1 //===- WholeProgramDevirt.h - Whole-program devirt pass ---------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines parts of the whole-program devirtualization pass
10 // implementation that may be usefully unit tested.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H
15 #define LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H
17 #include "llvm/IR/Module.h"
18 #include "llvm/IR/PassManager.h"
26 template <typename T
> class ArrayRef
;
27 template <typename T
> class MutableArrayRef
;
30 class ModuleSummaryIndex
;
32 namespace wholeprogramdevirt
{
34 // A bit vector that keeps track of which bits are used. We use this to
35 // pack constant values compactly before and after each virtual table.
36 struct AccumBitVector
{
37 std::vector
<uint8_t> Bytes
;
39 // Bits in BytesUsed[I] are 1 if matching bit in Bytes[I] is used, 0 if not.
40 std::vector
<uint8_t> BytesUsed
;
42 std::pair
<uint8_t *, uint8_t *> getPtrToData(uint64_t Pos
, uint8_t Size
) {
43 if (Bytes
.size() < Pos
+ Size
) {
44 Bytes
.resize(Pos
+ Size
);
45 BytesUsed
.resize(Pos
+ Size
);
47 return std::make_pair(Bytes
.data() + Pos
, BytesUsed
.data() + Pos
);
50 // Set little-endian value Val with size Size at bit position Pos,
51 // and mark bytes as used.
52 void setLE(uint64_t Pos
, uint64_t Val
, uint8_t Size
) {
54 auto DataUsed
= getPtrToData(Pos
/ 8, Size
);
55 for (unsigned I
= 0; I
!= Size
; ++I
) {
56 DataUsed
.first
[I
] = Val
>> (I
* 8);
57 assert(!DataUsed
.second
[I
]);
58 DataUsed
.second
[I
] = 0xff;
62 // Set big-endian value Val with size Size at bit position Pos,
63 // and mark bytes as used.
64 void setBE(uint64_t Pos
, uint64_t Val
, uint8_t Size
) {
66 auto DataUsed
= getPtrToData(Pos
/ 8, Size
);
67 for (unsigned I
= 0; I
!= Size
; ++I
) {
68 DataUsed
.first
[Size
- I
- 1] = Val
>> (I
* 8);
69 assert(!DataUsed
.second
[Size
- I
- 1]);
70 DataUsed
.second
[Size
- I
- 1] = 0xff;
74 // Set bit at bit position Pos to b and mark bit as used.
75 void setBit(uint64_t Pos
, bool b
) {
76 auto DataUsed
= getPtrToData(Pos
/ 8, 1);
78 *DataUsed
.first
|= 1 << (Pos
% 8);
79 assert(!(*DataUsed
.second
& (1 << Pos
% 8)));
80 *DataUsed
.second
|= 1 << (Pos
% 8);
84 // The bits that will be stored before and after a particular vtable.
89 // Cache of the vtable's size in bytes.
90 uint64_t ObjectSize
= 0;
92 // The bit vector that will be laid out before the vtable. Note that these
93 // bytes are stored in reverse order until the globals are rebuilt. This means
94 // that any values in the array must be stored using the opposite endianness
96 AccumBitVector Before
;
98 // The bit vector that will be laid out after the vtable.
102 // Information about a member of a particular type identifier.
103 struct TypeMemberInfo
{
104 // The VTableBits for the vtable.
107 // The offset in bytes from the start of the vtable (i.e. the address point).
110 bool operator<(const TypeMemberInfo
&other
) const {
111 return Bits
< other
.Bits
|| (Bits
== other
.Bits
&& Offset
< other
.Offset
);
115 // A virtual call target, i.e. an entry in a particular vtable.
116 struct VirtualCallTarget
{
117 VirtualCallTarget(Function
*Fn
, const TypeMemberInfo
*TM
);
120 VirtualCallTarget(const TypeMemberInfo
*TM
, bool IsBigEndian
)
121 : Fn(nullptr), TM(TM
), IsBigEndian(IsBigEndian
), WasDevirt(false) {}
123 // The function stored in the vtable.
126 // A pointer to the type identifier member through which the pointer to Fn is
128 const TypeMemberInfo
*TM
;
130 // When doing virtual constant propagation, this stores the return value for
131 // the function when passed the currently considered argument list.
134 // Whether the target is big endian.
137 // Whether at least one call site to the target was devirtualized.
140 // The minimum byte offset before the address point. This covers the bytes in
141 // the vtable object before the address point (e.g. RTTI, access-to-top,
142 // vtables for other base classes) and is equal to the offset from the start
143 // of the vtable object to the address point.
144 uint64_t minBeforeBytes() const { return TM
->Offset
; }
146 // The minimum byte offset after the address point. This covers the bytes in
147 // the vtable object after the address point (e.g. the vtable for the current
148 // class and any later base classes) and is equal to the size of the vtable
149 // object minus the offset from the start of the vtable object to the address
151 uint64_t minAfterBytes() const { return TM
->Bits
->ObjectSize
- TM
->Offset
; }
153 // The number of bytes allocated (for the vtable plus the byte array) before
154 // the address point.
155 uint64_t allocatedBeforeBytes() const {
156 return minBeforeBytes() + TM
->Bits
->Before
.Bytes
.size();
159 // The number of bytes allocated (for the vtable plus the byte array) after
160 // the address point.
161 uint64_t allocatedAfterBytes() const {
162 return minAfterBytes() + TM
->Bits
->After
.Bytes
.size();
165 // Set the bit at position Pos before the address point to RetVal.
166 void setBeforeBit(uint64_t Pos
) {
167 assert(Pos
>= 8 * minBeforeBytes());
168 TM
->Bits
->Before
.setBit(Pos
- 8 * minBeforeBytes(), RetVal
);
171 // Set the bit at position Pos after the address point to RetVal.
172 void setAfterBit(uint64_t Pos
) {
173 assert(Pos
>= 8 * minAfterBytes());
174 TM
->Bits
->After
.setBit(Pos
- 8 * minAfterBytes(), RetVal
);
177 // Set the bytes at position Pos before the address point to RetVal.
178 // Because the bytes in Before are stored in reverse order, we use the
179 // opposite endianness to the target.
180 void setBeforeBytes(uint64_t Pos
, uint8_t Size
) {
181 assert(Pos
>= 8 * minBeforeBytes());
183 TM
->Bits
->Before
.setLE(Pos
- 8 * minBeforeBytes(), RetVal
, Size
);
185 TM
->Bits
->Before
.setBE(Pos
- 8 * minBeforeBytes(), RetVal
, Size
);
188 // Set the bytes at position Pos after the address point to RetVal.
189 void setAfterBytes(uint64_t Pos
, uint8_t Size
) {
190 assert(Pos
>= 8 * minAfterBytes());
192 TM
->Bits
->After
.setBE(Pos
- 8 * minAfterBytes(), RetVal
, Size
);
194 TM
->Bits
->After
.setLE(Pos
- 8 * minAfterBytes(), RetVal
, Size
);
198 // Find the minimum offset that we may store a value of size Size bits at. If
199 // IsAfter is set, look for an offset before the object, otherwise look for an
200 // offset after the object.
201 uint64_t findLowestOffset(ArrayRef
<VirtualCallTarget
> Targets
, bool IsAfter
,
204 // Set the stored value in each of Targets to VirtualCallTarget::RetVal at the
205 // given allocation offset before the vtable address. Stores the computed
206 // byte/bit offset to OffsetByte/OffsetBit.
207 void setBeforeReturnValues(MutableArrayRef
<VirtualCallTarget
> Targets
,
208 uint64_t AllocBefore
, unsigned BitWidth
,
209 int64_t &OffsetByte
, uint64_t &OffsetBit
);
211 // Set the stored value in each of Targets to VirtualCallTarget::RetVal at the
212 // given allocation offset after the vtable address. Stores the computed
213 // byte/bit offset to OffsetByte/OffsetBit.
214 void setAfterReturnValues(MutableArrayRef
<VirtualCallTarget
> Targets
,
215 uint64_t AllocAfter
, unsigned BitWidth
,
216 int64_t &OffsetByte
, uint64_t &OffsetBit
);
218 } // end namespace wholeprogramdevirt
220 struct WholeProgramDevirtPass
: public PassInfoMixin
<WholeProgramDevirtPass
> {
221 ModuleSummaryIndex
*ExportSummary
;
222 const ModuleSummaryIndex
*ImportSummary
;
223 WholeProgramDevirtPass(ModuleSummaryIndex
*ExportSummary
,
224 const ModuleSummaryIndex
*ImportSummary
)
225 : ExportSummary(ExportSummary
), ImportSummary(ImportSummary
) {
226 assert(!(ExportSummary
&& ImportSummary
));
228 PreservedAnalyses
run(Module
&M
, ModuleAnalysisManager
&);
231 } // end namespace llvm
233 #endif // LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H