Reverting back to original 1.8 version so I can manually merge in patch.
[llvm-complete.git] / lib / Transforms / Utils / LCSSA.cpp
blob21f9352637341d320286216615b1148d3acba457
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Owen Anderson and is distributed under the
6 // University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary. For example, it turns
12 // the left into the right code:
13 //
14 // for (...) for (...)
15 // if (c) if(c)
16 // X1 = ... X1 = ...
17 // else else
18 // X2 = ... X2 = ...
19 // X3 = phi(X1, X2) X3 = phi(X1, X2)
20 // ... = X3 + 4 X4 = phi(X3)
21 // ... = X4 + 4
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine. The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
28 //===----------------------------------------------------------------------===//
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Analysis/Dominators.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Support/CFG.h"
40 #include <algorithm>
41 #include <map>
43 using namespace llvm;
45 namespace {
46 static Statistic<> NumLCSSA("lcssa",
47 "Number of live out of a loop variables");
49 struct LCSSA : public FunctionPass {
50 // Cached analysis information for the current function.
51 LoopInfo *LI;
52 DominatorTree *DT;
53 std::vector<BasicBlock*> LoopBlocks;
55 virtual bool runOnFunction(Function &F);
56 bool visitSubloop(Loop* L);
57 void ProcessInstruction(Instruction* Instr,
58 const std::vector<BasicBlock*>& exitBlocks);
60 /// This transformation requires natural loop information & requires that
61 /// loop preheaders be inserted into the CFG. It maintains both of these,
62 /// as well as the CFG. It also requires dominator information.
63 ///
64 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.setPreservesCFG();
66 AU.addRequiredID(LoopSimplifyID);
67 AU.addPreservedID(LoopSimplifyID);
68 AU.addRequired<LoopInfo>();
69 AU.addRequired<DominatorTree>();
71 private:
72 SetVector<Instruction*> getLoopValuesUsedOutsideLoop(Loop *L);
74 PHINode *GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst,
75 std::map<DominatorTree::Node*, PHINode*> &Phis);
77 /// inLoop - returns true if the given block is within the current loop
78 const bool inLoop(BasicBlock* B) {
79 return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
83 RegisterOpt<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
86 FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); }
87 const PassInfo *llvm::LCSSAID = X.getPassInfo();
89 /// runOnFunction - Process all loops in the function, inner-most out.
90 bool LCSSA::runOnFunction(Function &F) {
91 bool changed = false;
93 LI = &getAnalysis<LoopInfo>();
94 DT = &getAnalysis<DominatorTree>();
96 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
97 changed |= visitSubloop(*I);
99 return changed;
102 /// visitSubloop - Recursively process all subloops, and then process the given
103 /// loop if it has live-out values.
104 bool LCSSA::visitSubloop(Loop* L) {
105 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
106 visitSubloop(*I);
108 // Speed up queries by creating a sorted list of blocks
109 LoopBlocks.clear();
110 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
111 std::sort(LoopBlocks.begin(), LoopBlocks.end());
113 SetVector<Instruction*> AffectedValues = getLoopValuesUsedOutsideLoop(L);
115 // If no values are affected, we can save a lot of work, since we know that
116 // nothing will be changed.
117 if (AffectedValues.empty())
118 return false;
120 std::vector<BasicBlock*> exitBlocks;
121 L->getExitBlocks(exitBlocks);
124 // Iterate over all affected values for this loop and insert Phi nodes
125 // for them in the appropriate exit blocks
127 for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
128 E = AffectedValues.end(); I != E; ++I)
129 ProcessInstruction(*I, exitBlocks);
131 assert(L->isLCSSAForm());
133 return true;
136 /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
137 /// eliminate all out-of-loop uses.
138 void LCSSA::ProcessInstruction(Instruction *Instr,
139 const std::vector<BasicBlock*>& exitBlocks) {
140 ++NumLCSSA; // We are applying the transformation
142 // Keep track of the blocks that have the value available already.
143 std::map<DominatorTree::Node*, PHINode*> Phis;
145 DominatorTree::Node *InstrNode = DT->getNode(Instr->getParent());
147 // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
148 // add them to the Phi's map.
149 for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
150 BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
151 BasicBlock *BB = *BBI;
152 DominatorTree::Node *ExitBBNode = DT->getNode(BB);
153 PHINode *&Phi = Phis[ExitBBNode];
154 if (!Phi && InstrNode->dominates(ExitBBNode)) {
155 Phi = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
156 BB->begin());
157 Phi->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
159 // Add inputs from inside the loop for this PHI.
160 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
161 Phi->addIncoming(Instr, *PI);
163 // Remember that this phi makes the value alive in this block.
164 Phis[ExitBBNode] = Phi;
169 // Record all uses of Instr outside the loop. We need to rewrite these. The
170 // LCSSA phis won't be included because they use the value in the loop.
171 for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
172 UI != E;) {
173 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
174 if (PHINode *P = dyn_cast<PHINode>(*UI)) {
175 unsigned OperandNo = UI.getOperandNo();
176 UserBB = P->getIncomingBlock(OperandNo/2);
179 // If the user is in the loop, don't rewrite it!
180 if (UserBB == Instr->getParent() || inLoop(UserBB)) {
181 ++UI;
182 continue;
185 // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
186 // inserting PHI nodes into join points where needed.
187 Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
189 // Preincrement the iterator to avoid invalidating it when we change the
190 // value.
191 Use &U = UI.getUse();
192 ++UI;
193 U.set(Val);
197 /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
198 /// are used by instructions outside of it.
199 SetVector<Instruction*> LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) {
201 // FIXME: For large loops, we may be able to avoid a lot of use-scanning
202 // by using dominance information. In particular, if a block does not
203 // dominate any of the loop exits, then none of the values defined in the
204 // block could be used outside the loop.
206 SetVector<Instruction*> AffectedValues;
207 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
208 BB != E; ++BB) {
209 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
210 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
211 ++UI) {
212 BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
213 if (PHINode* p = dyn_cast<PHINode>(*UI)) {
214 unsigned OperandNo = UI.getOperandNo();
215 UserBB = p->getIncomingBlock(OperandNo/2);
218 if (*BB != UserBB && !inLoop(UserBB)) {
219 AffectedValues.insert(I);
220 break;
224 return AffectedValues;
227 /// GetValueForBlock - Get the value to use within the specified basic block.
228 /// available values are in Phis.
229 PHINode *LCSSA::GetValueForBlock(DominatorTree::Node *BB, Instruction *OrigInst,
230 std::map<DominatorTree::Node*, PHINode*> &Phis) {
231 // If we have already computed this value, return the previously computed val.
232 PHINode *&V = Phis[BB];
233 if (V) return V;
235 DominatorTree::Node *IDom = BB->getIDom();
237 // Otherwise, there are two cases: we either have to insert a PHI node or we
238 // don't. We need to insert a PHI node if this block is not dominated by one
239 // of the exit nodes from the loop (the loop could have multiple exits, and
240 // though the value defined *inside* the loop dominated all its uses, each
241 // exit by itself may not dominate all the uses).
243 // The simplest way to check for this condition is by checking to see if the
244 // idom is in the loop. If so, we *know* that none of the exit blocks
245 // dominate this block. Note that we *know* that the block defining the
246 // original instruction is in the idom chain, because if it weren't, then the
247 // original value didn't dominate this use.
248 if (!inLoop(IDom->getBlock())) {
249 // Idom is not in the loop, we must still be "below" the exit block and must
250 // be fully dominated by the value live in the idom.
251 return V = GetValueForBlock(IDom, OrigInst, Phis);
254 BasicBlock *BBN = BB->getBlock();
256 // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
257 // now, then get values to fill in the incoming values for the PHI.
258 V = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa",
259 BBN->begin());
260 V->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN)));
262 // Fill in the incoming values for the block.
263 for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI)
264 V->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
265 return V;