1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified. This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation. Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
24 //===----------------------------------------------------------------------===//
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
30 #include "llvm/Analysis/CaptureTracking.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35 #include "llvm/Analysis/ScopedNoAliasAA.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/AtomicOrdering.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
58 /// Allow disabling BasicAA from the AA results. This is particularly useful
59 /// when testing to isolate a single AA implementation.
60 static cl::opt
<bool> DisableBasicAA("disable-basicaa", cl::Hidden
,
63 AAResults::AAResults(AAResults
&&Arg
)
64 : TLI(Arg
.TLI
), AAs(std::move(Arg
.AAs
)), AADeps(std::move(Arg
.AADeps
)) {
66 AA
->setAAResults(this);
69 AAResults::~AAResults() {
70 // FIXME; It would be nice to at least clear out the pointers back to this
71 // aggregation here, but we end up with non-nesting lifetimes in the legacy
72 // pass manager that prevent this from working. In the legacy pass manager
73 // we'll end up with dangling references here in some cases.
76 AA
->setAAResults(nullptr);
80 bool AAResults::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
81 FunctionAnalysisManager::Invalidator
&Inv
) {
82 // Check if the AA manager itself has been invalidated.
83 auto PAC
= PA
.getChecker
<AAManager
>();
84 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Function
>>())
85 return true; // The manager needs to be blown away, clear everything.
87 // Check all of the dependencies registered.
88 for (AnalysisKey
*ID
: AADeps
)
89 if (Inv
.invalidate(ID
, F
, PA
))
92 // Everything we depend on is still fine, so are we. Nothing to invalidate.
96 //===----------------------------------------------------------------------===//
97 // Default chaining methods
98 //===----------------------------------------------------------------------===//
100 AliasResult
AAResults::alias(const MemoryLocation
&LocA
,
101 const MemoryLocation
&LocB
) {
102 for (const auto &AA
: AAs
) {
103 auto Result
= AA
->alias(LocA
, LocB
);
104 if (Result
!= MayAlias
)
110 bool AAResults::pointsToConstantMemory(const MemoryLocation
&Loc
,
112 for (const auto &AA
: AAs
)
113 if (AA
->pointsToConstantMemory(Loc
, OrLocal
))
119 ModRefInfo
AAResults::getArgModRefInfo(const CallBase
*Call
, unsigned ArgIdx
) {
120 ModRefInfo Result
= ModRefInfo::ModRef
;
122 for (const auto &AA
: AAs
) {
123 Result
= intersectModRef(Result
, AA
->getArgModRefInfo(Call
, ArgIdx
));
125 // Early-exit the moment we reach the bottom of the lattice.
126 if (isNoModRef(Result
))
127 return ModRefInfo::NoModRef
;
133 ModRefInfo
AAResults::getModRefInfo(Instruction
*I
, const CallBase
*Call2
) {
134 // We may have two calls.
135 if (const auto *Call1
= dyn_cast
<CallBase
>(I
)) {
136 // Check if the two calls modify the same memory.
137 return getModRefInfo(Call1
, Call2
);
138 } else if (I
->isFenceLike()) {
139 // If this is a fence, just return ModRef.
140 return ModRefInfo::ModRef
;
142 // Otherwise, check if the call modifies or references the
143 // location this memory access defines. The best we can say
144 // is that if the call references what this instruction
145 // defines, it must be clobbered by this location.
146 const MemoryLocation DefLoc
= MemoryLocation::get(I
);
147 ModRefInfo MR
= getModRefInfo(Call2
, DefLoc
);
148 if (isModOrRefSet(MR
))
149 return setModAndRef(MR
);
151 return ModRefInfo::NoModRef
;
154 ModRefInfo
AAResults::getModRefInfo(const CallBase
*Call
,
155 const MemoryLocation
&Loc
) {
156 ModRefInfo Result
= ModRefInfo::ModRef
;
158 for (const auto &AA
: AAs
) {
159 Result
= intersectModRef(Result
, AA
->getModRefInfo(Call
, Loc
));
161 // Early-exit the moment we reach the bottom of the lattice.
162 if (isNoModRef(Result
))
163 return ModRefInfo::NoModRef
;
166 // Try to refine the mod-ref info further using other API entry points to the
167 // aggregate set of AA results.
168 auto MRB
= getModRefBehavior(Call
);
169 if (MRB
== FMRB_DoesNotAccessMemory
||
170 MRB
== FMRB_OnlyAccessesInaccessibleMem
)
171 return ModRefInfo::NoModRef
;
173 if (onlyReadsMemory(MRB
))
174 Result
= clearMod(Result
);
175 else if (doesNotReadMemory(MRB
))
176 Result
= clearRef(Result
);
178 if (onlyAccessesArgPointees(MRB
) || onlyAccessesInaccessibleOrArgMem(MRB
)) {
179 bool IsMustAlias
= true;
180 ModRefInfo AllArgsMask
= ModRefInfo::NoModRef
;
181 if (doesAccessArgPointees(MRB
)) {
182 for (auto AI
= Call
->arg_begin(), AE
= Call
->arg_end(); AI
!= AE
; ++AI
) {
183 const Value
*Arg
= *AI
;
184 if (!Arg
->getType()->isPointerTy())
186 unsigned ArgIdx
= std::distance(Call
->arg_begin(), AI
);
187 MemoryLocation ArgLoc
=
188 MemoryLocation::getForArgument(Call
, ArgIdx
, TLI
);
189 AliasResult ArgAlias
= alias(ArgLoc
, Loc
);
190 if (ArgAlias
!= NoAlias
) {
191 ModRefInfo ArgMask
= getArgModRefInfo(Call
, ArgIdx
);
192 AllArgsMask
= unionModRef(AllArgsMask
, ArgMask
);
194 // Conservatively clear IsMustAlias unless only MustAlias is found.
195 IsMustAlias
&= (ArgAlias
== MustAlias
);
198 // Return NoModRef if no alias found with any argument.
199 if (isNoModRef(AllArgsMask
))
200 return ModRefInfo::NoModRef
;
201 // Logical & between other AA analyses and argument analysis.
202 Result
= intersectModRef(Result
, AllArgsMask
);
203 // If only MustAlias found above, set Must bit.
204 Result
= IsMustAlias
? setMust(Result
) : clearMust(Result
);
207 // If Loc is a constant memory location, the call definitely could not
208 // modify the memory location.
209 if (isModSet(Result
) && pointsToConstantMemory(Loc
, /*OrLocal*/ false))
210 Result
= clearMod(Result
);
215 ModRefInfo
AAResults::getModRefInfo(const CallBase
*Call1
,
216 const CallBase
*Call2
) {
217 ModRefInfo Result
= ModRefInfo::ModRef
;
219 for (const auto &AA
: AAs
) {
220 Result
= intersectModRef(Result
, AA
->getModRefInfo(Call1
, Call2
));
222 // Early-exit the moment we reach the bottom of the lattice.
223 if (isNoModRef(Result
))
224 return ModRefInfo::NoModRef
;
227 // Try to refine the mod-ref info further using other API entry points to the
228 // aggregate set of AA results.
230 // If Call1 or Call2 are readnone, they don't interact.
231 auto Call1B
= getModRefBehavior(Call1
);
232 if (Call1B
== FMRB_DoesNotAccessMemory
)
233 return ModRefInfo::NoModRef
;
235 auto Call2B
= getModRefBehavior(Call2
);
236 if (Call2B
== FMRB_DoesNotAccessMemory
)
237 return ModRefInfo::NoModRef
;
239 // If they both only read from memory, there is no dependence.
240 if (onlyReadsMemory(Call1B
) && onlyReadsMemory(Call2B
))
241 return ModRefInfo::NoModRef
;
243 // If Call1 only reads memory, the only dependence on Call2 can be
244 // from Call1 reading memory written by Call2.
245 if (onlyReadsMemory(Call1B
))
246 Result
= clearMod(Result
);
247 else if (doesNotReadMemory(Call1B
))
248 Result
= clearRef(Result
);
250 // If Call2 only access memory through arguments, accumulate the mod/ref
251 // information from Call1's references to the memory referenced by
252 // Call2's arguments.
253 if (onlyAccessesArgPointees(Call2B
)) {
254 if (!doesAccessArgPointees(Call2B
))
255 return ModRefInfo::NoModRef
;
256 ModRefInfo R
= ModRefInfo::NoModRef
;
257 bool IsMustAlias
= true;
258 for (auto I
= Call2
->arg_begin(), E
= Call2
->arg_end(); I
!= E
; ++I
) {
259 const Value
*Arg
= *I
;
260 if (!Arg
->getType()->isPointerTy())
262 unsigned Call2ArgIdx
= std::distance(Call2
->arg_begin(), I
);
264 MemoryLocation::getForArgument(Call2
, Call2ArgIdx
, TLI
);
266 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
267 // dependence of Call1 on that location is the inverse:
268 // - If Call2 modifies location, dependence exists if Call1 reads or
270 // - If Call2 only reads location, dependence exists if Call1 writes.
271 ModRefInfo ArgModRefC2
= getArgModRefInfo(Call2
, Call2ArgIdx
);
272 ModRefInfo ArgMask
= ModRefInfo::NoModRef
;
273 if (isModSet(ArgModRefC2
))
274 ArgMask
= ModRefInfo::ModRef
;
275 else if (isRefSet(ArgModRefC2
))
276 ArgMask
= ModRefInfo::Mod
;
278 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
279 // above ArgMask to update dependence info.
280 ModRefInfo ModRefC1
= getModRefInfo(Call1
, Call2ArgLoc
);
281 ArgMask
= intersectModRef(ArgMask
, ModRefC1
);
283 // Conservatively clear IsMustAlias unless only MustAlias is found.
284 IsMustAlias
&= isMustSet(ModRefC1
);
286 R
= intersectModRef(unionModRef(R
, ArgMask
), Result
);
288 // On early exit, not all args were checked, cannot set Must.
296 return ModRefInfo::NoModRef
;
298 // If MustAlias found above, set Must bit.
299 return IsMustAlias
? setMust(R
) : clearMust(R
);
302 // If Call1 only accesses memory through arguments, check if Call2 references
303 // any of the memory referenced by Call1's arguments. If not, return NoModRef.
304 if (onlyAccessesArgPointees(Call1B
)) {
305 if (!doesAccessArgPointees(Call1B
))
306 return ModRefInfo::NoModRef
;
307 ModRefInfo R
= ModRefInfo::NoModRef
;
308 bool IsMustAlias
= true;
309 for (auto I
= Call1
->arg_begin(), E
= Call1
->arg_end(); I
!= E
; ++I
) {
310 const Value
*Arg
= *I
;
311 if (!Arg
->getType()->isPointerTy())
313 unsigned Call1ArgIdx
= std::distance(Call1
->arg_begin(), I
);
315 MemoryLocation::getForArgument(Call1
, Call1ArgIdx
, TLI
);
317 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
318 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
319 // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
320 ModRefInfo ArgModRefC1
= getArgModRefInfo(Call1
, Call1ArgIdx
);
321 ModRefInfo ModRefC2
= getModRefInfo(Call2
, Call1ArgLoc
);
322 if ((isModSet(ArgModRefC1
) && isModOrRefSet(ModRefC2
)) ||
323 (isRefSet(ArgModRefC1
) && isModSet(ModRefC2
)))
324 R
= intersectModRef(unionModRef(R
, ArgModRefC1
), Result
);
326 // Conservatively clear IsMustAlias unless only MustAlias is found.
327 IsMustAlias
&= isMustSet(ModRefC2
);
330 // On early exit, not all args were checked, cannot set Must.
338 return ModRefInfo::NoModRef
;
340 // If MustAlias found above, set Must bit.
341 return IsMustAlias
? setMust(R
) : clearMust(R
);
347 FunctionModRefBehavior
AAResults::getModRefBehavior(const CallBase
*Call
) {
348 FunctionModRefBehavior Result
= FMRB_UnknownModRefBehavior
;
350 for (const auto &AA
: AAs
) {
351 Result
= FunctionModRefBehavior(Result
& AA
->getModRefBehavior(Call
));
353 // Early-exit the moment we reach the bottom of the lattice.
354 if (Result
== FMRB_DoesNotAccessMemory
)
361 FunctionModRefBehavior
AAResults::getModRefBehavior(const Function
*F
) {
362 FunctionModRefBehavior Result
= FMRB_UnknownModRefBehavior
;
364 for (const auto &AA
: AAs
) {
365 Result
= FunctionModRefBehavior(Result
& AA
->getModRefBehavior(F
));
367 // Early-exit the moment we reach the bottom of the lattice.
368 if (Result
== FMRB_DoesNotAccessMemory
)
375 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, AliasResult AR
) {
387 OS
<< "PartialAlias";
393 //===----------------------------------------------------------------------===//
394 // Helper method implementation
395 //===----------------------------------------------------------------------===//
397 ModRefInfo
AAResults::getModRefInfo(const LoadInst
*L
,
398 const MemoryLocation
&Loc
) {
399 // Be conservative in the face of atomic.
400 if (isStrongerThan(L
->getOrdering(), AtomicOrdering::Unordered
))
401 return ModRefInfo::ModRef
;
403 // If the load address doesn't alias the given address, it doesn't read
404 // or write the specified memory.
406 AliasResult AR
= alias(MemoryLocation::get(L
), Loc
);
408 return ModRefInfo::NoModRef
;
410 return ModRefInfo::MustRef
;
412 // Otherwise, a load just reads.
413 return ModRefInfo::Ref
;
416 ModRefInfo
AAResults::getModRefInfo(const StoreInst
*S
,
417 const MemoryLocation
&Loc
) {
418 // Be conservative in the face of atomic.
419 if (isStrongerThan(S
->getOrdering(), AtomicOrdering::Unordered
))
420 return ModRefInfo::ModRef
;
423 AliasResult AR
= alias(MemoryLocation::get(S
), Loc
);
424 // If the store address cannot alias the pointer in question, then the
425 // specified memory cannot be modified by the store.
427 return ModRefInfo::NoModRef
;
429 // If the pointer is a pointer to constant memory, then it could not have
430 // been modified by this store.
431 if (pointsToConstantMemory(Loc
))
432 return ModRefInfo::NoModRef
;
434 // If the store address aliases the pointer as must alias, set Must.
436 return ModRefInfo::MustMod
;
439 // Otherwise, a store just writes.
440 return ModRefInfo::Mod
;
443 ModRefInfo
AAResults::getModRefInfo(const FenceInst
*S
, const MemoryLocation
&Loc
) {
444 // If we know that the location is a constant memory location, the fence
445 // cannot modify this location.
446 if (Loc
.Ptr
&& pointsToConstantMemory(Loc
))
447 return ModRefInfo::Ref
;
448 return ModRefInfo::ModRef
;
451 ModRefInfo
AAResults::getModRefInfo(const VAArgInst
*V
,
452 const MemoryLocation
&Loc
) {
454 AliasResult AR
= alias(MemoryLocation::get(V
), Loc
);
455 // If the va_arg address cannot alias the pointer in question, then the
456 // specified memory cannot be accessed by the va_arg.
458 return ModRefInfo::NoModRef
;
460 // If the pointer is a pointer to constant memory, then it could not have
461 // been modified by this va_arg.
462 if (pointsToConstantMemory(Loc
))
463 return ModRefInfo::NoModRef
;
465 // If the va_arg aliases the pointer as must alias, set Must.
467 return ModRefInfo::MustModRef
;
470 // Otherwise, a va_arg reads and writes.
471 return ModRefInfo::ModRef
;
474 ModRefInfo
AAResults::getModRefInfo(const CatchPadInst
*CatchPad
,
475 const MemoryLocation
&Loc
) {
477 // If the pointer is a pointer to constant memory,
478 // then it could not have been modified by this catchpad.
479 if (pointsToConstantMemory(Loc
))
480 return ModRefInfo::NoModRef
;
483 // Otherwise, a catchpad reads and writes.
484 return ModRefInfo::ModRef
;
487 ModRefInfo
AAResults::getModRefInfo(const CatchReturnInst
*CatchRet
,
488 const MemoryLocation
&Loc
) {
490 // If the pointer is a pointer to constant memory,
491 // then it could not have been modified by this catchpad.
492 if (pointsToConstantMemory(Loc
))
493 return ModRefInfo::NoModRef
;
496 // Otherwise, a catchret reads and writes.
497 return ModRefInfo::ModRef
;
500 ModRefInfo
AAResults::getModRefInfo(const AtomicCmpXchgInst
*CX
,
501 const MemoryLocation
&Loc
) {
502 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
503 if (isStrongerThanMonotonic(CX
->getSuccessOrdering()))
504 return ModRefInfo::ModRef
;
507 AliasResult AR
= alias(MemoryLocation::get(CX
), Loc
);
508 // If the cmpxchg address does not alias the location, it does not access
511 return ModRefInfo::NoModRef
;
513 // If the cmpxchg address aliases the pointer as must alias, set Must.
515 return ModRefInfo::MustModRef
;
518 return ModRefInfo::ModRef
;
521 ModRefInfo
AAResults::getModRefInfo(const AtomicRMWInst
*RMW
,
522 const MemoryLocation
&Loc
) {
523 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
524 if (isStrongerThanMonotonic(RMW
->getOrdering()))
525 return ModRefInfo::ModRef
;
528 AliasResult AR
= alias(MemoryLocation::get(RMW
), Loc
);
529 // If the atomicrmw address does not alias the location, it does not access
532 return ModRefInfo::NoModRef
;
534 // If the atomicrmw address aliases the pointer as must alias, set Must.
536 return ModRefInfo::MustModRef
;
539 return ModRefInfo::ModRef
;
542 /// Return information about whether a particular call site modifies
543 /// or reads the specified memory location \p MemLoc before instruction \p I
544 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
545 /// instruction-ordering queries inside the BasicBlock containing \p I.
546 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
547 /// BasicAA isn't willing to spend linear time determining whether an alloca
548 /// was captured before or after this particular call, while we are. However,
549 /// with a smarter AA in place, this test is just wasting compile time.
550 ModRefInfo
AAResults::callCapturesBefore(const Instruction
*I
,
551 const MemoryLocation
&MemLoc
,
553 OrderedBasicBlock
*OBB
) {
555 return ModRefInfo::ModRef
;
557 const Value
*Object
=
558 GetUnderlyingObject(MemLoc
.Ptr
, I
->getModule()->getDataLayout());
559 if (!isIdentifiedObject(Object
) || isa
<GlobalValue
>(Object
) ||
560 isa
<Constant
>(Object
))
561 return ModRefInfo::ModRef
;
563 const auto *Call
= dyn_cast
<CallBase
>(I
);
564 if (!Call
|| Call
== Object
)
565 return ModRefInfo::ModRef
;
567 if (PointerMayBeCapturedBefore(Object
, /* ReturnCaptures */ true,
568 /* StoreCaptures */ true, I
, DT
,
569 /* include Object */ true,
570 /* OrderedBasicBlock */ OBB
))
571 return ModRefInfo::ModRef
;
574 ModRefInfo R
= ModRefInfo::NoModRef
;
575 bool IsMustAlias
= true;
576 // Set flag only if no May found and all operands processed.
577 for (auto CI
= Call
->data_operands_begin(), CE
= Call
->data_operands_end();
578 CI
!= CE
; ++CI
, ++ArgNo
) {
579 // Only look at the no-capture or byval pointer arguments. If this
580 // pointer were passed to arguments that were neither of these, then it
581 // couldn't be no-capture.
582 if (!(*CI
)->getType()->isPointerTy() ||
583 (!Call
->doesNotCapture(ArgNo
) && ArgNo
< Call
->getNumArgOperands() &&
584 !Call
->isByValArgument(ArgNo
)))
587 AliasResult AR
= alias(MemoryLocation(*CI
), MemoryLocation(Object
));
588 // If this is a no-capture pointer argument, see if we can tell that it
589 // is impossible to alias the pointer we're checking. If not, we have to
590 // assume that the call could touch the pointer, even though it doesn't
596 if (Call
->doesNotAccessMemory(ArgNo
))
598 if (Call
->onlyReadsMemory(ArgNo
)) {
602 // Not returning MustModRef since we have not seen all the arguments.
603 return ModRefInfo::ModRef
;
605 return IsMustAlias
? setMust(R
) : clearMust(R
);
608 /// canBasicBlockModify - Return true if it is possible for execution of the
609 /// specified basic block to modify the location Loc.
611 bool AAResults::canBasicBlockModify(const BasicBlock
&BB
,
612 const MemoryLocation
&Loc
) {
613 return canInstructionRangeModRef(BB
.front(), BB
.back(), Loc
, ModRefInfo::Mod
);
616 /// canInstructionRangeModRef - Return true if it is possible for the
617 /// execution of the specified instructions to mod\ref (according to the
618 /// mode) the location Loc. The instructions to consider are all
619 /// of the instructions in the range of [I1,I2] INCLUSIVE.
620 /// I1 and I2 must be in the same basic block.
621 bool AAResults::canInstructionRangeModRef(const Instruction
&I1
,
622 const Instruction
&I2
,
623 const MemoryLocation
&Loc
,
624 const ModRefInfo Mode
) {
625 assert(I1
.getParent() == I2
.getParent() &&
626 "Instructions not in same basic block!");
627 BasicBlock::const_iterator I
= I1
.getIterator();
628 BasicBlock::const_iterator E
= I2
.getIterator();
629 ++E
; // Convert from inclusive to exclusive range.
631 for (; I
!= E
; ++I
) // Check every instruction in range
632 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I
, Loc
), Mode
)))
637 // Provide a definition for the root virtual destructor.
638 AAResults::Concept::~Concept() = default;
640 // Provide a definition for the static object used to identify passes.
641 AnalysisKey
AAManager::Key
;
646 } // end anonymous namespace
648 char ExternalAAWrapperPass::ID
= 0;
650 INITIALIZE_PASS(ExternalAAWrapperPass
, "external-aa", "External Alias Analysis",
654 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback
) {
655 return new ExternalAAWrapperPass(std::move(Callback
));
658 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID
) {
659 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
662 char AAResultsWrapperPass::ID
= 0;
664 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass
, "aa",
665 "Function Alias Analysis Results", false, true)
666 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass
)
667 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass
)
668 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass
)
669 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass
)
670 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
671 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass
)
672 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass
)
673 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass
)
674 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass
)
675 INITIALIZE_PASS_END(AAResultsWrapperPass
, "aa",
676 "Function Alias Analysis Results", false, true)
678 FunctionPass
*llvm::createAAResultsWrapperPass() {
679 return new AAResultsWrapperPass();
682 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
684 /// This is the legacy pass manager's interface to the new-style AA results
685 /// aggregation object. Because this is somewhat shoe-horned into the legacy
686 /// pass manager, we hard code all the specific alias analyses available into
687 /// it. While the particular set enabled is configured via commandline flags,
688 /// adding a new alias analysis to LLVM will require adding support for it to
690 bool AAResultsWrapperPass::runOnFunction(Function
&F
) {
691 // NB! This *must* be reset before adding new AA results to the new
692 // AAResults object because in the legacy pass manager, each instance
693 // of these will refer to the *same* immutable analyses, registering and
694 // unregistering themselves with them. We need to carefully tear down the
695 // previous object first, in this case replacing it with an empty one, before
696 // registering new results.
698 new AAResults(getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI()));
700 // BasicAA is always available for function analyses. Also, we add it first
701 // so that it can trump TBAA results when it proves MustAlias.
702 // FIXME: TBAA should have an explicit mode to support this and then we
703 // should reconsider the ordering here.
705 AAR
->addAAResult(getAnalysis
<BasicAAWrapperPass
>().getResult());
707 // Populate the results with the currently available AAs.
708 if (auto *WrapperPass
= getAnalysisIfAvailable
<ScopedNoAliasAAWrapperPass
>())
709 AAR
->addAAResult(WrapperPass
->getResult());
710 if (auto *WrapperPass
= getAnalysisIfAvailable
<TypeBasedAAWrapperPass
>())
711 AAR
->addAAResult(WrapperPass
->getResult());
712 if (auto *WrapperPass
=
713 getAnalysisIfAvailable
<objcarc::ObjCARCAAWrapperPass
>())
714 AAR
->addAAResult(WrapperPass
->getResult());
715 if (auto *WrapperPass
= getAnalysisIfAvailable
<GlobalsAAWrapperPass
>())
716 AAR
->addAAResult(WrapperPass
->getResult());
717 if (auto *WrapperPass
= getAnalysisIfAvailable
<SCEVAAWrapperPass
>())
718 AAR
->addAAResult(WrapperPass
->getResult());
719 if (auto *WrapperPass
= getAnalysisIfAvailable
<CFLAndersAAWrapperPass
>())
720 AAR
->addAAResult(WrapperPass
->getResult());
721 if (auto *WrapperPass
= getAnalysisIfAvailable
<CFLSteensAAWrapperPass
>())
722 AAR
->addAAResult(WrapperPass
->getResult());
724 // If available, run an external AA providing callback over the results as
726 if (auto *WrapperPass
= getAnalysisIfAvailable
<ExternalAAWrapperPass
>())
728 WrapperPass
->CB(*this, F
, *AAR
);
730 // Analyses don't mutate the IR, so return false.
734 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
735 AU
.setPreservesAll();
736 AU
.addRequired
<BasicAAWrapperPass
>();
737 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
739 // We also need to mark all the alias analysis passes we will potentially
740 // probe in runOnFunction as used here to ensure the legacy pass manager
741 // preserves them. This hard coding of lists of alias analyses is specific to
742 // the legacy pass manager.
743 AU
.addUsedIfAvailable
<ScopedNoAliasAAWrapperPass
>();
744 AU
.addUsedIfAvailable
<TypeBasedAAWrapperPass
>();
745 AU
.addUsedIfAvailable
<objcarc::ObjCARCAAWrapperPass
>();
746 AU
.addUsedIfAvailable
<GlobalsAAWrapperPass
>();
747 AU
.addUsedIfAvailable
<SCEVAAWrapperPass
>();
748 AU
.addUsedIfAvailable
<CFLAndersAAWrapperPass
>();
749 AU
.addUsedIfAvailable
<CFLSteensAAWrapperPass
>();
752 AAResults
llvm::createLegacyPMAAResults(Pass
&P
, Function
&F
,
753 BasicAAResult
&BAR
) {
754 AAResults
AAR(P
.getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI());
756 // Add in our explicitly constructed BasicAA results.
758 AAR
.addAAResult(BAR
);
760 // Populate the results with the other currently available AAs.
761 if (auto *WrapperPass
=
762 P
.getAnalysisIfAvailable
<ScopedNoAliasAAWrapperPass
>())
763 AAR
.addAAResult(WrapperPass
->getResult());
764 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<TypeBasedAAWrapperPass
>())
765 AAR
.addAAResult(WrapperPass
->getResult());
766 if (auto *WrapperPass
=
767 P
.getAnalysisIfAvailable
<objcarc::ObjCARCAAWrapperPass
>())
768 AAR
.addAAResult(WrapperPass
->getResult());
769 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<GlobalsAAWrapperPass
>())
770 AAR
.addAAResult(WrapperPass
->getResult());
771 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<CFLAndersAAWrapperPass
>())
772 AAR
.addAAResult(WrapperPass
->getResult());
773 if (auto *WrapperPass
= P
.getAnalysisIfAvailable
<CFLSteensAAWrapperPass
>())
774 AAR
.addAAResult(WrapperPass
->getResult());
779 bool llvm::isNoAliasCall(const Value
*V
) {
780 if (const auto *Call
= dyn_cast
<CallBase
>(V
))
781 return Call
->hasRetAttr(Attribute::NoAlias
);
785 bool llvm::isNoAliasArgument(const Value
*V
) {
786 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
787 return A
->hasNoAliasAttr();
791 bool llvm::isIdentifiedObject(const Value
*V
) {
792 if (isa
<AllocaInst
>(V
))
794 if (isa
<GlobalValue
>(V
) && !isa
<GlobalAlias
>(V
))
796 if (isNoAliasCall(V
))
798 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
799 return A
->hasNoAliasAttr() || A
->hasByValAttr();
803 bool llvm::isIdentifiedFunctionLocal(const Value
*V
) {
804 return isa
<AllocaInst
>(V
) || isNoAliasCall(V
) || isNoAliasArgument(V
);
807 void llvm::getAAResultsAnalysisUsage(AnalysisUsage
&AU
) {
808 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
809 // more alias analyses are added to llvm::createLegacyPMAAResults, they need
810 // to be added here also.
811 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
812 AU
.addUsedIfAvailable
<ScopedNoAliasAAWrapperPass
>();
813 AU
.addUsedIfAvailable
<TypeBasedAAWrapperPass
>();
814 AU
.addUsedIfAvailable
<objcarc::ObjCARCAAWrapperPass
>();
815 AU
.addUsedIfAvailable
<GlobalsAAWrapperPass
>();
816 AU
.addUsedIfAvailable
<CFLAndersAAWrapperPass
>();
817 AU
.addUsedIfAvailable
<CFLSteensAAWrapperPass
>();