Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Analysis / AliasAnalysis.cpp
blobc024e3a2c5b18120be1abf20bebf6a2364ba1cd4
1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified. This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
16 // etc.
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation. Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
22 // easy cases.
24 //===----------------------------------------------------------------------===//
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
30 #include "llvm/Analysis/CaptureTracking.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35 #include "llvm/Analysis/ScopedNoAliasAA.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/AtomicOrdering.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <functional>
54 #include <iterator>
56 using namespace llvm;
58 /// Allow disabling BasicAA from the AA results. This is particularly useful
59 /// when testing to isolate a single AA implementation.
60 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
61 cl::init(false));
63 AAResults::AAResults(AAResults &&Arg)
64 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
65 for (auto &AA : AAs)
66 AA->setAAResults(this);
69 AAResults::~AAResults() {
70 // FIXME; It would be nice to at least clear out the pointers back to this
71 // aggregation here, but we end up with non-nesting lifetimes in the legacy
72 // pass manager that prevent this from working. In the legacy pass manager
73 // we'll end up with dangling references here in some cases.
74 #if 0
75 for (auto &AA : AAs)
76 AA->setAAResults(nullptr);
77 #endif
80 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
81 FunctionAnalysisManager::Invalidator &Inv) {
82 // Check if the AA manager itself has been invalidated.
83 auto PAC = PA.getChecker<AAManager>();
84 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
85 return true; // The manager needs to be blown away, clear everything.
87 // Check all of the dependencies registered.
88 for (AnalysisKey *ID : AADeps)
89 if (Inv.invalidate(ID, F, PA))
90 return true;
92 // Everything we depend on is still fine, so are we. Nothing to invalidate.
93 return false;
96 //===----------------------------------------------------------------------===//
97 // Default chaining methods
98 //===----------------------------------------------------------------------===//
100 AliasResult AAResults::alias(const MemoryLocation &LocA,
101 const MemoryLocation &LocB) {
102 for (const auto &AA : AAs) {
103 auto Result = AA->alias(LocA, LocB);
104 if (Result != MayAlias)
105 return Result;
107 return MayAlias;
110 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
111 bool OrLocal) {
112 for (const auto &AA : AAs)
113 if (AA->pointsToConstantMemory(Loc, OrLocal))
114 return true;
116 return false;
119 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
120 ModRefInfo Result = ModRefInfo::ModRef;
122 for (const auto &AA : AAs) {
123 Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
125 // Early-exit the moment we reach the bottom of the lattice.
126 if (isNoModRef(Result))
127 return ModRefInfo::NoModRef;
130 return Result;
133 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
134 // We may have two calls.
135 if (const auto *Call1 = dyn_cast<CallBase>(I)) {
136 // Check if the two calls modify the same memory.
137 return getModRefInfo(Call1, Call2);
138 } else if (I->isFenceLike()) {
139 // If this is a fence, just return ModRef.
140 return ModRefInfo::ModRef;
141 } else {
142 // Otherwise, check if the call modifies or references the
143 // location this memory access defines. The best we can say
144 // is that if the call references what this instruction
145 // defines, it must be clobbered by this location.
146 const MemoryLocation DefLoc = MemoryLocation::get(I);
147 ModRefInfo MR = getModRefInfo(Call2, DefLoc);
148 if (isModOrRefSet(MR))
149 return setModAndRef(MR);
151 return ModRefInfo::NoModRef;
154 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
155 const MemoryLocation &Loc) {
156 ModRefInfo Result = ModRefInfo::ModRef;
158 for (const auto &AA : AAs) {
159 Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc));
161 // Early-exit the moment we reach the bottom of the lattice.
162 if (isNoModRef(Result))
163 return ModRefInfo::NoModRef;
166 // Try to refine the mod-ref info further using other API entry points to the
167 // aggregate set of AA results.
168 auto MRB = getModRefBehavior(Call);
169 if (MRB == FMRB_DoesNotAccessMemory ||
170 MRB == FMRB_OnlyAccessesInaccessibleMem)
171 return ModRefInfo::NoModRef;
173 if (onlyReadsMemory(MRB))
174 Result = clearMod(Result);
175 else if (doesNotReadMemory(MRB))
176 Result = clearRef(Result);
178 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
179 bool IsMustAlias = true;
180 ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
181 if (doesAccessArgPointees(MRB)) {
182 for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
183 const Value *Arg = *AI;
184 if (!Arg->getType()->isPointerTy())
185 continue;
186 unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
187 MemoryLocation ArgLoc =
188 MemoryLocation::getForArgument(Call, ArgIdx, TLI);
189 AliasResult ArgAlias = alias(ArgLoc, Loc);
190 if (ArgAlias != NoAlias) {
191 ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
192 AllArgsMask = unionModRef(AllArgsMask, ArgMask);
194 // Conservatively clear IsMustAlias unless only MustAlias is found.
195 IsMustAlias &= (ArgAlias == MustAlias);
198 // Return NoModRef if no alias found with any argument.
199 if (isNoModRef(AllArgsMask))
200 return ModRefInfo::NoModRef;
201 // Logical & between other AA analyses and argument analysis.
202 Result = intersectModRef(Result, AllArgsMask);
203 // If only MustAlias found above, set Must bit.
204 Result = IsMustAlias ? setMust(Result) : clearMust(Result);
207 // If Loc is a constant memory location, the call definitely could not
208 // modify the memory location.
209 if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
210 Result = clearMod(Result);
212 return Result;
215 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
216 const CallBase *Call2) {
217 ModRefInfo Result = ModRefInfo::ModRef;
219 for (const auto &AA : AAs) {
220 Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2));
222 // Early-exit the moment we reach the bottom of the lattice.
223 if (isNoModRef(Result))
224 return ModRefInfo::NoModRef;
227 // Try to refine the mod-ref info further using other API entry points to the
228 // aggregate set of AA results.
230 // If Call1 or Call2 are readnone, they don't interact.
231 auto Call1B = getModRefBehavior(Call1);
232 if (Call1B == FMRB_DoesNotAccessMemory)
233 return ModRefInfo::NoModRef;
235 auto Call2B = getModRefBehavior(Call2);
236 if (Call2B == FMRB_DoesNotAccessMemory)
237 return ModRefInfo::NoModRef;
239 // If they both only read from memory, there is no dependence.
240 if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
241 return ModRefInfo::NoModRef;
243 // If Call1 only reads memory, the only dependence on Call2 can be
244 // from Call1 reading memory written by Call2.
245 if (onlyReadsMemory(Call1B))
246 Result = clearMod(Result);
247 else if (doesNotReadMemory(Call1B))
248 Result = clearRef(Result);
250 // If Call2 only access memory through arguments, accumulate the mod/ref
251 // information from Call1's references to the memory referenced by
252 // Call2's arguments.
253 if (onlyAccessesArgPointees(Call2B)) {
254 if (!doesAccessArgPointees(Call2B))
255 return ModRefInfo::NoModRef;
256 ModRefInfo R = ModRefInfo::NoModRef;
257 bool IsMustAlias = true;
258 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
259 const Value *Arg = *I;
260 if (!Arg->getType()->isPointerTy())
261 continue;
262 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
263 auto Call2ArgLoc =
264 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
266 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
267 // dependence of Call1 on that location is the inverse:
268 // - If Call2 modifies location, dependence exists if Call1 reads or
269 // writes.
270 // - If Call2 only reads location, dependence exists if Call1 writes.
271 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
272 ModRefInfo ArgMask = ModRefInfo::NoModRef;
273 if (isModSet(ArgModRefC2))
274 ArgMask = ModRefInfo::ModRef;
275 else if (isRefSet(ArgModRefC2))
276 ArgMask = ModRefInfo::Mod;
278 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
279 // above ArgMask to update dependence info.
280 ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc);
281 ArgMask = intersectModRef(ArgMask, ModRefC1);
283 // Conservatively clear IsMustAlias unless only MustAlias is found.
284 IsMustAlias &= isMustSet(ModRefC1);
286 R = intersectModRef(unionModRef(R, ArgMask), Result);
287 if (R == Result) {
288 // On early exit, not all args were checked, cannot set Must.
289 if (I + 1 != E)
290 IsMustAlias = false;
291 break;
295 if (isNoModRef(R))
296 return ModRefInfo::NoModRef;
298 // If MustAlias found above, set Must bit.
299 return IsMustAlias ? setMust(R) : clearMust(R);
302 // If Call1 only accesses memory through arguments, check if Call2 references
303 // any of the memory referenced by Call1's arguments. If not, return NoModRef.
304 if (onlyAccessesArgPointees(Call1B)) {
305 if (!doesAccessArgPointees(Call1B))
306 return ModRefInfo::NoModRef;
307 ModRefInfo R = ModRefInfo::NoModRef;
308 bool IsMustAlias = true;
309 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
310 const Value *Arg = *I;
311 if (!Arg->getType()->isPointerTy())
312 continue;
313 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
314 auto Call1ArgLoc =
315 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
317 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
318 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
319 // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
320 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
321 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc);
322 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
323 (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
324 R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
326 // Conservatively clear IsMustAlias unless only MustAlias is found.
327 IsMustAlias &= isMustSet(ModRefC2);
329 if (R == Result) {
330 // On early exit, not all args were checked, cannot set Must.
331 if (I + 1 != E)
332 IsMustAlias = false;
333 break;
337 if (isNoModRef(R))
338 return ModRefInfo::NoModRef;
340 // If MustAlias found above, set Must bit.
341 return IsMustAlias ? setMust(R) : clearMust(R);
344 return Result;
347 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
348 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
350 for (const auto &AA : AAs) {
351 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
353 // Early-exit the moment we reach the bottom of the lattice.
354 if (Result == FMRB_DoesNotAccessMemory)
355 return Result;
358 return Result;
361 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
362 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
364 for (const auto &AA : AAs) {
365 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
367 // Early-exit the moment we reach the bottom of the lattice.
368 if (Result == FMRB_DoesNotAccessMemory)
369 return Result;
372 return Result;
375 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
376 switch (AR) {
377 case NoAlias:
378 OS << "NoAlias";
379 break;
380 case MustAlias:
381 OS << "MustAlias";
382 break;
383 case MayAlias:
384 OS << "MayAlias";
385 break;
386 case PartialAlias:
387 OS << "PartialAlias";
388 break;
390 return OS;
393 //===----------------------------------------------------------------------===//
394 // Helper method implementation
395 //===----------------------------------------------------------------------===//
397 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
398 const MemoryLocation &Loc) {
399 // Be conservative in the face of atomic.
400 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
401 return ModRefInfo::ModRef;
403 // If the load address doesn't alias the given address, it doesn't read
404 // or write the specified memory.
405 if (Loc.Ptr) {
406 AliasResult AR = alias(MemoryLocation::get(L), Loc);
407 if (AR == NoAlias)
408 return ModRefInfo::NoModRef;
409 if (AR == MustAlias)
410 return ModRefInfo::MustRef;
412 // Otherwise, a load just reads.
413 return ModRefInfo::Ref;
416 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
417 const MemoryLocation &Loc) {
418 // Be conservative in the face of atomic.
419 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
420 return ModRefInfo::ModRef;
422 if (Loc.Ptr) {
423 AliasResult AR = alias(MemoryLocation::get(S), Loc);
424 // If the store address cannot alias the pointer in question, then the
425 // specified memory cannot be modified by the store.
426 if (AR == NoAlias)
427 return ModRefInfo::NoModRef;
429 // If the pointer is a pointer to constant memory, then it could not have
430 // been modified by this store.
431 if (pointsToConstantMemory(Loc))
432 return ModRefInfo::NoModRef;
434 // If the store address aliases the pointer as must alias, set Must.
435 if (AR == MustAlias)
436 return ModRefInfo::MustMod;
439 // Otherwise, a store just writes.
440 return ModRefInfo::Mod;
443 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
444 // If we know that the location is a constant memory location, the fence
445 // cannot modify this location.
446 if (Loc.Ptr && pointsToConstantMemory(Loc))
447 return ModRefInfo::Ref;
448 return ModRefInfo::ModRef;
451 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
452 const MemoryLocation &Loc) {
453 if (Loc.Ptr) {
454 AliasResult AR = alias(MemoryLocation::get(V), Loc);
455 // If the va_arg address cannot alias the pointer in question, then the
456 // specified memory cannot be accessed by the va_arg.
457 if (AR == NoAlias)
458 return ModRefInfo::NoModRef;
460 // If the pointer is a pointer to constant memory, then it could not have
461 // been modified by this va_arg.
462 if (pointsToConstantMemory(Loc))
463 return ModRefInfo::NoModRef;
465 // If the va_arg aliases the pointer as must alias, set Must.
466 if (AR == MustAlias)
467 return ModRefInfo::MustModRef;
470 // Otherwise, a va_arg reads and writes.
471 return ModRefInfo::ModRef;
474 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
475 const MemoryLocation &Loc) {
476 if (Loc.Ptr) {
477 // If the pointer is a pointer to constant memory,
478 // then it could not have been modified by this catchpad.
479 if (pointsToConstantMemory(Loc))
480 return ModRefInfo::NoModRef;
483 // Otherwise, a catchpad reads and writes.
484 return ModRefInfo::ModRef;
487 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
488 const MemoryLocation &Loc) {
489 if (Loc.Ptr) {
490 // If the pointer is a pointer to constant memory,
491 // then it could not have been modified by this catchpad.
492 if (pointsToConstantMemory(Loc))
493 return ModRefInfo::NoModRef;
496 // Otherwise, a catchret reads and writes.
497 return ModRefInfo::ModRef;
500 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
501 const MemoryLocation &Loc) {
502 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
503 if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
504 return ModRefInfo::ModRef;
506 if (Loc.Ptr) {
507 AliasResult AR = alias(MemoryLocation::get(CX), Loc);
508 // If the cmpxchg address does not alias the location, it does not access
509 // it.
510 if (AR == NoAlias)
511 return ModRefInfo::NoModRef;
513 // If the cmpxchg address aliases the pointer as must alias, set Must.
514 if (AR == MustAlias)
515 return ModRefInfo::MustModRef;
518 return ModRefInfo::ModRef;
521 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
522 const MemoryLocation &Loc) {
523 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
524 if (isStrongerThanMonotonic(RMW->getOrdering()))
525 return ModRefInfo::ModRef;
527 if (Loc.Ptr) {
528 AliasResult AR = alias(MemoryLocation::get(RMW), Loc);
529 // If the atomicrmw address does not alias the location, it does not access
530 // it.
531 if (AR == NoAlias)
532 return ModRefInfo::NoModRef;
534 // If the atomicrmw address aliases the pointer as must alias, set Must.
535 if (AR == MustAlias)
536 return ModRefInfo::MustModRef;
539 return ModRefInfo::ModRef;
542 /// Return information about whether a particular call site modifies
543 /// or reads the specified memory location \p MemLoc before instruction \p I
544 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
545 /// instruction-ordering queries inside the BasicBlock containing \p I.
546 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
547 /// BasicAA isn't willing to spend linear time determining whether an alloca
548 /// was captured before or after this particular call, while we are. However,
549 /// with a smarter AA in place, this test is just wasting compile time.
550 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
551 const MemoryLocation &MemLoc,
552 DominatorTree *DT,
553 OrderedBasicBlock *OBB) {
554 if (!DT)
555 return ModRefInfo::ModRef;
557 const Value *Object =
558 GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
559 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
560 isa<Constant>(Object))
561 return ModRefInfo::ModRef;
563 const auto *Call = dyn_cast<CallBase>(I);
564 if (!Call || Call == Object)
565 return ModRefInfo::ModRef;
567 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
568 /* StoreCaptures */ true, I, DT,
569 /* include Object */ true,
570 /* OrderedBasicBlock */ OBB))
571 return ModRefInfo::ModRef;
573 unsigned ArgNo = 0;
574 ModRefInfo R = ModRefInfo::NoModRef;
575 bool IsMustAlias = true;
576 // Set flag only if no May found and all operands processed.
577 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
578 CI != CE; ++CI, ++ArgNo) {
579 // Only look at the no-capture or byval pointer arguments. If this
580 // pointer were passed to arguments that were neither of these, then it
581 // couldn't be no-capture.
582 if (!(*CI)->getType()->isPointerTy() ||
583 (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
584 !Call->isByValArgument(ArgNo)))
585 continue;
587 AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
588 // If this is a no-capture pointer argument, see if we can tell that it
589 // is impossible to alias the pointer we're checking. If not, we have to
590 // assume that the call could touch the pointer, even though it doesn't
591 // escape.
592 if (AR != MustAlias)
593 IsMustAlias = false;
594 if (AR == NoAlias)
595 continue;
596 if (Call->doesNotAccessMemory(ArgNo))
597 continue;
598 if (Call->onlyReadsMemory(ArgNo)) {
599 R = ModRefInfo::Ref;
600 continue;
602 // Not returning MustModRef since we have not seen all the arguments.
603 return ModRefInfo::ModRef;
605 return IsMustAlias ? setMust(R) : clearMust(R);
608 /// canBasicBlockModify - Return true if it is possible for execution of the
609 /// specified basic block to modify the location Loc.
611 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
612 const MemoryLocation &Loc) {
613 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
616 /// canInstructionRangeModRef - Return true if it is possible for the
617 /// execution of the specified instructions to mod\ref (according to the
618 /// mode) the location Loc. The instructions to consider are all
619 /// of the instructions in the range of [I1,I2] INCLUSIVE.
620 /// I1 and I2 must be in the same basic block.
621 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
622 const Instruction &I2,
623 const MemoryLocation &Loc,
624 const ModRefInfo Mode) {
625 assert(I1.getParent() == I2.getParent() &&
626 "Instructions not in same basic block!");
627 BasicBlock::const_iterator I = I1.getIterator();
628 BasicBlock::const_iterator E = I2.getIterator();
629 ++E; // Convert from inclusive to exclusive range.
631 for (; I != E; ++I) // Check every instruction in range
632 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
633 return true;
634 return false;
637 // Provide a definition for the root virtual destructor.
638 AAResults::Concept::~Concept() = default;
640 // Provide a definition for the static object used to identify passes.
641 AnalysisKey AAManager::Key;
643 namespace {
646 } // end anonymous namespace
648 char ExternalAAWrapperPass::ID = 0;
650 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
651 false, true)
653 ImmutablePass *
654 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
655 return new ExternalAAWrapperPass(std::move(Callback));
658 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
659 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
662 char AAResultsWrapperPass::ID = 0;
664 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
665 "Function Alias Analysis Results", false, true)
666 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
667 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
668 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
669 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
670 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
671 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
672 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
673 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
674 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
675 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
676 "Function Alias Analysis Results", false, true)
678 FunctionPass *llvm::createAAResultsWrapperPass() {
679 return new AAResultsWrapperPass();
682 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
684 /// This is the legacy pass manager's interface to the new-style AA results
685 /// aggregation object. Because this is somewhat shoe-horned into the legacy
686 /// pass manager, we hard code all the specific alias analyses available into
687 /// it. While the particular set enabled is configured via commandline flags,
688 /// adding a new alias analysis to LLVM will require adding support for it to
689 /// this list.
690 bool AAResultsWrapperPass::runOnFunction(Function &F) {
691 // NB! This *must* be reset before adding new AA results to the new
692 // AAResults object because in the legacy pass manager, each instance
693 // of these will refer to the *same* immutable analyses, registering and
694 // unregistering themselves with them. We need to carefully tear down the
695 // previous object first, in this case replacing it with an empty one, before
696 // registering new results.
697 AAR.reset(
698 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
700 // BasicAA is always available for function analyses. Also, we add it first
701 // so that it can trump TBAA results when it proves MustAlias.
702 // FIXME: TBAA should have an explicit mode to support this and then we
703 // should reconsider the ordering here.
704 if (!DisableBasicAA)
705 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
707 // Populate the results with the currently available AAs.
708 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
709 AAR->addAAResult(WrapperPass->getResult());
710 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
711 AAR->addAAResult(WrapperPass->getResult());
712 if (auto *WrapperPass =
713 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
714 AAR->addAAResult(WrapperPass->getResult());
715 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
716 AAR->addAAResult(WrapperPass->getResult());
717 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
718 AAR->addAAResult(WrapperPass->getResult());
719 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
720 AAR->addAAResult(WrapperPass->getResult());
721 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
722 AAR->addAAResult(WrapperPass->getResult());
724 // If available, run an external AA providing callback over the results as
725 // well.
726 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
727 if (WrapperPass->CB)
728 WrapperPass->CB(*this, F, *AAR);
730 // Analyses don't mutate the IR, so return false.
731 return false;
734 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
735 AU.setPreservesAll();
736 AU.addRequired<BasicAAWrapperPass>();
737 AU.addRequired<TargetLibraryInfoWrapperPass>();
739 // We also need to mark all the alias analysis passes we will potentially
740 // probe in runOnFunction as used here to ensure the legacy pass manager
741 // preserves them. This hard coding of lists of alias analyses is specific to
742 // the legacy pass manager.
743 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
744 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
745 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
746 AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
747 AU.addUsedIfAvailable<SCEVAAWrapperPass>();
748 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
749 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
752 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
753 BasicAAResult &BAR) {
754 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
756 // Add in our explicitly constructed BasicAA results.
757 if (!DisableBasicAA)
758 AAR.addAAResult(BAR);
760 // Populate the results with the other currently available AAs.
761 if (auto *WrapperPass =
762 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
763 AAR.addAAResult(WrapperPass->getResult());
764 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
765 AAR.addAAResult(WrapperPass->getResult());
766 if (auto *WrapperPass =
767 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
768 AAR.addAAResult(WrapperPass->getResult());
769 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
770 AAR.addAAResult(WrapperPass->getResult());
771 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
772 AAR.addAAResult(WrapperPass->getResult());
773 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
774 AAR.addAAResult(WrapperPass->getResult());
776 return AAR;
779 bool llvm::isNoAliasCall(const Value *V) {
780 if (const auto *Call = dyn_cast<CallBase>(V))
781 return Call->hasRetAttr(Attribute::NoAlias);
782 return false;
785 bool llvm::isNoAliasArgument(const Value *V) {
786 if (const Argument *A = dyn_cast<Argument>(V))
787 return A->hasNoAliasAttr();
788 return false;
791 bool llvm::isIdentifiedObject(const Value *V) {
792 if (isa<AllocaInst>(V))
793 return true;
794 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
795 return true;
796 if (isNoAliasCall(V))
797 return true;
798 if (const Argument *A = dyn_cast<Argument>(V))
799 return A->hasNoAliasAttr() || A->hasByValAttr();
800 return false;
803 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
804 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
807 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
808 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
809 // more alias analyses are added to llvm::createLegacyPMAAResults, they need
810 // to be added here also.
811 AU.addRequired<TargetLibraryInfoWrapperPass>();
812 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
813 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
814 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
815 AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
816 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
817 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();