1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the TargetMachine and LLVMTargetMachine classes.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_TARGET_TARGETMACHINE_H
14 #define LLVM_TARGET_TARGETMACHINE_H
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/Pass.h"
20 #include "llvm/Support/CodeGen.h"
21 #include "llvm/Target/TargetOptions.h"
28 class MachineModuleInfo
;
34 class MCSubtargetInfo
;
36 class raw_pwrite_stream
;
37 class PassManagerBuilder
;
39 class TargetIntrinsicInfo
;
40 class TargetIRAnalysis
;
41 class TargetTransformInfo
;
42 class TargetLoweringObjectFile
;
43 class TargetPassConfig
;
44 class TargetSubtargetInfo
;
46 // The old pass manager infrastructure is hidden in a legacy namespace now.
48 class PassManagerBase
;
50 using legacy::PassManagerBase
;
52 //===----------------------------------------------------------------------===//
54 /// Primary interface to the complete machine description for the target
55 /// machine. All target-specific information should be accessible through this
59 protected: // Can only create subclasses.
60 TargetMachine(const Target
&T
, StringRef DataLayoutString
,
61 const Triple
&TargetTriple
, StringRef CPU
, StringRef FS
,
62 const TargetOptions
&Options
);
64 /// The Target that this machine was created for.
65 const Target
&TheTarget
;
67 /// DataLayout for the target: keep ABI type size and alignment.
69 /// The DataLayout is created based on the string representation provided
70 /// during construction. It is kept here only to avoid reparsing the string
71 /// but should not really be used during compilation, because it has an
72 /// internal cache that is context specific.
75 /// Triple string, CPU name, and target feature strings the TargetMachine
76 /// instance is created with.
78 std::string TargetCPU
;
81 Reloc::Model RM
= Reloc::Static
;
82 CodeModel::Model CMModel
= CodeModel::Small
;
83 CodeGenOpt::Level OptLevel
= CodeGenOpt::Default
;
85 /// Contains target specific asm information.
86 std::unique_ptr
<const MCAsmInfo
> AsmInfo
;
87 std::unique_ptr
<const MCRegisterInfo
> MRI
;
88 std::unique_ptr
<const MCInstrInfo
> MII
;
89 std::unique_ptr
<const MCSubtargetInfo
> STI
;
91 unsigned RequireStructuredCFG
: 1;
92 unsigned O0WantsFastISel
: 1;
95 const TargetOptions DefaultOptions
;
96 mutable TargetOptions Options
;
98 TargetMachine(const TargetMachine
&) = delete;
99 void operator=(const TargetMachine
&) = delete;
100 virtual ~TargetMachine();
102 const Target
&getTarget() const { return TheTarget
; }
104 const Triple
&getTargetTriple() const { return TargetTriple
; }
105 StringRef
getTargetCPU() const { return TargetCPU
; }
106 StringRef
getTargetFeatureString() const { return TargetFS
; }
108 /// Virtual method implemented by subclasses that returns a reference to that
109 /// target's TargetSubtargetInfo-derived member variable.
110 virtual const TargetSubtargetInfo
*getSubtargetImpl(const Function
&) const {
113 virtual TargetLoweringObjectFile
*getObjFileLowering() const {
117 /// This method returns a pointer to the specified type of
118 /// TargetSubtargetInfo. In debug builds, it verifies that the object being
119 /// returned is of the correct type.
120 template <typename STC
> const STC
&getSubtarget(const Function
&F
) const {
121 return *static_cast<const STC
*>(getSubtargetImpl(F
));
124 /// Create a DataLayout.
125 const DataLayout
createDataLayout() const { return DL
; }
127 /// Test if a DataLayout if compatible with the CodeGen for this target.
129 /// The LLVM Module owns a DataLayout that is used for the target independent
130 /// optimizations and code generation. This hook provides a target specific
131 /// check on the validity of this DataLayout.
132 bool isCompatibleDataLayout(const DataLayout
&Candidate
) const {
133 return DL
== Candidate
;
136 /// Get the pointer size for this target.
138 /// This is the only time the DataLayout in the TargetMachine is used.
139 unsigned getPointerSize(unsigned AS
) const {
140 return DL
.getPointerSize(AS
);
143 unsigned getPointerSizeInBits(unsigned AS
) const {
144 return DL
.getPointerSizeInBits(AS
);
147 unsigned getProgramPointerSize() const {
148 return DL
.getPointerSize(DL
.getProgramAddressSpace());
151 unsigned getAllocaPointerSize() const {
152 return DL
.getPointerSize(DL
.getAllocaAddrSpace());
155 /// Reset the target options based on the function's attributes.
156 // FIXME: Remove TargetOptions that affect per-function code generation
157 // from TargetMachine.
158 void resetTargetOptions(const Function
&F
) const;
160 /// Return target specific asm information.
161 const MCAsmInfo
*getMCAsmInfo() const { return AsmInfo
.get(); }
163 const MCRegisterInfo
*getMCRegisterInfo() const { return MRI
.get(); }
164 const MCInstrInfo
*getMCInstrInfo() const { return MII
.get(); }
165 const MCSubtargetInfo
*getMCSubtargetInfo() const { return STI
.get(); }
167 /// If intrinsic information is available, return it. If not, return null.
168 virtual const TargetIntrinsicInfo
*getIntrinsicInfo() const {
172 bool requiresStructuredCFG() const { return RequireStructuredCFG
; }
173 void setRequiresStructuredCFG(bool Value
) { RequireStructuredCFG
= Value
; }
175 /// Returns the code generation relocation model. The choices are static, PIC,
176 /// and dynamic-no-pic, and target default.
177 Reloc::Model
getRelocationModel() const;
179 /// Returns the code model. The choices are small, kernel, medium, large, and
181 CodeModel::Model
getCodeModel() const;
183 bool isPositionIndependent() const;
185 bool shouldAssumeDSOLocal(const Module
&M
, const GlobalValue
*GV
) const;
187 /// Returns true if this target uses emulated TLS.
188 bool useEmulatedTLS() const;
190 /// Returns the TLS model which should be used for the given global variable.
191 TLSModel::Model
getTLSModel(const GlobalValue
*GV
) const;
193 /// Returns the optimization level: None, Less, Default, or Aggressive.
194 CodeGenOpt::Level
getOptLevel() const;
196 /// Overrides the optimization level.
197 void setOptLevel(CodeGenOpt::Level Level
);
199 void setFastISel(bool Enable
) { Options
.EnableFastISel
= Enable
; }
200 bool getO0WantsFastISel() { return O0WantsFastISel
; }
201 void setO0WantsFastISel(bool Enable
) { O0WantsFastISel
= Enable
; }
202 void setGlobalISel(bool Enable
) { Options
.EnableGlobalISel
= Enable
; }
203 void setGlobalISelAbort(GlobalISelAbortMode Mode
) {
204 Options
.GlobalISelAbort
= Mode
;
206 void setMachineOutliner(bool Enable
) {
207 Options
.EnableMachineOutliner
= Enable
;
209 void setSupportsDefaultOutlining(bool Enable
) {
210 Options
.SupportsDefaultOutlining
= Enable
;
213 bool shouldPrintMachineCode() const { return Options
.PrintMachineCode
; }
215 bool getUniqueSectionNames() const { return Options
.UniqueSectionNames
; }
217 /// Return true if data objects should be emitted into their own section,
218 /// corresponds to -fdata-sections.
219 bool getDataSections() const {
220 return Options
.DataSections
;
223 /// Return true if functions should be emitted into their own section,
224 /// corresponding to -ffunction-sections.
225 bool getFunctionSections() const {
226 return Options
.FunctionSections
;
229 /// Get a \c TargetIRAnalysis appropriate for the target.
231 /// This is used to construct the new pass manager's target IR analysis pass,
232 /// set up appropriately for this target machine. Even the old pass manager
233 /// uses this to answer queries about the IR.
234 TargetIRAnalysis
getTargetIRAnalysis();
236 /// Return a TargetTransformInfo for a given function.
238 /// The returned TargetTransformInfo is specialized to the subtarget
239 /// corresponding to \p F.
240 virtual TargetTransformInfo
getTargetTransformInfo(const Function
&F
);
242 /// Allow the target to modify the pass manager, e.g. by calling
243 /// PassManagerBuilder::addExtension.
244 virtual void adjustPassManager(PassManagerBuilder
&) {}
246 /// These enums are meant to be passed into addPassesToEmitFile to indicate
247 /// what type of file to emit, and returned by it to indicate what type of
248 /// file could actually be made.
249 enum CodeGenFileType
{
252 CGFT_Null
// Do not emit any output.
255 /// Add passes to the specified pass manager to get the specified file
256 /// emitted. Typically this will involve several steps of code generation.
257 /// This method should return true if emission of this file type is not
258 /// supported, or false on success.
259 /// \p MMI is an optional parameter that, if set to non-nullptr,
260 /// will be used to set the MachineModuloInfo for this PM.
261 virtual bool addPassesToEmitFile(PassManagerBase
&, raw_pwrite_stream
&,
262 raw_pwrite_stream
*, CodeGenFileType
,
263 bool /*DisableVerify*/ = true,
264 MachineModuleInfo
*MMI
= nullptr) {
268 /// Add passes to the specified pass manager to get machine code emitted with
269 /// the MCJIT. This method returns true if machine code is not supported. It
270 /// fills the MCContext Ctx pointer which can be used to build custom
273 virtual bool addPassesToEmitMC(PassManagerBase
&, MCContext
*&,
275 bool /*DisableVerify*/ = true) {
279 /// True if subtarget inserts the final scheduling pass on its own.
281 /// Branch relaxation, which must happen after block placement, can
282 /// on some targets (e.g. SystemZ) expose additional post-RA
283 /// scheduling opportunities.
284 virtual bool targetSchedulesPostRAScheduling() const { return false; };
286 void getNameWithPrefix(SmallVectorImpl
<char> &Name
, const GlobalValue
*GV
,
287 Mangler
&Mang
, bool MayAlwaysUsePrivate
= false) const;
288 MCSymbol
*getSymbol(const GlobalValue
*GV
) const;
291 /// This class describes a target machine that is implemented with the LLVM
292 /// target-independent code generator.
294 class LLVMTargetMachine
: public TargetMachine
{
295 protected: // Can only create subclasses.
296 LLVMTargetMachine(const Target
&T
, StringRef DataLayoutString
,
297 const Triple
&TT
, StringRef CPU
, StringRef FS
,
298 const TargetOptions
&Options
, Reloc::Model RM
,
299 CodeModel::Model CM
, CodeGenOpt::Level OL
);
304 /// Get a TargetTransformInfo implementation for the target.
306 /// The TTI returned uses the common code generator to answer queries about
308 TargetTransformInfo
getTargetTransformInfo(const Function
&F
) override
;
310 /// Create a pass configuration object to be used by addPassToEmitX methods
311 /// for generating a pipeline of CodeGen passes.
312 virtual TargetPassConfig
*createPassConfig(PassManagerBase
&PM
);
314 /// Add passes to the specified pass manager to get the specified file
315 /// emitted. Typically this will involve several steps of code generation.
316 /// \p MMI is an optional parameter that, if set to non-nullptr,
317 /// will be used to set the MachineModuloInfofor this PM.
318 bool addPassesToEmitFile(PassManagerBase
&PM
, raw_pwrite_stream
&Out
,
319 raw_pwrite_stream
*DwoOut
, CodeGenFileType FileType
,
320 bool DisableVerify
= true,
321 MachineModuleInfo
*MMI
= nullptr) override
;
323 /// Add passes to the specified pass manager to get machine code emitted with
324 /// the MCJIT. This method returns true if machine code is not supported. It
325 /// fills the MCContext Ctx pointer which can be used to build custom
327 bool addPassesToEmitMC(PassManagerBase
&PM
, MCContext
*&Ctx
,
328 raw_pwrite_stream
&Out
,
329 bool DisableVerify
= true) override
;
331 /// Returns true if the target is expected to pass all machine verifier
332 /// checks. This is a stopgap measure to fix targets one by one. We will
333 /// remove this at some point and always enable the verifier when
334 /// EXPENSIVE_CHECKS is enabled.
335 virtual bool isMachineVerifierClean() const { return true; }
337 /// Adds an AsmPrinter pass to the pipeline that prints assembly or
338 /// machine code from the MI representation.
339 bool addAsmPrinter(PassManagerBase
&PM
, raw_pwrite_stream
&Out
,
340 raw_pwrite_stream
*DwoOut
, CodeGenFileType FileTYpe
,
343 /// True if the target uses physical regs at Prolog/Epilog insertion
344 /// time. If true (most machines), all vregs must be allocated before
345 /// PEI. If false (virtual-register machines), then callee-save register
346 /// spilling and scavenging are not needed or used.
347 virtual bool usesPhysRegsForPEI() const { return true; }
349 /// True if the target wants to use interprocedural register allocation by
350 /// default. The -enable-ipra flag can be used to override this.
351 virtual bool useIPRA() const {
356 /// Helper method for getting the code model, returning Default if
357 /// CM does not have a value. The tiny and kernel models will produce
358 /// an error, so targets that support them or require more complex codemodel
359 /// selection logic should implement and call their own getEffectiveCodeModel.
360 inline CodeModel::Model
getEffectiveCodeModel(Optional
<CodeModel::Model
> CM
,
361 CodeModel::Model Default
) {
363 // By default, targets do not support the tiny and kernel models.
364 if (*CM
== CodeModel::Tiny
)
365 report_fatal_error("Target does not support the tiny CodeModel");
366 if (*CM
== CodeModel::Kernel
)
367 report_fatal_error("Target does not support the kernel CodeModel");
373 } // end namespace llvm
375 #endif // LLVM_TARGET_TARGETMACHINE_H