Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / include / llvm / MC / MCInstrDesc.h
blobad5a3e9c675f36b1284b0b713cd12dd22a88c772
1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MCOperandInfo and MCInstrDesc classes, which
10 // are used to describe target instructions and their operands.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_MC_MCINSTRDESC_H
15 #define LLVM_MC_MCINSTRDESC_H
17 #include "llvm/MC/MCRegisterInfo.h"
18 #include "llvm/Support/DataTypes.h"
19 #include <string>
21 namespace llvm {
22 class MCInst;
23 class MCSubtargetInfo;
24 class FeatureBitset;
26 //===----------------------------------------------------------------------===//
27 // Machine Operand Flags and Description
28 //===----------------------------------------------------------------------===//
30 namespace MCOI {
31 // Operand constraints
32 enum OperandConstraint {
33 TIED_TO = 0, // Must be allocated the same register as.
34 EARLY_CLOBBER // Operand is an early clobber register operand
37 /// These are flags set on operands, but should be considered
38 /// private, all access should go through the MCOperandInfo accessors.
39 /// See the accessors for a description of what these are.
40 enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef };
42 /// Operands are tagged with one of the values of this enum.
43 enum OperandType {
44 OPERAND_UNKNOWN = 0,
45 OPERAND_IMMEDIATE = 1,
46 OPERAND_REGISTER = 2,
47 OPERAND_MEMORY = 3,
48 OPERAND_PCREL = 4,
50 OPERAND_FIRST_GENERIC = 6,
51 OPERAND_GENERIC_0 = 6,
52 OPERAND_GENERIC_1 = 7,
53 OPERAND_GENERIC_2 = 8,
54 OPERAND_GENERIC_3 = 9,
55 OPERAND_GENERIC_4 = 10,
56 OPERAND_GENERIC_5 = 11,
57 OPERAND_LAST_GENERIC = 11,
59 OPERAND_FIRST_TARGET = 12,
64 /// This holds information about one operand of a machine instruction,
65 /// indicating the register class for register operands, etc.
66 class MCOperandInfo {
67 public:
68 /// This specifies the register class enumeration of the operand
69 /// if the operand is a register. If isLookupPtrRegClass is set, then this is
70 /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
71 /// get a dynamic register class.
72 int16_t RegClass;
74 /// These are flags from the MCOI::OperandFlags enum.
75 uint8_t Flags;
77 /// Information about the type of the operand.
78 uint8_t OperandType;
79 /// The lower 16 bits are used to specify which constraints are set.
80 /// The higher 16 bits are used to specify the value of constraints (4 bits
81 /// each).
82 uint32_t Constraints;
84 /// Set if this operand is a pointer value and it requires a callback
85 /// to look up its register class.
86 bool isLookupPtrRegClass() const {
87 return Flags & (1 << MCOI::LookupPtrRegClass);
90 /// Set if this is one of the operands that made up of the predicate
91 /// operand that controls an isPredicable() instruction.
92 bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
94 /// Set if this operand is a optional def.
95 bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
97 bool isGenericType() const {
98 return OperandType >= MCOI::OPERAND_FIRST_GENERIC &&
99 OperandType <= MCOI::OPERAND_LAST_GENERIC;
102 unsigned getGenericTypeIndex() const {
103 assert(isGenericType() && "non-generic types don't have an index");
104 return OperandType - MCOI::OPERAND_FIRST_GENERIC;
108 //===----------------------------------------------------------------------===//
109 // Machine Instruction Flags and Description
110 //===----------------------------------------------------------------------===//
112 namespace MCID {
113 /// These should be considered private to the implementation of the
114 /// MCInstrDesc class. Clients should use the predicate methods on MCInstrDesc,
115 /// not use these directly. These all correspond to bitfields in the
116 /// MCInstrDesc::Flags field.
117 enum Flag {
118 Variadic = 0,
119 HasOptionalDef,
120 Pseudo,
121 Return,
122 EHScopeReturn,
123 Call,
124 Barrier,
125 Terminator,
126 Branch,
127 IndirectBranch,
128 Compare,
129 MoveImm,
130 MoveReg,
131 Bitcast,
132 Select,
133 DelaySlot,
134 FoldableAsLoad,
135 MayLoad,
136 MayStore,
137 Predicable,
138 NotDuplicable,
139 UnmodeledSideEffects,
140 Commutable,
141 ConvertibleTo3Addr,
142 UsesCustomInserter,
143 HasPostISelHook,
144 Rematerializable,
145 CheapAsAMove,
146 ExtraSrcRegAllocReq,
147 ExtraDefRegAllocReq,
148 RegSequence,
149 ExtractSubreg,
150 InsertSubreg,
151 Convergent,
152 Add,
153 Trap,
154 VariadicOpsAreDefs,
158 /// Describe properties that are true of each instruction in the target
159 /// description file. This captures information about side effects, register
160 /// use and many other things. There is one instance of this struct for each
161 /// target instruction class, and the MachineInstr class points to this struct
162 /// directly to describe itself.
163 class MCInstrDesc {
164 public:
165 unsigned short Opcode; // The opcode number
166 unsigned short NumOperands; // Num of args (may be more if variable_ops)
167 unsigned char NumDefs; // Num of args that are definitions
168 unsigned char Size; // Number of bytes in encoding.
169 unsigned short SchedClass; // enum identifying instr sched class
170 uint64_t Flags; // Flags identifying machine instr class
171 uint64_t TSFlags; // Target Specific Flag values
172 const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr
173 const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr
174 const MCOperandInfo *OpInfo; // 'NumOperands' entries about operands
175 // Subtarget feature that this is deprecated on, if any
176 // -1 implies this is not deprecated by any single feature. It may still be
177 // deprecated due to a "complex" reason, below.
178 int64_t DeprecatedFeature;
180 // A complex method to determine if a certain instruction is deprecated or
181 // not, and return the reason for deprecation.
182 bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &,
183 std::string &);
185 /// Returns the value of the specific constraint if
186 /// it is set. Returns -1 if it is not set.
187 int getOperandConstraint(unsigned OpNum,
188 MCOI::OperandConstraint Constraint) const {
189 if (OpNum < NumOperands &&
190 (OpInfo[OpNum].Constraints & (1 << Constraint))) {
191 unsigned Pos = 16 + Constraint * 4;
192 return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
194 return -1;
197 /// Returns true if a certain instruction is deprecated and if so
198 /// returns the reason in \p Info.
199 bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI,
200 std::string &Info) const;
202 /// Return the opcode number for this descriptor.
203 unsigned getOpcode() const { return Opcode; }
205 /// Return the number of declared MachineOperands for this
206 /// MachineInstruction. Note that variadic (isVariadic() returns true)
207 /// instructions may have additional operands at the end of the list, and note
208 /// that the machine instruction may include implicit register def/uses as
209 /// well.
210 unsigned getNumOperands() const { return NumOperands; }
212 using const_opInfo_iterator = const MCOperandInfo *;
214 const_opInfo_iterator opInfo_begin() const { return OpInfo; }
215 const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }
217 iterator_range<const_opInfo_iterator> operands() const {
218 return make_range(opInfo_begin(), opInfo_end());
221 /// Return the number of MachineOperands that are register
222 /// definitions. Register definitions always occur at the start of the
223 /// machine operand list. This is the number of "outs" in the .td file,
224 /// and does not include implicit defs.
225 unsigned getNumDefs() const { return NumDefs; }
227 /// Return flags of this instruction.
228 uint64_t getFlags() const { return Flags; }
230 /// Return true if this instruction can have a variable number of
231 /// operands. In this case, the variable operands will be after the normal
232 /// operands but before the implicit definitions and uses (if any are
233 /// present).
234 bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); }
236 /// Set if this instruction has an optional definition, e.g.
237 /// ARM instructions which can set condition code if 's' bit is set.
238 bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); }
240 /// Return true if this is a pseudo instruction that doesn't
241 /// correspond to a real machine instruction.
242 bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); }
244 /// Return true if the instruction is a return.
245 bool isReturn() const { return Flags & (1ULL << MCID::Return); }
247 /// Return true if the instruction is an add instruction.
248 bool isAdd() const { return Flags & (1ULL << MCID::Add); }
250 /// Return true if this instruction is a trap.
251 bool isTrap() const { return Flags & (1ULL << MCID::Trap); }
253 /// Return true if the instruction is a register to register move.
254 bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); }
256 /// Return true if the instruction is a call.
257 bool isCall() const { return Flags & (1ULL << MCID::Call); }
259 /// Returns true if the specified instruction stops control flow
260 /// from executing the instruction immediately following it. Examples include
261 /// unconditional branches and return instructions.
262 bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); }
264 /// Returns true if this instruction part of the terminator for
265 /// a basic block. Typically this is things like return and branch
266 /// instructions.
268 /// Various passes use this to insert code into the bottom of a basic block,
269 /// but before control flow occurs.
270 bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); }
272 /// Returns true if this is a conditional, unconditional, or
273 /// indirect branch. Predicates below can be used to discriminate between
274 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
275 /// get more information.
276 bool isBranch() const { return Flags & (1ULL << MCID::Branch); }
278 /// Return true if this is an indirect branch, such as a
279 /// branch through a register.
280 bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); }
282 /// Return true if this is a branch which may fall
283 /// through to the next instruction or may transfer control flow to some other
284 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
285 /// information about this branch.
286 bool isConditionalBranch() const {
287 return isBranch() & !isBarrier() & !isIndirectBranch();
290 /// Return true if this is a branch which always
291 /// transfers control flow to some other block. The
292 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
293 /// about this branch.
294 bool isUnconditionalBranch() const {
295 return isBranch() & isBarrier() & !isIndirectBranch();
298 /// Return true if this is a branch or an instruction which directly
299 /// writes to the program counter. Considered 'may' affect rather than
300 /// 'does' affect as things like predication are not taken into account.
301 bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
303 /// Return true if this instruction has a predicate operand
304 /// that controls execution. It may be set to 'always', or may be set to other
305 /// values. There are various methods in TargetInstrInfo that can be used to
306 /// control and modify the predicate in this instruction.
307 bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); }
309 /// Return true if this instruction is a comparison.
310 bool isCompare() const { return Flags & (1ULL << MCID::Compare); }
312 /// Return true if this instruction is a move immediate
313 /// (including conditional moves) instruction.
314 bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); }
316 /// Return true if this instruction is a bitcast instruction.
317 bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); }
319 /// Return true if this is a select instruction.
320 bool isSelect() const { return Flags & (1ULL << MCID::Select); }
322 /// Return true if this instruction cannot be safely
323 /// duplicated. For example, if the instruction has a unique labels attached
324 /// to it, duplicating it would cause multiple definition errors.
325 bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); }
327 /// Returns true if the specified instruction has a delay slot which
328 /// must be filled by the code generator.
329 bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); }
331 /// Return true for instructions that can be folded as memory operands
332 /// in other instructions. The most common use for this is instructions that
333 /// are simple loads from memory that don't modify the loaded value in any
334 /// way, but it can also be used for instructions that can be expressed as
335 /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
336 /// folded when it is beneficial. This should only be set on instructions
337 /// that return a value in their only virtual register definition.
338 bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); }
340 /// Return true if this instruction behaves
341 /// the same way as the generic REG_SEQUENCE instructions.
342 /// E.g., on ARM,
343 /// dX VMOVDRR rY, rZ
344 /// is equivalent to
345 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
347 /// Note that for the optimizers to be able to take advantage of
348 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
349 /// override accordingly.
350 bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); }
352 /// Return true if this instruction behaves
353 /// the same way as the generic EXTRACT_SUBREG instructions.
354 /// E.g., on ARM,
355 /// rX, rY VMOVRRD dZ
356 /// is equivalent to two EXTRACT_SUBREG:
357 /// rX = EXTRACT_SUBREG dZ, ssub_0
358 /// rY = EXTRACT_SUBREG dZ, ssub_1
360 /// Note that for the optimizers to be able to take advantage of
361 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
362 /// override accordingly.
363 bool isExtractSubregLike() const {
364 return Flags & (1ULL << MCID::ExtractSubreg);
367 /// Return true if this instruction behaves
368 /// the same way as the generic INSERT_SUBREG instructions.
369 /// E.g., on ARM,
370 /// dX = VSETLNi32 dY, rZ, Imm
371 /// is equivalent to a INSERT_SUBREG:
372 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
374 /// Note that for the optimizers to be able to take advantage of
375 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
376 /// override accordingly.
377 bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); }
380 /// Return true if this instruction is convergent.
382 /// Convergent instructions may not be made control-dependent on any
383 /// additional values.
384 bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); }
386 /// Return true if variadic operands of this instruction are definitions.
387 bool variadicOpsAreDefs() const {
388 return Flags & (1ULL << MCID::VariadicOpsAreDefs);
391 //===--------------------------------------------------------------------===//
392 // Side Effect Analysis
393 //===--------------------------------------------------------------------===//
395 /// Return true if this instruction could possibly read memory.
396 /// Instructions with this flag set are not necessarily simple load
397 /// instructions, they may load a value and modify it, for example.
398 bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); }
400 /// Return true if this instruction could possibly modify memory.
401 /// Instructions with this flag set are not necessarily simple store
402 /// instructions, they may store a modified value based on their operands, or
403 /// may not actually modify anything, for example.
404 bool mayStore() const { return Flags & (1ULL << MCID::MayStore); }
406 /// Return true if this instruction has side
407 /// effects that are not modeled by other flags. This does not return true
408 /// for instructions whose effects are captured by:
410 /// 1. Their operand list and implicit definition/use list. Register use/def
411 /// info is explicit for instructions.
412 /// 2. Memory accesses. Use mayLoad/mayStore.
413 /// 3. Calling, branching, returning: use isCall/isReturn/isBranch.
415 /// Examples of side effects would be modifying 'invisible' machine state like
416 /// a control register, flushing a cache, modifying a register invisible to
417 /// LLVM, etc.
418 bool hasUnmodeledSideEffects() const {
419 return Flags & (1ULL << MCID::UnmodeledSideEffects);
422 //===--------------------------------------------------------------------===//
423 // Flags that indicate whether an instruction can be modified by a method.
424 //===--------------------------------------------------------------------===//
426 /// Return true if this may be a 2- or 3-address instruction (of the
427 /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
428 /// exchanged. If this flag is set, then the
429 /// TargetInstrInfo::commuteInstruction method may be used to hack on the
430 /// instruction.
432 /// Note that this flag may be set on instructions that are only commutable
433 /// sometimes. In these cases, the call to commuteInstruction will fail.
434 /// Also note that some instructions require non-trivial modification to
435 /// commute them.
436 bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); }
438 /// Return true if this is a 2-address instruction which can be changed
439 /// into a 3-address instruction if needed. Doing this transformation can be
440 /// profitable in the register allocator, because it means that the
441 /// instruction can use a 2-address form if possible, but degrade into a less
442 /// efficient form if the source and dest register cannot be assigned to the
443 /// same register. For example, this allows the x86 backend to turn a "shl
444 /// reg, 3" instruction into an LEA instruction, which is the same speed as
445 /// the shift but has bigger code size.
447 /// If this returns true, then the target must implement the
448 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
449 /// is allowed to fail if the transformation isn't valid for this specific
450 /// instruction (e.g. shl reg, 4 on x86).
452 bool isConvertibleTo3Addr() const {
453 return Flags & (1ULL << MCID::ConvertibleTo3Addr);
456 /// Return true if this instruction requires custom insertion support
457 /// when the DAG scheduler is inserting it into a machine basic block. If
458 /// this is true for the instruction, it basically means that it is a pseudo
459 /// instruction used at SelectionDAG time that is expanded out into magic code
460 /// by the target when MachineInstrs are formed.
462 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
463 /// is used to insert this into the MachineBasicBlock.
464 bool usesCustomInsertionHook() const {
465 return Flags & (1ULL << MCID::UsesCustomInserter);
468 /// Return true if this instruction requires *adjustment* after
469 /// instruction selection by calling a target hook. For example, this can be
470 /// used to fill in ARM 's' optional operand depending on whether the
471 /// conditional flag register is used.
472 bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); }
474 /// Returns true if this instruction is a candidate for remat. This
475 /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
477 /// If this flag is set, the isReallyTriviallyReMaterializable()
478 /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
479 /// the instruction is really rematable.
480 bool isRematerializable() const {
481 return Flags & (1ULL << MCID::Rematerializable);
484 /// Returns true if this instruction has the same cost (or less) than a
485 /// move instruction. This is useful during certain types of optimizations
486 /// (e.g., remat during two-address conversion or machine licm) where we would
487 /// like to remat or hoist the instruction, but not if it costs more than
488 /// moving the instruction into the appropriate register. Note, we are not
489 /// marking copies from and to the same register class with this flag.
491 /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
492 /// for different subtargets.
493 bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); }
495 /// Returns true if this instruction source operands have special
496 /// register allocation requirements that are not captured by the operand
497 /// register classes. e.g. ARM::STRD's two source registers must be an even /
498 /// odd pair, ARM::STM registers have to be in ascending order. Post-register
499 /// allocation passes should not attempt to change allocations for sources of
500 /// instructions with this flag.
501 bool hasExtraSrcRegAllocReq() const {
502 return Flags & (1ULL << MCID::ExtraSrcRegAllocReq);
505 /// Returns true if this instruction def operands have special register
506 /// allocation requirements that are not captured by the operand register
507 /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
508 /// ARM::LDM registers have to be in ascending order. Post-register
509 /// allocation passes should not attempt to change allocations for definitions
510 /// of instructions with this flag.
511 bool hasExtraDefRegAllocReq() const {
512 return Flags & (1ULL << MCID::ExtraDefRegAllocReq);
515 /// Return a list of registers that are potentially read by any
516 /// instance of this machine instruction. For example, on X86, the "adc"
517 /// instruction adds two register operands and adds the carry bit in from the
518 /// flags register. In this case, the instruction is marked as implicitly
519 /// reading the flags. Likewise, the variable shift instruction on X86 is
520 /// marked as implicitly reading the 'CL' register, which it always does.
522 /// This method returns null if the instruction has no implicit uses.
523 const MCPhysReg *getImplicitUses() const { return ImplicitUses; }
525 /// Return the number of implicit uses this instruction has.
526 unsigned getNumImplicitUses() const {
527 if (!ImplicitUses)
528 return 0;
529 unsigned i = 0;
530 for (; ImplicitUses[i]; ++i) /*empty*/
532 return i;
535 /// Return a list of registers that are potentially written by any
536 /// instance of this machine instruction. For example, on X86, many
537 /// instructions implicitly set the flags register. In this case, they are
538 /// marked as setting the FLAGS. Likewise, many instructions always deposit
539 /// their result in a physical register. For example, the X86 divide
540 /// instruction always deposits the quotient and remainder in the EAX/EDX
541 /// registers. For that instruction, this will return a list containing the
542 /// EAX/EDX/EFLAGS registers.
544 /// This method returns null if the instruction has no implicit defs.
545 const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; }
547 /// Return the number of implicit defs this instruct has.
548 unsigned getNumImplicitDefs() const {
549 if (!ImplicitDefs)
550 return 0;
551 unsigned i = 0;
552 for (; ImplicitDefs[i]; ++i) /*empty*/
554 return i;
557 /// Return true if this instruction implicitly
558 /// uses the specified physical register.
559 bool hasImplicitUseOfPhysReg(unsigned Reg) const {
560 if (const MCPhysReg *ImpUses = ImplicitUses)
561 for (; *ImpUses; ++ImpUses)
562 if (*ImpUses == Reg)
563 return true;
564 return false;
567 /// Return true if this instruction implicitly
568 /// defines the specified physical register.
569 bool hasImplicitDefOfPhysReg(unsigned Reg,
570 const MCRegisterInfo *MRI = nullptr) const;
572 /// Return the scheduling class for this instruction. The
573 /// scheduling class is an index into the InstrItineraryData table. This
574 /// returns zero if there is no known scheduling information for the
575 /// instruction.
576 unsigned getSchedClass() const { return SchedClass; }
578 /// Return the number of bytes in the encoding of this instruction,
579 /// or zero if the encoding size cannot be known from the opcode.
580 unsigned getSize() const { return Size; }
582 /// Find the index of the first operand in the
583 /// operand list that is used to represent the predicate. It returns -1 if
584 /// none is found.
585 int findFirstPredOperandIdx() const {
586 if (isPredicable()) {
587 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
588 if (OpInfo[i].isPredicate())
589 return i;
591 return -1;
594 /// Return true if this instruction defines the specified physical
595 /// register, either explicitly or implicitly.
596 bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
597 const MCRegisterInfo &RI) const;
600 } // end namespace llvm
602 #endif