1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation is designed for use by code generators which do not yet
11 // support stack unwinding. This pass supports two models of exception handling
12 // lowering, the 'cheap' support and the 'expensive' support.
14 // 'Cheap' exception handling support gives the program the ability to execute
15 // any program which does not "throw an exception", by turning 'invoke'
16 // instructions into calls and by turning 'unwind' instructions into calls to
17 // abort(). If the program does dynamically use the unwind instruction, the
18 // program will print a message then abort.
20 // 'Expensive' exception handling support gives the full exception handling
21 // support to the program at the cost of making the 'invoke' instruction
22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the
23 // exception handling as necessary.
25 // Because the 'expensive' support slows down programs a lot, and EH is only
26 // used for a subset of the programs, it must be specifically enabled by an
29 // Note that after this pass runs the CFG is not entirely accurate (exceptional
30 // control flow edges are not correct anymore) so only very simple things should
31 // be done after the lowerinvoke pass has run (like generation of native code).
32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33 // support the invoke instruction yet" lowering pass.
35 //===----------------------------------------------------------------------===//
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Constants.h"
39 #include "llvm/DerivedTypes.h"
40 #include "llvm/Instructions.h"
41 #include "llvm/Module.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Visibility.h"
52 Statistic
<> NumInvokes("lowerinvoke", "Number of invokes replaced");
53 Statistic
<> NumUnwinds("lowerinvoke", "Number of unwinds replaced");
54 Statistic
<> NumSpilled("lowerinvoke",
55 "Number of registers live across unwind edges");
56 cl::opt
<bool> ExpensiveEHSupport("enable-correct-eh-support",
57 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
59 class VISIBILITY_HIDDEN LowerInvoke
: public FunctionPass
{
60 // Used for both models.
64 unsigned AbortMessageLength
;
66 // Used for expensive EH support.
68 GlobalVariable
*JBListHead
;
69 Function
*SetJmpFn
, *LongJmpFn
;
71 LowerInvoke(unsigned Size
= 200, unsigned Align
= 0) : JumpBufSize(Size
),
72 JumpBufAlign(Align
) {}
73 bool doInitialization(Module
&M
);
74 bool runOnFunction(Function
&F
);
76 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
77 // This is a cluster of orthogonal Transforms
78 AU
.addPreservedID(PromoteMemoryToRegisterID
);
79 AU
.addPreservedID(LowerSelectID
);
80 AU
.addPreservedID(LowerSwitchID
);
81 AU
.addPreservedID(LowerAllocationsID
);
85 void createAbortMessage();
86 void writeAbortMessage(Instruction
*IB
);
87 bool insertCheapEHSupport(Function
&F
);
88 void splitLiveRangesLiveAcrossInvokes(std::vector
<InvokeInst
*> &Invokes
);
89 void rewriteExpensiveInvoke(InvokeInst
*II
, unsigned InvokeNo
,
90 AllocaInst
*InvokeNum
, SwitchInst
*CatchSwitch
);
91 bool insertExpensiveEHSupport(Function
&F
);
94 unsigned JumpBufAlign
;
97 RegisterOpt
<LowerInvoke
>
98 X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
101 const PassInfo
*llvm::LowerInvokePassID
= X
.getPassInfo();
103 // Public Interface To the LowerInvoke pass.
104 FunctionPass
*llvm::createLowerInvokePass(unsigned JumpBufSize
,
105 unsigned JumpBufAlign
) {
106 return new LowerInvoke(JumpBufSize
, JumpBufAlign
);
109 // doInitialization - Make sure that there is a prototype for abort in the
111 bool LowerInvoke::doInitialization(Module
&M
) {
112 const Type
*VoidPtrTy
= PointerType::get(Type::SByteTy
);
114 if (ExpensiveEHSupport
) {
115 // Insert a type for the linked list of jump buffers.
116 const Type
*JmpBufTy
= ArrayType::get(VoidPtrTy
, JumpBufSize
);
118 { // The type is recursive, so use a type holder.
119 std::vector
<const Type
*> Elements
;
120 Elements
.push_back(JmpBufTy
);
121 OpaqueType
*OT
= OpaqueType::get();
122 Elements
.push_back(PointerType::get(OT
));
123 PATypeHolder
JBLType(StructType::get(Elements
));
124 OT
->refineAbstractTypeTo(JBLType
.get()); // Complete the cycle.
125 JBLinkTy
= JBLType
.get();
126 M
.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy
);
129 const Type
*PtrJBList
= PointerType::get(JBLinkTy
);
131 // Now that we've done that, insert the jmpbuf list head global, unless it
133 if (!(JBListHead
= M
.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList
)))
134 JBListHead
= new GlobalVariable(PtrJBList
, false,
135 GlobalValue::LinkOnceLinkage
,
136 Constant::getNullValue(PtrJBList
),
137 "llvm.sjljeh.jblist", &M
);
138 SetJmpFn
= M
.getOrInsertFunction("llvm.setjmp", Type::IntTy
,
139 PointerType::get(JmpBufTy
), (Type
*)0);
140 LongJmpFn
= M
.getOrInsertFunction("llvm.longjmp", Type::VoidTy
,
141 PointerType::get(JmpBufTy
),
142 Type::IntTy
, (Type
*)0);
145 // We need the 'write' and 'abort' functions for both models.
146 AbortFn
= M
.getOrInsertFunction("abort", Type::VoidTy
, (Type
*)0);
148 // Unfortunately, 'write' can end up being prototyped in several different
149 // ways. If the user defines a three (or more) operand function named 'write'
150 // we will use their prototype. We _do not_ want to insert another instance
151 // of a write prototype, because we don't know that the funcresolve pass will
152 // run after us. If there is a definition of a write function, but it's not
153 // suitable for our uses, we just don't emit write calls. If there is no
154 // write prototype at all, we just add one.
155 if (Function
*WF
= M
.getNamedFunction("write")) {
156 if (WF
->getFunctionType()->getNumParams() > 3 ||
157 WF
->getFunctionType()->isVarArg())
162 WriteFn
= M
.getOrInsertFunction("write", Type::VoidTy
, Type::IntTy
,
163 VoidPtrTy
, Type::IntTy
, (Type
*)0);
168 void LowerInvoke::createAbortMessage() {
169 Module
&M
= *WriteFn
->getParent();
170 if (ExpensiveEHSupport
) {
171 // The abort message for expensive EH support tells the user that the
172 // program 'unwound' without an 'invoke' instruction.
174 ConstantArray::get("ERROR: Exception thrown, but not caught!\n");
175 AbortMessageLength
= Msg
->getNumOperands()-1; // don't include \0
177 GlobalVariable
*MsgGV
= new GlobalVariable(Msg
->getType(), true,
178 GlobalValue::InternalLinkage
,
179 Msg
, "abortmsg", &M
);
180 std::vector
<Constant
*> GEPIdx(2, Constant::getNullValue(Type::IntTy
));
181 AbortMessage
= ConstantExpr::getGetElementPtr(MsgGV
, GEPIdx
);
183 // The abort message for cheap EH support tells the user that EH is not
186 ConstantArray::get("Exception handler needed, but not enabled. Recompile"
187 " program with -enable-correct-eh-support.\n");
188 AbortMessageLength
= Msg
->getNumOperands()-1; // don't include \0
190 GlobalVariable
*MsgGV
= new GlobalVariable(Msg
->getType(), true,
191 GlobalValue::InternalLinkage
,
192 Msg
, "abortmsg", &M
);
193 std::vector
<Constant
*> GEPIdx(2, Constant::getNullValue(Type::IntTy
));
194 AbortMessage
= ConstantExpr::getGetElementPtr(MsgGV
, GEPIdx
);
199 void LowerInvoke::writeAbortMessage(Instruction
*IB
) {
201 if (AbortMessage
== 0) createAbortMessage();
203 // These are the arguments we WANT...
204 std::vector
<Value
*> Args
;
205 Args
.push_back(ConstantInt::get(Type::IntTy
, 2));
206 Args
.push_back(AbortMessage
);
207 Args
.push_back(ConstantInt::get(Type::IntTy
, AbortMessageLength
));
209 // If the actual declaration of write disagrees, insert casts as
211 const FunctionType
*FT
= WriteFn
->getFunctionType();
212 unsigned NumArgs
= FT
->getNumParams();
213 for (unsigned i
= 0; i
!= 3; ++i
)
214 if (i
< NumArgs
&& FT
->getParamType(i
) != Args
[i
]->getType())
215 Args
[i
] = ConstantExpr::getCast(cast
<Constant
>(Args
[i
]),
216 FT
->getParamType(i
));
218 (new CallInst(WriteFn
, Args
, "", IB
))->setTailCall();
222 bool LowerInvoke::insertCheapEHSupport(Function
&F
) {
223 bool Changed
= false;
224 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
225 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(BB
->getTerminator())) {
226 // Insert a normal call instruction...
227 std::string Name
= II
->getName(); II
->setName("");
228 CallInst
*NewCall
= new CallInst(II
->getCalledValue(),
229 std::vector
<Value
*>(II
->op_begin()+3,
230 II
->op_end()), Name
, II
);
231 NewCall
->setCallingConv(II
->getCallingConv());
232 II
->replaceAllUsesWith(NewCall
);
234 // Insert an unconditional branch to the normal destination.
235 new BranchInst(II
->getNormalDest(), II
);
237 // Remove any PHI node entries from the exception destination.
238 II
->getUnwindDest()->removePredecessor(BB
);
240 // Remove the invoke instruction now.
241 BB
->getInstList().erase(II
);
243 ++NumInvokes
; Changed
= true;
244 } else if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
245 // Insert a new call to write(2, AbortMessage, AbortMessageLength);
246 writeAbortMessage(UI
);
248 // Insert a call to abort()
249 (new CallInst(AbortFn
, std::vector
<Value
*>(), "", UI
))->setTailCall();
251 // Insert a return instruction. This really should be a "barrier", as it
253 new ReturnInst(F
.getReturnType() == Type::VoidTy
? 0 :
254 Constant::getNullValue(F
.getReturnType()), UI
);
256 // Remove the unwind instruction now.
257 BB
->getInstList().erase(UI
);
259 ++NumUnwinds
; Changed
= true;
264 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the
265 /// specified invoke instruction with a call.
266 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst
*II
, unsigned InvokeNo
,
267 AllocaInst
*InvokeNum
,
268 SwitchInst
*CatchSwitch
) {
269 ConstantUInt
*InvokeNoC
= ConstantUInt::get(Type::UIntTy
, InvokeNo
);
271 // Insert a store of the invoke num before the invoke and store zero into the
272 // location afterward.
273 new StoreInst(InvokeNoC
, InvokeNum
, true, II
); // volatile
275 BasicBlock::iterator NI
= II
->getNormalDest()->begin();
276 while (isa
<PHINode
>(NI
)) ++NI
;
278 new StoreInst(Constant::getNullValue(Type::UIntTy
), InvokeNum
, false, NI
);
280 // Add a switch case to our unwind block.
281 CatchSwitch
->addCase(InvokeNoC
, II
->getUnwindDest());
283 // Insert a normal call instruction.
284 std::string Name
= II
->getName(); II
->setName("");
285 CallInst
*NewCall
= new CallInst(II
->getCalledValue(),
286 std::vector
<Value
*>(II
->op_begin()+3,
289 NewCall
->setCallingConv(II
->getCallingConv());
290 II
->replaceAllUsesWith(NewCall
);
292 // Replace the invoke with an uncond branch.
293 new BranchInst(II
->getNormalDest(), NewCall
->getParent());
294 II
->eraseFromParent();
297 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
298 /// we reach blocks we've already seen.
299 static void MarkBlocksLiveIn(BasicBlock
*BB
, std::set
<BasicBlock
*> &LiveBBs
) {
300 if (!LiveBBs
.insert(BB
).second
) return; // already been here.
302 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
303 MarkBlocksLiveIn(*PI
, LiveBBs
);
306 // First thing we need to do is scan the whole function for values that are
307 // live across unwind edges. Each value that is live across an unwind edge
308 // we spill into a stack location, guaranteeing that there is nothing live
309 // across the unwind edge. This process also splits all critical edges
310 // coming out of invoke's.
312 splitLiveRangesLiveAcrossInvokes(std::vector
<InvokeInst
*> &Invokes
) {
313 // First step, split all critical edges from invoke instructions.
314 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
) {
315 InvokeInst
*II
= Invokes
[i
];
316 SplitCriticalEdge(II
, 0, this);
317 SplitCriticalEdge(II
, 1, this);
318 assert(!isa
<PHINode
>(II
->getNormalDest()) &&
319 !isa
<PHINode
>(II
->getUnwindDest()) &&
320 "critical edge splitting left single entry phi nodes?");
323 Function
*F
= Invokes
.back()->getParent()->getParent();
325 // To avoid having to handle incoming arguments specially, we lower each arg
326 // to a copy instruction in the entry block. This ensure that the argument
327 // value itself cannot be live across the entry block.
328 BasicBlock::iterator AfterAllocaInsertPt
= F
->begin()->begin();
329 while (isa
<AllocaInst
>(AfterAllocaInsertPt
) &&
330 isa
<ConstantInt
>(cast
<AllocaInst
>(AfterAllocaInsertPt
)->getArraySize()))
331 ++AfterAllocaInsertPt
;
332 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
334 CastInst
*NC
= new CastInst(AI
, AI
->getType(), AI
->getName()+".tmp",
335 AfterAllocaInsertPt
);
336 AI
->replaceAllUsesWith(NC
);
337 NC
->setOperand(0, AI
);
340 // Finally, scan the code looking for instructions with bad live ranges.
341 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
342 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
; ++II
) {
343 // Ignore obvious cases we don't have to handle. In particular, most
344 // instructions either have no uses or only have a single use inside the
345 // current block. Ignore them quickly.
346 Instruction
*Inst
= II
;
347 if (Inst
->use_empty()) continue;
348 if (Inst
->hasOneUse() &&
349 cast
<Instruction
>(Inst
->use_back())->getParent() == BB
&&
350 !isa
<PHINode
>(Inst
->use_back())) continue;
352 // If this is an alloca in the entry block, it's not a real register
354 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Inst
))
355 if (isa
<ConstantInt
>(AI
->getArraySize()) && BB
== F
->begin())
358 // Avoid iterator invalidation by copying users to a temporary vector.
359 std::vector
<Instruction
*> Users
;
360 for (Value::use_iterator UI
= Inst
->use_begin(), E
= Inst
->use_end();
362 Instruction
*User
= cast
<Instruction
>(*UI
);
363 if (User
->getParent() != BB
|| isa
<PHINode
>(User
))
364 Users
.push_back(User
);
367 // Scan all of the uses and see if the live range is live across an unwind
368 // edge. If we find a use live across an invoke edge, create an alloca
369 // and spill the value.
370 AllocaInst
*SpillLoc
= 0;
371 std::set
<InvokeInst
*> InvokesWithStoreInserted
;
373 // Find all of the blocks that this value is live in.
374 std::set
<BasicBlock
*> LiveBBs
;
375 LiveBBs
.insert(Inst
->getParent());
376 while (!Users
.empty()) {
377 Instruction
*U
= Users
.back();
380 if (!isa
<PHINode
>(U
)) {
381 MarkBlocksLiveIn(U
->getParent(), LiveBBs
);
383 // Uses for a PHI node occur in their predecessor block.
384 PHINode
*PN
= cast
<PHINode
>(U
);
385 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
386 if (PN
->getIncomingValue(i
) == Inst
)
387 MarkBlocksLiveIn(PN
->getIncomingBlock(i
), LiveBBs
);
391 // Now that we know all of the blocks that this thing is live in, see if
392 // it includes any of the unwind locations.
393 bool NeedsSpill
= false;
394 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
) {
395 BasicBlock
*UnwindBlock
= Invokes
[i
]->getUnwindDest();
396 if (UnwindBlock
!= BB
&& LiveBBs
.count(UnwindBlock
)) {
401 // If we decided we need a spill, do it.
404 DemoteRegToStack(*Inst
, true);
409 bool LowerInvoke::insertExpensiveEHSupport(Function
&F
) {
410 std::vector
<ReturnInst
*> Returns
;
411 std::vector
<UnwindInst
*> Unwinds
;
412 std::vector
<InvokeInst
*> Invokes
;
414 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
415 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
416 // Remember all return instructions in case we insert an invoke into this
418 Returns
.push_back(RI
);
419 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(BB
->getTerminator())) {
420 Invokes
.push_back(II
);
421 } else if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
422 Unwinds
.push_back(UI
);
425 if (Unwinds
.empty() && Invokes
.empty()) return false;
427 NumInvokes
+= Invokes
.size();
428 NumUnwinds
+= Unwinds
.size();
430 // TODO: This is not an optimal way to do this. In particular, this always
431 // inserts setjmp calls into the entries of functions with invoke instructions
432 // even though there are possibly paths through the function that do not
433 // execute any invokes. In particular, for functions with early exits, e.g.
434 // the 'addMove' method in hexxagon, it would be nice to not have to do the
435 // setjmp stuff on the early exit path. This requires a bit of dataflow, but
436 // would not be too hard to do.
438 // If we have an invoke instruction, insert a setjmp that dominates all
439 // invokes. After the setjmp, use a cond branch that goes to the original
440 // code path on zero, and to a designated 'catch' block of nonzero.
441 Value
*OldJmpBufPtr
= 0;
442 if (!Invokes
.empty()) {
443 // First thing we need to do is scan the whole function for values that are
444 // live across unwind edges. Each value that is live across an unwind edge
445 // we spill into a stack location, guaranteeing that there is nothing live
446 // across the unwind edge. This process also splits all critical edges
447 // coming out of invoke's.
448 splitLiveRangesLiveAcrossInvokes(Invokes
);
450 BasicBlock
*EntryBB
= F
.begin();
452 // Create an alloca for the incoming jump buffer ptr and the new jump buffer
453 // that needs to be restored on all exits from the function. This is an
454 // alloca because the value needs to be live across invokes.
456 new AllocaInst(JBLinkTy
, 0, JumpBufAlign
, "jblink", F
.begin()->begin());
458 std::vector
<Value
*> Idx
;
459 Idx
.push_back(Constant::getNullValue(Type::IntTy
));
460 Idx
.push_back(ConstantUInt::get(Type::UIntTy
, 1));
461 OldJmpBufPtr
= new GetElementPtrInst(JmpBuf
, Idx
, "OldBuf",
462 EntryBB
->getTerminator());
464 // Copy the JBListHead to the alloca.
465 Value
*OldBuf
= new LoadInst(JBListHead
, "oldjmpbufptr", true,
466 EntryBB
->getTerminator());
467 new StoreInst(OldBuf
, OldJmpBufPtr
, true, EntryBB
->getTerminator());
469 // Add the new jumpbuf to the list.
470 new StoreInst(JmpBuf
, JBListHead
, true, EntryBB
->getTerminator());
472 // Create the catch block. The catch block is basically a big switch
473 // statement that goes to all of the invoke catch blocks.
474 BasicBlock
*CatchBB
= new BasicBlock("setjmp.catch", &F
);
476 // Create an alloca which keeps track of which invoke is currently
477 // executing. For normal calls it contains zero.
478 AllocaInst
*InvokeNum
= new AllocaInst(Type::UIntTy
, 0, "invokenum",
480 new StoreInst(ConstantInt::get(Type::UIntTy
, 0), InvokeNum
, true,
481 EntryBB
->getTerminator());
483 // Insert a load in the Catch block, and a switch on its value. By default,
484 // we go to a block that just does an unwind (which is the correct action
485 // for a standard call).
486 BasicBlock
*UnwindBB
= new BasicBlock("unwindbb", &F
);
487 Unwinds
.push_back(new UnwindInst(UnwindBB
));
489 Value
*CatchLoad
= new LoadInst(InvokeNum
, "invoke.num", true, CatchBB
);
490 SwitchInst
*CatchSwitch
=
491 new SwitchInst(CatchLoad
, UnwindBB
, Invokes
.size(), CatchBB
);
493 // Now that things are set up, insert the setjmp call itself.
495 // Split the entry block to insert the conditional branch for the setjmp.
496 BasicBlock
*ContBlock
= EntryBB
->splitBasicBlock(EntryBB
->getTerminator(),
499 Idx
[1] = ConstantUInt::get(Type::UIntTy
, 0);
500 Value
*JmpBufPtr
= new GetElementPtrInst(JmpBuf
, Idx
, "TheJmpBuf",
501 EntryBB
->getTerminator());
502 Value
*SJRet
= new CallInst(SetJmpFn
, JmpBufPtr
, "sjret",
503 EntryBB
->getTerminator());
505 // Compare the return value to zero.
506 Value
*IsNormal
= BinaryOperator::createSetEQ(SJRet
,
507 Constant::getNullValue(SJRet
->getType()),
508 "notunwind", EntryBB
->getTerminator());
509 // Nuke the uncond branch.
510 EntryBB
->getTerminator()->eraseFromParent();
512 // Put in a new condbranch in its place.
513 new BranchInst(ContBlock
, CatchBB
, IsNormal
, EntryBB
);
515 // At this point, we are all set up, rewrite each invoke instruction.
516 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
)
517 rewriteExpensiveInvoke(Invokes
[i
], i
+1, InvokeNum
, CatchSwitch
);
520 // We know that there is at least one unwind.
522 // Create three new blocks, the block to load the jmpbuf ptr and compare
523 // against null, the block to do the longjmp, and the error block for if it
524 // is null. Add them at the end of the function because they are not hot.
525 BasicBlock
*UnwindHandler
= new BasicBlock("dounwind", &F
);
526 BasicBlock
*UnwindBlock
= new BasicBlock("unwind", &F
);
527 BasicBlock
*TermBlock
= new BasicBlock("unwinderror", &F
);
529 // If this function contains an invoke, restore the old jumpbuf ptr.
532 // Before the return, insert a copy from the saved value to the new value.
533 BufPtr
= new LoadInst(OldJmpBufPtr
, "oldjmpbufptr", UnwindHandler
);
534 new StoreInst(BufPtr
, JBListHead
, UnwindHandler
);
536 BufPtr
= new LoadInst(JBListHead
, "ehlist", UnwindHandler
);
539 // Load the JBList, if it's null, then there was no catch!
540 Value
*NotNull
= BinaryOperator::createSetNE(BufPtr
,
541 Constant::getNullValue(BufPtr
->getType()),
542 "notnull", UnwindHandler
);
543 new BranchInst(UnwindBlock
, TermBlock
, NotNull
, UnwindHandler
);
545 // Create the block to do the longjmp.
546 // Get a pointer to the jmpbuf and longjmp.
547 std::vector
<Value
*> Idx
;
548 Idx
.push_back(Constant::getNullValue(Type::IntTy
));
549 Idx
.push_back(ConstantUInt::get(Type::UIntTy
, 0));
550 Idx
[0] = new GetElementPtrInst(BufPtr
, Idx
, "JmpBuf", UnwindBlock
);
551 Idx
[1] = ConstantInt::get(Type::IntTy
, 1);
552 new CallInst(LongJmpFn
, Idx
, "", UnwindBlock
);
553 new UnreachableInst(UnwindBlock
);
555 // Set up the term block ("throw without a catch").
556 new UnreachableInst(TermBlock
);
558 // Insert a new call to write(2, AbortMessage, AbortMessageLength);
559 writeAbortMessage(TermBlock
->getTerminator());
561 // Insert a call to abort()
562 (new CallInst(AbortFn
, std::vector
<Value
*>(), "",
563 TermBlock
->getTerminator()))->setTailCall();
566 // Replace all unwinds with a branch to the unwind handler.
567 for (unsigned i
= 0, e
= Unwinds
.size(); i
!= e
; ++i
) {
568 new BranchInst(UnwindHandler
, Unwinds
[i
]);
569 Unwinds
[i
]->eraseFromParent();
572 // Finally, for any returns from this function, if this function contains an
573 // invoke, restore the old jmpbuf pointer to its input value.
575 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
576 ReturnInst
*R
= Returns
[i
];
578 // Before the return, insert a copy from the saved value to the new value.
579 Value
*OldBuf
= new LoadInst(OldJmpBufPtr
, "oldjmpbufptr", true, R
);
580 new StoreInst(OldBuf
, JBListHead
, true, R
);
587 bool LowerInvoke::runOnFunction(Function
&F
) {
588 if (ExpensiveEHSupport
)
589 return insertExpensiveEHSupport(F
);
591 return insertCheapEHSupport(F
);