1 //===- TargetItinerary.td - Target Itinierary Description --*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the target-independent scheduling interfaces
10 // which should be implemented by each target that uses instruction
11 // itineraries for scheduling. Itineraries are details reservation
12 // tables for each instruction class. They are most appropriate for
13 // in-order machine with complicated scheduling or bundling constraints.
15 //===----------------------------------------------------------------------===//
17 //===----------------------------------------------------------------------===//
18 // Processor functional unit - These values represent the function units
19 // available across all chip sets for the target. Eg., IntUnit, FPUnit, ...
20 // These may be independent values for each chip set or may be shared across
21 // all chip sets of the target. Each functional unit is treated as a resource
22 // during scheduling and has an affect instruction order based on availability
23 // during a time interval.
27 //===----------------------------------------------------------------------===//
28 // Pipeline bypass / forwarding - These values specifies the symbolic names of
29 // pipeline bypasses which can be used to forward results of instructions
30 // that are forwarded to uses.
32 def NoBypass : Bypass;
34 class ReservationKind<bits<1> val> {
38 def Required : ReservationKind<0>;
39 def Reserved : ReservationKind<1>;
41 //===----------------------------------------------------------------------===//
42 // Instruction stage - These values represent a non-pipelined step in
43 // the execution of an instruction. Cycles represents the number of
44 // discrete time slots needed to complete the stage. Units represent
45 // the choice of functional units that can be used to complete the
46 // stage. Eg. IntUnit1, IntUnit2. TimeInc indicates how many cycles
47 // should elapse from the start of this stage to the start of the next
48 // stage in the itinerary. For example:
50 // A stage is specified in one of two ways:
52 // InstrStage<1, [FU_x, FU_y]> - TimeInc defaults to Cycles
53 // InstrStage<1, [FU_x, FU_y], 0> - TimeInc explicit
56 class InstrStage<int cycles, list<FuncUnit> units,
58 ReservationKind kind = Required> {
59 int Cycles = cycles; // length of stage in machine cycles
60 list<FuncUnit> Units = units; // choice of functional units
61 int TimeInc = timeinc; // cycles till start of next stage
62 int Kind = kind.Value; // kind of FU reservation
65 //===----------------------------------------------------------------------===//
66 // Instruction itinerary - An itinerary represents a sequential series of steps
67 // required to complete an instruction. Itineraries are represented as lists of
68 // instruction stages.
71 //===----------------------------------------------------------------------===//
72 // Instruction itinerary classes - These values represent 'named' instruction
73 // itinerary. Using named itineraries simplifies managing groups of
74 // instructions across chip sets. An instruction uses the same itinerary class
75 // across all chip sets. Thus a new chip set can be added without modifying
76 // instruction information.
79 def NoItinerary : InstrItinClass;
81 //===----------------------------------------------------------------------===//
82 // Instruction itinerary data - These values provide a runtime map of an
83 // instruction itinerary class (name) to its itinerary data.
85 // NumMicroOps represents the number of micro-operations that each instruction
86 // in the class are decoded to. If the number is zero, then it means the
87 // instruction can decode into variable number of micro-ops and it must be
88 // determined dynamically. This directly relates to the itineraries
89 // global IssueWidth property, which constrains the number of microops
90 // that can issue per cycle.
92 // OperandCycles are optional "cycle counts". They specify the cycle after
93 // instruction issue the values which correspond to specific operand indices
94 // are defined or read. Bypasses are optional "pipeline forwarding paths", if
95 // a def by an instruction is available on a specific bypass and the use can
96 // read from the same bypass, then the operand use latency is reduced by one.
98 // InstrItinData<IIC_iLoad_i , [InstrStage<1, [A9_Pipe1]>,
99 // InstrStage<1, [A9_AGU]>],
100 // [3, 1], [A9_LdBypass]>,
101 // InstrItinData<IIC_iMVNr , [InstrStage<1, [A9_Pipe0, A9_Pipe1]>],
102 // [1, 1], [NoBypass, A9_LdBypass]>,
104 // In this example, the instruction of IIC_iLoadi reads its input on cycle 1
105 // (after issue) and the result of the load is available on cycle 3. The result
106 // is available via forwarding path A9_LdBypass. If it's used by the first
107 // source operand of instructions of IIC_iMVNr class, then the operand latency
109 class InstrItinData<InstrItinClass Class, list<InstrStage> stages,
110 list<int> operandcycles = [],
111 list<Bypass> bypasses = [], int uops = 1> {
112 InstrItinClass TheClass = Class;
113 int NumMicroOps = uops;
114 list<InstrStage> Stages = stages;
115 list<int> OperandCycles = operandcycles;
116 list<Bypass> Bypasses = bypasses;
119 //===----------------------------------------------------------------------===//
120 // Processor itineraries - These values represent the set of all itinerary
121 // classes for a given chip set.
123 // Set property values to -1 to use the default.
124 // See InstrItineraryProps for comments and defaults.
125 class ProcessorItineraries<list<FuncUnit> fu, list<Bypass> bp,
126 list<InstrItinData> iid> {
127 list<FuncUnit> FU = fu;
128 list<Bypass> BP = bp;
129 list<InstrItinData> IID = iid;
132 // NoItineraries - A marker that can be used by processors without schedule
133 // info. Subtargets using NoItineraries can bypass the scheduler's
134 // expensive HazardRecognizer because no reservation table is needed.
135 def NoItineraries : ProcessorItineraries<[], [], []>;
137 //===----------------------------------------------------------------------===//
138 // Combo Function Unit data - This is a map of combo function unit names to
139 // the list of functional units that are included in the combination.
141 class ComboFuncData<FuncUnit ComboFunc, list<FuncUnit> funclist> {
142 FuncUnit TheComboFunc = ComboFunc;
143 list<FuncUnit> FuncList = funclist;
146 //===----------------------------------------------------------------------===//
147 // Combo Function Units - This is a list of all combo function unit data.
148 class ComboFuncUnits<list<ComboFuncData> cfd> {
149 list<ComboFuncData> CFD = cfd;