1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements all of the non-inline methods for the LLVM instruction
13 //===----------------------------------------------------------------------===//
15 #include "llvm/BasicBlock.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Support/CallSite.h"
23 unsigned CallSite::getCallingConv() const {
24 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
))
25 return CI
->getCallingConv();
27 return cast
<InvokeInst
>(I
)->getCallingConv();
29 void CallSite::setCallingConv(unsigned CC
) {
30 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
))
31 CI
->setCallingConv(CC
);
33 cast
<InvokeInst
>(I
)->setCallingConv(CC
);
39 //===----------------------------------------------------------------------===//
40 // TerminatorInst Class
41 //===----------------------------------------------------------------------===//
43 TerminatorInst::TerminatorInst(Instruction::TermOps iType
,
44 Use
*Ops
, unsigned NumOps
, Instruction
*IB
)
45 : Instruction(Type::VoidTy
, iType
, Ops
, NumOps
, "", IB
) {
48 TerminatorInst::TerminatorInst(Instruction::TermOps iType
,
49 Use
*Ops
, unsigned NumOps
, BasicBlock
*IAE
)
50 : Instruction(Type::VoidTy
, iType
, Ops
, NumOps
, "", IAE
) {
53 // Out of line virtual method, so the vtable, etc has a home.
54 TerminatorInst::~TerminatorInst() {
57 // Out of line virtual method, so the vtable, etc has a home.
58 UnaryInstruction::~UnaryInstruction() {
62 //===----------------------------------------------------------------------===//
64 //===----------------------------------------------------------------------===//
66 PHINode::PHINode(const PHINode
&PN
)
67 : Instruction(PN
.getType(), Instruction::PHI
,
68 new Use
[PN
.getNumOperands()], PN
.getNumOperands()),
69 ReservedSpace(PN
.getNumOperands()) {
70 Use
*OL
= OperandList
;
71 for (unsigned i
= 0, e
= PN
.getNumOperands(); i
!= e
; i
+=2) {
72 OL
[i
].init(PN
.getOperand(i
), this);
73 OL
[i
+1].init(PN
.getOperand(i
+1), this);
78 delete [] OperandList
;
81 // removeIncomingValue - Remove an incoming value. This is useful if a
82 // predecessor basic block is deleted.
83 Value
*PHINode::removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
) {
84 unsigned NumOps
= getNumOperands();
85 Use
*OL
= OperandList
;
86 assert(Idx
*2 < NumOps
&& "BB not in PHI node!");
87 Value
*Removed
= OL
[Idx
*2];
89 // Move everything after this operand down.
91 // FIXME: we could just swap with the end of the list, then erase. However,
92 // client might not expect this to happen. The code as it is thrashes the
93 // use/def lists, which is kinda lame.
94 for (unsigned i
= (Idx
+1)*2; i
!= NumOps
; i
+= 2) {
99 // Nuke the last value.
101 OL
[NumOps
-2+1].set(0);
102 NumOperands
= NumOps
-2;
104 // If the PHI node is dead, because it has zero entries, nuke it now.
105 if (NumOps
== 2 && DeletePHIIfEmpty
) {
106 // If anyone is using this PHI, make them use a dummy value instead...
107 replaceAllUsesWith(UndefValue::get(getType()));
113 /// resizeOperands - resize operands - This adjusts the length of the operands
114 /// list according to the following behavior:
115 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
116 /// of operation. This grows the number of ops by 1.5 times.
117 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
118 /// 3. If NumOps == NumOperands, trim the reserved space.
120 void PHINode::resizeOperands(unsigned NumOps
) {
122 NumOps
= (getNumOperands())*3/2;
123 if (NumOps
< 4) NumOps
= 4; // 4 op PHI nodes are VERY common.
124 } else if (NumOps
*2 > NumOperands
) {
126 if (ReservedSpace
>= NumOps
) return;
127 } else if (NumOps
== NumOperands
) {
128 if (ReservedSpace
== NumOps
) return;
133 ReservedSpace
= NumOps
;
134 Use
*NewOps
= new Use
[NumOps
];
135 Use
*OldOps
= OperandList
;
136 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
137 NewOps
[i
].init(OldOps
[i
], this);
141 OperandList
= NewOps
;
144 /// hasConstantValue - If the specified PHI node always merges together the same
145 /// value, return the value, otherwise return null.
147 Value
*PHINode::hasConstantValue(bool AllowNonDominatingInstruction
) const {
148 // If the PHI node only has one incoming value, eliminate the PHI node...
149 if (getNumIncomingValues() == 1)
150 if (getIncomingValue(0) != this) // not X = phi X
151 return getIncomingValue(0);
153 return UndefValue::get(getType()); // Self cycle is dead.
155 // Otherwise if all of the incoming values are the same for the PHI, replace
156 // the PHI node with the incoming value.
159 bool HasUndefInput
= false;
160 for (unsigned i
= 0, e
= getNumIncomingValues(); i
!= e
; ++i
)
161 if (isa
<UndefValue
>(getIncomingValue(i
)))
162 HasUndefInput
= true;
163 else if (getIncomingValue(i
) != this) // Not the PHI node itself...
164 if (InVal
&& getIncomingValue(i
) != InVal
)
165 return 0; // Not the same, bail out.
167 InVal
= getIncomingValue(i
);
169 // The only case that could cause InVal to be null is if we have a PHI node
170 // that only has entries for itself. In this case, there is no entry into the
171 // loop, so kill the PHI.
173 if (InVal
== 0) InVal
= UndefValue::get(getType());
175 // If we have a PHI node like phi(X, undef, X), where X is defined by some
176 // instruction, we cannot always return X as the result of the PHI node. Only
177 // do this if X is not an instruction (thus it must dominate the PHI block),
178 // or if the client is prepared to deal with this possibility.
179 if (HasUndefInput
&& !AllowNonDominatingInstruction
)
180 if (Instruction
*IV
= dyn_cast
<Instruction
>(InVal
))
181 // If it's in the entry block, it dominates everything.
182 if (IV
->getParent() != &IV
->getParent()->getParent()->front() ||
184 return 0; // Cannot guarantee that InVal dominates this PHINode.
186 // All of the incoming values are the same, return the value now.
191 //===----------------------------------------------------------------------===//
192 // CallInst Implementation
193 //===----------------------------------------------------------------------===//
195 CallInst::~CallInst() {
196 delete [] OperandList
;
199 void CallInst::init(Value
*Func
, const std::vector
<Value
*> &Params
) {
200 NumOperands
= Params
.size()+1;
201 Use
*OL
= OperandList
= new Use
[Params
.size()+1];
202 OL
[0].init(Func
, this);
204 const FunctionType
*FTy
=
205 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
207 assert((Params
.size() == FTy
->getNumParams() ||
208 (FTy
->isVarArg() && Params
.size() > FTy
->getNumParams())) &&
209 "Calling a function with bad signature!");
210 for (unsigned i
= 0, e
= Params
.size(); i
!= e
; ++i
) {
211 assert((i
>= FTy
->getNumParams() ||
212 FTy
->getParamType(i
) == Params
[i
]->getType()) &&
213 "Calling a function with a bad signature!");
214 OL
[i
+1].init(Params
[i
], this);
218 void CallInst::init(Value
*Func
, Value
*Actual1
, Value
*Actual2
) {
220 Use
*OL
= OperandList
= new Use
[3];
221 OL
[0].init(Func
, this);
222 OL
[1].init(Actual1
, this);
223 OL
[2].init(Actual2
, this);
225 const FunctionType
*FTy
=
226 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
228 assert((FTy
->getNumParams() == 2 ||
229 (FTy
->isVarArg() && FTy
->getNumParams() < 2)) &&
230 "Calling a function with bad signature");
231 assert((0 >= FTy
->getNumParams() ||
232 FTy
->getParamType(0) == Actual1
->getType()) &&
233 "Calling a function with a bad signature!");
234 assert((1 >= FTy
->getNumParams() ||
235 FTy
->getParamType(1) == Actual2
->getType()) &&
236 "Calling a function with a bad signature!");
239 void CallInst::init(Value
*Func
, Value
*Actual
) {
241 Use
*OL
= OperandList
= new Use
[2];
242 OL
[0].init(Func
, this);
243 OL
[1].init(Actual
, this);
245 const FunctionType
*FTy
=
246 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
248 assert((FTy
->getNumParams() == 1 ||
249 (FTy
->isVarArg() && FTy
->getNumParams() == 0)) &&
250 "Calling a function with bad signature");
251 assert((0 == FTy
->getNumParams() ||
252 FTy
->getParamType(0) == Actual
->getType()) &&
253 "Calling a function with a bad signature!");
256 void CallInst::init(Value
*Func
) {
258 Use
*OL
= OperandList
= new Use
[1];
259 OL
[0].init(Func
, this);
261 const FunctionType
*MTy
=
262 cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())->getElementType());
264 assert(MTy
->getNumParams() == 0 && "Calling a function with bad signature");
267 CallInst::CallInst(Value
*Func
, const std::vector
<Value
*> &Params
,
268 const std::string
&Name
, Instruction
*InsertBefore
)
269 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
270 ->getElementType())->getReturnType(),
271 Instruction::Call
, 0, 0, Name
, InsertBefore
) {
275 CallInst::CallInst(Value
*Func
, const std::vector
<Value
*> &Params
,
276 const std::string
&Name
, BasicBlock
*InsertAtEnd
)
277 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
278 ->getElementType())->getReturnType(),
279 Instruction::Call
, 0, 0, Name
, InsertAtEnd
) {
283 CallInst::CallInst(Value
*Func
, Value
*Actual1
, Value
*Actual2
,
284 const std::string
&Name
, Instruction
*InsertBefore
)
285 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
286 ->getElementType())->getReturnType(),
287 Instruction::Call
, 0, 0, Name
, InsertBefore
) {
288 init(Func
, Actual1
, Actual2
);
291 CallInst::CallInst(Value
*Func
, Value
*Actual1
, Value
*Actual2
,
292 const std::string
&Name
, BasicBlock
*InsertAtEnd
)
293 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
294 ->getElementType())->getReturnType(),
295 Instruction::Call
, 0, 0, Name
, InsertAtEnd
) {
296 init(Func
, Actual1
, Actual2
);
299 CallInst::CallInst(Value
*Func
, Value
* Actual
, const std::string
&Name
,
300 Instruction
*InsertBefore
)
301 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
302 ->getElementType())->getReturnType(),
303 Instruction::Call
, 0, 0, Name
, InsertBefore
) {
307 CallInst::CallInst(Value
*Func
, Value
* Actual
, const std::string
&Name
,
308 BasicBlock
*InsertAtEnd
)
309 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
310 ->getElementType())->getReturnType(),
311 Instruction::Call
, 0, 0, Name
, InsertAtEnd
) {
315 CallInst::CallInst(Value
*Func
, const std::string
&Name
,
316 Instruction
*InsertBefore
)
317 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
318 ->getElementType())->getReturnType(),
319 Instruction::Call
, 0, 0, Name
, InsertBefore
) {
323 CallInst::CallInst(Value
*Func
, const std::string
&Name
,
324 BasicBlock
*InsertAtEnd
)
325 : Instruction(cast
<FunctionType
>(cast
<PointerType
>(Func
->getType())
326 ->getElementType())->getReturnType(),
327 Instruction::Call
, 0, 0, Name
, InsertAtEnd
) {
331 CallInst::CallInst(const CallInst
&CI
)
332 : Instruction(CI
.getType(), Instruction::Call
, new Use
[CI
.getNumOperands()],
333 CI
.getNumOperands()) {
334 SubclassData
= CI
.SubclassData
;
335 Use
*OL
= OperandList
;
336 Use
*InOL
= CI
.OperandList
;
337 for (unsigned i
= 0, e
= CI
.getNumOperands(); i
!= e
; ++i
)
338 OL
[i
].init(InOL
[i
], this);
342 //===----------------------------------------------------------------------===//
343 // InvokeInst Implementation
344 //===----------------------------------------------------------------------===//
346 InvokeInst::~InvokeInst() {
347 delete [] OperandList
;
350 void InvokeInst::init(Value
*Fn
, BasicBlock
*IfNormal
, BasicBlock
*IfException
,
351 const std::vector
<Value
*> &Params
) {
352 NumOperands
= 3+Params
.size();
353 Use
*OL
= OperandList
= new Use
[3+Params
.size()];
354 OL
[0].init(Fn
, this);
355 OL
[1].init(IfNormal
, this);
356 OL
[2].init(IfException
, this);
357 const FunctionType
*FTy
=
358 cast
<FunctionType
>(cast
<PointerType
>(Fn
->getType())->getElementType());
360 assert((Params
.size() == FTy
->getNumParams()) ||
361 (FTy
->isVarArg() && Params
.size() > FTy
->getNumParams()) &&
362 "Calling a function with bad signature");
364 for (unsigned i
= 0, e
= Params
.size(); i
!= e
; i
++) {
365 assert((i
>= FTy
->getNumParams() ||
366 FTy
->getParamType(i
) == Params
[i
]->getType()) &&
367 "Invoking a function with a bad signature!");
369 OL
[i
+3].init(Params
[i
], this);
373 InvokeInst::InvokeInst(Value
*Fn
, BasicBlock
*IfNormal
,
374 BasicBlock
*IfException
,
375 const std::vector
<Value
*> &Params
,
376 const std::string
&Name
, Instruction
*InsertBefore
)
377 : TerminatorInst(cast
<FunctionType
>(cast
<PointerType
>(Fn
->getType())
378 ->getElementType())->getReturnType(),
379 Instruction::Invoke
, 0, 0, Name
, InsertBefore
) {
380 init(Fn
, IfNormal
, IfException
, Params
);
383 InvokeInst::InvokeInst(Value
*Fn
, BasicBlock
*IfNormal
,
384 BasicBlock
*IfException
,
385 const std::vector
<Value
*> &Params
,
386 const std::string
&Name
, BasicBlock
*InsertAtEnd
)
387 : TerminatorInst(cast
<FunctionType
>(cast
<PointerType
>(Fn
->getType())
388 ->getElementType())->getReturnType(),
389 Instruction::Invoke
, 0, 0, Name
, InsertAtEnd
) {
390 init(Fn
, IfNormal
, IfException
, Params
);
393 InvokeInst::InvokeInst(const InvokeInst
&II
)
394 : TerminatorInst(II
.getType(), Instruction::Invoke
,
395 new Use
[II
.getNumOperands()], II
.getNumOperands()) {
396 SubclassData
= II
.SubclassData
;
397 Use
*OL
= OperandList
, *InOL
= II
.OperandList
;
398 for (unsigned i
= 0, e
= II
.getNumOperands(); i
!= e
; ++i
)
399 OL
[i
].init(InOL
[i
], this);
402 BasicBlock
*InvokeInst::getSuccessorV(unsigned idx
) const {
403 return getSuccessor(idx
);
405 unsigned InvokeInst::getNumSuccessorsV() const {
406 return getNumSuccessors();
408 void InvokeInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
409 return setSuccessor(idx
, B
);
413 //===----------------------------------------------------------------------===//
414 // ReturnInst Implementation
415 //===----------------------------------------------------------------------===//
417 void ReturnInst::init(Value
*retVal
) {
418 if (retVal
&& retVal
->getType() != Type::VoidTy
) {
419 assert(!isa
<BasicBlock
>(retVal
) &&
420 "Cannot return basic block. Probably using the incorrect ctor");
422 RetVal
.init(retVal
, this);
426 unsigned ReturnInst::getNumSuccessorsV() const {
427 return getNumSuccessors();
430 // Out-of-line ReturnInst method, put here so the C++ compiler can choose to
431 // emit the vtable for the class in this translation unit.
432 void ReturnInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
433 assert(0 && "ReturnInst has no successors!");
436 BasicBlock
*ReturnInst::getSuccessorV(unsigned idx
) const {
437 assert(0 && "ReturnInst has no successors!");
443 //===----------------------------------------------------------------------===//
444 // UnwindInst Implementation
445 //===----------------------------------------------------------------------===//
447 unsigned UnwindInst::getNumSuccessorsV() const {
448 return getNumSuccessors();
451 void UnwindInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
452 assert(0 && "UnwindInst has no successors!");
455 BasicBlock
*UnwindInst::getSuccessorV(unsigned idx
) const {
456 assert(0 && "UnwindInst has no successors!");
461 //===----------------------------------------------------------------------===//
462 // UnreachableInst Implementation
463 //===----------------------------------------------------------------------===//
465 unsigned UnreachableInst::getNumSuccessorsV() const {
466 return getNumSuccessors();
469 void UnreachableInst::setSuccessorV(unsigned idx
, BasicBlock
*NewSucc
) {
470 assert(0 && "UnwindInst has no successors!");
473 BasicBlock
*UnreachableInst::getSuccessorV(unsigned idx
) const {
474 assert(0 && "UnwindInst has no successors!");
479 //===----------------------------------------------------------------------===//
480 // BranchInst Implementation
481 //===----------------------------------------------------------------------===//
483 void BranchInst::AssertOK() {
485 assert(getCondition()->getType() == Type::BoolTy
&&
486 "May only branch on boolean predicates!");
489 BranchInst::BranchInst(const BranchInst
&BI
) :
490 TerminatorInst(Instruction::Br
, Ops
, BI
.getNumOperands()) {
491 OperandList
[0].init(BI
.getOperand(0), this);
492 if (BI
.getNumOperands() != 1) {
493 assert(BI
.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
494 OperandList
[1].init(BI
.getOperand(1), this);
495 OperandList
[2].init(BI
.getOperand(2), this);
499 BasicBlock
*BranchInst::getSuccessorV(unsigned idx
) const {
500 return getSuccessor(idx
);
502 unsigned BranchInst::getNumSuccessorsV() const {
503 return getNumSuccessors();
505 void BranchInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
506 setSuccessor(idx
, B
);
510 //===----------------------------------------------------------------------===//
511 // AllocationInst Implementation
512 //===----------------------------------------------------------------------===//
514 static Value
*getAISize(Value
*Amt
) {
516 Amt
= ConstantUInt::get(Type::UIntTy
, 1);
518 assert(!isa
<BasicBlock
>(Amt
) &&
519 "Passed basic block into allocation size parameter! Ue other ctor");
520 assert(Amt
->getType() == Type::UIntTy
&&
521 "Malloc/Allocation array size != UIntTy!");
526 AllocationInst::AllocationInst(const Type
*Ty
, Value
*ArraySize
, unsigned iTy
,
527 unsigned Align
, const std::string
&Name
,
528 Instruction
*InsertBefore
)
529 : UnaryInstruction(PointerType::get(Ty
), iTy
, getAISize(ArraySize
),
530 Name
, InsertBefore
), Alignment(Align
) {
531 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
532 assert(Ty
!= Type::VoidTy
&& "Cannot allocate void!");
535 AllocationInst::AllocationInst(const Type
*Ty
, Value
*ArraySize
, unsigned iTy
,
536 unsigned Align
, const std::string
&Name
,
537 BasicBlock
*InsertAtEnd
)
538 : UnaryInstruction(PointerType::get(Ty
), iTy
, getAISize(ArraySize
),
539 Name
, InsertAtEnd
), Alignment(Align
) {
540 assert((Align
& (Align
-1)) == 0 && "Alignment is not a power of 2!");
541 assert(Ty
!= Type::VoidTy
&& "Cannot allocate void!");
544 // Out of line virtual method, so the vtable, etc has a home.
545 AllocationInst::~AllocationInst() {
548 bool AllocationInst::isArrayAllocation() const {
549 if (ConstantUInt
*CUI
= dyn_cast
<ConstantUInt
>(getOperand(0)))
550 return CUI
->getValue() != 1;
554 const Type
*AllocationInst::getAllocatedType() const {
555 return getType()->getElementType();
558 AllocaInst::AllocaInst(const AllocaInst
&AI
)
559 : AllocationInst(AI
.getType()->getElementType(), (Value
*)AI
.getOperand(0),
560 Instruction::Alloca
, AI
.getAlignment()) {
563 MallocInst::MallocInst(const MallocInst
&MI
)
564 : AllocationInst(MI
.getType()->getElementType(), (Value
*)MI
.getOperand(0),
565 Instruction::Malloc
, MI
.getAlignment()) {
568 //===----------------------------------------------------------------------===//
569 // FreeInst Implementation
570 //===----------------------------------------------------------------------===//
572 void FreeInst::AssertOK() {
573 assert(isa
<PointerType
>(getOperand(0)->getType()) &&
574 "Can not free something of nonpointer type!");
577 FreeInst::FreeInst(Value
*Ptr
, Instruction
*InsertBefore
)
578 : UnaryInstruction(Type::VoidTy
, Free
, Ptr
, "", InsertBefore
) {
582 FreeInst::FreeInst(Value
*Ptr
, BasicBlock
*InsertAtEnd
)
583 : UnaryInstruction(Type::VoidTy
, Free
, Ptr
, "", InsertAtEnd
) {
588 //===----------------------------------------------------------------------===//
589 // LoadInst Implementation
590 //===----------------------------------------------------------------------===//
592 void LoadInst::AssertOK() {
593 assert(isa
<PointerType
>(getOperand(0)->getType()) &&
594 "Ptr must have pointer type.");
597 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, Instruction
*InsertBef
)
598 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
599 Load
, Ptr
, Name
, InsertBef
) {
604 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, BasicBlock
*InsertAE
)
605 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
606 Load
, Ptr
, Name
, InsertAE
) {
611 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, bool isVolatile
,
612 Instruction
*InsertBef
)
613 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
614 Load
, Ptr
, Name
, InsertBef
) {
615 setVolatile(isVolatile
);
619 LoadInst::LoadInst(Value
*Ptr
, const std::string
&Name
, bool isVolatile
,
620 BasicBlock
*InsertAE
)
621 : UnaryInstruction(cast
<PointerType
>(Ptr
->getType())->getElementType(),
622 Load
, Ptr
, Name
, InsertAE
) {
623 setVolatile(isVolatile
);
628 //===----------------------------------------------------------------------===//
629 // StoreInst Implementation
630 //===----------------------------------------------------------------------===//
632 void StoreInst::AssertOK() {
633 assert(isa
<PointerType
>(getOperand(1)->getType()) &&
634 "Ptr must have pointer type!");
635 assert(getOperand(0)->getType() ==
636 cast
<PointerType
>(getOperand(1)->getType())->getElementType()
637 && "Ptr must be a pointer to Val type!");
641 StoreInst::StoreInst(Value
*val
, Value
*addr
, Instruction
*InsertBefore
)
642 : Instruction(Type::VoidTy
, Store
, Ops
, 2, "", InsertBefore
) {
643 Ops
[0].init(val
, this);
644 Ops
[1].init(addr
, this);
649 StoreInst::StoreInst(Value
*val
, Value
*addr
, BasicBlock
*InsertAtEnd
)
650 : Instruction(Type::VoidTy
, Store
, Ops
, 2, "", InsertAtEnd
) {
651 Ops
[0].init(val
, this);
652 Ops
[1].init(addr
, this);
657 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
658 Instruction
*InsertBefore
)
659 : Instruction(Type::VoidTy
, Store
, Ops
, 2, "", InsertBefore
) {
660 Ops
[0].init(val
, this);
661 Ops
[1].init(addr
, this);
662 setVolatile(isVolatile
);
666 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
667 BasicBlock
*InsertAtEnd
)
668 : Instruction(Type::VoidTy
, Store
, Ops
, 2, "", InsertAtEnd
) {
669 Ops
[0].init(val
, this);
670 Ops
[1].init(addr
, this);
671 setVolatile(isVolatile
);
675 //===----------------------------------------------------------------------===//
676 // GetElementPtrInst Implementation
677 //===----------------------------------------------------------------------===//
679 // checkType - Simple wrapper function to give a better assertion failure
680 // message on bad indexes for a gep instruction.
682 static inline const Type
*checkType(const Type
*Ty
) {
683 assert(Ty
&& "Invalid GetElementPtrInst indices for type!");
687 void GetElementPtrInst::init(Value
*Ptr
, const std::vector
<Value
*> &Idx
) {
688 NumOperands
= 1+Idx
.size();
689 Use
*OL
= OperandList
= new Use
[NumOperands
];
690 OL
[0].init(Ptr
, this);
692 for (unsigned i
= 0, e
= Idx
.size(); i
!= e
; ++i
)
693 OL
[i
+1].init(Idx
[i
], this);
696 void GetElementPtrInst::init(Value
*Ptr
, Value
*Idx0
, Value
*Idx1
) {
698 Use
*OL
= OperandList
= new Use
[3];
699 OL
[0].init(Ptr
, this);
700 OL
[1].init(Idx0
, this);
701 OL
[2].init(Idx1
, this);
704 void GetElementPtrInst::init(Value
*Ptr
, Value
*Idx
) {
706 Use
*OL
= OperandList
= new Use
[2];
707 OL
[0].init(Ptr
, this);
708 OL
[1].init(Idx
, this);
711 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, const std::vector
<Value
*> &Idx
,
712 const std::string
&Name
, Instruction
*InBe
)
713 : Instruction(PointerType::get(checkType(getIndexedType(Ptr
->getType(),
715 GetElementPtr
, 0, 0, Name
, InBe
) {
719 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, const std::vector
<Value
*> &Idx
,
720 const std::string
&Name
, BasicBlock
*IAE
)
721 : Instruction(PointerType::get(checkType(getIndexedType(Ptr
->getType(),
723 GetElementPtr
, 0, 0, Name
, IAE
) {
727 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx
,
728 const std::string
&Name
, Instruction
*InBe
)
729 : Instruction(PointerType::get(checkType(getIndexedType(Ptr
->getType(),Idx
))),
730 GetElementPtr
, 0, 0, Name
, InBe
) {
734 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx
,
735 const std::string
&Name
, BasicBlock
*IAE
)
736 : Instruction(PointerType::get(checkType(getIndexedType(Ptr
->getType(),Idx
))),
737 GetElementPtr
, 0, 0, Name
, IAE
) {
741 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx0
, Value
*Idx1
,
742 const std::string
&Name
, Instruction
*InBe
)
743 : Instruction(PointerType::get(checkType(getIndexedType(Ptr
->getType(),
745 GetElementPtr
, 0, 0, Name
, InBe
) {
746 init(Ptr
, Idx0
, Idx1
);
749 GetElementPtrInst::GetElementPtrInst(Value
*Ptr
, Value
*Idx0
, Value
*Idx1
,
750 const std::string
&Name
, BasicBlock
*IAE
)
751 : Instruction(PointerType::get(checkType(getIndexedType(Ptr
->getType(),
753 GetElementPtr
, 0, 0, Name
, IAE
) {
754 init(Ptr
, Idx0
, Idx1
);
757 GetElementPtrInst::~GetElementPtrInst() {
758 delete[] OperandList
;
761 // getIndexedType - Returns the type of the element that would be loaded with
762 // a load instruction with the specified parameters.
764 // A null type is returned if the indices are invalid for the specified
767 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
,
768 const std::vector
<Value
*> &Idx
,
769 bool AllowCompositeLeaf
) {
770 if (!isa
<PointerType
>(Ptr
)) return 0; // Type isn't a pointer type!
772 // Handle the special case of the empty set index set...
774 if (AllowCompositeLeaf
||
775 cast
<PointerType
>(Ptr
)->getElementType()->isFirstClassType())
776 return cast
<PointerType
>(Ptr
)->getElementType();
781 while (const CompositeType
*CT
= dyn_cast
<CompositeType
>(Ptr
)) {
782 if (Idx
.size() == CurIdx
) {
783 if (AllowCompositeLeaf
|| CT
->isFirstClassType()) return Ptr
;
784 return 0; // Can't load a whole structure or array!?!?
787 Value
*Index
= Idx
[CurIdx
++];
788 if (isa
<PointerType
>(CT
) && CurIdx
!= 1)
789 return 0; // Can only index into pointer types at the first index!
790 if (!CT
->indexValid(Index
)) return 0;
791 Ptr
= CT
->getTypeAtIndex(Index
);
793 // If the new type forwards to another type, then it is in the middle
794 // of being refined to another type (and hence, may have dropped all
795 // references to what it was using before). So, use the new forwarded
797 if (const Type
* Ty
= Ptr
->getForwardedType()) {
801 return CurIdx
== Idx
.size() ? Ptr
: 0;
804 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
,
805 Value
*Idx0
, Value
*Idx1
,
806 bool AllowCompositeLeaf
) {
807 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ptr
);
808 if (!PTy
) return 0; // Type isn't a pointer type!
810 // Check the pointer index.
811 if (!PTy
->indexValid(Idx0
)) return 0;
813 const CompositeType
*CT
= dyn_cast
<CompositeType
>(PTy
->getElementType());
814 if (!CT
|| !CT
->indexValid(Idx1
)) return 0;
816 const Type
*ElTy
= CT
->getTypeAtIndex(Idx1
);
817 if (AllowCompositeLeaf
|| ElTy
->isFirstClassType())
822 const Type
* GetElementPtrInst::getIndexedType(const Type
*Ptr
, Value
*Idx
) {
823 const PointerType
*PTy
= dyn_cast
<PointerType
>(Ptr
);
824 if (!PTy
) return 0; // Type isn't a pointer type!
826 // Check the pointer index.
827 if (!PTy
->indexValid(Idx
)) return 0;
829 return PTy
->getElementType();
832 //===----------------------------------------------------------------------===//
833 // ExtractElementInst Implementation
834 //===----------------------------------------------------------------------===//
836 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
837 const std::string
&Name
,
838 Instruction
*InsertBef
)
839 : Instruction(cast
<PackedType
>(Val
->getType())->getElementType(),
840 ExtractElement
, Ops
, 2, Name
, InsertBef
) {
841 assert(isValidOperands(Val
, Index
) &&
842 "Invalid extractelement instruction operands!");
843 Ops
[0].init(Val
, this);
844 Ops
[1].init(Index
, this);
847 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
848 const std::string
&Name
,
849 BasicBlock
*InsertAE
)
850 : Instruction(cast
<PackedType
>(Val
->getType())->getElementType(),
851 ExtractElement
, Ops
, 2, Name
, InsertAE
) {
852 assert(isValidOperands(Val
, Index
) &&
853 "Invalid extractelement instruction operands!");
855 Ops
[0].init(Val
, this);
856 Ops
[1].init(Index
, this);
859 bool ExtractElementInst::isValidOperands(const Value
*Val
, const Value
*Index
) {
860 if (!isa
<PackedType
>(Val
->getType()) || Index
->getType() != Type::UIntTy
)
866 //===----------------------------------------------------------------------===//
867 // InsertElementInst Implementation
868 //===----------------------------------------------------------------------===//
870 InsertElementInst::InsertElementInst(const InsertElementInst
&IE
)
871 : Instruction(IE
.getType(), InsertElement
, Ops
, 3) {
872 Ops
[0].init(IE
.Ops
[0], this);
873 Ops
[1].init(IE
.Ops
[1], this);
874 Ops
[2].init(IE
.Ops
[2], this);
876 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
877 const std::string
&Name
,
878 Instruction
*InsertBef
)
879 : Instruction(Vec
->getType(), InsertElement
, Ops
, 3, Name
, InsertBef
) {
880 assert(isValidOperands(Vec
, Elt
, Index
) &&
881 "Invalid insertelement instruction operands!");
882 Ops
[0].init(Vec
, this);
883 Ops
[1].init(Elt
, this);
884 Ops
[2].init(Index
, this);
887 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
888 const std::string
&Name
,
889 BasicBlock
*InsertAE
)
890 : Instruction(Vec
->getType(), InsertElement
, Ops
, 3, Name
, InsertAE
) {
891 assert(isValidOperands(Vec
, Elt
, Index
) &&
892 "Invalid insertelement instruction operands!");
894 Ops
[0].init(Vec
, this);
895 Ops
[1].init(Elt
, this);
896 Ops
[2].init(Index
, this);
899 bool InsertElementInst::isValidOperands(const Value
*Vec
, const Value
*Elt
,
900 const Value
*Index
) {
901 if (!isa
<PackedType
>(Vec
->getType()))
902 return false; // First operand of insertelement must be packed type.
904 if (Elt
->getType() != cast
<PackedType
>(Vec
->getType())->getElementType())
905 return false;// Second operand of insertelement must be packed element type.
907 if (Index
->getType() != Type::UIntTy
)
908 return false; // Third operand of insertelement must be uint.
913 //===----------------------------------------------------------------------===//
914 // ShuffleVectorInst Implementation
915 //===----------------------------------------------------------------------===//
917 ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst
&SV
)
918 : Instruction(SV
.getType(), ShuffleVector
, Ops
, 3) {
919 Ops
[0].init(SV
.Ops
[0], this);
920 Ops
[1].init(SV
.Ops
[1], this);
921 Ops
[2].init(SV
.Ops
[2], this);
924 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
925 const std::string
&Name
,
926 Instruction
*InsertBefore
)
927 : Instruction(V1
->getType(), ShuffleVector
, Ops
, 3, Name
, InsertBefore
) {
928 assert(isValidOperands(V1
, V2
, Mask
) &&
929 "Invalid shuffle vector instruction operands!");
930 Ops
[0].init(V1
, this);
931 Ops
[1].init(V2
, this);
932 Ops
[2].init(Mask
, this);
935 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
936 const std::string
&Name
,
937 BasicBlock
*InsertAtEnd
)
938 : Instruction(V1
->getType(), ShuffleVector
, Ops
, 3, Name
, InsertAtEnd
) {
939 assert(isValidOperands(V1
, V2
, Mask
) &&
940 "Invalid shuffle vector instruction operands!");
942 Ops
[0].init(V1
, this);
943 Ops
[1].init(V2
, this);
944 Ops
[2].init(Mask
, this);
947 bool ShuffleVectorInst::isValidOperands(const Value
*V1
, const Value
*V2
,
949 if (!isa
<PackedType
>(V1
->getType())) return false;
950 if (V1
->getType() != V2
->getType()) return false;
951 if (!isa
<PackedType
>(Mask
->getType()) ||
952 cast
<PackedType
>(Mask
->getType())->getElementType() != Type::UIntTy
||
953 cast
<PackedType
>(Mask
->getType())->getNumElements() !=
954 cast
<PackedType
>(V1
->getType())->getNumElements())
960 //===----------------------------------------------------------------------===//
961 // BinaryOperator Class
962 //===----------------------------------------------------------------------===//
964 void BinaryOperator::init(BinaryOps iType
)
966 Value
*LHS
= getOperand(0), *RHS
= getOperand(1);
967 assert(LHS
->getType() == RHS
->getType() &&
968 "Binary operator operand types must match!");
974 assert(getType() == LHS
->getType() &&
975 "Arithmetic operation should return same type as operands!");
976 assert((getType()->isInteger() || getType()->isFloatingPoint() ||
977 isa
<PackedType
>(getType())) &&
978 "Tried to create an arithmetic operation on a non-arithmetic type!");
982 assert(getType() == LHS
->getType() &&
983 "Logical operation should return same type as operands!");
984 assert((getType()->isIntegral() ||
985 (isa
<PackedType
>(getType()) &&
986 cast
<PackedType
>(getType())->getElementType()->isIntegral())) &&
987 "Tried to create a logical operation on a non-integral type!");
989 case SetLT
: case SetGT
: case SetLE
:
990 case SetGE
: case SetEQ
: case SetNE
:
991 assert(getType() == Type::BoolTy
&& "Setcc must return bool!");
998 BinaryOperator
*BinaryOperator::create(BinaryOps Op
, Value
*S1
, Value
*S2
,
999 const std::string
&Name
,
1000 Instruction
*InsertBefore
) {
1001 assert(S1
->getType() == S2
->getType() &&
1002 "Cannot create binary operator with two operands of differing type!");
1004 // Binary comparison operators...
1005 case SetLT
: case SetGT
: case SetLE
:
1006 case SetGE
: case SetEQ
: case SetNE
:
1007 return new SetCondInst(Op
, S1
, S2
, Name
, InsertBefore
);
1010 return new BinaryOperator(Op
, S1
, S2
, S1
->getType(), Name
, InsertBefore
);
1014 BinaryOperator
*BinaryOperator::create(BinaryOps Op
, Value
*S1
, Value
*S2
,
1015 const std::string
&Name
,
1016 BasicBlock
*InsertAtEnd
) {
1017 BinaryOperator
*Res
= create(Op
, S1
, S2
, Name
);
1018 InsertAtEnd
->getInstList().push_back(Res
);
1022 BinaryOperator
*BinaryOperator::createNeg(Value
*Op
, const std::string
&Name
,
1023 Instruction
*InsertBefore
) {
1024 if (!Op
->getType()->isFloatingPoint())
1025 return new BinaryOperator(Instruction::Sub
,
1026 Constant::getNullValue(Op
->getType()), Op
,
1027 Op
->getType(), Name
, InsertBefore
);
1029 return new BinaryOperator(Instruction::Sub
,
1030 ConstantFP::get(Op
->getType(), -0.0), Op
,
1031 Op
->getType(), Name
, InsertBefore
);
1034 BinaryOperator
*BinaryOperator::createNeg(Value
*Op
, const std::string
&Name
,
1035 BasicBlock
*InsertAtEnd
) {
1036 if (!Op
->getType()->isFloatingPoint())
1037 return new BinaryOperator(Instruction::Sub
,
1038 Constant::getNullValue(Op
->getType()), Op
,
1039 Op
->getType(), Name
, InsertAtEnd
);
1041 return new BinaryOperator(Instruction::Sub
,
1042 ConstantFP::get(Op
->getType(), -0.0), Op
,
1043 Op
->getType(), Name
, InsertAtEnd
);
1046 BinaryOperator
*BinaryOperator::createNot(Value
*Op
, const std::string
&Name
,
1047 Instruction
*InsertBefore
) {
1049 if (const PackedType
*PTy
= dyn_cast
<PackedType
>(Op
->getType())) {
1050 C
= ConstantIntegral::getAllOnesValue(PTy
->getElementType());
1051 C
= ConstantPacked::get(std::vector
<Constant
*>(PTy
->getNumElements(), C
));
1053 C
= ConstantIntegral::getAllOnesValue(Op
->getType());
1056 return new BinaryOperator(Instruction::Xor
, Op
, C
,
1057 Op
->getType(), Name
, InsertBefore
);
1060 BinaryOperator
*BinaryOperator::createNot(Value
*Op
, const std::string
&Name
,
1061 BasicBlock
*InsertAtEnd
) {
1063 if (const PackedType
*PTy
= dyn_cast
<PackedType
>(Op
->getType())) {
1064 // Create a vector of all ones values.
1065 Constant
*Elt
= ConstantIntegral::getAllOnesValue(PTy
->getElementType());
1067 ConstantPacked::get(std::vector
<Constant
*>(PTy
->getNumElements(), Elt
));
1069 AllOnes
= ConstantIntegral::getAllOnesValue(Op
->getType());
1072 return new BinaryOperator(Instruction::Xor
, Op
, AllOnes
,
1073 Op
->getType(), Name
, InsertAtEnd
);
1077 // isConstantAllOnes - Helper function for several functions below
1078 static inline bool isConstantAllOnes(const Value
*V
) {
1079 return isa
<ConstantIntegral
>(V
) &&cast
<ConstantIntegral
>(V
)->isAllOnesValue();
1082 bool BinaryOperator::isNeg(const Value
*V
) {
1083 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1084 if (Bop
->getOpcode() == Instruction::Sub
)
1085 if (!V
->getType()->isFloatingPoint())
1086 return Bop
->getOperand(0) == Constant::getNullValue(Bop
->getType());
1088 return Bop
->getOperand(0) == ConstantFP::get(Bop
->getType(), -0.0);
1092 bool BinaryOperator::isNot(const Value
*V
) {
1093 if (const BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(V
))
1094 return (Bop
->getOpcode() == Instruction::Xor
&&
1095 (isConstantAllOnes(Bop
->getOperand(1)) ||
1096 isConstantAllOnes(Bop
->getOperand(0))));
1100 Value
*BinaryOperator::getNegArgument(Value
*BinOp
) {
1101 assert(isNeg(BinOp
) && "getNegArgument from non-'neg' instruction!");
1102 return cast
<BinaryOperator
>(BinOp
)->getOperand(1);
1105 const Value
*BinaryOperator::getNegArgument(const Value
*BinOp
) {
1106 return getNegArgument(const_cast<Value
*>(BinOp
));
1109 Value
*BinaryOperator::getNotArgument(Value
*BinOp
) {
1110 assert(isNot(BinOp
) && "getNotArgument on non-'not' instruction!");
1111 BinaryOperator
*BO
= cast
<BinaryOperator
>(BinOp
);
1112 Value
*Op0
= BO
->getOperand(0);
1113 Value
*Op1
= BO
->getOperand(1);
1114 if (isConstantAllOnes(Op0
)) return Op1
;
1116 assert(isConstantAllOnes(Op1
));
1120 const Value
*BinaryOperator::getNotArgument(const Value
*BinOp
) {
1121 return getNotArgument(const_cast<Value
*>(BinOp
));
1125 // swapOperands - Exchange the two operands to this instruction. This
1126 // instruction is safe to use on any binary instruction and does not
1127 // modify the semantics of the instruction. If the instruction is
1128 // order dependent (SetLT f.e.) the opcode is changed.
1130 bool BinaryOperator::swapOperands() {
1131 if (isCommutative())
1132 ; // If the instruction is commutative, it is safe to swap the operands
1133 else if (SetCondInst
*SCI
= dyn_cast
<SetCondInst
>(this))
1134 /// FIXME: SetCC instructions shouldn't all have different opcodes.
1135 setOpcode(SCI
->getSwappedCondition());
1137 return true; // Can't commute operands
1139 std::swap(Ops
[0], Ops
[1]);
1144 //===----------------------------------------------------------------------===//
1145 // SetCondInst Class
1146 //===----------------------------------------------------------------------===//
1148 SetCondInst::SetCondInst(BinaryOps Opcode
, Value
*S1
, Value
*S2
,
1149 const std::string
&Name
, Instruction
*InsertBefore
)
1150 : BinaryOperator(Opcode
, S1
, S2
, Type::BoolTy
, Name
, InsertBefore
) {
1152 // Make sure it's a valid type... getInverseCondition will assert out if not.
1153 assert(getInverseCondition(Opcode
));
1156 SetCondInst::SetCondInst(BinaryOps Opcode
, Value
*S1
, Value
*S2
,
1157 const std::string
&Name
, BasicBlock
*InsertAtEnd
)
1158 : BinaryOperator(Opcode
, S1
, S2
, Type::BoolTy
, Name
, InsertAtEnd
) {
1160 // Make sure it's a valid type... getInverseCondition will assert out if not.
1161 assert(getInverseCondition(Opcode
));
1164 // getInverseCondition - Return the inverse of the current condition opcode.
1165 // For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
1167 Instruction::BinaryOps
SetCondInst::getInverseCondition(BinaryOps Opcode
) {
1170 assert(0 && "Unknown setcc opcode!");
1171 case SetEQ
: return SetNE
;
1172 case SetNE
: return SetEQ
;
1173 case SetGT
: return SetLE
;
1174 case SetLT
: return SetGE
;
1175 case SetGE
: return SetLT
;
1176 case SetLE
: return SetGT
;
1180 // getSwappedCondition - Return the condition opcode that would be the result
1181 // of exchanging the two operands of the setcc instruction without changing
1182 // the result produced. Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
1184 Instruction::BinaryOps
SetCondInst::getSwappedCondition(BinaryOps Opcode
) {
1186 default: assert(0 && "Unknown setcc instruction!");
1187 case SetEQ
: case SetNE
: return Opcode
;
1188 case SetGT
: return SetLT
;
1189 case SetLT
: return SetGT
;
1190 case SetGE
: return SetLE
;
1191 case SetLE
: return SetGE
;
1195 //===----------------------------------------------------------------------===//
1196 // SwitchInst Implementation
1197 //===----------------------------------------------------------------------===//
1199 void SwitchInst::init(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
) {
1200 assert(Value
&& Default
);
1201 ReservedSpace
= 2+NumCases
*2;
1203 OperandList
= new Use
[ReservedSpace
];
1205 OperandList
[0].init(Value
, this);
1206 OperandList
[1].init(Default
, this);
1209 SwitchInst::SwitchInst(const SwitchInst
&SI
)
1210 : TerminatorInst(Instruction::Switch
, new Use
[SI
.getNumOperands()],
1211 SI
.getNumOperands()) {
1212 Use
*OL
= OperandList
, *InOL
= SI
.OperandList
;
1213 for (unsigned i
= 0, E
= SI
.getNumOperands(); i
!= E
; i
+=2) {
1214 OL
[i
].init(InOL
[i
], this);
1215 OL
[i
+1].init(InOL
[i
+1], this);
1219 SwitchInst::~SwitchInst() {
1220 delete [] OperandList
;
1224 /// addCase - Add an entry to the switch instruction...
1226 void SwitchInst::addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
) {
1227 unsigned OpNo
= NumOperands
;
1228 if (OpNo
+2 > ReservedSpace
)
1229 resizeOperands(0); // Get more space!
1230 // Initialize some new operands.
1231 assert(OpNo
+1 < ReservedSpace
&& "Growing didn't work!");
1232 NumOperands
= OpNo
+2;
1233 OperandList
[OpNo
].init(OnVal
, this);
1234 OperandList
[OpNo
+1].init(Dest
, this);
1237 /// removeCase - This method removes the specified successor from the switch
1238 /// instruction. Note that this cannot be used to remove the default
1239 /// destination (successor #0).
1241 void SwitchInst::removeCase(unsigned idx
) {
1242 assert(idx
!= 0 && "Cannot remove the default case!");
1243 assert(idx
*2 < getNumOperands() && "Successor index out of range!!!");
1245 unsigned NumOps
= getNumOperands();
1246 Use
*OL
= OperandList
;
1248 // Move everything after this operand down.
1250 // FIXME: we could just swap with the end of the list, then erase. However,
1251 // client might not expect this to happen. The code as it is thrashes the
1252 // use/def lists, which is kinda lame.
1253 for (unsigned i
= (idx
+1)*2; i
!= NumOps
; i
+= 2) {
1255 OL
[i
-2+1] = OL
[i
+1];
1258 // Nuke the last value.
1259 OL
[NumOps
-2].set(0);
1260 OL
[NumOps
-2+1].set(0);
1261 NumOperands
= NumOps
-2;
1264 /// resizeOperands - resize operands - This adjusts the length of the operands
1265 /// list according to the following behavior:
1266 /// 1. If NumOps == 0, grow the operand list in response to a push_back style
1267 /// of operation. This grows the number of ops by 1.5 times.
1268 /// 2. If NumOps > NumOperands, reserve space for NumOps operands.
1269 /// 3. If NumOps == NumOperands, trim the reserved space.
1271 void SwitchInst::resizeOperands(unsigned NumOps
) {
1273 NumOps
= getNumOperands()/2*6;
1274 } else if (NumOps
*2 > NumOperands
) {
1275 // No resize needed.
1276 if (ReservedSpace
>= NumOps
) return;
1277 } else if (NumOps
== NumOperands
) {
1278 if (ReservedSpace
== NumOps
) return;
1283 ReservedSpace
= NumOps
;
1284 Use
*NewOps
= new Use
[NumOps
];
1285 Use
*OldOps
= OperandList
;
1286 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1287 NewOps
[i
].init(OldOps
[i
], this);
1291 OperandList
= NewOps
;
1295 BasicBlock
*SwitchInst::getSuccessorV(unsigned idx
) const {
1296 return getSuccessor(idx
);
1298 unsigned SwitchInst::getNumSuccessorsV() const {
1299 return getNumSuccessors();
1301 void SwitchInst::setSuccessorV(unsigned idx
, BasicBlock
*B
) {
1302 setSuccessor(idx
, B
);
1306 // Define these methods here so vtables don't get emitted into every translation
1307 // unit that uses these classes.
1309 GetElementPtrInst
*GetElementPtrInst::clone() const {
1310 return new GetElementPtrInst(*this);
1313 BinaryOperator
*BinaryOperator::clone() const {
1314 return create(getOpcode(), Ops
[0], Ops
[1]);
1317 MallocInst
*MallocInst::clone() const { return new MallocInst(*this); }
1318 AllocaInst
*AllocaInst::clone() const { return new AllocaInst(*this); }
1319 FreeInst
*FreeInst::clone() const { return new FreeInst(getOperand(0)); }
1320 LoadInst
*LoadInst::clone() const { return new LoadInst(*this); }
1321 StoreInst
*StoreInst::clone() const { return new StoreInst(*this); }
1322 CastInst
*CastInst::clone() const { return new CastInst(*this); }
1323 CallInst
*CallInst::clone() const { return new CallInst(*this); }
1324 ShiftInst
*ShiftInst::clone() const { return new ShiftInst(*this); }
1325 SelectInst
*SelectInst::clone() const { return new SelectInst(*this); }
1326 VAArgInst
*VAArgInst::clone() const { return new VAArgInst(*this); }
1327 ExtractElementInst
*ExtractElementInst::clone() const {
1328 return new ExtractElementInst(*this);
1330 InsertElementInst
*InsertElementInst::clone() const {
1331 return new InsertElementInst(*this);
1333 ShuffleVectorInst
*ShuffleVectorInst::clone() const {
1334 return new ShuffleVectorInst(*this);
1336 PHINode
*PHINode::clone() const { return new PHINode(*this); }
1337 ReturnInst
*ReturnInst::clone() const { return new ReturnInst(*this); }
1338 BranchInst
*BranchInst::clone() const { return new BranchInst(*this); }
1339 SwitchInst
*SwitchInst::clone() const { return new SwitchInst(*this); }
1340 InvokeInst
*InvokeInst::clone() const { return new InvokeInst(*this); }
1341 UnwindInst
*UnwindInst::clone() const { return new UnwindInst(); }
1342 UnreachableInst
*UnreachableInst::clone() const { return new UnreachableInst();}