Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / include / llvm / Bitcode / BitcodeWriter.h
blob39061e09cda5d980ff3850ddeece65d6ec262a81
1 //===- llvm/Bitcode/BitcodeWriter.h - Bitcode writers -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This header defines interfaces to write LLVM bitcode files/streams.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_BITCODE_BITCODEWRITER_H
14 #define LLVM_BITCODE_BITCODEWRITER_H
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/IR/ModuleSummaryIndex.h"
18 #include "llvm/MC/StringTableBuilder.h"
19 #include "llvm/Support/Allocator.h"
20 #include <map>
21 #include <memory>
22 #include <string>
23 #include <vector>
25 namespace llvm {
27 class BitstreamWriter;
28 class Module;
29 class raw_ostream;
31 class BitcodeWriter {
32 SmallVectorImpl<char> &Buffer;
33 std::unique_ptr<BitstreamWriter> Stream;
35 StringTableBuilder StrtabBuilder{StringTableBuilder::RAW};
37 // Owns any strings created by the irsymtab writer until we create the
38 // string table.
39 BumpPtrAllocator Alloc;
41 bool WroteStrtab = false, WroteSymtab = false;
43 void writeBlob(unsigned Block, unsigned Record, StringRef Blob);
45 std::vector<Module *> Mods;
47 public:
48 /// Create a BitcodeWriter that writes to Buffer.
49 BitcodeWriter(SmallVectorImpl<char> &Buffer);
51 ~BitcodeWriter();
53 /// Attempt to write a symbol table to the bitcode file. This must be called
54 /// at most once after all modules have been written.
55 ///
56 /// A reader does not require a symbol table to interpret a bitcode file;
57 /// the symbol table is needed only to improve link-time performance. So
58 /// this function may decide not to write a symbol table. It may so decide
59 /// if, for example, the target is unregistered or the IR is malformed.
60 void writeSymtab();
62 /// Write the bitcode file's string table. This must be called exactly once
63 /// after all modules and the optional symbol table have been written.
64 void writeStrtab();
66 /// Copy the string table for another module into this bitcode file. This
67 /// should be called after copying the module itself into the bitcode file.
68 void copyStrtab(StringRef Strtab);
70 /// Write the specified module to the buffer specified at construction time.
71 ///
72 /// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a
73 /// Value in \c M. These will be reconstructed exactly when \a M is
74 /// deserialized.
75 ///
76 /// If \c Index is supplied, the bitcode will contain the summary index
77 /// (currently for use in ThinLTO optimization).
78 ///
79 /// \p GenerateHash enables hashing the Module and including the hash in the
80 /// bitcode (currently for use in ThinLTO incremental build).
81 ///
82 /// If \p ModHash is non-null, when GenerateHash is true, the resulting
83 /// hash is written into ModHash. When GenerateHash is false, that value
84 /// is used as the hash instead of computing from the generated bitcode.
85 /// Can be used to produce the same module hash for a minimized bitcode
86 /// used just for the thin link as in the regular full bitcode that will
87 /// be used in the backend.
88 void writeModule(const Module &M, bool ShouldPreserveUseListOrder = false,
89 const ModuleSummaryIndex *Index = nullptr,
90 bool GenerateHash = false, ModuleHash *ModHash = nullptr);
92 /// Write the specified thin link bitcode file (i.e., the minimized bitcode
93 /// file) to the buffer specified at construction time. The thin link
94 /// bitcode file is used for thin link, and it only contains the necessary
95 /// information for thin link.
96 ///
97 /// ModHash is for use in ThinLTO incremental build, generated while the
98 /// IR bitcode file writing.
99 void writeThinLinkBitcode(const Module &M, const ModuleSummaryIndex &Index,
100 const ModuleHash &ModHash);
102 void writeIndex(
103 const ModuleSummaryIndex *Index,
104 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex);
107 /// Write the specified module to the specified raw output stream.
109 /// For streams where it matters, the given stream should be in "binary"
110 /// mode.
112 /// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a
113 /// Value in \c M. These will be reconstructed exactly when \a M is
114 /// deserialized.
116 /// If \c Index is supplied, the bitcode will contain the summary index
117 /// (currently for use in ThinLTO optimization).
119 /// \p GenerateHash enables hashing the Module and including the hash in the
120 /// bitcode (currently for use in ThinLTO incremental build).
122 /// If \p ModHash is non-null, when GenerateHash is true, the resulting
123 /// hash is written into ModHash. When GenerateHash is false, that value
124 /// is used as the hash instead of computing from the generated bitcode.
125 /// Can be used to produce the same module hash for a minimized bitcode
126 /// used just for the thin link as in the regular full bitcode that will
127 /// be used in the backend.
128 void WriteBitcodeToFile(const Module &M, raw_ostream &Out,
129 bool ShouldPreserveUseListOrder = false,
130 const ModuleSummaryIndex *Index = nullptr,
131 bool GenerateHash = false,
132 ModuleHash *ModHash = nullptr);
134 /// Write the specified thin link bitcode file (i.e., the minimized bitcode
135 /// file) to the given raw output stream, where it will be written in a new
136 /// bitcode block. The thin link bitcode file is used for thin link, and it
137 /// only contains the necessary information for thin link.
139 /// ModHash is for use in ThinLTO incremental build, generated while the IR
140 /// bitcode file writing.
141 void WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
142 const ModuleSummaryIndex &Index,
143 const ModuleHash &ModHash);
145 /// Write the specified module summary index to the given raw output stream,
146 /// where it will be written in a new bitcode block. This is used when
147 /// writing the combined index file for ThinLTO. When writing a subset of the
148 /// index for a distributed backend, provide the \p ModuleToSummariesForIndex
149 /// map.
150 void WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out,
151 const std::map<std::string, GVSummaryMapTy>
152 *ModuleToSummariesForIndex = nullptr);
154 } // end namespace llvm
156 #endif // LLVM_BITCODE_BITCODEWRITER_H