust the PHI nodes and any branches from within the
157 // region to go to the new header block instead of the old header block.
158 if (HasPredsFromRegion
) {
159 PHINode
*PN
= cast
<PHINode
>(OldPred
->begin());
160 // Loop over all of the predecessors of OldPred that are in the region,
161 // changing them to branch to NewBB instead.
162 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
163 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
))) {
164 TerminatorInst
*TI
= PN
->getIncomingBlock(i
)->getTerminator();
165 TI
->replaceUsesOfWith(OldPred
, NewBB
);
168 // Okay, everthing within the region is now branching to the right block, we
169 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
170 for (AfterPHIs
= OldPred
->begin(); isa
<PHINode
>(AfterPHIs
); ++AfterPHIs
) {
171 PHINode
*PN
= cast
<PHINode
>(AfterPHIs
);
172 // Create a new PHI node in the new region, which has an incoming value
173 // from OldPred of PN.
174 PHINode
*NewPN
= new PHINode(PN
->getType(), PN
->getName()+".ce",
176 NewPN
->addIncoming(PN
, OldPred
);
178 // Loop over all of the incoming value in PN, moving them to NewPN if they
179 // are from the extracted region.
180 for (unsigned i
= 0; i
!= PN
->getNumIncomingValues(); ++i
) {
181 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
))) {
182 NewPN
->addIncoming(PN
->getIncomingValue(i
), PN
->getIncomingBlock(i
));
183 PN
->removeIncomingValue(i
);
191 void CodeExtractor::splitReturnBlocks() {
192 for (std::set
<BasicBlock
*>::iterator I
= BlocksToExtract
.begin(),
193 E
= BlocksToExtract
.end(); I
!= E
; ++I
)
194 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>((*I
)->getTerminator()))
195 (*I
)->splitBasicBlock(RI
, (*I
)->getName()+".ret");
198 // findInputsOutputs - Find inputs to, outputs from the code region.
200 void CodeExtractor::findInputsOutputs(Values
&inputs
, Values
&outputs
) {
201 std::set
<BasicBlock
*> ExitBlocks
;
202 for (std::set
<BasicBlock
*>::const_iterator ci
= BlocksToExtract
.begin(),
203 ce
= BlocksToExtract
.end(); ci
!= ce
; ++ci
) {
204 BasicBlock
*BB
= *ci
;
206 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
207 // If a used value is defined outside the region, it's an input. If an
208 // instruction is used outside the region, it's an output.
209 for (User::op_iterator O
= I
->op_begin(), E
= I
->op_end(); O
!= E
; ++O
)
210 if (definedInCaller(*O
))
211 inputs
.push_back(*O
);
213 // Consider uses of this instruction (outputs).
214 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
216 if (!definedInRegion(*UI
)) {
217 outputs
.push_back(I
);
222 // Keep track of the exit blocks from the region.
223 TerminatorInst
*TI
= BB
->getTerminator();
224 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
225 if (!BlocksToExtract
.count(TI
->getSuccessor(i
)))
226 ExitBlocks
.insert(TI
->getSuccessor(i
));
227 } // for: basic blocks
229 NumExitBlocks
= ExitBlocks
.size();
231 // Eliminate duplicates.
232 std::sort(inputs
.begin(), inputs
.end());
233 inputs
.erase(std::unique(inputs
.begin(), inputs
.end()), inputs
.end());
234 std::sort(outputs
.begin(), outputs
.end());
235 outputs
.erase(std::unique(outputs
.begin(), outputs
.end()), outputs
.end());
238 /// constructFunction - make a function based on inputs and outputs, as follows:
239 /// f(in0, ..., inN, out0, ..., outN)
241 Function
*CodeExtractor::constructFunction(const Values
&inputs
,
242 const Values
&outputs
,
244 BasicBlock
*newRootNode
,
245 BasicBlock
*newHeader
,
246 Function
*oldFunction
,
248 DEBUG(std::cerr
<< "inputs: " << inputs
.size() << "\n");
249 DEBUG(std::cerr
<< "outputs: " << outputs
.size() << "\n");
251 // This function returns unsigned, outputs will go back by reference.
252 switch (NumExitBlocks
) {
254 case 1: RetTy
= Type::VoidTy
; break;
255 case 2: RetTy
= Type::BoolTy
; break;
256 default: RetTy
= Type::UShortTy
; break;
259 std::vector
<const Type
*> paramTy
;
261 // Add the types of the input values to the function's argument list
262 for (Values::const_iterator i
= inputs
.begin(),
263 e
= inputs
.end(); i
!= e
; ++i
) {
264 const Value
*value
= *i
;
265 DEBUG(std::cerr
<< "value used in func: " << *value
<< "\n");
266 paramTy
.push_back(value
->getType());
269 // Add the types of the output values to the function's argument list.
270 for (Values::const_iterator I
= outputs
.begin(), E
= outputs
.end();
272 DEBUG(std::cerr
<< "instr used in func: " << **I
<< "\n");
274 paramTy
.push_back((*I
)->getType());
276 paramTy
.push_back(PointerType::get((*I
)->getType()));
279 DEBUG(std::cerr
<< "Function type: " << *RetTy
<< " f(");
280 DEBUG(for (std::vector
<const Type
*>::iterator i
= paramTy
.begin(),
281 e
= paramTy
.end(); i
!= e
; ++i
) std::cerr
<< **i
<< ", ");
282 DEBUG(std::cerr
<< ")\n");
284 if (AggregateArgs
&& (inputs
.size() + outputs
.size() > 0)) {
285 PointerType
*StructPtr
= PointerType::get(StructType::get(paramTy
));
287 paramTy
.push_back(StructPtr
);
289 const FunctionType
*funcType
= FunctionType::get(RetTy
, paramTy
, false);
291 // Create the new function
292 Function
*newFunction
= new Function(funcType
,
293 GlobalValue::InternalLinkage
,
294 oldFunction
->getName() + "_" +
295 header
->getName(), M
);
296 newFunction
->getBasicBlockList().push_back(newRootNode
);
298 // Create an iterator to name all of the arguments we inserted.
299 Function::arg_iterator AI
= newFunction
->arg_begin();
301 // Rewrite all users of the inputs in the extracted region to use the
302 // arguments (or appropriate addressing into struct) instead.
303 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
) {
306 std::vector
<Value
*> Indices
;
307 Indices
.push_back(Constant::getNullValue(Type::UIntTy
));
308 Indices
.push_back(ConstantUInt::get(Type::UIntTy
, i
));
309 std::string GEPname
= "gep_" + inputs
[i
]->getName();
310 TerminatorInst
*TI
= newFunction
->begin()->getTerminator();
311 GetElementPtrInst
*GEP
= new GetElementPtrInst(AI
, Indices
, GEPname
, TI
);
312 RewriteVal
= new LoadInst(GEP
, "load" + GEPname
, TI
);
316 std::vector
<User
*> Users(inputs
[i
]->use_begin(), inputs
[i
]->use_end());
317 for (std::vector
<User
*>::iterator use
= Users
.begin(), useE
= Users
.end();
319 if (Instruction
* inst
= dyn_cast
<Instruction
>(*use
))
320 if (BlocksToExtract
.count(inst
->getParent()))
321 inst
->replaceUsesOfWith(inputs
[i
], RewriteVal
);
324 // Set names for input and output arguments.
325 if (!AggregateArgs
) {
326 AI
= newFunction
->arg_begin();
327 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
, ++AI
)
328 AI
->setName(inputs
[i
]->getName());
329 for (unsigned i
= 0, e
= outputs
.size(); i
!= e
; ++i
, ++AI
)
330 AI
->setName(outputs
[i
]->getName()+".out");
333 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
334 // within the new function. This must be done before we lose track of which
335 // blocks were originally in the code region.
336 std::vector
<User
*> Users(header
->use_begin(), header
->use_end());
337 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
)
338 // The BasicBlock which contains the branch is not in the region
339 // modify the branch target to a new block
340 if (TerminatorInst
*TI
= dyn_cast
<TerminatorInst
>(Users
[i
]))
341 if (!BlocksToExtract
.count(TI
->getParent()) &&
342 TI
->getParent()->getParent() == oldFunction
)
343 TI
->replaceUsesOfWith(header
, newHeader
);
348 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
349 /// the call instruction, splitting any PHI nodes in the header block as
352 emitCallAndSwitchStatement(Function
*newFunction
, BasicBlock
*codeReplacer
,
353 Values
&inputs
, Values
&outputs
) {
354 // Emit a call to the new function, passing in: *pointer to struct (if
355 // aggregating parameters), or plan inputs and allocated memory for outputs
356 std::vector
<Value
*> params
, StructValues
, ReloadOutputs
;
358 // Add inputs as params, or to be filled into the struct
359 for (Values::iterator i
= inputs
.begin(), e
= inputs
.end(); i
!= e
; ++i
)
361 StructValues
.push_back(*i
);
363 params
.push_back(*i
);
365 // Create allocas for the outputs
366 for (Values::iterator i
= outputs
.begin(), e
= outputs
.end(); i
!= e
; ++i
) {
368 StructValues
.push_back(*i
);
371 new AllocaInst((*i
)->getType(), 0, (*i
)->getName()+".loc",
372 codeReplacer
->getParent()->begin()->begin());
373 ReloadOutputs
.push_back(alloca
);
374 params
.push_back(alloca
);
378 AllocaInst
*Struct
= 0;
379 if (AggregateArgs
&& (inputs
.size() + outputs
.size() > 0)) {
380 std::vector
<const Type
*> ArgTypes
;
381 for (Values::iterator v
= StructValues
.begin(),
382 ve
= StructValues
.end(); v
!= ve
; ++v
)
383 ArgTypes
.push_back((*v
)->getType());
385 // Allocate a struct at the beginning of this function
386 Type
*StructArgTy
= StructType::get(ArgTypes
);
388 new AllocaInst(StructArgTy
, 0, "structArg",
389 codeReplacer
->getParent()->begin()->begin());
390 params
.push_back(Struct
);
392 for (unsigned i
= 0, e
= inputs
.size(); i
!= e
; ++i
) {
393 std::vector
<Value
*> Indices
;
394 Indices
.push_back(Constant::getNullValue(Type::UIntTy
));
395 Indices
.push_back(ConstantUInt::get(Type::UIntTy
, i
));
396 GetElementPtrInst
*GEP
=
397 new GetElementPtrInst(Struct
, Indices
,
398 "gep_" + StructValues
[i
]->getName());
399 codeReplacer
->getInstList().push_back(GEP
);
400 StoreInst
*SI
= new StoreInst(StructValues
[i
], GEP
);
401 codeReplacer
->getInstList().push_back(SI
);
405 // Emit the call to the function
406 CallInst
*call
= new CallInst(newFunction
, params
,
407 NumExitBlocks
> 1 ? "targetBlock" : "");
408 codeReplacer
->getInstList().push_back(call
);
410 Function::arg_iterator OutputArgBegin
= newFunction
->arg_begin();
411 unsigned FirstOut
= inputs
.size();
413 std::advance(OutputArgBegin
, inputs
.size());
415 // Reload the outputs passed in by reference
416 for (unsigned i
= 0, e
= outputs
.size(); i
!= e
; ++i
) {
419 std::vector
<Value
*> Indices
;
420 Indices
.push_back(Constant::getNullValue(Type::UIntTy
));
421 Indices
.push_back(ConstantUInt::get(Type::UIntTy
, FirstOut
+ i
));
422 GetElementPtrInst
*GEP
423 = new GetElementPtrInst(Struct
, Indices
,
424 "gep_reload_" + outputs
[i
]->getName());
425 codeReplacer
->getInstList().push_back(GEP
);
428 Output
= ReloadOutputs
[i
];
430 LoadInst
*load
= new LoadInst(Output
, outputs
[i
]->getName()+".reload");
431 codeReplacer
->getInstList().push_back(load
);
432 std::vector
<User
*> Users(outputs
[i
]->use_begin(), outputs
[i
]->use_end());
433 for (unsigned u
= 0, e
= Users
.size(); u
!= e
; ++u
) {
434 Instruction
*inst
= cast
<Instruction
>(Users
[u
]);
435 if (!BlocksToExtract
.count(inst
->getParent()))
436 inst
->replaceUsesOfWith(outputs
[i
], load
);
440 // Now we can emit a switch statement using the call as a value.
441 SwitchInst
*TheSwitch
=
442 new SwitchInst(ConstantUInt::getNullValue(Type::UShortTy
),
443 codeReplacer
, 0, codeReplacer
);
445 // Since there may be multiple exits from the original region, make the new
446 // function return an unsigned, switch on that number. This loop iterates
447 // over all of the blocks in the extracted region, updating any terminator
448 // instructions in the to-be-extracted region that branch to blocks that are
449 // not in the region to be extracted.
450 std::map
<BasicBlock
*, BasicBlock
*> ExitBlockMap
;
452 unsigned switchVal
= 0;
453 for (std::set
<BasicBlock
*>::const_iterator i
= BlocksToExtract
.begin(),
454 e
= BlocksToExtract
.end(); i
!= e
; ++i
) {
455 TerminatorInst
*TI
= (*i
)->getTerminator();
456 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
457 if (!BlocksToExtract
.count(TI
->getSuccessor(i
))) {
458 BasicBlock
*OldTarget
= TI
->getSuccessor(i
);
459 // add a new basic block which returns the appropriate value
460 BasicBlock
*&NewTarget
= ExitBlockMap
[OldTarget
];
462 // If we don't already have an exit stub for this non-extracted
463 // destination, create one now!
464 NewTarget
= new BasicBlock(OldTarget
->getName() + ".exitStub",
466 unsigned SuccNum
= switchVal
++;
469 switch (NumExitBlocks
) {
471 case 1: break; // No value needed.
472 case 2: // Conditional branch, return a bool
473 brVal
= SuccNum
? ConstantBool::False
: ConstantBool::True
;
476 brVal
= ConstantUInt::get(Type::UShortTy
, SuccNum
);
480 ReturnInst
*NTRet
= new ReturnInst(brVal
, NewTarget
);
482 // Update the switch instruction.
483 TheSwitch
->addCase(ConstantUInt::get(Type::UShortTy
, SuccNum
),
486 // Restore values just before we exit
487 Function::arg_iterator OAI
= OutputArgBegin
;
488 for (unsigned out
= 0, e
= outputs
.size(); out
!= e
; ++out
) {
489 // For an invoke, the normal destination is the only one that is
490 // dominated by the result of the invocation
491 BasicBlock
*DefBlock
= cast
<Instruction
>(outputs
[out
])->getParent();
493 bool DominatesDef
= true;
495 if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(outputs
[out
])) {
496 DefBlock
= Invoke
->getNormalDest();
498 // Make sure we are looking at the original successor block, not
499 // at a newly inserted exit block, which won't be in the dominator
501 for (std::map
<BasicBlock
*, BasicBlock
*>::iterator I
=
502 ExitBlockMap
.begin(), E
= ExitBlockMap
.end(); I
!= E
; ++I
)
503 if (DefBlock
== I
->second
) {
508 // In the extract block case, if the block we are extracting ends
509 // with an invoke instruction, make sure that we don't emit a
510 // store of the invoke value for the unwind block.
511 if (!DS
&& DefBlock
!= OldTarget
)
512 DominatesDef
= false;
516 DominatesDef
= DS
->dominates(DefBlock
, OldTarget
);
520 std::vector
<Value
*> Indices
;
521 Indices
.push_back(Constant::getNullValue(Type::UIntTy
));
522 Indices
.push_back(ConstantUInt::get(Type::UIntTy
,FirstOut
+out
));
523 GetElementPtrInst
*GEP
=
524 new GetElementPtrInst(OAI
, Indices
,
525 "gep_" + outputs
[out
]->getName(),
527 new StoreInst(outputs
[out
], GEP
, NTRet
);
529 new StoreInst(outputs
[out
], OAI
, NTRet
);
532 // Advance output iterator even if we don't emit a store
533 if (!AggregateArgs
) ++OAI
;
537 // rewrite the original branch instruction with this new target
538 TI
->setSuccessor(i
, NewTarget
);
542 // Now that we've done the deed, simplify the switch instruction.
543 const Type
*OldFnRetTy
= TheSwitch
->getParent()->getParent()->getReturnType();
544 switch (NumExitBlocks
) {
546 // There are no successors (the block containing the switch itself), which
547 // means that previously this was the last part of the function, and hence
548 // this should be rewritten as a `ret'
550 // Check if the function should return a value
551 if (OldFnRetTy
== Type::VoidTy
) {
552 new ReturnInst(0, TheSwitch
); // Return void
553 } else if (OldFnRetTy
== TheSwitch
->getCondition()->getType()) {
554 // return what we have
555 new ReturnInst(TheSwitch
->getCondition(), TheSwitch
);
557 // Otherwise we must have code extracted an unwind or something, just
558 // return whatever we want.
559 new ReturnInst(Constant::getNullValue(OldFnRetTy
), TheSwitch
);
562 TheSwitch
->getParent()->getInstList().erase(TheSwitch
);
565 // Only a single destination, change the switch into an unconditional
567 new BranchInst(TheSwitch
->getSuccessor(1), TheSwitch
);
568 TheSwitch
->getParent()->getInstList().erase(TheSwitch
);
571 new BranchInst(TheSwitch
->getSuccessor(1), TheSwitch
->getSuccessor(2),
573 TheSwitch
->getParent()->getInstList().erase(TheSwitch
);
576 // Otherwise, make the default destination of the switch instruction be one
577 // of the other successors.
578 TheSwitch
->setOperand(0, call
);
579 TheSwitch
->setSuccessor(0, TheSwitch
->getSuccessor(NumExitBlocks
));
580 TheSwitch
->removeCase(NumExitBlocks
); // Remove redundant case
585 void CodeExtractor::moveCodeToFunction(Function
*newFunction
) {
586 Function
*oldFunc
= (*BlocksToExtract
.begin())->getParent();
587 Function::BasicBlockListType
&oldBlocks
= oldFunc
->getBasicBlockList();
588 Function::BasicBlockListType
&newBlocks
= newFunction
->getBasicBlockList();
590 for (std::set
<BasicBlock
*>::const_iterator i
= BlocksToExtract
.begin(),
591 e
= BlocksToExtract
.end(); i
!= e
; ++i
) {
592 // Delete the basic block from the old function, and the list of blocks
593 oldBlocks
.remove(*i
);
595 // Insert this basic block into the new function
596 newBlocks
.push_back(*i
);
600 /// ExtractRegion - Removes a loop from a function, replaces it with a call to
601 /// new function. Returns pointer to the new function.
605 /// find inputs and outputs for the region
607 /// for inputs: add to function as args, map input instr* to arg#
608 /// for outputs: add allocas for scalars,
609 /// add to func as args, map output instr* to arg#
611 /// rewrite func to use argument #s instead of instr*
613 /// for each scalar output in the function: at every exit, store intermediate
614 /// computed result back into memory.
616 Function
*CodeExtractor::
617 ExtractCodeRegion(const std::vector
<BasicBlock
*> &code
) {
618 if (!isEligible(code
))
621 // 1) Find inputs, outputs
622 // 2) Construct new function
623 // * Add allocas for defs, pass as args by reference
624 // * Pass in uses as args
625 // 3) Move code region, add call instr to func
627 BlocksToExtract
.insert(code
.begin(), code
.end());
629 Values inputs
, outputs
;
631 // Assumption: this is a single-entry code region, and the header is the first
632 // block in the region.
633 BasicBlock
*header
= code
[0];
635 for (unsigned i
= 1, e
= code
.size(); i
!= e
; ++i
)
636 for (pred_iterator PI
= pred_begin(code
[i
]), E
= pred_end(code
[i
]);
638 assert(BlocksToExtract
.count(*PI
) &&
639 "No blocks in this region may have entries from outside the region"
640 " except for the first block!");
642 // If we have to split PHI nodes or the entry block, do so now.
643 severSplitPHINodes(header
);
645 // If we have any return instructions in the region, split those blocks so
646 // that the return is not in the region.
649 Function
*oldFunction
= header
->getParent();
651 // This takes place of the original loop
652 BasicBlock
*codeReplacer
= new BasicBlock("codeRepl", oldFunction
, header
);
654 // The new function needs a root node because other nodes can branch to the
655 // head of the region, but the entry node of a function cannot have preds.
656 BasicBlock
*newFuncRoot
= new BasicBlock("newFuncRoot");
657 newFuncRoot
->getInstList().push_back(new BranchInst(header
));
659 // Find inputs to, outputs from the code region.
660 findInputsOutputs(inputs
, outputs
);
662 // Construct new function based on inputs/outputs & add allocas for all defs.
663 Function
*newFunction
= constructFunction(inputs
, outputs
, header
,
665 codeReplacer
, oldFunction
,
666 oldFunction
->getParent());
668 emitCallAndSwitchStatement(newFunction
, codeReplacer
, inputs
, outputs
);
670 moveCodeToFunction(newFunction
);
672 // Loop over all of the PHI nodes in the header block, and change any
673 // references to the old incoming edge to be the new incoming edge.
674 for (BasicBlock::iterator I
= header
->begin(); isa
<PHINode
>(I
); ++I
) {
675 PHINode
*PN
= cast
<PHINode
>(I
);
676 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
677 if (!BlocksToExtract
.count(PN
->getIncomingBlock(i
)))
678 PN
->setIncomingBlock(i
, newFuncRoot
);
681 // Look at all successors of the codeReplacer block. If any of these blocks
682 // had PHI nodes in them, we need to update the "from" block to be the code
683 // replacer, not the original block in the extracted region.
684 std::vector
<BasicBlock
*> Succs(succ_begin(codeReplacer
),
685 succ_end(codeReplacer
));
686 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
)
687 for (BasicBlock::iterator I
= Succs
[i
]->begin(); isa
<PHINode
>(I
); ++I
) {
688 PHINode
*PN
= cast
<PHINode
>(I
);
689 std::set
<BasicBlock
*> ProcessedPreds
;
690 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
691 if (BlocksToExtract
.count(PN
->getIncomingBlock(i
)))
692 if (ProcessedPreds
.insert(PN
->getIncomingBlock(i
)).second
)
693 PN
->setIncomingBlock(i
, codeReplacer
);
695 // There were multiple entries in the PHI for this block, now there
696 // is only one, so remove the duplicated entries.
697 PN
->removeIncomingValue(i
, false);
702 //std::cerr << "NEW FUNCTION: " << *newFunction;
703 // verifyFunction(*newFunction);
705 // std::cerr << "OLD FUNCTION: " << *oldFunction;
706 // verifyFunction(*oldFunction);
708 DEBUG(if (verifyFunction(*newFunction
)) abort());
712 bool CodeExtractor::isEligible(const std::vector
<BasicBlock
*> &code
) {
713 // Deny code region if it contains allocas or vastarts.
714 for (std::vector
<BasicBlock
*>::const_iterator BB
= code
.begin(), e
=code
.end();
716 for (BasicBlock::const_iterator I
= (*BB
)->begin(), Ie
= (*BB
)->end();
718 if (isa
<AllocaInst
>(*I
))
720 else if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
721 if (const Function
*F
= CI
->getCalledFunction())
722 if (F
->getIntrinsicID() == Intrinsic::vastart
)
728 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
731 Function
* llvm::ExtractCodeRegion(DominatorSet
&DS
,
732 const std::vector
<BasicBlock
*> &code
,
733 bool AggregateArgs
) {
734 return CodeExtractor(&DS
, AggregateArgs
).ExtractCodeRegion(code
);
737 /// ExtractBasicBlock - slurp a natural loop into a brand new function
739 Function
* llvm::ExtractLoop(DominatorSet
&DS
, Loop
*L
, bool AggregateArgs
) {
740 return CodeExtractor(&DS
, AggregateArgs
).ExtractCodeRegion(L
->getBlocks());
743 /// ExtractBasicBlock - slurp a basic block into a brand new function
745 Function
* llvm::ExtractBasicBlock(BasicBlock
*BB
, bool AggregateArgs
) {
746 std::vector
<BasicBlock
*> Blocks
;
747 Blocks
.push_back(BB
);
748 return CodeExtractor(0, AggregateArgs
).ExtractCodeRegion(Blocks
);