Reverting back to original 1.8 version so I can manually merge in patch.
[llvm-complete.git] / lib / VMCore / ConstantFold.cpp
blobe5ca2b37bcaec52ab9b18728567b321ecee54bef
1 //===- ConstantFolding.cpp - LLVM constant folder -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFolding.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
14 // The current constant folding implementation is implemented in two pieces: the
15 // template-based folder for simple primitive constants like ConstantInt, and
16 // the special case hackery that we use to symbolically evaluate expressions
17 // that use ConstantExprs.
19 //===----------------------------------------------------------------------===//
21 #include "ConstantFolding.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Function.h"
26 #include "llvm/Support/GetElementPtrTypeIterator.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/Visibility.h"
29 #include <limits>
30 #include <cmath>
31 using namespace llvm;
33 namespace {
34 struct VISIBILITY_HIDDEN ConstRules {
35 ConstRules() {}
36 virtual ~ConstRules() {}
38 // Binary Operators...
39 virtual Constant *add(const Constant *V1, const Constant *V2) const = 0;
40 virtual Constant *sub(const Constant *V1, const Constant *V2) const = 0;
41 virtual Constant *mul(const Constant *V1, const Constant *V2) const = 0;
42 virtual Constant *div(const Constant *V1, const Constant *V2) const = 0;
43 virtual Constant *rem(const Constant *V1, const Constant *V2) const = 0;
44 virtual Constant *op_and(const Constant *V1, const Constant *V2) const = 0;
45 virtual Constant *op_or (const Constant *V1, const Constant *V2) const = 0;
46 virtual Constant *op_xor(const Constant *V1, const Constant *V2) const = 0;
47 virtual Constant *shl(const Constant *V1, const Constant *V2) const = 0;
48 virtual Constant *shr(const Constant *V1, const Constant *V2) const = 0;
49 virtual Constant *lessthan(const Constant *V1, const Constant *V2) const =0;
50 virtual Constant *equalto(const Constant *V1, const Constant *V2) const = 0;
52 // Casting operators.
53 virtual Constant *castToBool (const Constant *V) const = 0;
54 virtual Constant *castToSByte (const Constant *V) const = 0;
55 virtual Constant *castToUByte (const Constant *V) const = 0;
56 virtual Constant *castToShort (const Constant *V) const = 0;
57 virtual Constant *castToUShort(const Constant *V) const = 0;
58 virtual Constant *castToInt (const Constant *V) const = 0;
59 virtual Constant *castToUInt (const Constant *V) const = 0;
60 virtual Constant *castToLong (const Constant *V) const = 0;
61 virtual Constant *castToULong (const Constant *V) const = 0;
62 virtual Constant *castToFloat (const Constant *V) const = 0;
63 virtual Constant *castToDouble(const Constant *V) const = 0;
64 virtual Constant *castToPointer(const Constant *V,
65 const PointerType *Ty) const = 0;
67 // ConstRules::get - Return an instance of ConstRules for the specified
68 // constant operands.
70 static ConstRules &get(const Constant *V1, const Constant *V2);
71 private:
72 ConstRules(const ConstRules &); // Do not implement
73 ConstRules &operator=(const ConstRules &); // Do not implement
78 //===----------------------------------------------------------------------===//
79 // TemplateRules Class
80 //===----------------------------------------------------------------------===//
82 // TemplateRules - Implement a subclass of ConstRules that provides all
83 // operations as noops. All other rules classes inherit from this class so
84 // that if functionality is needed in the future, it can simply be added here
85 // and to ConstRules without changing anything else...
87 // This class also provides subclasses with typesafe implementations of methods
88 // so that don't have to do type casting.
90 namespace {
91 template<class ArgType, class SubClassName>
92 class VISIBILITY_HIDDEN TemplateRules : public ConstRules {
95 //===--------------------------------------------------------------------===//
96 // Redirecting functions that cast to the appropriate types
97 //===--------------------------------------------------------------------===//
99 virtual Constant *add(const Constant *V1, const Constant *V2) const {
100 return SubClassName::Add((const ArgType *)V1, (const ArgType *)V2);
102 virtual Constant *sub(const Constant *V1, const Constant *V2) const {
103 return SubClassName::Sub((const ArgType *)V1, (const ArgType *)V2);
105 virtual Constant *mul(const Constant *V1, const Constant *V2) const {
106 return SubClassName::Mul((const ArgType *)V1, (const ArgType *)V2);
108 virtual Constant *div(const Constant *V1, const Constant *V2) const {
109 return SubClassName::Div((const ArgType *)V1, (const ArgType *)V2);
111 virtual Constant *rem(const Constant *V1, const Constant *V2) const {
112 return SubClassName::Rem((const ArgType *)V1, (const ArgType *)V2);
114 virtual Constant *op_and(const Constant *V1, const Constant *V2) const {
115 return SubClassName::And((const ArgType *)V1, (const ArgType *)V2);
117 virtual Constant *op_or(const Constant *V1, const Constant *V2) const {
118 return SubClassName::Or((const ArgType *)V1, (const ArgType *)V2);
120 virtual Constant *op_xor(const Constant *V1, const Constant *V2) const {
121 return SubClassName::Xor((const ArgType *)V1, (const ArgType *)V2);
123 virtual Constant *shl(const Constant *V1, const Constant *V2) const {
124 return SubClassName::Shl((const ArgType *)V1, (const ArgType *)V2);
126 virtual Constant *shr(const Constant *V1, const Constant *V2) const {
127 return SubClassName::Shr((const ArgType *)V1, (const ArgType *)V2);
130 virtual Constant *lessthan(const Constant *V1, const Constant *V2) const {
131 return SubClassName::LessThan((const ArgType *)V1, (const ArgType *)V2);
133 virtual Constant *equalto(const Constant *V1, const Constant *V2) const {
134 return SubClassName::EqualTo((const ArgType *)V1, (const ArgType *)V2);
137 // Casting operators. ick
138 virtual Constant *castToBool(const Constant *V) const {
139 return SubClassName::CastToBool((const ArgType*)V);
141 virtual Constant *castToSByte(const Constant *V) const {
142 return SubClassName::CastToSByte((const ArgType*)V);
144 virtual Constant *castToUByte(const Constant *V) const {
145 return SubClassName::CastToUByte((const ArgType*)V);
147 virtual Constant *castToShort(const Constant *V) const {
148 return SubClassName::CastToShort((const ArgType*)V);
150 virtual Constant *castToUShort(const Constant *V) const {
151 return SubClassName::CastToUShort((const ArgType*)V);
153 virtual Constant *castToInt(const Constant *V) const {
154 return SubClassName::CastToInt((const ArgType*)V);
156 virtual Constant *castToUInt(const Constant *V) const {
157 return SubClassName::CastToUInt((const ArgType*)V);
159 virtual Constant *castToLong(const Constant *V) const {
160 return SubClassName::CastToLong((const ArgType*)V);
162 virtual Constant *castToULong(const Constant *V) const {
163 return SubClassName::CastToULong((const ArgType*)V);
165 virtual Constant *castToFloat(const Constant *V) const {
166 return SubClassName::CastToFloat((const ArgType*)V);
168 virtual Constant *castToDouble(const Constant *V) const {
169 return SubClassName::CastToDouble((const ArgType*)V);
171 virtual Constant *castToPointer(const Constant *V,
172 const PointerType *Ty) const {
173 return SubClassName::CastToPointer((const ArgType*)V, Ty);
176 //===--------------------------------------------------------------------===//
177 // Default "noop" implementations
178 //===--------------------------------------------------------------------===//
180 static Constant *Add(const ArgType *V1, const ArgType *V2) { return 0; }
181 static Constant *Sub(const ArgType *V1, const ArgType *V2) { return 0; }
182 static Constant *Mul(const ArgType *V1, const ArgType *V2) { return 0; }
183 static Constant *Div(const ArgType *V1, const ArgType *V2) { return 0; }
184 static Constant *Rem(const ArgType *V1, const ArgType *V2) { return 0; }
185 static Constant *And(const ArgType *V1, const ArgType *V2) { return 0; }
186 static Constant *Or (const ArgType *V1, const ArgType *V2) { return 0; }
187 static Constant *Xor(const ArgType *V1, const ArgType *V2) { return 0; }
188 static Constant *Shl(const ArgType *V1, const ArgType *V2) { return 0; }
189 static Constant *Shr(const ArgType *V1, const ArgType *V2) { return 0; }
190 static Constant *LessThan(const ArgType *V1, const ArgType *V2) {
191 return 0;
193 static Constant *EqualTo(const ArgType *V1, const ArgType *V2) {
194 return 0;
197 // Casting operators. ick
198 static Constant *CastToBool (const Constant *V) { return 0; }
199 static Constant *CastToSByte (const Constant *V) { return 0; }
200 static Constant *CastToUByte (const Constant *V) { return 0; }
201 static Constant *CastToShort (const Constant *V) { return 0; }
202 static Constant *CastToUShort(const Constant *V) { return 0; }
203 static Constant *CastToInt (const Constant *V) { return 0; }
204 static Constant *CastToUInt (const Constant *V) { return 0; }
205 static Constant *CastToLong (const Constant *V) { return 0; }
206 static Constant *CastToULong (const Constant *V) { return 0; }
207 static Constant *CastToFloat (const Constant *V) { return 0; }
208 static Constant *CastToDouble(const Constant *V) { return 0; }
209 static Constant *CastToPointer(const Constant *,
210 const PointerType *) {return 0;}
212 public:
213 virtual ~TemplateRules() {}
215 } // end anonymous namespace
218 //===----------------------------------------------------------------------===//
219 // EmptyRules Class
220 //===----------------------------------------------------------------------===//
222 // EmptyRules provides a concrete base class of ConstRules that does nothing
224 namespace {
225 struct VISIBILITY_HIDDEN EmptyRules
226 : public TemplateRules<Constant, EmptyRules> {
227 static Constant *EqualTo(const Constant *V1, const Constant *V2) {
228 if (V1 == V2) return ConstantBool::True;
229 return 0;
232 } // end anonymous namespace
236 //===----------------------------------------------------------------------===//
237 // BoolRules Class
238 //===----------------------------------------------------------------------===//
240 // BoolRules provides a concrete base class of ConstRules for the 'bool' type.
242 namespace {
243 struct VISIBILITY_HIDDEN BoolRules
244 : public TemplateRules<ConstantBool, BoolRules> {
246 static Constant *LessThan(const ConstantBool *V1, const ConstantBool *V2) {
247 return ConstantBool::get(V1->getValue() < V2->getValue());
250 static Constant *EqualTo(const Constant *V1, const Constant *V2) {
251 return ConstantBool::get(V1 == V2);
254 static Constant *And(const ConstantBool *V1, const ConstantBool *V2) {
255 return ConstantBool::get(V1->getValue() & V2->getValue());
258 static Constant *Or(const ConstantBool *V1, const ConstantBool *V2) {
259 return ConstantBool::get(V1->getValue() | V2->getValue());
262 static Constant *Xor(const ConstantBool *V1, const ConstantBool *V2) {
263 return ConstantBool::get(V1->getValue() ^ V2->getValue());
266 // Casting operators. ick
267 #define DEF_CAST(TYPE, CLASS, CTYPE) \
268 static Constant *CastTo##TYPE (const ConstantBool *V) { \
269 return CLASS::get(Type::TYPE##Ty, (CTYPE)(bool)V->getValue()); \
272 DEF_CAST(Bool , ConstantBool, bool)
273 DEF_CAST(SByte , ConstantSInt, signed char)
274 DEF_CAST(UByte , ConstantUInt, unsigned char)
275 DEF_CAST(Short , ConstantSInt, signed short)
276 DEF_CAST(UShort, ConstantUInt, unsigned short)
277 DEF_CAST(Int , ConstantSInt, signed int)
278 DEF_CAST(UInt , ConstantUInt, unsigned int)
279 DEF_CAST(Long , ConstantSInt, int64_t)
280 DEF_CAST(ULong , ConstantUInt, uint64_t)
281 DEF_CAST(Float , ConstantFP , float)
282 DEF_CAST(Double, ConstantFP , double)
283 #undef DEF_CAST
285 } // end anonymous namespace
288 //===----------------------------------------------------------------------===//
289 // NullPointerRules Class
290 //===----------------------------------------------------------------------===//
292 // NullPointerRules provides a concrete base class of ConstRules for null
293 // pointers.
295 namespace {
296 struct VISIBILITY_HIDDEN NullPointerRules
297 : public TemplateRules<ConstantPointerNull, NullPointerRules> {
298 static Constant *EqualTo(const Constant *V1, const Constant *V2) {
299 return ConstantBool::True; // Null pointers are always equal
301 static Constant *CastToBool(const Constant *V) {
302 return ConstantBool::False;
304 static Constant *CastToSByte (const Constant *V) {
305 return ConstantSInt::get(Type::SByteTy, 0);
307 static Constant *CastToUByte (const Constant *V) {
308 return ConstantUInt::get(Type::UByteTy, 0);
310 static Constant *CastToShort (const Constant *V) {
311 return ConstantSInt::get(Type::ShortTy, 0);
313 static Constant *CastToUShort(const Constant *V) {
314 return ConstantUInt::get(Type::UShortTy, 0);
316 static Constant *CastToInt (const Constant *V) {
317 return ConstantSInt::get(Type::IntTy, 0);
319 static Constant *CastToUInt (const Constant *V) {
320 return ConstantUInt::get(Type::UIntTy, 0);
322 static Constant *CastToLong (const Constant *V) {
323 return ConstantSInt::get(Type::LongTy, 0);
325 static Constant *CastToULong (const Constant *V) {
326 return ConstantUInt::get(Type::ULongTy, 0);
328 static Constant *CastToFloat (const Constant *V) {
329 return ConstantFP::get(Type::FloatTy, 0);
331 static Constant *CastToDouble(const Constant *V) {
332 return ConstantFP::get(Type::DoubleTy, 0);
335 static Constant *CastToPointer(const ConstantPointerNull *V,
336 const PointerType *PTy) {
337 return ConstantPointerNull::get(PTy);
340 } // end anonymous namespace
342 //===----------------------------------------------------------------------===//
343 // ConstantPackedRules Class
344 //===----------------------------------------------------------------------===//
346 /// DoVectorOp - Given two packed constants and a function pointer, apply the
347 /// function pointer to each element pair, producing a new ConstantPacked
348 /// constant.
349 static Constant *EvalVectorOp(const ConstantPacked *V1,
350 const ConstantPacked *V2,
351 Constant *(*FP)(Constant*, Constant*)) {
352 std::vector<Constant*> Res;
353 for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
354 Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
355 const_cast<Constant*>(V2->getOperand(i))));
356 return ConstantPacked::get(Res);
359 /// PackedTypeRules provides a concrete base class of ConstRules for
360 /// ConstantPacked operands.
362 namespace {
363 struct VISIBILITY_HIDDEN ConstantPackedRules
364 : public TemplateRules<ConstantPacked, ConstantPackedRules> {
366 static Constant *Add(const ConstantPacked *V1, const ConstantPacked *V2) {
367 return EvalVectorOp(V1, V2, ConstantExpr::getAdd);
369 static Constant *Sub(const ConstantPacked *V1, const ConstantPacked *V2) {
370 return EvalVectorOp(V1, V2, ConstantExpr::getSub);
372 static Constant *Mul(const ConstantPacked *V1, const ConstantPacked *V2) {
373 return EvalVectorOp(V1, V2, ConstantExpr::getMul);
375 static Constant *Div(const ConstantPacked *V1, const ConstantPacked *V2) {
376 return EvalVectorOp(V1, V2, ConstantExpr::getDiv);
378 static Constant *Rem(const ConstantPacked *V1, const ConstantPacked *V2) {
379 return EvalVectorOp(V1, V2, ConstantExpr::getRem);
381 static Constant *And(const ConstantPacked *V1, const ConstantPacked *V2) {
382 return EvalVectorOp(V1, V2, ConstantExpr::getAnd);
384 static Constant *Or (const ConstantPacked *V1, const ConstantPacked *V2) {
385 return EvalVectorOp(V1, V2, ConstantExpr::getOr);
387 static Constant *Xor(const ConstantPacked *V1, const ConstantPacked *V2) {
388 return EvalVectorOp(V1, V2, ConstantExpr::getXor);
390 static Constant *Shl(const ConstantPacked *V1, const ConstantPacked *V2) {
391 return EvalVectorOp(V1, V2, ConstantExpr::getShl);
393 static Constant *Shr(const ConstantPacked *V1, const ConstantPacked *V2) {
394 return EvalVectorOp(V1, V2, ConstantExpr::getShr);
396 static Constant *LessThan(const ConstantPacked *V1, const ConstantPacked *V2){
397 return 0;
399 static Constant *EqualTo(const ConstantPacked *V1, const ConstantPacked *V2) {
400 for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i) {
401 Constant *C =
402 ConstantExpr::getSetEQ(const_cast<Constant*>(V1->getOperand(i)),
403 const_cast<Constant*>(V2->getOperand(i)));
404 if (ConstantBool *CB = dyn_cast<ConstantBool>(C))
405 return CB;
407 // Otherwise, could not decide from any element pairs.
408 return 0;
411 } // end anonymous namespace
414 //===----------------------------------------------------------------------===//
415 // GeneralPackedRules Class
416 //===----------------------------------------------------------------------===//
418 /// GeneralPackedRules provides a concrete base class of ConstRules for
419 /// PackedType operands, where both operands are not ConstantPacked. The usual
420 /// cause for this is that one operand is a ConstantAggregateZero.
422 namespace {
423 struct VISIBILITY_HIDDEN GeneralPackedRules
424 : public TemplateRules<Constant, GeneralPackedRules> {
426 } // end anonymous namespace
429 //===----------------------------------------------------------------------===//
430 // DirectRules Class
431 //===----------------------------------------------------------------------===//
433 // DirectRules provides a concrete base classes of ConstRules for a variety of
434 // different types. This allows the C++ compiler to automatically generate our
435 // constant handling operations in a typesafe and accurate manner.
437 namespace {
438 template<class ConstantClass, class BuiltinType, Type **Ty, class SuperClass>
439 struct VISIBILITY_HIDDEN DirectRules
440 : public TemplateRules<ConstantClass, SuperClass> {
441 static Constant *Add(const ConstantClass *V1, const ConstantClass *V2) {
442 BuiltinType R = (BuiltinType)V1->getValue() + (BuiltinType)V2->getValue();
443 return ConstantClass::get(*Ty, R);
446 static Constant *Sub(const ConstantClass *V1, const ConstantClass *V2) {
447 BuiltinType R = (BuiltinType)V1->getValue() - (BuiltinType)V2->getValue();
448 return ConstantClass::get(*Ty, R);
451 static Constant *Mul(const ConstantClass *V1, const ConstantClass *V2) {
452 BuiltinType R = (BuiltinType)V1->getValue() * (BuiltinType)V2->getValue();
453 return ConstantClass::get(*Ty, R);
456 static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
457 if (V2->isNullValue()) return 0;
458 BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
459 return ConstantClass::get(*Ty, R);
462 static Constant *LessThan(const ConstantClass *V1, const ConstantClass *V2) {
463 bool R = (BuiltinType)V1->getValue() < (BuiltinType)V2->getValue();
464 return ConstantBool::get(R);
467 static Constant *EqualTo(const ConstantClass *V1, const ConstantClass *V2) {
468 bool R = (BuiltinType)V1->getValue() == (BuiltinType)V2->getValue();
469 return ConstantBool::get(R);
472 static Constant *CastToPointer(const ConstantClass *V,
473 const PointerType *PTy) {
474 if (V->isNullValue()) // Is it a FP or Integral null value?
475 return ConstantPointerNull::get(PTy);
476 return 0; // Can't const prop other types of pointers
479 // Casting operators. ick
480 #define DEF_CAST(TYPE, CLASS, CTYPE) \
481 static Constant *CastTo##TYPE (const ConstantClass *V) { \
482 return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getValue()); \
485 DEF_CAST(Bool , ConstantBool, bool)
486 DEF_CAST(SByte , ConstantSInt, signed char)
487 DEF_CAST(UByte , ConstantUInt, unsigned char)
488 DEF_CAST(Short , ConstantSInt, signed short)
489 DEF_CAST(UShort, ConstantUInt, unsigned short)
490 DEF_CAST(Int , ConstantSInt, signed int)
491 DEF_CAST(UInt , ConstantUInt, unsigned int)
492 DEF_CAST(Long , ConstantSInt, int64_t)
493 DEF_CAST(ULong , ConstantUInt, uint64_t)
494 DEF_CAST(Float , ConstantFP , float)
495 DEF_CAST(Double, ConstantFP , double)
496 #undef DEF_CAST
498 } // end anonymous namespace
501 //===----------------------------------------------------------------------===//
502 // DirectIntRules Class
503 //===----------------------------------------------------------------------===//
505 // DirectIntRules provides implementations of functions that are valid on
506 // integer types, but not all types in general.
508 namespace {
509 template <class ConstantClass, class BuiltinType, Type **Ty>
510 struct VISIBILITY_HIDDEN DirectIntRules
511 : public DirectRules<ConstantClass, BuiltinType, Ty,
512 DirectIntRules<ConstantClass, BuiltinType, Ty> > {
514 static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
515 if (V2->isNullValue()) return 0;
516 if (V2->isAllOnesValue() && // MIN_INT / -1
517 (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
518 return 0;
519 BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
520 return ConstantClass::get(*Ty, R);
523 static Constant *Rem(const ConstantClass *V1,
524 const ConstantClass *V2) {
525 if (V2->isNullValue()) return 0; // X / 0
526 if (V2->isAllOnesValue() && // MIN_INT / -1
527 (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
528 return 0;
529 BuiltinType R = (BuiltinType)V1->getValue() % (BuiltinType)V2->getValue();
530 return ConstantClass::get(*Ty, R);
533 static Constant *And(const ConstantClass *V1, const ConstantClass *V2) {
534 BuiltinType R = (BuiltinType)V1->getValue() & (BuiltinType)V2->getValue();
535 return ConstantClass::get(*Ty, R);
537 static Constant *Or(const ConstantClass *V1, const ConstantClass *V2) {
538 BuiltinType R = (BuiltinType)V1->getValue() | (BuiltinType)V2->getValue();
539 return ConstantClass::get(*Ty, R);
541 static Constant *Xor(const ConstantClass *V1, const ConstantClass *V2) {
542 BuiltinType R = (BuiltinType)V1->getValue() ^ (BuiltinType)V2->getValue();
543 return ConstantClass::get(*Ty, R);
546 static Constant *Shl(const ConstantClass *V1, const ConstantClass *V2) {
547 BuiltinType R = (BuiltinType)V1->getValue() << (BuiltinType)V2->getValue();
548 return ConstantClass::get(*Ty, R);
551 static Constant *Shr(const ConstantClass *V1, const ConstantClass *V2) {
552 BuiltinType R = (BuiltinType)V1->getValue() >> (BuiltinType)V2->getValue();
553 return ConstantClass::get(*Ty, R);
556 } // end anonymous namespace
559 //===----------------------------------------------------------------------===//
560 // DirectFPRules Class
561 //===----------------------------------------------------------------------===//
563 /// DirectFPRules provides implementations of functions that are valid on
564 /// floating point types, but not all types in general.
566 namespace {
567 template <class ConstantClass, class BuiltinType, Type **Ty>
568 struct VISIBILITY_HIDDEN DirectFPRules
569 : public DirectRules<ConstantClass, BuiltinType, Ty,
570 DirectFPRules<ConstantClass, BuiltinType, Ty> > {
571 static Constant *Rem(const ConstantClass *V1, const ConstantClass *V2) {
572 if (V2->isNullValue()) return 0;
573 BuiltinType Result = std::fmod((BuiltinType)V1->getValue(),
574 (BuiltinType)V2->getValue());
575 return ConstantClass::get(*Ty, Result);
577 static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
578 BuiltinType inf = std::numeric_limits<BuiltinType>::infinity();
579 if (V2->isExactlyValue(0.0)) return ConstantClass::get(*Ty, inf);
580 if (V2->isExactlyValue(-0.0)) return ConstantClass::get(*Ty, -inf);
581 BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
582 return ConstantClass::get(*Ty, R);
585 } // end anonymous namespace
588 /// ConstRules::get - This method returns the constant rules implementation that
589 /// implements the semantics of the two specified constants.
590 ConstRules &ConstRules::get(const Constant *V1, const Constant *V2) {
591 static EmptyRules EmptyR;
592 static BoolRules BoolR;
593 static NullPointerRules NullPointerR;
594 static ConstantPackedRules ConstantPackedR;
595 static GeneralPackedRules GeneralPackedR;
596 static DirectIntRules<ConstantSInt, signed char , &Type::SByteTy> SByteR;
597 static DirectIntRules<ConstantUInt, unsigned char , &Type::UByteTy> UByteR;
598 static DirectIntRules<ConstantSInt, signed short, &Type::ShortTy> ShortR;
599 static DirectIntRules<ConstantUInt, unsigned short, &Type::UShortTy> UShortR;
600 static DirectIntRules<ConstantSInt, signed int , &Type::IntTy> IntR;
601 static DirectIntRules<ConstantUInt, unsigned int , &Type::UIntTy> UIntR;
602 static DirectIntRules<ConstantSInt, int64_t , &Type::LongTy> LongR;
603 static DirectIntRules<ConstantUInt, uint64_t , &Type::ULongTy> ULongR;
604 static DirectFPRules <ConstantFP , float , &Type::FloatTy> FloatR;
605 static DirectFPRules <ConstantFP , double , &Type::DoubleTy> DoubleR;
607 if (isa<ConstantExpr>(V1) || isa<ConstantExpr>(V2) ||
608 isa<GlobalValue>(V1) || isa<GlobalValue>(V2) ||
609 isa<UndefValue>(V1) || isa<UndefValue>(V2))
610 return EmptyR;
612 switch (V1->getType()->getTypeID()) {
613 default: assert(0 && "Unknown value type for constant folding!");
614 case Type::BoolTyID: return BoolR;
615 case Type::PointerTyID: return NullPointerR;
616 case Type::SByteTyID: return SByteR;
617 case Type::UByteTyID: return UByteR;
618 case Type::ShortTyID: return ShortR;
619 case Type::UShortTyID: return UShortR;
620 case Type::IntTyID: return IntR;
621 case Type::UIntTyID: return UIntR;
622 case Type::LongTyID: return LongR;
623 case Type::ULongTyID: return ULongR;
624 case Type::FloatTyID: return FloatR;
625 case Type::DoubleTyID: return DoubleR;
626 case Type::PackedTyID:
627 if (isa<ConstantPacked>(V1) && isa<ConstantPacked>(V2))
628 return ConstantPackedR;
629 return GeneralPackedR; // Constant folding rules for ConstantAggregateZero.
634 //===----------------------------------------------------------------------===//
635 // ConstantFold*Instruction Implementations
636 //===----------------------------------------------------------------------===//
638 // These methods contain the special case hackery required to symbolically
639 // evaluate some constant expression cases, and use the ConstantRules class to
640 // evaluate normal constants.
642 static unsigned getSize(const Type *Ty) {
643 unsigned S = Ty->getPrimitiveSize();
644 return S ? S : 8; // Treat pointers at 8 bytes
647 /// CastConstantPacked - Convert the specified ConstantPacked node to the
648 /// specified packed type. At this point, we know that the elements of the
649 /// input packed constant are all simple integer or FP values.
650 static Constant *CastConstantPacked(ConstantPacked *CP,
651 const PackedType *DstTy) {
652 unsigned SrcNumElts = CP->getType()->getNumElements();
653 unsigned DstNumElts = DstTy->getNumElements();
654 const Type *SrcEltTy = CP->getType()->getElementType();
655 const Type *DstEltTy = DstTy->getElementType();
657 // If both vectors have the same number of elements (thus, the elements
658 // are the same size), perform the conversion now.
659 if (SrcNumElts == DstNumElts) {
660 std::vector<Constant*> Result;
662 // If the src and dest elements are both integers, just cast each one
663 // which will do the appropriate bit-convert.
664 if (SrcEltTy->isIntegral() && DstEltTy->isIntegral()) {
665 for (unsigned i = 0; i != SrcNumElts; ++i)
666 Result.push_back(ConstantExpr::getCast(CP->getOperand(i),
667 DstEltTy));
668 return ConstantPacked::get(Result);
671 if (SrcEltTy->isIntegral()) {
672 // Otherwise, this is an int-to-fp cast.
673 assert(DstEltTy->isFloatingPoint());
674 if (DstEltTy->getTypeID() == Type::DoubleTyID) {
675 for (unsigned i = 0; i != SrcNumElts; ++i) {
676 double V =
677 BitsToDouble(cast<ConstantInt>(CP->getOperand(i))->getRawValue());
678 Result.push_back(ConstantFP::get(Type::DoubleTy, V));
680 return ConstantPacked::get(Result);
682 assert(DstEltTy == Type::FloatTy && "Unknown fp type!");
683 for (unsigned i = 0; i != SrcNumElts; ++i) {
684 float V =
685 BitsToFloat(cast<ConstantInt>(CP->getOperand(i))->getRawValue());
686 Result.push_back(ConstantFP::get(Type::FloatTy, V));
688 return ConstantPacked::get(Result);
691 // Otherwise, this is an fp-to-int cast.
692 assert(SrcEltTy->isFloatingPoint() && DstEltTy->isIntegral());
694 if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
695 for (unsigned i = 0; i != SrcNumElts; ++i) {
696 uint64_t V =
697 DoubleToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
698 Constant *C = ConstantUInt::get(Type::ULongTy, V);
699 Result.push_back(ConstantExpr::getCast(C, DstEltTy));
701 return ConstantPacked::get(Result);
704 assert(SrcEltTy->getTypeID() == Type::FloatTyID);
705 for (unsigned i = 0; i != SrcNumElts; ++i) {
706 unsigned V = FloatToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
707 Constant *C = ConstantUInt::get(Type::UIntTy, V);
708 Result.push_back(ConstantExpr::getCast(C, DstEltTy));
710 return ConstantPacked::get(Result);
713 // Otherwise, this is a cast that changes element count and size. Handle
714 // casts which shrink the elements here.
716 // FIXME: We need to know endianness to do this!
718 return 0;
722 Constant *llvm::ConstantFoldCastInstruction(const Constant *V,
723 const Type *DestTy) {
724 if (V->getType() == DestTy) return (Constant*)V;
726 // Cast of a global address to boolean is always true.
727 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
728 if (DestTy == Type::BoolTy)
729 // FIXME: When we support 'external weak' references, we have to prevent
730 // this transformation from happening. This code will need to be updated
731 // to ignore external weak symbols when we support it.
732 return ConstantBool::True;
733 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
734 if (CE->getOpcode() == Instruction::Cast) {
735 Constant *Op = const_cast<Constant*>(CE->getOperand(0));
736 // Try to not produce a cast of a cast, which is almost always redundant.
737 if (!Op->getType()->isFloatingPoint() &&
738 !CE->getType()->isFloatingPoint() &&
739 !DestTy->isFloatingPoint()) {
740 unsigned S1 = getSize(Op->getType()), S2 = getSize(CE->getType());
741 unsigned S3 = getSize(DestTy);
742 if (Op->getType() == DestTy && S3 >= S2)
743 return Op;
744 if (S1 >= S2 && S2 >= S3)
745 return ConstantExpr::getCast(Op, DestTy);
746 if (S1 <= S2 && S2 >= S3 && S1 <= S3)
747 return ConstantExpr::getCast(Op, DestTy);
749 } else if (CE->getOpcode() == Instruction::GetElementPtr) {
750 // If all of the indexes in the GEP are null values, there is no pointer
751 // adjustment going on. We might as well cast the source pointer.
752 bool isAllNull = true;
753 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
754 if (!CE->getOperand(i)->isNullValue()) {
755 isAllNull = false;
756 break;
758 if (isAllNull)
759 return ConstantExpr::getCast(CE->getOperand(0), DestTy);
761 } else if (isa<UndefValue>(V)) {
762 return UndefValue::get(DestTy);
765 // Check to see if we are casting an pointer to an aggregate to a pointer to
766 // the first element. If so, return the appropriate GEP instruction.
767 if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
768 if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
769 std::vector<Value*> IdxList;
770 IdxList.push_back(Constant::getNullValue(Type::IntTy));
771 const Type *ElTy = PTy->getElementType();
772 while (ElTy != DPTy->getElementType()) {
773 if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
774 if (STy->getNumElements() == 0) break;
775 ElTy = STy->getElementType(0);
776 IdxList.push_back(Constant::getNullValue(Type::UIntTy));
777 } else if (const SequentialType *STy = dyn_cast<SequentialType>(ElTy)) {
778 if (isa<PointerType>(ElTy)) break; // Can't index into pointers!
779 ElTy = STy->getElementType();
780 IdxList.push_back(IdxList[0]);
781 } else {
782 break;
786 if (ElTy == DPTy->getElementType())
787 return ConstantExpr::getGetElementPtr(const_cast<Constant*>(V),IdxList);
790 // Handle casts from one packed constant to another. We know that the src and
791 // dest type have the same size.
792 if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
793 if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
794 assert(DestPTy->getElementType()->getPrimitiveSizeInBits() *
795 DestPTy->getNumElements() ==
796 SrcTy->getElementType()->getPrimitiveSizeInBits() *
797 SrcTy->getNumElements() && "Not cast between same sized vectors!");
798 if (isa<ConstantAggregateZero>(V))
799 return Constant::getNullValue(DestTy);
800 if (isa<UndefValue>(V))
801 return UndefValue::get(DestTy);
802 if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
803 // This is a cast from a ConstantPacked of one type to a ConstantPacked
804 // of another type. Check to see if all elements of the input are
805 // simple.
806 bool AllSimpleConstants = true;
807 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
808 if (!isa<ConstantInt>(CP->getOperand(i)) &&
809 !isa<ConstantFP>(CP->getOperand(i))) {
810 AllSimpleConstants = false;
811 break;
815 // If all of the elements are simple constants, we can fold this.
816 if (AllSimpleConstants)
817 return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
822 ConstRules &Rules = ConstRules::get(V, V);
824 switch (DestTy->getTypeID()) {
825 case Type::BoolTyID: return Rules.castToBool(V);
826 case Type::UByteTyID: return Rules.castToUByte(V);
827 case Type::SByteTyID: return Rules.castToSByte(V);
828 case Type::UShortTyID: return Rules.castToUShort(V);
829 case Type::ShortTyID: return Rules.castToShort(V);
830 case Type::UIntTyID: return Rules.castToUInt(V);
831 case Type::IntTyID: return Rules.castToInt(V);
832 case Type::ULongTyID: return Rules.castToULong(V);
833 case Type::LongTyID: return Rules.castToLong(V);
834 case Type::FloatTyID: return Rules.castToFloat(V);
835 case Type::DoubleTyID: return Rules.castToDouble(V);
836 case Type::PointerTyID:
837 return Rules.castToPointer(V, cast<PointerType>(DestTy));
838 default: return 0;
842 Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
843 const Constant *V1,
844 const Constant *V2) {
845 if (Cond == ConstantBool::True)
846 return const_cast<Constant*>(V1);
847 else if (Cond == ConstantBool::False)
848 return const_cast<Constant*>(V2);
850 if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
851 if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
852 if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
853 if (V1 == V2) return const_cast<Constant*>(V1);
854 return 0;
857 Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
858 const Constant *Idx) {
859 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
860 return UndefValue::get(cast<PackedType>(Val->getType())->getElementType());
861 if (Val->isNullValue()) // ee(zero, x) -> zero
862 return Constant::getNullValue(
863 cast<PackedType>(Val->getType())->getElementType());
865 if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
866 if (const ConstantUInt *CIdx = dyn_cast<ConstantUInt>(Idx)) {
867 return const_cast<Constant*>(CVal->getOperand(CIdx->getValue()));
868 } else if (isa<UndefValue>(Idx)) {
869 // ee({w,x,y,z}, undef) -> w (an arbitrary value).
870 return const_cast<Constant*>(CVal->getOperand(0));
873 return 0;
876 Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
877 const Constant *Elt,
878 const Constant *Idx) {
879 const ConstantUInt *CIdx = dyn_cast<ConstantUInt>(Idx);
880 if (!CIdx) return 0;
881 unsigned idxVal = CIdx->getValue();
882 if (const UndefValue *UVal = dyn_cast<UndefValue>(Val)) {
883 // Insertion of scalar constant into packed undef
884 // Optimize away insertion of undef
885 if (isa<UndefValue>(Elt))
886 return const_cast<Constant*>(Val);
887 // Otherwise break the aggregate undef into multiple undefs and do
888 // the insertion
889 unsigned numOps =
890 cast<PackedType>(Val->getType())->getNumElements();
891 std::vector<Constant*> Ops;
892 Ops.reserve(numOps);
893 for (unsigned i = 0; i < numOps; ++i) {
894 const Constant *Op =
895 (i == idxVal) ? Elt : UndefValue::get(Elt->getType());
896 Ops.push_back(const_cast<Constant*>(Op));
898 return ConstantPacked::get(Ops);
900 if (const ConstantAggregateZero *CVal =
901 dyn_cast<ConstantAggregateZero>(Val)) {
902 // Insertion of scalar constant into packed aggregate zero
903 // Optimize away insertion of zero
904 if (Elt->isNullValue())
905 return const_cast<Constant*>(Val);
906 // Otherwise break the aggregate zero into multiple zeros and do
907 // the insertion
908 unsigned numOps =
909 cast<PackedType>(Val->getType())->getNumElements();
910 std::vector<Constant*> Ops;
911 Ops.reserve(numOps);
912 for (unsigned i = 0; i < numOps; ++i) {
913 const Constant *Op =
914 (i == idxVal) ? Elt : Constant::getNullValue(Elt->getType());
915 Ops.push_back(const_cast<Constant*>(Op));
917 return ConstantPacked::get(Ops);
919 if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
920 // Insertion of scalar constant into packed constant
921 std::vector<Constant*> Ops;
922 Ops.reserve(CVal->getNumOperands());
923 for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
924 const Constant *Op =
925 (i == idxVal) ? Elt : cast<Constant>(CVal->getOperand(i));
926 Ops.push_back(const_cast<Constant*>(Op));
928 return ConstantPacked::get(Ops);
930 return 0;
933 Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
934 const Constant *V2,
935 const Constant *Mask) {
936 // TODO:
937 return 0;
941 /// isZeroSizedType - This type is zero sized if its an array or structure of
942 /// zero sized types. The only leaf zero sized type is an empty structure.
943 static bool isMaybeZeroSizedType(const Type *Ty) {
944 if (isa<OpaqueType>(Ty)) return true; // Can't say.
945 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
947 // If all of elements have zero size, this does too.
948 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
949 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
950 return true;
952 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
953 return isMaybeZeroSizedType(ATy->getElementType());
955 return false;
958 /// IdxCompare - Compare the two constants as though they were getelementptr
959 /// indices. This allows coersion of the types to be the same thing.
961 /// If the two constants are the "same" (after coersion), return 0. If the
962 /// first is less than the second, return -1, if the second is less than the
963 /// first, return 1. If the constants are not integral, return -2.
965 static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
966 if (C1 == C2) return 0;
968 // Ok, we found a different index. Are either of the operands
969 // ConstantExprs? If so, we can't do anything with them.
970 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
971 return -2; // don't know!
973 // Ok, we have two differing integer indices. Sign extend them to be the same
974 // type. Long is always big enough, so we use it.
975 C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
976 C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
977 if (C1 == C2) return 0; // Are they just differing types?
979 // If the type being indexed over is really just a zero sized type, there is
980 // no pointer difference being made here.
981 if (isMaybeZeroSizedType(ElTy))
982 return -2; // dunno.
984 // If they are really different, now that they are the same type, then we
985 // found a difference!
986 if (cast<ConstantSInt>(C1)->getValue() < cast<ConstantSInt>(C2)->getValue())
987 return -1;
988 else
989 return 1;
992 /// evaluateRelation - This function determines if there is anything we can
993 /// decide about the two constants provided. This doesn't need to handle simple
994 /// things like integer comparisons, but should instead handle ConstantExprs
995 /// and GlobalValuess. If we can determine that the two constants have a
996 /// particular relation to each other, we should return the corresponding SetCC
997 /// code, otherwise return Instruction::BinaryOpsEnd.
999 /// To simplify this code we canonicalize the relation so that the first
1000 /// operand is always the most "complex" of the two. We consider simple
1001 /// constants (like ConstantInt) to be the simplest, followed by
1002 /// GlobalValues, followed by ConstantExpr's (the most complex).
1004 static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) {
1005 assert(V1->getType() == V2->getType() &&
1006 "Cannot compare different types of values!");
1007 if (V1 == V2) return Instruction::SetEQ;
1009 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
1010 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
1011 // We distilled this down to a simple case, use the standard constant
1012 // folder.
1013 ConstantBool *R = dyn_cast<ConstantBool>(ConstantExpr::getSetEQ(V1, V2));
1014 if (R == ConstantBool::True) return Instruction::SetEQ;
1015 R = dyn_cast<ConstantBool>(ConstantExpr::getSetLT(V1, V2));
1016 if (R == ConstantBool::True) return Instruction::SetLT;
1017 R = dyn_cast<ConstantBool>(ConstantExpr::getSetGT(V1, V2));
1018 if (R == ConstantBool::True) return Instruction::SetGT;
1020 // If we couldn't figure it out, bail.
1021 return Instruction::BinaryOpsEnd;
1024 // If the first operand is simple, swap operands.
1025 Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
1026 if (SwappedRelation != Instruction::BinaryOpsEnd)
1027 return SetCondInst::getSwappedCondition(SwappedRelation);
1029 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
1030 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1031 Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
1032 if (SwappedRelation != Instruction::BinaryOpsEnd)
1033 return SetCondInst::getSwappedCondition(SwappedRelation);
1034 else
1035 return Instruction::BinaryOpsEnd;
1038 // Now we know that the RHS is a GlobalValue or simple constant,
1039 // which (since the types must match) means that it's a ConstantPointerNull.
1040 if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1041 assert(CPR1 != CPR2 &&
1042 "GVs for the same value exist at different addresses??");
1043 // FIXME: If both globals are external weak, they might both be null!
1044 return Instruction::SetNE;
1045 } else {
1046 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1047 // Global can never be null. FIXME: if we implement external weak
1048 // linkage, this is not necessarily true!
1049 return Instruction::SetNE;
1052 } else {
1053 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1054 // constantexpr, a CPR, or a simple constant.
1055 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1056 Constant *CE1Op0 = CE1->getOperand(0);
1058 switch (CE1->getOpcode()) {
1059 case Instruction::Cast:
1060 // If the cast is not actually changing bits, and the second operand is a
1061 // null pointer, do the comparison with the pre-casted value.
1062 if (V2->isNullValue() &&
1063 (isa<PointerType>(CE1->getType()) || CE1->getType()->isIntegral()))
1064 return evaluateRelation(CE1Op0,
1065 Constant::getNullValue(CE1Op0->getType()));
1067 // If the dest type is a pointer type, and the RHS is a constantexpr cast
1068 // from the same type as the src of the LHS, evaluate the inputs. This is
1069 // important for things like "seteq (cast 4 to int*), (cast 5 to int*)",
1070 // which happens a lot in compilers with tagged integers.
1071 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1072 if (isa<PointerType>(CE1->getType()) &&
1073 CE2->getOpcode() == Instruction::Cast &&
1074 CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1075 CE1->getOperand(0)->getType()->isIntegral()) {
1076 return evaluateRelation(CE1->getOperand(0), CE2->getOperand(0));
1078 break;
1080 case Instruction::GetElementPtr:
1081 // Ok, since this is a getelementptr, we know that the constant has a
1082 // pointer type. Check the various cases.
1083 if (isa<ConstantPointerNull>(V2)) {
1084 // If we are comparing a GEP to a null pointer, check to see if the base
1085 // of the GEP equals the null pointer.
1086 if (isa<GlobalValue>(CE1Op0)) {
1087 // FIXME: this is not true when we have external weak references!
1088 // No offset can go from a global to a null pointer.
1089 return Instruction::SetGT;
1090 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1091 // If we are indexing from a null pointer, check to see if we have any
1092 // non-zero indices.
1093 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1094 if (!CE1->getOperand(i)->isNullValue())
1095 // Offsetting from null, must not be equal.
1096 return Instruction::SetGT;
1097 // Only zero indexes from null, must still be zero.
1098 return Instruction::SetEQ;
1100 // Otherwise, we can't really say if the first operand is null or not.
1101 } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1102 if (isa<ConstantPointerNull>(CE1Op0)) {
1103 // FIXME: This is not true with external weak references.
1104 return Instruction::SetLT;
1105 } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1106 if (CPR1 == CPR2) {
1107 // If this is a getelementptr of the same global, then it must be
1108 // different. Because the types must match, the getelementptr could
1109 // only have at most one index, and because we fold getelementptr's
1110 // with a single zero index, it must be nonzero.
1111 assert(CE1->getNumOperands() == 2 &&
1112 !CE1->getOperand(1)->isNullValue() &&
1113 "Suprising getelementptr!");
1114 return Instruction::SetGT;
1115 } else {
1116 // If they are different globals, we don't know what the value is,
1117 // but they can't be equal.
1118 return Instruction::SetNE;
1121 } else {
1122 const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1123 const Constant *CE2Op0 = CE2->getOperand(0);
1125 // There are MANY other foldings that we could perform here. They will
1126 // probably be added on demand, as they seem needed.
1127 switch (CE2->getOpcode()) {
1128 default: break;
1129 case Instruction::GetElementPtr:
1130 // By far the most common case to handle is when the base pointers are
1131 // obviously to the same or different globals.
1132 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1133 if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1134 return Instruction::SetNE;
1135 // Ok, we know that both getelementptr instructions are based on the
1136 // same global. From this, we can precisely determine the relative
1137 // ordering of the resultant pointers.
1138 unsigned i = 1;
1140 // Compare all of the operands the GEP's have in common.
1141 gep_type_iterator GTI = gep_type_begin(CE1);
1142 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1143 ++i, ++GTI)
1144 switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
1145 GTI.getIndexedType())) {
1146 case -1: return Instruction::SetLT;
1147 case 1: return Instruction::SetGT;
1148 case -2: return Instruction::BinaryOpsEnd;
1151 // Ok, we ran out of things they have in common. If any leftovers
1152 // are non-zero then we have a difference, otherwise we are equal.
1153 for (; i < CE1->getNumOperands(); ++i)
1154 if (!CE1->getOperand(i)->isNullValue())
1155 if (isa<ConstantIntegral>(CE1->getOperand(i)))
1156 return Instruction::SetGT;
1157 else
1158 return Instruction::BinaryOpsEnd; // Might be equal.
1160 for (; i < CE2->getNumOperands(); ++i)
1161 if (!CE2->getOperand(i)->isNullValue())
1162 if (isa<ConstantIntegral>(CE2->getOperand(i)))
1163 return Instruction::SetLT;
1164 else
1165 return Instruction::BinaryOpsEnd; // Might be equal.
1166 return Instruction::SetEQ;
1171 default:
1172 break;
1176 return Instruction::BinaryOpsEnd;
1179 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
1180 const Constant *V1,
1181 const Constant *V2) {
1182 Constant *C = 0;
1183 switch (Opcode) {
1184 default: break;
1185 case Instruction::Add: C = ConstRules::get(V1, V2).add(V1, V2); break;
1186 case Instruction::Sub: C = ConstRules::get(V1, V2).sub(V1, V2); break;
1187 case Instruction::Mul: C = ConstRules::get(V1, V2).mul(V1, V2); break;
1188 case Instruction::Div: C = ConstRules::get(V1, V2).div(V1, V2); break;
1189 case Instruction::Rem: C = ConstRules::get(V1, V2).rem(V1, V2); break;
1190 case Instruction::And: C = ConstRules::get(V1, V2).op_and(V1, V2); break;
1191 case Instruction::Or: C = ConstRules::get(V1, V2).op_or (V1, V2); break;
1192 case Instruction::Xor: C = ConstRules::get(V1, V2).op_xor(V1, V2); break;
1193 case Instruction::Shl: C = ConstRules::get(V1, V2).shl(V1, V2); break;
1194 case Instruction::Shr: C = ConstRules::get(V1, V2).shr(V1, V2); break;
1195 case Instruction::SetEQ: C = ConstRules::get(V1, V2).equalto(V1, V2); break;
1196 case Instruction::SetLT: C = ConstRules::get(V1, V2).lessthan(V1, V2);break;
1197 case Instruction::SetGT: C = ConstRules::get(V1, V2).lessthan(V2, V1);break;
1198 case Instruction::SetNE: // V1 != V2 === !(V1 == V2)
1199 C = ConstRules::get(V1, V2).equalto(V1, V2);
1200 if (C) return ConstantExpr::getNot(C);
1201 break;
1202 case Instruction::SetLE: // V1 <= V2 === !(V2 < V1)
1203 C = ConstRules::get(V1, V2).lessthan(V2, V1);
1204 if (C) return ConstantExpr::getNot(C);
1205 break;
1206 case Instruction::SetGE: // V1 >= V2 === !(V1 < V2)
1207 C = ConstRules::get(V1, V2).lessthan(V1, V2);
1208 if (C) return ConstantExpr::getNot(C);
1209 break;
1212 // If we successfully folded the expression, return it now.
1213 if (C) return C;
1215 if (SetCondInst::isRelational(Opcode)) {
1216 if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1217 return UndefValue::get(Type::BoolTy);
1218 switch (evaluateRelation(const_cast<Constant*>(V1),
1219 const_cast<Constant*>(V2))) {
1220 default: assert(0 && "Unknown relational!");
1221 case Instruction::BinaryOpsEnd:
1222 break; // Couldn't determine anything about these constants.
1223 case Instruction::SetEQ: // We know the constants are equal!
1224 // If we know the constants are equal, we can decide the result of this
1225 // computation precisely.
1226 return ConstantBool::get(Opcode == Instruction::SetEQ ||
1227 Opcode == Instruction::SetLE ||
1228 Opcode == Instruction::SetGE);
1229 case Instruction::SetLT:
1230 // If we know that V1 < V2, we can decide the result of this computation
1231 // precisely.
1232 return ConstantBool::get(Opcode == Instruction::SetLT ||
1233 Opcode == Instruction::SetNE ||
1234 Opcode == Instruction::SetLE);
1235 case Instruction::SetGT:
1236 // If we know that V1 > V2, we can decide the result of this computation
1237 // precisely.
1238 return ConstantBool::get(Opcode == Instruction::SetGT ||
1239 Opcode == Instruction::SetNE ||
1240 Opcode == Instruction::SetGE);
1241 case Instruction::SetLE:
1242 // If we know that V1 <= V2, we can only partially decide this relation.
1243 if (Opcode == Instruction::SetGT) return ConstantBool::False;
1244 if (Opcode == Instruction::SetLT) return ConstantBool::True;
1245 break;
1247 case Instruction::SetGE:
1248 // If we know that V1 >= V2, we can only partially decide this relation.
1249 if (Opcode == Instruction::SetLT) return ConstantBool::False;
1250 if (Opcode == Instruction::SetGT) return ConstantBool::True;
1251 break;
1253 case Instruction::SetNE:
1254 // If we know that V1 != V2, we can only partially decide this relation.
1255 if (Opcode == Instruction::SetEQ) return ConstantBool::False;
1256 if (Opcode == Instruction::SetNE) return ConstantBool::True;
1257 break;
1261 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) {
1262 switch (Opcode) {
1263 case Instruction::Add:
1264 case Instruction::Sub:
1265 case Instruction::Xor:
1266 return UndefValue::get(V1->getType());
1268 case Instruction::Mul:
1269 case Instruction::And:
1270 return Constant::getNullValue(V1->getType());
1271 case Instruction::Div:
1272 case Instruction::Rem:
1273 if (!isa<UndefValue>(V2)) // undef/X -> 0
1274 return Constant::getNullValue(V1->getType());
1275 return const_cast<Constant*>(V2); // X/undef -> undef
1276 case Instruction::Or: // X|undef -> -1
1277 return ConstantInt::getAllOnesValue(V1->getType());
1278 case Instruction::Shr:
1279 if (!isa<UndefValue>(V2)) {
1280 if (V1->getType()->isSigned())
1281 return const_cast<Constant*>(V1); // undef >>s X -> undef
1282 // undef >>u X -> 0
1283 } else if (isa<UndefValue>(V1)) {
1284 return const_cast<Constant*>(V1); // undef >> undef -> undef
1285 } else {
1286 if (V1->getType()->isSigned())
1287 return const_cast<Constant*>(V1); // X >>s undef -> X
1288 // X >>u undef -> 0
1290 return Constant::getNullValue(V1->getType());
1292 case Instruction::Shl:
1293 // undef << X -> 0 X << undef -> 0
1294 return Constant::getNullValue(V1->getType());
1298 if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(V1)) {
1299 if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) {
1300 // There are many possible foldings we could do here. We should probably
1301 // at least fold add of a pointer with an integer into the appropriate
1302 // getelementptr. This will improve alias analysis a bit.
1307 } else {
1308 // Just implement a couple of simple identities.
1309 switch (Opcode) {
1310 case Instruction::Add:
1311 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X + 0 == X
1312 break;
1313 case Instruction::Sub:
1314 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X - 0 == X
1315 break;
1316 case Instruction::Mul:
1317 if (V2->isNullValue()) return const_cast<Constant*>(V2); // X * 0 == 0
1318 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
1319 if (CI->getRawValue() == 1)
1320 return const_cast<Constant*>(V1); // X * 1 == X
1321 break;
1322 case Instruction::Div:
1323 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
1324 if (CI->getRawValue() == 1)
1325 return const_cast<Constant*>(V1); // X / 1 == X
1326 break;
1327 case Instruction::Rem:
1328 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
1329 if (CI->getRawValue() == 1)
1330 return Constant::getNullValue(CI->getType()); // X % 1 == 0
1331 break;
1332 case Instruction::And:
1333 if (cast<ConstantIntegral>(V2)->isAllOnesValue())
1334 return const_cast<Constant*>(V1); // X & -1 == X
1335 if (V2->isNullValue()) return const_cast<Constant*>(V2); // X & 0 == 0
1336 if (CE1->getOpcode() == Instruction::Cast &&
1337 isa<GlobalValue>(CE1->getOperand(0))) {
1338 GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
1340 // Functions are at least 4-byte aligned. If and'ing the address of a
1341 // function with a constant < 4, fold it to zero.
1342 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
1343 if (CI->getRawValue() < 4 && isa<Function>(CPR))
1344 return Constant::getNullValue(CI->getType());
1346 break;
1347 case Instruction::Or:
1348 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X | 0 == X
1349 if (cast<ConstantIntegral>(V2)->isAllOnesValue())
1350 return const_cast<Constant*>(V2); // X | -1 == -1
1351 break;
1352 case Instruction::Xor:
1353 if (V2->isNullValue()) return const_cast<Constant*>(V1); // X ^ 0 == X
1354 break;
1358 } else if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) {
1359 // If V2 is a constant expr and V1 isn't, flop them around and fold the
1360 // other way if possible.
1361 switch (Opcode) {
1362 case Instruction::Add:
1363 case Instruction::Mul:
1364 case Instruction::And:
1365 case Instruction::Or:
1366 case Instruction::Xor:
1367 case Instruction::SetEQ:
1368 case Instruction::SetNE:
1369 // No change of opcode required.
1370 return ConstantFoldBinaryInstruction(Opcode, V2, V1);
1372 case Instruction::SetLT:
1373 case Instruction::SetGT:
1374 case Instruction::SetLE:
1375 case Instruction::SetGE:
1376 // Change the opcode as necessary to swap the operands.
1377 Opcode = SetCondInst::getSwappedCondition((Instruction::BinaryOps)Opcode);
1378 return ConstantFoldBinaryInstruction(Opcode, V2, V1);
1380 case Instruction::Shl:
1381 case Instruction::Shr:
1382 case Instruction::Sub:
1383 case Instruction::Div:
1384 case Instruction::Rem:
1385 default: // These instructions cannot be flopped around.
1386 break;
1389 return 0;
1392 Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
1393 const std::vector<Value*> &IdxList) {
1394 if (IdxList.size() == 0 ||
1395 (IdxList.size() == 1 && cast<Constant>(IdxList[0])->isNullValue()))
1396 return const_cast<Constant*>(C);
1398 if (isa<UndefValue>(C)) {
1399 const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
1400 true);
1401 assert(Ty != 0 && "Invalid indices for GEP!");
1402 return UndefValue::get(PointerType::get(Ty));
1405 Constant *Idx0 = cast<Constant>(IdxList[0]);
1406 if (C->isNullValue()) {
1407 bool isNull = true;
1408 for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
1409 if (!cast<Constant>(IdxList[i])->isNullValue()) {
1410 isNull = false;
1411 break;
1413 if (isNull) {
1414 const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
1415 true);
1416 assert(Ty != 0 && "Invalid indices for GEP!");
1417 return ConstantPointerNull::get(PointerType::get(Ty));
1420 if (IdxList.size() == 1) {
1421 const Type *ElTy = cast<PointerType>(C->getType())->getElementType();
1422 if (unsigned ElSize = ElTy->getPrimitiveSize()) {
1423 // gep null, C is equal to C*sizeof(nullty). If nullty is a known llvm
1424 // type, we can statically fold this.
1425 Constant *R = ConstantUInt::get(Type::UIntTy, ElSize);
1426 R = ConstantExpr::getCast(R, Idx0->getType());
1427 R = ConstantExpr::getMul(R, Idx0);
1428 return ConstantExpr::getCast(R, C->getType());
1433 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1434 // Combine Indices - If the source pointer to this getelementptr instruction
1435 // is a getelementptr instruction, combine the indices of the two
1436 // getelementptr instructions into a single instruction.
1438 if (CE->getOpcode() == Instruction::GetElementPtr) {
1439 const Type *LastTy = 0;
1440 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1441 I != E; ++I)
1442 LastTy = *I;
1444 if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1445 std::vector<Value*> NewIndices;
1446 NewIndices.reserve(IdxList.size() + CE->getNumOperands());
1447 for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1448 NewIndices.push_back(CE->getOperand(i));
1450 // Add the last index of the source with the first index of the new GEP.
1451 // Make sure to handle the case when they are actually different types.
1452 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1453 // Otherwise it must be an array.
1454 if (!Idx0->isNullValue()) {
1455 const Type *IdxTy = Combined->getType();
1456 if (IdxTy != Idx0->getType()) IdxTy = Type::LongTy;
1457 Combined =
1458 ConstantExpr::get(Instruction::Add,
1459 ConstantExpr::getCast(Idx0, IdxTy),
1460 ConstantExpr::getCast(Combined, IdxTy));
1463 NewIndices.push_back(Combined);
1464 NewIndices.insert(NewIndices.end(), IdxList.begin()+1, IdxList.end());
1465 return ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices);
1469 // Implement folding of:
1470 // int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1471 // long 0, long 0)
1472 // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1474 if (CE->getOpcode() == Instruction::Cast && IdxList.size() > 1 &&
1475 Idx0->isNullValue())
1476 if (const PointerType *SPT =
1477 dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1478 if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1479 if (const ArrayType *CAT =
1480 dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1481 if (CAT->getElementType() == SAT->getElementType())
1482 return ConstantExpr::getGetElementPtr(
1483 (Constant*)CE->getOperand(0), IdxList);
1485 return 0;