1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the BasicBlock class for the VMCore library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/BasicBlock.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/Type.h"
18 #include "llvm/Support/CFG.h"
19 #include "llvm/Support/LeakDetector.h"
20 #include "llvm/Support/Visibility.h"
21 #include "SymbolTableListTraitsImpl.h"
26 /// DummyInst - An instance of this class is used to mark the end of the
27 /// instruction list. This is not a real instruction.
28 struct VISIBILITY_HIDDEN DummyInst
: public Instruction
{
29 DummyInst() : Instruction(Type::VoidTy
, OtherOpsEnd
, 0, 0) {
30 // This should not be garbage monitored.
31 LeakDetector::removeGarbageObject(this);
34 virtual Instruction
*clone() const {
35 assert(0 && "Cannot clone EOL");abort();
38 virtual const char *getOpcodeName() const { return "*end-of-list-inst*"; }
40 // Methods for support type inquiry through isa, cast, and dyn_cast...
41 static inline bool classof(const DummyInst
*) { return true; }
42 static inline bool classof(const Instruction
*I
) {
43 return I
->getOpcode() == OtherOpsEnd
;
45 static inline bool classof(const Value
*V
) {
46 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
51 Instruction
*ilist_traits
<Instruction
>::createSentinel() {
52 return new DummyInst();
54 iplist
<Instruction
> &ilist_traits
<Instruction
>::getList(BasicBlock
*BB
) {
55 return BB
->getInstList();
58 // Explicit instantiation of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class SymbolTableListTraits
<Instruction
, BasicBlock
, Function
>;
63 BasicBlock::BasicBlock(const std::string
&Name
, Function
*Parent
,
64 BasicBlock
*InsertBefore
)
65 : Value(Type::LabelTy
, Value::BasicBlockVal
, Name
) {
66 // Initialize the instlist...
67 InstList
.setItemParent(this);
69 // Make sure that we get added to a function
70 LeakDetector::addGarbageObject(this);
74 "Cannot insert block before another block with no function!");
75 Parent
->getBasicBlockList().insert(InsertBefore
, this);
77 Parent
->getBasicBlockList().push_back(this);
82 BasicBlock::~BasicBlock() {
83 assert(getParent() == 0 && "BasicBlock still linked into the program!");
88 void BasicBlock::setParent(Function
*parent
) {
90 LeakDetector::addGarbageObject(this);
92 InstList
.setParent(parent
);
95 LeakDetector::removeGarbageObject(this);
98 void BasicBlock::removeFromParent() {
99 getParent()->getBasicBlockList().remove(this);
102 void BasicBlock::eraseFromParent() {
103 getParent()->getBasicBlockList().erase(this);
106 /// moveBefore - Unlink this instruction from its current function and
107 /// insert it into the function that MovePos lives in, right before
109 void BasicBlock::moveBefore(BasicBlock
*MovePos
) {
110 MovePos
->getParent()->getBasicBlockList().splice(MovePos
,
111 getParent()->getBasicBlockList(), this);
115 TerminatorInst
*BasicBlock::getTerminator() {
116 if (InstList
.empty()) return 0;
117 return dyn_cast
<TerminatorInst
>(&InstList
.back());
120 const TerminatorInst
*const BasicBlock::getTerminator() const {
121 if (InstList
.empty()) return 0;
122 return dyn_cast
<TerminatorInst
>(&InstList
.back());
125 Instruction
* BasicBlock::getFirstNonPHI()
127 BasicBlock::iterator i
= begin();
128 // All valid basic blocks should have a terminator,
129 // which is not a PHINode. If we have invalid basic
130 // block we'll get assert when dereferencing past-the-end
132 while (isa
<PHINode
>(i
)) ++i
;
136 void BasicBlock::dropAllReferences() {
137 for(iterator I
= begin(), E
= end(); I
!= E
; ++I
)
138 I
->dropAllReferences();
141 /// getSinglePredecessor - If this basic block has a single predecessor block,
142 /// return the block, otherwise return a null pointer.
143 BasicBlock
*BasicBlock::getSinglePredecessor() {
144 pred_iterator PI
= pred_begin(this), E
= pred_end(this);
145 if (PI
== E
) return 0; // No preds.
146 BasicBlock
*ThePred
= *PI
;
148 return (PI
== E
) ? ThePred
: 0 /*multiple preds*/;
151 /// removePredecessor - This method is used to notify a BasicBlock that the
152 /// specified Predecessor of the block is no longer able to reach it. This is
153 /// actually not used to update the Predecessor list, but is actually used to
154 /// update the PHI nodes that reside in the block. Note that this should be
155 /// called while the predecessor still refers to this block.
157 void BasicBlock::removePredecessor(BasicBlock
*Pred
,
158 bool DontDeleteUselessPHIs
) {
159 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
160 find(pred_begin(this), pred_end(this), Pred
) != pred_end(this)) &&
161 "removePredecessor: BB is not a predecessor!");
163 if (InstList
.empty()) return;
164 PHINode
*APN
= dyn_cast
<PHINode
>(&front());
165 if (!APN
) return; // Quick exit.
167 // If there are exactly two predecessors, then we want to nuke the PHI nodes
168 // altogether. However, we cannot do this, if this in this case:
171 // %x = phi [X, Loop]
172 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
173 // br Loop ;; %x2 does not dominate all uses
175 // This is because the PHI node input is actually taken from the predecessor
176 // basic block. The only case this can happen is with a self loop, so we
177 // check for this case explicitly now.
179 unsigned max_idx
= APN
->getNumIncomingValues();
180 assert(max_idx
!= 0 && "PHI Node in block with 0 predecessors!?!?!");
182 BasicBlock
*Other
= APN
->getIncomingBlock(APN
->getIncomingBlock(0) == Pred
);
184 // Disable PHI elimination!
185 if (this == Other
) max_idx
= 3;
188 // <= Two predecessors BEFORE I remove one?
189 if (max_idx
<= 2 && !DontDeleteUselessPHIs
) {
190 // Yup, loop through and nuke the PHI nodes
191 while (PHINode
*PN
= dyn_cast
<PHINode
>(&front())) {
192 // Remove the predecessor first.
193 PN
->removeIncomingValue(Pred
, !DontDeleteUselessPHIs
);
195 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
197 if (PN
->getOperand(0) != PN
)
198 PN
->replaceAllUsesWith(PN
->getOperand(0));
200 // We are left with an infinite loop with no entries: kill the PHI.
201 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
202 getInstList().pop_front(); // Remove the PHI node
205 // If the PHI node already only had one entry, it got deleted by
206 // removeIncomingValue.
209 // Okay, now we know that we need to remove predecessor #pred_idx from all
210 // PHI nodes. Iterate over each PHI node fixing them up
212 for (iterator II
= begin(); (PN
= dyn_cast
<PHINode
>(II
)); ) {
214 PN
->removeIncomingValue(Pred
, false);
215 // If all incoming values to the Phi are the same, we can replace the Phi
218 if (!DontDeleteUselessPHIs
&& (PNV
= PN
->hasConstantValue())) {
219 PN
->replaceAllUsesWith(PNV
);
220 PN
->eraseFromParent();
227 /// splitBasicBlock - This splits a basic block into two at the specified
228 /// instruction. Note that all instructions BEFORE the specified iterator stay
229 /// as part of the original basic block, an unconditional branch is added to
230 /// the new BB, and the rest of the instructions in the BB are moved to the new
231 /// BB, including the old terminator. This invalidates the iterator.
233 /// Note that this only works on well formed basic blocks (must have a
234 /// terminator), and 'I' must not be the end of instruction list (which would
235 /// cause a degenerate basic block to be formed, having a terminator inside of
236 /// the basic block).
238 BasicBlock
*BasicBlock::splitBasicBlock(iterator I
, const std::string
&BBName
) {
239 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
240 assert(I
!= InstList
.end() &&
241 "Trying to get me to create degenerate basic block!");
243 BasicBlock
*New
= new BasicBlock(BBName
, getParent(), getNext());
245 // Move all of the specified instructions from the original basic block into
246 // the new basic block.
247 New
->getInstList().splice(New
->end(), this->getInstList(), I
, end());
249 // Add a branch instruction to the newly formed basic block.
250 new BranchInst(New
, this);
252 // Now we must loop through all of the successors of the New block (which
253 // _were_ the successors of the 'this' block), and update any PHI nodes in
254 // successors. If there were PHI nodes in the successors, then they need to
255 // know that incoming branches will be from New, not from Old.
257 for (succ_iterator I
= succ_begin(New
), E
= succ_end(New
); I
!= E
; ++I
) {
258 // Loop over any phi nodes in the basic block, updating the BB field of
259 // incoming values...
260 BasicBlock
*Successor
= *I
;
262 for (BasicBlock::iterator II
= Successor
->begin();
263 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
264 int IDX
= PN
->getBasicBlockIndex(this);
266 PN
->setIncomingBlock((unsigned)IDX
, New
);
267 IDX
= PN
->getBasicBlockIndex(this);