Reverting back to original 1.8 version so I can manually merge in patch.
[llvm-complete.git] / lib / Transforms / Utils / InlineFunction.cpp
blob7b97646c190c613ac3ef8391db6064e3f0c004b3
1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Module.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/Analysis/CallGraph.h"
22 #include "llvm/Support/CallSite.h"
23 using namespace llvm;
25 bool llvm::InlineFunction(CallInst *CI, CallGraph *CG) {
26 return InlineFunction(CallSite(CI), CG);
28 bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG) {
29 return InlineFunction(CallSite(II), CG);
32 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
33 /// in the body of the inlined function into invokes and turn unwind
34 /// instructions into branches to the invoke unwind dest.
35 ///
36 /// II is the invoke instruction begin inlined. FirstNewBlock is the first
37 /// block of the inlined code (the last block is the end of the function),
38 /// and InlineCodeInfo is information about the code that got inlined.
39 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
40 ClonedCodeInfo &InlinedCodeInfo) {
41 BasicBlock *InvokeDest = II->getUnwindDest();
42 std::vector<Value*> InvokeDestPHIValues;
44 // If there are PHI nodes in the unwind destination block, we need to
45 // keep track of which values came into them from this invoke, then remove
46 // the entry for this block.
47 BasicBlock *InvokeBlock = II->getParent();
48 for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
49 PHINode *PN = cast<PHINode>(I);
50 // Save the value to use for this edge.
51 InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
54 Function *Caller = FirstNewBlock->getParent();
56 // The inlined code is currently at the end of the function, scan from the
57 // start of the inlined code to its end, checking for stuff we need to
58 // rewrite.
59 if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
60 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
61 BB != E; ++BB) {
62 if (InlinedCodeInfo.ContainsCalls) {
63 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
64 Instruction *I = BBI++;
66 // We only need to check for function calls: inlined invoke
67 // instructions require no special handling.
68 if (!isa<CallInst>(I)) continue;
69 CallInst *CI = cast<CallInst>(I);
71 // If this is an intrinsic function call, don't convert it to an
72 // invoke.
73 if (CI->getCalledFunction() &&
74 CI->getCalledFunction()->getIntrinsicID())
75 continue;
77 // Convert this function call into an invoke instruction.
78 // First, split the basic block.
79 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
81 // Next, create the new invoke instruction, inserting it at the end
82 // of the old basic block.
83 InvokeInst *II =
84 new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
85 std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
86 CI->getName(), BB->getTerminator());
87 II->setCallingConv(CI->getCallingConv());
89 // Make sure that anything using the call now uses the invoke!
90 CI->replaceAllUsesWith(II);
92 // Delete the unconditional branch inserted by splitBasicBlock
93 BB->getInstList().pop_back();
94 Split->getInstList().pop_front(); // Delete the original call
96 // Update any PHI nodes in the exceptional block to indicate that
97 // there is now a new entry in them.
98 unsigned i = 0;
99 for (BasicBlock::iterator I = InvokeDest->begin();
100 isa<PHINode>(I); ++I, ++i) {
101 PHINode *PN = cast<PHINode>(I);
102 PN->addIncoming(InvokeDestPHIValues[i], BB);
105 // This basic block is now complete, start scanning the next one.
106 break;
110 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
111 // An UnwindInst requires special handling when it gets inlined into an
112 // invoke site. Once this happens, we know that the unwind would cause
113 // a control transfer to the invoke exception destination, so we can
114 // transform it into a direct branch to the exception destination.
115 new BranchInst(InvokeDest, UI);
117 // Delete the unwind instruction!
118 UI->getParent()->getInstList().pop_back();
120 // Update any PHI nodes in the exceptional block to indicate that
121 // there is now a new entry in them.
122 unsigned i = 0;
123 for (BasicBlock::iterator I = InvokeDest->begin();
124 isa<PHINode>(I); ++I, ++i) {
125 PHINode *PN = cast<PHINode>(I);
126 PN->addIncoming(InvokeDestPHIValues[i], BB);
132 // Now that everything is happy, we have one final detail. The PHI nodes in
133 // the exception destination block still have entries due to the original
134 // invoke instruction. Eliminate these entries (which might even delete the
135 // PHI node) now.
136 InvokeDest->removePredecessor(II->getParent());
139 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
140 /// into the caller, update the specified callgraph to reflect the changes we
141 /// made. Note that it's possible that not all code was copied over, so only
142 /// some edges of the callgraph will be remain.
143 static void UpdateCallGraphAfterInlining(const Function *Caller,
144 const Function *Callee,
145 Function::iterator FirstNewBlock,
146 std::map<const Value*, Value*> &ValueMap,
147 CallGraph &CG) {
148 // Update the call graph by deleting the edge from Callee to Caller
149 CallGraphNode *CalleeNode = CG[Callee];
150 CallGraphNode *CallerNode = CG[Caller];
151 CallerNode->removeCallEdgeTo(CalleeNode);
153 // Since we inlined some uninlined call sites in the callee into the caller,
154 // add edges from the caller to all of the callees of the callee.
155 for (CallGraphNode::iterator I = CalleeNode->begin(),
156 E = CalleeNode->end(); I != E; ++I) {
157 const Instruction *OrigCall = I->first.getInstruction();
159 std::map<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
160 // Only copy the edge if the call was inlined!
161 if (VMI != ValueMap.end() && VMI->second) {
162 // If the call was inlined, but then constant folded, there is no edge to
163 // add. Check for this case.
164 if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
165 CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
171 // InlineFunction - This function inlines the called function into the basic
172 // block of the caller. This returns false if it is not possible to inline this
173 // call. The program is still in a well defined state if this occurs though.
175 // Note that this only does one level of inlining. For example, if the
176 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
177 // exists in the instruction stream. Similiarly this will inline a recursive
178 // function by one level.
180 bool llvm::InlineFunction(CallSite CS, CallGraph *CG) {
181 Instruction *TheCall = CS.getInstruction();
182 assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
183 "Instruction not in function!");
185 const Function *CalledFunc = CS.getCalledFunction();
186 if (CalledFunc == 0 || // Can't inline external function or indirect
187 CalledFunc->isExternal() || // call, or call to a vararg function!
188 CalledFunc->getFunctionType()->isVarArg()) return false;
191 // If the call to the callee is a non-tail call, we must clear the 'tail'
192 // flags on any calls that we inline.
193 bool MustClearTailCallFlags =
194 isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
196 BasicBlock *OrigBB = TheCall->getParent();
197 Function *Caller = OrigBB->getParent();
199 // Get an iterator to the last basic block in the function, which will have
200 // the new function inlined after it.
202 Function::iterator LastBlock = &Caller->back();
204 // Make sure to capture all of the return instructions from the cloned
205 // function.
206 std::vector<ReturnInst*> Returns;
207 ClonedCodeInfo InlinedFunctionInfo;
208 Function::iterator FirstNewBlock;
210 { // Scope to destroy ValueMap after cloning.
211 std::map<const Value*, Value*> ValueMap;
213 // Calculate the vector of arguments to pass into the function cloner, which
214 // matches up the formal to the actual argument values.
215 assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
216 std::distance(CS.arg_begin(), CS.arg_end()) &&
217 "No varargs calls can be inlined!");
218 CallSite::arg_iterator AI = CS.arg_begin();
219 for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
220 E = CalledFunc->arg_end(); I != E; ++I, ++AI)
221 ValueMap[I] = *AI;
223 // We want the inliner to prune the code as it copies. We would LOVE to
224 // have no dead or constant instructions leftover after inlining occurs
225 // (which can happen, e.g., because an argument was constant), but we'll be
226 // happy with whatever the cloner can do.
227 CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
228 &InlinedFunctionInfo);
230 // Remember the first block that is newly cloned over.
231 FirstNewBlock = LastBlock; ++FirstNewBlock;
233 // Update the callgraph if requested.
234 if (CG)
235 UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
236 *CG);
239 // If there are any alloca instructions in the block that used to be the entry
240 // block for the callee, move them to the entry block of the caller. First
241 // calculate which instruction they should be inserted before. We insert the
242 // instructions at the end of the current alloca list.
245 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
246 for (BasicBlock::iterator I = FirstNewBlock->begin(),
247 E = FirstNewBlock->end(); I != E; )
248 if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
249 if (isa<Constant>(AI->getArraySize())) {
250 // Scan for the block of allocas that we can move over, and move them
251 // all at once.
252 while (isa<AllocaInst>(I) &&
253 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
254 ++I;
256 // Transfer all of the allocas over in a block. Using splice means
257 // that they instructions aren't removed from the symbol table, then
258 // reinserted.
259 Caller->front().getInstList().splice(InsertPoint,
260 FirstNewBlock->getInstList(),
261 AI, I);
265 // If the inlined code contained dynamic alloca instructions, wrap the inlined
266 // code with llvm.stacksave/llvm.stackrestore intrinsics.
267 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
268 Module *M = Caller->getParent();
269 const Type *SBytePtr = PointerType::get(Type::SByteTy);
270 // Get the two intrinsics we care about.
271 Function *StackSave, *StackRestore;
272 StackSave = M->getOrInsertFunction("llvm.stacksave", SBytePtr, NULL);
273 StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy,
274 SBytePtr, NULL);
276 // If we are preserving the callgraph, add edges to the stacksave/restore
277 // functions for the calls we insert.
278 CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
279 if (CG) {
280 StackSaveCGN = CG->getOrInsertFunction(StackSave);
281 StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
282 CallerNode = (*CG)[Caller];
285 // Insert the llvm.stacksave.
286 CallInst *SavedPtr = new CallInst(StackSave, "savedstack",
287 FirstNewBlock->begin());
288 if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
290 // Insert a call to llvm.stackrestore before any return instructions in the
291 // inlined function.
292 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
293 CallInst *CI = new CallInst(StackRestore, SavedPtr, "", Returns[i]);
294 if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
297 // Count the number of StackRestore calls we insert.
298 unsigned NumStackRestores = Returns.size();
300 // If we are inlining an invoke instruction, insert restores before each
301 // unwind. These unwinds will be rewritten into branches later.
302 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
303 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
304 BB != E; ++BB)
305 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
306 new CallInst(StackRestore, SavedPtr, "", UI);
307 ++NumStackRestores;
312 // If we are inlining tail call instruction through a call site that isn't
313 // marked 'tail', we must remove the tail marker for any calls in the inlined
314 // code.
315 if (MustClearTailCallFlags && InlinedFunctionInfo.ContainsCalls) {
316 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
317 BB != E; ++BB)
318 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
319 if (CallInst *CI = dyn_cast<CallInst>(I))
320 CI->setTailCall(false);
323 // If we are inlining for an invoke instruction, we must make sure to rewrite
324 // any inlined 'unwind' instructions into branches to the invoke exception
325 // destination, and call instructions into invoke instructions.
326 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
327 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
329 // If we cloned in _exactly one_ basic block, and if that block ends in a
330 // return instruction, we splice the body of the inlined callee directly into
331 // the calling basic block.
332 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
333 // Move all of the instructions right before the call.
334 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
335 FirstNewBlock->begin(), FirstNewBlock->end());
336 // Remove the cloned basic block.
337 Caller->getBasicBlockList().pop_back();
339 // If the call site was an invoke instruction, add a branch to the normal
340 // destination.
341 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
342 new BranchInst(II->getNormalDest(), TheCall);
344 // If the return instruction returned a value, replace uses of the call with
345 // uses of the returned value.
346 if (!TheCall->use_empty())
347 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
349 // Since we are now done with the Call/Invoke, we can delete it.
350 TheCall->getParent()->getInstList().erase(TheCall);
352 // Since we are now done with the return instruction, delete it also.
353 Returns[0]->getParent()->getInstList().erase(Returns[0]);
355 // We are now done with the inlining.
356 return true;
359 // Otherwise, we have the normal case, of more than one block to inline or
360 // multiple return sites.
362 // We want to clone the entire callee function into the hole between the
363 // "starter" and "ender" blocks. How we accomplish this depends on whether
364 // this is an invoke instruction or a call instruction.
365 BasicBlock *AfterCallBB;
366 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
368 // Add an unconditional branch to make this look like the CallInst case...
369 BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
371 // Split the basic block. This guarantees that no PHI nodes will have to be
372 // updated due to new incoming edges, and make the invoke case more
373 // symmetric to the call case.
374 AfterCallBB = OrigBB->splitBasicBlock(NewBr,
375 CalledFunc->getName()+".exit");
377 } else { // It's a call
378 // If this is a call instruction, we need to split the basic block that
379 // the call lives in.
381 AfterCallBB = OrigBB->splitBasicBlock(TheCall,
382 CalledFunc->getName()+".exit");
385 // Change the branch that used to go to AfterCallBB to branch to the first
386 // basic block of the inlined function.
388 TerminatorInst *Br = OrigBB->getTerminator();
389 assert(Br && Br->getOpcode() == Instruction::Br &&
390 "splitBasicBlock broken!");
391 Br->setOperand(0, FirstNewBlock);
394 // Now that the function is correct, make it a little bit nicer. In
395 // particular, move the basic blocks inserted from the end of the function
396 // into the space made by splitting the source basic block.
398 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
399 FirstNewBlock, Caller->end());
401 // Handle all of the return instructions that we just cloned in, and eliminate
402 // any users of the original call/invoke instruction.
403 if (Returns.size() > 1) {
404 // The PHI node should go at the front of the new basic block to merge all
405 // possible incoming values.
407 PHINode *PHI = 0;
408 if (!TheCall->use_empty()) {
409 PHI = new PHINode(CalledFunc->getReturnType(),
410 TheCall->getName(), AfterCallBB->begin());
412 // Anything that used the result of the function call should now use the
413 // PHI node as their operand.
415 TheCall->replaceAllUsesWith(PHI);
418 // Loop over all of the return instructions, turning them into unconditional
419 // branches to the merge point now, and adding entries to the PHI node as
420 // appropriate.
421 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
422 ReturnInst *RI = Returns[i];
424 if (PHI) {
425 assert(RI->getReturnValue() && "Ret should have value!");
426 assert(RI->getReturnValue()->getType() == PHI->getType() &&
427 "Ret value not consistent in function!");
428 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
431 // Add a branch to the merge point where the PHI node lives if it exists.
432 new BranchInst(AfterCallBB, RI);
434 // Delete the return instruction now
435 RI->getParent()->getInstList().erase(RI);
438 } else if (!Returns.empty()) {
439 // Otherwise, if there is exactly one return value, just replace anything
440 // using the return value of the call with the computed value.
441 if (!TheCall->use_empty())
442 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
444 // Splice the code from the return block into the block that it will return
445 // to, which contains the code that was after the call.
446 BasicBlock *ReturnBB = Returns[0]->getParent();
447 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
448 ReturnBB->getInstList());
450 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
451 ReturnBB->replaceAllUsesWith(AfterCallBB);
453 // Delete the return instruction now and empty ReturnBB now.
454 Returns[0]->eraseFromParent();
455 ReturnBB->eraseFromParent();
456 } else if (!TheCall->use_empty()) {
457 // No returns, but something is using the return value of the call. Just
458 // nuke the result.
459 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
462 // Since we are now done with the Call/Invoke, we can delete it.
463 TheCall->eraseFromParent();
465 // We should always be able to fold the entry block of the function into the
466 // single predecessor of the block...
467 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
468 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
470 // Splice the code entry block into calling block, right before the
471 // unconditional branch.
472 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
473 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
475 // Remove the unconditional branch.
476 OrigBB->getInstList().erase(Br);
478 // Now we can remove the CalleeEntry block, which is now empty.
479 Caller->getBasicBlockList().erase(CalleeEntry);
481 return true;