1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the abstract interface that implements execution support
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
15 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
17 #include "llvm-c/ExecutionEngine.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ExecutionEngine/JITSymbol.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Object/Binary.h"
27 #include "llvm/Support/CBindingWrapping.h"
28 #include "llvm/Support/CodeGen.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Mutex.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetOptions.h"
48 class JITEventListener
;
49 class MCJITMemoryManager
;
51 class RTDyldMemoryManager
;
60 } // end namespace object
62 /// Helper class for helping synchronize access to the global address map
63 /// table. Access to this class should be serialized under a mutex.
64 class ExecutionEngineState
{
66 using GlobalAddressMapTy
= StringMap
<uint64_t>;
69 /// GlobalAddressMap - A mapping between LLVM global symbol names values and
70 /// their actualized version...
71 GlobalAddressMapTy GlobalAddressMap
;
73 /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
74 /// used to convert raw addresses into the LLVM global value that is emitted
75 /// at the address. This map is not computed unless getGlobalValueAtAddress
76 /// is called at some point.
77 std::map
<uint64_t, std::string
> GlobalAddressReverseMap
;
80 GlobalAddressMapTy
&getGlobalAddressMap() {
81 return GlobalAddressMap
;
84 std::map
<uint64_t, std::string
> &getGlobalAddressReverseMap() {
85 return GlobalAddressReverseMap
;
88 /// Erase an entry from the mapping table.
90 /// \returns The address that \p ToUnmap was happed to.
91 uint64_t RemoveMapping(StringRef Name
);
94 using FunctionCreator
= std::function
<void *(const std::string
&)>;
96 /// Abstract interface for implementation execution of LLVM modules,
97 /// designed to support both interpreter and just-in-time (JIT) compiler
99 class ExecutionEngine
{
100 /// The state object holding the global address mapping, which must be
101 /// accessed synchronously.
103 // FIXME: There is no particular need the entire map needs to be
104 // synchronized. Wouldn't a reader-writer design be better here?
105 ExecutionEngineState EEState
;
107 /// The target data for the platform for which execution is being performed.
109 /// Note: the DataLayout is LLVMContext specific because it has an
110 /// internal cache based on type pointers. It makes unsafe to reuse the
111 /// ExecutionEngine across context, we don't enforce this rule but undefined
112 /// behavior can occurs if the user tries to do it.
115 /// Whether lazy JIT compilation is enabled.
116 bool CompilingLazily
;
118 /// Whether JIT compilation of external global variables is allowed.
119 bool GVCompilationDisabled
;
121 /// Whether the JIT should perform lookups of external symbols (e.g.,
123 bool SymbolSearchingDisabled
;
125 /// Whether the JIT should verify IR modules during compilation.
128 friend class EngineBuilder
; // To allow access to JITCtor and InterpCtor.
131 /// The list of Modules that we are JIT'ing from. We use a SmallVector to
132 /// optimize for the case where there is only one module.
133 SmallVector
<std::unique_ptr
<Module
>, 1> Modules
;
135 /// getMemoryforGV - Allocate memory for a global variable.
136 virtual char *getMemoryForGV(const GlobalVariable
*GV
);
138 static ExecutionEngine
*(*MCJITCtor
)(
139 std::unique_ptr
<Module
> M
, std::string
*ErrorStr
,
140 std::shared_ptr
<MCJITMemoryManager
> MM
,
141 std::shared_ptr
<LegacyJITSymbolResolver
> SR
,
142 std::unique_ptr
<TargetMachine
> TM
);
144 static ExecutionEngine
*(*OrcMCJITReplacementCtor
)(
145 std::string
*ErrorStr
, std::shared_ptr
<MCJITMemoryManager
> MM
,
146 std::shared_ptr
<LegacyJITSymbolResolver
> SR
,
147 std::unique_ptr
<TargetMachine
> TM
);
149 static ExecutionEngine
*(*InterpCtor
)(std::unique_ptr
<Module
> M
,
150 std::string
*ErrorStr
);
152 /// LazyFunctionCreator - If an unknown function is needed, this function
153 /// pointer is invoked to create it. If this returns null, the JIT will
155 FunctionCreator LazyFunctionCreator
;
157 /// getMangledName - Get mangled name.
158 std::string
getMangledName(const GlobalValue
*GV
);
161 /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
162 /// be held while changing the internal state of any of those classes.
165 //===--------------------------------------------------------------------===//
166 // ExecutionEngine Startup
167 //===--------------------------------------------------------------------===//
169 virtual ~ExecutionEngine();
171 /// Add a Module to the list of modules that we can JIT from.
172 virtual void addModule(std::unique_ptr
<Module
> M
) {
173 Modules
.push_back(std::move(M
));
176 /// addObjectFile - Add an ObjectFile to the execution engine.
178 /// This method is only supported by MCJIT. MCJIT will immediately load the
179 /// object into memory and adds its symbols to the list used to resolve
180 /// external symbols while preparing other objects for execution.
182 /// Objects added using this function will not be made executable until
183 /// needed by another object.
185 /// MCJIT will take ownership of the ObjectFile.
186 virtual void addObjectFile(std::unique_ptr
<object::ObjectFile
> O
);
187 virtual void addObjectFile(object::OwningBinary
<object::ObjectFile
> O
);
189 /// addArchive - Add an Archive to the execution engine.
191 /// This method is only supported by MCJIT. MCJIT will use the archive to
192 /// resolve external symbols in objects it is loading. If a symbol is found
193 /// in the Archive the contained object file will be extracted (in memory)
194 /// and loaded for possible execution.
195 virtual void addArchive(object::OwningBinary
<object::Archive
> A
);
197 //===--------------------------------------------------------------------===//
199 const DataLayout
&getDataLayout() const { return DL
; }
201 /// removeModule - Removes a Module from the list of modules, but does not
202 /// free the module's memory. Returns true if M is found, in which case the
203 /// caller assumes responsibility for deleting the module.
205 // FIXME: This stealth ownership transfer is horrible. This will probably be
206 // fixed by deleting ExecutionEngine.
207 virtual bool removeModule(Module
*M
);
209 /// FindFunctionNamed - Search all of the active modules to find the function that
210 /// defines FnName. This is very slow operation and shouldn't be used for
212 virtual Function
*FindFunctionNamed(StringRef FnName
);
214 /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
215 /// that defines Name. This is very slow operation and shouldn't be used for
217 virtual GlobalVariable
*FindGlobalVariableNamed(StringRef Name
, bool AllowInternal
= false);
219 /// runFunction - Execute the specified function with the specified arguments,
220 /// and return the result.
222 /// For MCJIT execution engines, clients are encouraged to use the
223 /// "GetFunctionAddress" method (rather than runFunction) and cast the
224 /// returned uint64_t to the desired function pointer type. However, for
225 /// backwards compatibility MCJIT's implementation can execute 'main-like'
226 /// function (i.e. those returning void or int, and taking either no
227 /// arguments or (int, char*[])).
228 virtual GenericValue
runFunction(Function
*F
,
229 ArrayRef
<GenericValue
> ArgValues
) = 0;
231 /// getPointerToNamedFunction - This method returns the address of the
232 /// specified function by using the dlsym function call. As such it is only
233 /// useful for resolving library symbols, not code generated symbols.
235 /// If AbortOnFailure is false and no function with the given name is
236 /// found, this function silently returns a null pointer. Otherwise,
237 /// it prints a message to stderr and aborts.
239 /// This function is deprecated for the MCJIT execution engine.
240 virtual void *getPointerToNamedFunction(StringRef Name
,
241 bool AbortOnFailure
= true) = 0;
243 /// mapSectionAddress - map a section to its target address space value.
244 /// Map the address of a JIT section as returned from the memory manager
245 /// to the address in the target process as the running code will see it.
246 /// This is the address which will be used for relocation resolution.
247 virtual void mapSectionAddress(const void *LocalAddress
,
248 uint64_t TargetAddress
) {
249 llvm_unreachable("Re-mapping of section addresses not supported with this "
253 /// generateCodeForModule - Run code generation for the specified module and
254 /// load it into memory.
256 /// When this function has completed, all code and data for the specified
257 /// module, and any module on which this module depends, will be generated
258 /// and loaded into memory, but relocations will not yet have been applied
259 /// and all memory will be readable and writable but not executable.
261 /// This function is primarily useful when generating code for an external
262 /// target, allowing the client an opportunity to remap section addresses
263 /// before relocations are applied. Clients that intend to execute code
264 /// locally can use the getFunctionAddress call, which will generate code
265 /// and apply final preparations all in one step.
267 /// This method has no effect for the interpeter.
268 virtual void generateCodeForModule(Module
*M
) {}
270 /// finalizeObject - ensure the module is fully processed and is usable.
272 /// It is the user-level function for completing the process of making the
273 /// object usable for execution. It should be called after sections within an
274 /// object have been relocated using mapSectionAddress. When this method is
275 /// called the MCJIT execution engine will reapply relocations for a loaded
276 /// object. This method has no effect for the interpeter.
277 virtual void finalizeObject() {}
279 /// runStaticConstructorsDestructors - This method is used to execute all of
280 /// the static constructors or destructors for a program.
282 /// \param isDtors - Run the destructors instead of constructors.
283 virtual void runStaticConstructorsDestructors(bool isDtors
);
285 /// This method is used to execute all of the static constructors or
286 /// destructors for a particular module.
288 /// \param isDtors - Run the destructors instead of constructors.
289 void runStaticConstructorsDestructors(Module
&module
, bool isDtors
);
292 /// runFunctionAsMain - This is a helper function which wraps runFunction to
293 /// handle the common task of starting up main with the specified argc, argv,
294 /// and envp parameters.
295 int runFunctionAsMain(Function
*Fn
, const std::vector
<std::string
> &argv
,
296 const char * const * envp
);
299 /// addGlobalMapping - Tell the execution engine that the specified global is
300 /// at the specified location. This is used internally as functions are JIT'd
301 /// and as global variables are laid out in memory. It can and should also be
302 /// used by clients of the EE that want to have an LLVM global overlay
303 /// existing data in memory. Values to be mapped should be named, and have
304 /// external or weak linkage. Mappings are automatically removed when their
305 /// GlobalValue is destroyed.
306 void addGlobalMapping(const GlobalValue
*GV
, void *Addr
);
307 void addGlobalMapping(StringRef Name
, uint64_t Addr
);
309 /// clearAllGlobalMappings - Clear all global mappings and start over again,
310 /// for use in dynamic compilation scenarios to move globals.
311 void clearAllGlobalMappings();
313 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
314 /// particular module, because it has been removed from the JIT.
315 void clearGlobalMappingsFromModule(Module
*M
);
317 /// updateGlobalMapping - Replace an existing mapping for GV with a new
318 /// address. This updates both maps as required. If "Addr" is null, the
319 /// entry for the global is removed from the mappings. This returns the old
320 /// value of the pointer, or null if it was not in the map.
321 uint64_t updateGlobalMapping(const GlobalValue
*GV
, void *Addr
);
322 uint64_t updateGlobalMapping(StringRef Name
, uint64_t Addr
);
324 /// getAddressToGlobalIfAvailable - This returns the address of the specified
326 uint64_t getAddressToGlobalIfAvailable(StringRef S
);
328 /// getPointerToGlobalIfAvailable - This returns the address of the specified
329 /// global value if it is has already been codegen'd, otherwise it returns
331 void *getPointerToGlobalIfAvailable(StringRef S
);
332 void *getPointerToGlobalIfAvailable(const GlobalValue
*GV
);
334 /// getPointerToGlobal - This returns the address of the specified global
335 /// value. This may involve code generation if it's a function.
337 /// This function is deprecated for the MCJIT execution engine. Use
338 /// getGlobalValueAddress instead.
339 void *getPointerToGlobal(const GlobalValue
*GV
);
341 /// getPointerToFunction - The different EE's represent function bodies in
342 /// different ways. They should each implement this to say what a function
343 /// pointer should look like. When F is destroyed, the ExecutionEngine will
344 /// remove its global mapping and free any machine code. Be sure no threads
345 /// are running inside F when that happens.
347 /// This function is deprecated for the MCJIT execution engine. Use
348 /// getFunctionAddress instead.
349 virtual void *getPointerToFunction(Function
*F
) = 0;
351 /// getPointerToFunctionOrStub - If the specified function has been
352 /// code-gen'd, return a pointer to the function. If not, compile it, or use
353 /// a stub to implement lazy compilation if available. See
354 /// getPointerToFunction for the requirements on destroying F.
356 /// This function is deprecated for the MCJIT execution engine. Use
357 /// getFunctionAddress instead.
358 virtual void *getPointerToFunctionOrStub(Function
*F
) {
359 // Default implementation, just codegen the function.
360 return getPointerToFunction(F
);
363 /// getGlobalValueAddress - Return the address of the specified global
364 /// value. This may involve code generation.
366 /// This function should not be called with the interpreter engine.
367 virtual uint64_t getGlobalValueAddress(const std::string
&Name
) {
368 // Default implementation for the interpreter. MCJIT will override this.
369 // JIT and interpreter clients should use getPointerToGlobal instead.
373 /// getFunctionAddress - Return the address of the specified function.
374 /// This may involve code generation.
375 virtual uint64_t getFunctionAddress(const std::string
&Name
) {
376 // Default implementation for the interpreter. MCJIT will override this.
377 // Interpreter clients should use getPointerToFunction instead.
381 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
382 /// at the specified address.
384 const GlobalValue
*getGlobalValueAtAddress(void *Addr
);
386 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
387 /// Ptr is the address of the memory at which to store Val, cast to
388 /// GenericValue *. It is not a pointer to a GenericValue containing the
389 /// address at which to store Val.
390 void StoreValueToMemory(const GenericValue
&Val
, GenericValue
*Ptr
,
393 void InitializeMemory(const Constant
*Init
, void *Addr
);
395 /// getOrEmitGlobalVariable - Return the address of the specified global
396 /// variable, possibly emitting it to memory if needed. This is used by the
399 /// This function is deprecated for the MCJIT execution engine. Use
400 /// getGlobalValueAddress instead.
401 virtual void *getOrEmitGlobalVariable(const GlobalVariable
*GV
) {
402 return getPointerToGlobal((const GlobalValue
*)GV
);
405 /// Registers a listener to be called back on various events within
406 /// the JIT. See JITEventListener.h for more details. Does not
407 /// take ownership of the argument. The argument may be NULL, in
408 /// which case these functions do nothing.
409 virtual void RegisterJITEventListener(JITEventListener
*) {}
410 virtual void UnregisterJITEventListener(JITEventListener
*) {}
412 /// Sets the pre-compiled object cache. The ownership of the ObjectCache is
413 /// not changed. Supported by MCJIT but not the interpreter.
414 virtual void setObjectCache(ObjectCache
*) {
415 llvm_unreachable("No support for an object cache");
418 /// setProcessAllSections (MCJIT Only): By default, only sections that are
419 /// "required for execution" are passed to the RTDyldMemoryManager, and other
420 /// sections are discarded. Passing 'true' to this method will cause
421 /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
422 /// of whether they are "required to execute" in the usual sense.
424 /// Rationale: Some MCJIT clients want to be able to inspect metadata
425 /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
426 /// performance. Passing these sections to the memory manager allows the
427 /// client to make policy about the relevant sections, rather than having
429 virtual void setProcessAllSections(bool ProcessAllSections
) {
430 llvm_unreachable("No support for ProcessAllSections option");
433 /// Return the target machine (if available).
434 virtual TargetMachine
*getTargetMachine() { return nullptr; }
436 /// DisableLazyCompilation - When lazy compilation is off (the default), the
437 /// JIT will eagerly compile every function reachable from the argument to
438 /// getPointerToFunction. If lazy compilation is turned on, the JIT will only
439 /// compile the one function and emit stubs to compile the rest when they're
440 /// first called. If lazy compilation is turned off again while some lazy
441 /// stubs are still around, and one of those stubs is called, the program will
444 /// In order to safely compile lazily in a threaded program, the user must
445 /// ensure that 1) only one thread at a time can call any particular lazy
446 /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
447 /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
448 /// lazy stub. See http://llvm.org/PR5184 for details.
449 void DisableLazyCompilation(bool Disabled
= true) {
450 CompilingLazily
= !Disabled
;
452 bool isCompilingLazily() const {
453 return CompilingLazily
;
456 /// DisableGVCompilation - If called, the JIT will abort if it's asked to
457 /// allocate space and populate a GlobalVariable that is not internal to
459 void DisableGVCompilation(bool Disabled
= true) {
460 GVCompilationDisabled
= Disabled
;
462 bool isGVCompilationDisabled() const {
463 return GVCompilationDisabled
;
466 /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
467 /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to
468 /// resolve symbols in a custom way.
469 void DisableSymbolSearching(bool Disabled
= true) {
470 SymbolSearchingDisabled
= Disabled
;
472 bool isSymbolSearchingDisabled() const {
473 return SymbolSearchingDisabled
;
476 /// Enable/Disable IR module verification.
478 /// Note: Module verification is enabled by default in Debug builds, and
479 /// disabled by default in Release. Use this method to override the default.
480 void setVerifyModules(bool Verify
) {
481 VerifyModules
= Verify
;
483 bool getVerifyModules() const {
484 return VerifyModules
;
487 /// InstallLazyFunctionCreator - If an unknown function is needed, the
488 /// specified function pointer is invoked to create it. If it returns null,
489 /// the JIT will abort.
490 void InstallLazyFunctionCreator(FunctionCreator C
) {
491 LazyFunctionCreator
= std::move(C
);
495 ExecutionEngine(DataLayout DL
) : DL(std::move(DL
)) {}
496 explicit ExecutionEngine(DataLayout DL
, std::unique_ptr
<Module
> M
);
497 explicit ExecutionEngine(std::unique_ptr
<Module
> M
);
501 void EmitGlobalVariable(const GlobalVariable
*GV
);
503 GenericValue
getConstantValue(const Constant
*C
);
504 void LoadValueFromMemory(GenericValue
&Result
, GenericValue
*Ptr
,
508 void Init(std::unique_ptr
<Module
> M
);
511 namespace EngineKind
{
513 // These are actually bitmasks that get or-ed together.
518 const static Kind Either
= (Kind
)(JIT
| Interpreter
);
520 } // end namespace EngineKind
522 /// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
523 /// chaining the various set* methods, and terminating it with a .create()
525 class EngineBuilder
{
527 std::unique_ptr
<Module
> M
;
528 EngineKind::Kind WhichEngine
;
529 std::string
*ErrorStr
;
530 CodeGenOpt::Level OptLevel
;
531 std::shared_ptr
<MCJITMemoryManager
> MemMgr
;
532 std::shared_ptr
<LegacyJITSymbolResolver
> Resolver
;
533 TargetOptions Options
;
534 Optional
<Reloc::Model
> RelocModel
;
535 Optional
<CodeModel::Model
> CMModel
;
538 SmallVector
<std::string
, 4> MAttrs
;
540 bool UseOrcMCJITReplacement
;
541 bool EmulatedTLS
= true;
544 /// Default constructor for EngineBuilder.
547 /// Constructor for EngineBuilder.
548 EngineBuilder(std::unique_ptr
<Module
> M
);
550 // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
553 /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
554 /// or whichever engine works. This option defaults to EngineKind::Either.
555 EngineBuilder
&setEngineKind(EngineKind::Kind w
) {
560 /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
561 /// clients to customize their memory allocation policies for the MCJIT. This
562 /// is only appropriate for the MCJIT; setting this and configuring the builder
563 /// to create anything other than MCJIT will cause a runtime error. If create()
564 /// is called and is successful, the created engine takes ownership of the
565 /// memory manager. This option defaults to NULL.
566 EngineBuilder
&setMCJITMemoryManager(std::unique_ptr
<RTDyldMemoryManager
> mcjmm
);
569 setMemoryManager(std::unique_ptr
<MCJITMemoryManager
> MM
);
571 EngineBuilder
&setSymbolResolver(std::unique_ptr
<LegacyJITSymbolResolver
> SR
);
573 /// setErrorStr - Set the error string to write to on error. This option
574 /// defaults to NULL.
575 EngineBuilder
&setErrorStr(std::string
*e
) {
580 /// setOptLevel - Set the optimization level for the JIT. This option
581 /// defaults to CodeGenOpt::Default.
582 EngineBuilder
&setOptLevel(CodeGenOpt::Level l
) {
587 /// setTargetOptions - Set the target options that the ExecutionEngine
588 /// target is using. Defaults to TargetOptions().
589 EngineBuilder
&setTargetOptions(const TargetOptions
&Opts
) {
594 /// setRelocationModel - Set the relocation model that the ExecutionEngine
595 /// target is using. Defaults to target specific default "Reloc::Default".
596 EngineBuilder
&setRelocationModel(Reloc::Model RM
) {
601 /// setCodeModel - Set the CodeModel that the ExecutionEngine target
602 /// data is using. Defaults to target specific default
603 /// "CodeModel::JITDefault".
604 EngineBuilder
&setCodeModel(CodeModel::Model M
) {
609 /// setMArch - Override the architecture set by the Module's triple.
610 EngineBuilder
&setMArch(StringRef march
) {
611 MArch
.assign(march
.begin(), march
.end());
615 /// setMCPU - Target a specific cpu type.
616 EngineBuilder
&setMCPU(StringRef mcpu
) {
617 MCPU
.assign(mcpu
.begin(), mcpu
.end());
621 /// setVerifyModules - Set whether the JIT implementation should verify
622 /// IR modules during compilation.
623 EngineBuilder
&setVerifyModules(bool Verify
) {
624 VerifyModules
= Verify
;
628 /// setMAttrs - Set cpu-specific attributes.
629 template<typename StringSequence
>
630 EngineBuilder
&setMAttrs(const StringSequence
&mattrs
) {
632 MAttrs
.append(mattrs
.begin(), mattrs
.end());
636 // Use OrcMCJITReplacement instead of MCJIT. Off by default.
637 void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement
) {
638 this->UseOrcMCJITReplacement
= UseOrcMCJITReplacement
;
641 void setEmulatedTLS(bool EmulatedTLS
) {
642 this->EmulatedTLS
= EmulatedTLS
;
645 TargetMachine
*selectTarget();
647 /// selectTarget - Pick a target either via -march or by guessing the native
648 /// arch. Add any CPU features specified via -mcpu or -mattr.
649 TargetMachine
*selectTarget(const Triple
&TargetTriple
,
652 const SmallVectorImpl
<std::string
>& MAttrs
);
654 ExecutionEngine
*create() {
655 return create(selectTarget());
658 ExecutionEngine
*create(TargetMachine
*TM
);
661 // Create wrappers for C Binding types (see CBindingWrapping.h).
662 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine
, LLVMExecutionEngineRef
)
664 } // end namespace llvm
666 #endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H