1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines routines for folding instructions into constants.
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
16 //===----------------------------------------------------------------------===//
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Config/config.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/KnownBits.h"
45 #include "llvm/Support/MathExtras.h"
57 //===----------------------------------------------------------------------===//
58 // Constant Folding internal helper functions
59 //===----------------------------------------------------------------------===//
61 static Constant
*foldConstVectorToAPInt(APInt
&Result
, Type
*DestTy
,
62 Constant
*C
, Type
*SrcEltTy
,
64 const DataLayout
&DL
) {
65 // Now that we know that the input value is a vector of integers, just shift
66 // and insert them into our result.
67 unsigned BitShift
= DL
.getTypeSizeInBits(SrcEltTy
);
68 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
) {
70 if (DL
.isLittleEndian())
71 Element
= C
->getAggregateElement(NumSrcElts
- i
- 1);
73 Element
= C
->getAggregateElement(i
);
75 if (Element
&& isa
<UndefValue
>(Element
)) {
80 auto *ElementCI
= dyn_cast_or_null
<ConstantInt
>(Element
);
82 return ConstantExpr::getBitCast(C
, DestTy
);
85 Result
|= ElementCI
->getValue().zextOrSelf(Result
.getBitWidth());
91 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
92 /// This always returns a non-null constant, but it may be a
93 /// ConstantExpr if unfoldable.
94 Constant
*FoldBitCast(Constant
*C
, Type
*DestTy
, const DataLayout
&DL
) {
95 // Catch the obvious splat cases.
96 if (C
->isNullValue() && !DestTy
->isX86_MMXTy())
97 return Constant::getNullValue(DestTy
);
98 if (C
->isAllOnesValue() && !DestTy
->isX86_MMXTy() &&
99 !DestTy
->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
100 return Constant::getAllOnesValue(DestTy
);
102 if (auto *VTy
= dyn_cast
<VectorType
>(C
->getType())) {
103 // Handle a vector->scalar integer/fp cast.
104 if (isa
<IntegerType
>(DestTy
) || DestTy
->isFloatingPointTy()) {
105 unsigned NumSrcElts
= VTy
->getNumElements();
106 Type
*SrcEltTy
= VTy
->getElementType();
108 // If the vector is a vector of floating point, convert it to vector of int
109 // to simplify things.
110 if (SrcEltTy
->isFloatingPointTy()) {
111 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
113 VectorType::get(IntegerType::get(C
->getContext(), FPWidth
), NumSrcElts
);
114 // Ask IR to do the conversion now that #elts line up.
115 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
118 APInt
Result(DL
.getTypeSizeInBits(DestTy
), 0);
119 if (Constant
*CE
= foldConstVectorToAPInt(Result
, DestTy
, C
,
120 SrcEltTy
, NumSrcElts
, DL
))
123 if (isa
<IntegerType
>(DestTy
))
124 return ConstantInt::get(DestTy
, Result
);
126 APFloat
FP(DestTy
->getFltSemantics(), Result
);
127 return ConstantFP::get(DestTy
->getContext(), FP
);
131 // The code below only handles casts to vectors currently.
132 auto *DestVTy
= dyn_cast
<VectorType
>(DestTy
);
134 return ConstantExpr::getBitCast(C
, DestTy
);
136 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
137 // vector so the code below can handle it uniformly.
138 if (isa
<ConstantFP
>(C
) || isa
<ConstantInt
>(C
)) {
139 Constant
*Ops
= C
; // don't take the address of C!
140 return FoldBitCast(ConstantVector::get(Ops
), DestTy
, DL
);
143 // If this is a bitcast from constant vector -> vector, fold it.
144 if (!isa
<ConstantDataVector
>(C
) && !isa
<ConstantVector
>(C
))
145 return ConstantExpr::getBitCast(C
, DestTy
);
147 // If the element types match, IR can fold it.
148 unsigned NumDstElt
= DestVTy
->getNumElements();
149 unsigned NumSrcElt
= C
->getType()->getVectorNumElements();
150 if (NumDstElt
== NumSrcElt
)
151 return ConstantExpr::getBitCast(C
, DestTy
);
153 Type
*SrcEltTy
= C
->getType()->getVectorElementType();
154 Type
*DstEltTy
= DestVTy
->getElementType();
156 // Otherwise, we're changing the number of elements in a vector, which
157 // requires endianness information to do the right thing. For example,
158 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
159 // folds to (little endian):
160 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
161 // and to (big endian):
162 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
164 // First thing is first. We only want to think about integer here, so if
165 // we have something in FP form, recast it as integer.
166 if (DstEltTy
->isFloatingPointTy()) {
167 // Fold to an vector of integers with same size as our FP type.
168 unsigned FPWidth
= DstEltTy
->getPrimitiveSizeInBits();
170 VectorType::get(IntegerType::get(C
->getContext(), FPWidth
), NumDstElt
);
171 // Recursively handle this integer conversion, if possible.
172 C
= FoldBitCast(C
, DestIVTy
, DL
);
174 // Finally, IR can handle this now that #elts line up.
175 return ConstantExpr::getBitCast(C
, DestTy
);
178 // Okay, we know the destination is integer, if the input is FP, convert
179 // it to integer first.
180 if (SrcEltTy
->isFloatingPointTy()) {
181 unsigned FPWidth
= SrcEltTy
->getPrimitiveSizeInBits();
183 VectorType::get(IntegerType::get(C
->getContext(), FPWidth
), NumSrcElt
);
184 // Ask IR to do the conversion now that #elts line up.
185 C
= ConstantExpr::getBitCast(C
, SrcIVTy
);
186 // If IR wasn't able to fold it, bail out.
187 if (!isa
<ConstantVector
>(C
) && // FIXME: Remove ConstantVector.
188 !isa
<ConstantDataVector
>(C
))
192 // Now we know that the input and output vectors are both integer vectors
193 // of the same size, and that their #elements is not the same. Do the
194 // conversion here, which depends on whether the input or output has
196 bool isLittleEndian
= DL
.isLittleEndian();
198 SmallVector
<Constant
*, 32> Result
;
199 if (NumDstElt
< NumSrcElt
) {
200 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
201 Constant
*Zero
= Constant::getNullValue(DstEltTy
);
202 unsigned Ratio
= NumSrcElt
/NumDstElt
;
203 unsigned SrcBitSize
= SrcEltTy
->getPrimitiveSizeInBits();
205 for (unsigned i
= 0; i
!= NumDstElt
; ++i
) {
206 // Build each element of the result.
207 Constant
*Elt
= Zero
;
208 unsigned ShiftAmt
= isLittleEndian
? 0 : SrcBitSize
*(Ratio
-1);
209 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
210 Constant
*Src
= C
->getAggregateElement(SrcElt
++);
211 if (Src
&& isa
<UndefValue
>(Src
))
212 Src
= Constant::getNullValue(C
->getType()->getVectorElementType());
214 Src
= dyn_cast_or_null
<ConstantInt
>(Src
);
215 if (!Src
) // Reject constantexpr elements.
216 return ConstantExpr::getBitCast(C
, DestTy
);
218 // Zero extend the element to the right size.
219 Src
= ConstantExpr::getZExt(Src
, Elt
->getType());
221 // Shift it to the right place, depending on endianness.
222 Src
= ConstantExpr::getShl(Src
,
223 ConstantInt::get(Src
->getType(), ShiftAmt
));
224 ShiftAmt
+= isLittleEndian
? SrcBitSize
: -SrcBitSize
;
227 Elt
= ConstantExpr::getOr(Elt
, Src
);
229 Result
.push_back(Elt
);
231 return ConstantVector::get(Result
);
234 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
235 unsigned Ratio
= NumDstElt
/NumSrcElt
;
236 unsigned DstBitSize
= DL
.getTypeSizeInBits(DstEltTy
);
238 // Loop over each source value, expanding into multiple results.
239 for (unsigned i
= 0; i
!= NumSrcElt
; ++i
) {
240 auto *Element
= C
->getAggregateElement(i
);
242 if (!Element
) // Reject constantexpr elements.
243 return ConstantExpr::getBitCast(C
, DestTy
);
245 if (isa
<UndefValue
>(Element
)) {
246 // Correctly Propagate undef values.
247 Result
.append(Ratio
, UndefValue::get(DstEltTy
));
251 auto *Src
= dyn_cast
<ConstantInt
>(Element
);
253 return ConstantExpr::getBitCast(C
, DestTy
);
255 unsigned ShiftAmt
= isLittleEndian
? 0 : DstBitSize
*(Ratio
-1);
256 for (unsigned j
= 0; j
!= Ratio
; ++j
) {
257 // Shift the piece of the value into the right place, depending on
259 Constant
*Elt
= ConstantExpr::getLShr(Src
,
260 ConstantInt::get(Src
->getType(), ShiftAmt
));
261 ShiftAmt
+= isLittleEndian
? DstBitSize
: -DstBitSize
;
263 // Truncate the element to an integer with the same pointer size and
264 // convert the element back to a pointer using a inttoptr.
265 if (DstEltTy
->isPointerTy()) {
266 IntegerType
*DstIntTy
= Type::getIntNTy(C
->getContext(), DstBitSize
);
267 Constant
*CE
= ConstantExpr::getTrunc(Elt
, DstIntTy
);
268 Result
.push_back(ConstantExpr::getIntToPtr(CE
, DstEltTy
));
272 // Truncate and remember this piece.
273 Result
.push_back(ConstantExpr::getTrunc(Elt
, DstEltTy
));
277 return ConstantVector::get(Result
);
280 } // end anonymous namespace
282 /// If this constant is a constant offset from a global, return the global and
283 /// the constant. Because of constantexprs, this function is recursive.
284 bool llvm::IsConstantOffsetFromGlobal(Constant
*C
, GlobalValue
*&GV
,
285 APInt
&Offset
, const DataLayout
&DL
) {
286 // Trivial case, constant is the global.
287 if ((GV
= dyn_cast
<GlobalValue
>(C
))) {
288 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GV
->getType());
289 Offset
= APInt(BitWidth
, 0);
293 // Otherwise, if this isn't a constant expr, bail out.
294 auto *CE
= dyn_cast
<ConstantExpr
>(C
);
295 if (!CE
) return false;
297 // Look through ptr->int and ptr->ptr casts.
298 if (CE
->getOpcode() == Instruction::PtrToInt
||
299 CE
->getOpcode() == Instruction::BitCast
)
300 return IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, Offset
, DL
);
302 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
303 auto *GEP
= dyn_cast
<GEPOperator
>(CE
);
307 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(GEP
->getType());
308 APInt
TmpOffset(BitWidth
, 0);
310 // If the base isn't a global+constant, we aren't either.
311 if (!IsConstantOffsetFromGlobal(CE
->getOperand(0), GV
, TmpOffset
, DL
))
314 // Otherwise, add any offset that our operands provide.
315 if (!GEP
->accumulateConstantOffset(DL
, TmpOffset
))
322 Constant
*llvm::ConstantFoldLoadThroughBitcast(Constant
*C
, Type
*DestTy
,
323 const DataLayout
&DL
) {
325 Type
*SrcTy
= C
->getType();
327 // If the type sizes are the same and a cast is legal, just directly
328 // cast the constant.
329 if (DL
.getTypeSizeInBits(DestTy
) == DL
.getTypeSizeInBits(SrcTy
)) {
330 Instruction::CastOps Cast
= Instruction::BitCast
;
331 // If we are going from a pointer to int or vice versa, we spell the cast
333 if (SrcTy
->isIntegerTy() && DestTy
->isPointerTy())
334 Cast
= Instruction::IntToPtr
;
335 else if (SrcTy
->isPointerTy() && DestTy
->isIntegerTy())
336 Cast
= Instruction::PtrToInt
;
338 if (CastInst::castIsValid(Cast
, C
, DestTy
))
339 return ConstantExpr::getCast(Cast
, C
, DestTy
);
342 // If this isn't an aggregate type, there is nothing we can do to drill down
343 // and find a bitcastable constant.
344 if (!SrcTy
->isAggregateType())
347 // We're simulating a load through a pointer that was bitcast to point to
348 // a different type, so we can try to walk down through the initial
349 // elements of an aggregate to see if some part of the aggregate is
350 // castable to implement the "load" semantic model.
351 if (SrcTy
->isStructTy()) {
352 // Struct types might have leading zero-length elements like [0 x i32],
353 // which are certainly not what we are looking for, so skip them.
357 ElemC
= C
->getAggregateElement(Elem
++);
358 } while (ElemC
&& DL
.getTypeSizeInBits(ElemC
->getType()) == 0);
361 C
= C
->getAggregateElement(0u);
370 /// Recursive helper to read bits out of global. C is the constant being copied
371 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
372 /// results into and BytesLeft is the number of bytes left in
373 /// the CurPtr buffer. DL is the DataLayout.
374 bool ReadDataFromGlobal(Constant
*C
, uint64_t ByteOffset
, unsigned char *CurPtr
,
375 unsigned BytesLeft
, const DataLayout
&DL
) {
376 assert(ByteOffset
<= DL
.getTypeAllocSize(C
->getType()) &&
377 "Out of range access");
379 // If this element is zero or undefined, we can just return since *CurPtr is
381 if (isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
))
384 if (auto *CI
= dyn_cast
<ConstantInt
>(C
)) {
385 if (CI
->getBitWidth() > 64 ||
386 (CI
->getBitWidth() & 7) != 0)
389 uint64_t Val
= CI
->getZExtValue();
390 unsigned IntBytes
= unsigned(CI
->getBitWidth()/8);
392 for (unsigned i
= 0; i
!= BytesLeft
&& ByteOffset
!= IntBytes
; ++i
) {
394 if (!DL
.isLittleEndian())
395 n
= IntBytes
- n
- 1;
396 CurPtr
[i
] = (unsigned char)(Val
>> (n
* 8));
402 if (auto *CFP
= dyn_cast
<ConstantFP
>(C
)) {
403 if (CFP
->getType()->isDoubleTy()) {
404 C
= FoldBitCast(C
, Type::getInt64Ty(C
->getContext()), DL
);
405 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
407 if (CFP
->getType()->isFloatTy()){
408 C
= FoldBitCast(C
, Type::getInt32Ty(C
->getContext()), DL
);
409 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
411 if (CFP
->getType()->isHalfTy()){
412 C
= FoldBitCast(C
, Type::getInt16Ty(C
->getContext()), DL
);
413 return ReadDataFromGlobal(C
, ByteOffset
, CurPtr
, BytesLeft
, DL
);
418 if (auto *CS
= dyn_cast
<ConstantStruct
>(C
)) {
419 const StructLayout
*SL
= DL
.getStructLayout(CS
->getType());
420 unsigned Index
= SL
->getElementContainingOffset(ByteOffset
);
421 uint64_t CurEltOffset
= SL
->getElementOffset(Index
);
422 ByteOffset
-= CurEltOffset
;
425 // If the element access is to the element itself and not to tail padding,
426 // read the bytes from the element.
427 uint64_t EltSize
= DL
.getTypeAllocSize(CS
->getOperand(Index
)->getType());
429 if (ByteOffset
< EltSize
&&
430 !ReadDataFromGlobal(CS
->getOperand(Index
), ByteOffset
, CurPtr
,
436 // Check to see if we read from the last struct element, if so we're done.
437 if (Index
== CS
->getType()->getNumElements())
440 // If we read all of the bytes we needed from this element we're done.
441 uint64_t NextEltOffset
= SL
->getElementOffset(Index
);
443 if (BytesLeft
<= NextEltOffset
- CurEltOffset
- ByteOffset
)
446 // Move to the next element of the struct.
447 CurPtr
+= NextEltOffset
- CurEltOffset
- ByteOffset
;
448 BytesLeft
-= NextEltOffset
- CurEltOffset
- ByteOffset
;
450 CurEltOffset
= NextEltOffset
;
455 if (isa
<ConstantArray
>(C
) || isa
<ConstantVector
>(C
) ||
456 isa
<ConstantDataSequential
>(C
)) {
457 Type
*EltTy
= C
->getType()->getSequentialElementType();
458 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
);
459 uint64_t Index
= ByteOffset
/ EltSize
;
460 uint64_t Offset
= ByteOffset
- Index
* EltSize
;
462 if (auto *AT
= dyn_cast
<ArrayType
>(C
->getType()))
463 NumElts
= AT
->getNumElements();
465 NumElts
= C
->getType()->getVectorNumElements();
467 for (; Index
!= NumElts
; ++Index
) {
468 if (!ReadDataFromGlobal(C
->getAggregateElement(Index
), Offset
, CurPtr
,
472 uint64_t BytesWritten
= EltSize
- Offset
;
473 assert(BytesWritten
<= EltSize
&& "Not indexing into this element?");
474 if (BytesWritten
>= BytesLeft
)
478 BytesLeft
-= BytesWritten
;
479 CurPtr
+= BytesWritten
;
484 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
485 if (CE
->getOpcode() == Instruction::IntToPtr
&&
486 CE
->getOperand(0)->getType() == DL
.getIntPtrType(CE
->getType())) {
487 return ReadDataFromGlobal(CE
->getOperand(0), ByteOffset
, CurPtr
,
492 // Otherwise, unknown initializer type.
496 Constant
*FoldReinterpretLoadFromConstPtr(Constant
*C
, Type
*LoadTy
,
497 const DataLayout
&DL
) {
498 auto *PTy
= cast
<PointerType
>(C
->getType());
499 auto *IntType
= dyn_cast
<IntegerType
>(LoadTy
);
501 // If this isn't an integer load we can't fold it directly.
503 unsigned AS
= PTy
->getAddressSpace();
505 // If this is a float/double load, we can try folding it as an int32/64 load
506 // and then bitcast the result. This can be useful for union cases. Note
507 // that address spaces don't matter here since we're not going to result in
508 // an actual new load.
510 if (LoadTy
->isHalfTy())
511 MapTy
= Type::getInt16Ty(C
->getContext());
512 else if (LoadTy
->isFloatTy())
513 MapTy
= Type::getInt32Ty(C
->getContext());
514 else if (LoadTy
->isDoubleTy())
515 MapTy
= Type::getInt64Ty(C
->getContext());
516 else if (LoadTy
->isVectorTy()) {
517 MapTy
= PointerType::getIntNTy(C
->getContext(),
518 DL
.getTypeAllocSizeInBits(LoadTy
));
522 C
= FoldBitCast(C
, MapTy
->getPointerTo(AS
), DL
);
523 if (Constant
*Res
= FoldReinterpretLoadFromConstPtr(C
, MapTy
, DL
))
524 return FoldBitCast(Res
, LoadTy
, DL
);
528 unsigned BytesLoaded
= (IntType
->getBitWidth() + 7) / 8;
529 if (BytesLoaded
> 32 || BytesLoaded
== 0)
534 if (!IsConstantOffsetFromGlobal(C
, GVal
, OffsetAI
, DL
))
537 auto *GV
= dyn_cast
<GlobalVariable
>(GVal
);
538 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer() ||
539 !GV
->getInitializer()->getType()->isSized())
542 int64_t Offset
= OffsetAI
.getSExtValue();
543 int64_t InitializerSize
= DL
.getTypeAllocSize(GV
->getInitializer()->getType());
545 // If we're not accessing anything in this constant, the result is undefined.
546 if (Offset
+ BytesLoaded
<= 0)
547 return UndefValue::get(IntType
);
549 // If we're not accessing anything in this constant, the result is undefined.
550 if (Offset
>= InitializerSize
)
551 return UndefValue::get(IntType
);
553 unsigned char RawBytes
[32] = {0};
554 unsigned char *CurPtr
= RawBytes
;
555 unsigned BytesLeft
= BytesLoaded
;
557 // If we're loading off the beginning of the global, some bytes may be valid.
564 if (!ReadDataFromGlobal(GV
->getInitializer(), Offset
, CurPtr
, BytesLeft
, DL
))
567 APInt ResultVal
= APInt(IntType
->getBitWidth(), 0);
568 if (DL
.isLittleEndian()) {
569 ResultVal
= RawBytes
[BytesLoaded
- 1];
570 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
572 ResultVal
|= RawBytes
[BytesLoaded
- 1 - i
];
575 ResultVal
= RawBytes
[0];
576 for (unsigned i
= 1; i
!= BytesLoaded
; ++i
) {
578 ResultVal
|= RawBytes
[i
];
582 return ConstantInt::get(IntType
->getContext(), ResultVal
);
585 Constant
*ConstantFoldLoadThroughBitcastExpr(ConstantExpr
*CE
, Type
*DestTy
,
586 const DataLayout
&DL
) {
587 auto *SrcPtr
= CE
->getOperand(0);
588 auto *SrcPtrTy
= dyn_cast
<PointerType
>(SrcPtr
->getType());
591 Type
*SrcTy
= SrcPtrTy
->getPointerElementType();
593 Constant
*C
= ConstantFoldLoadFromConstPtr(SrcPtr
, SrcTy
, DL
);
597 return llvm::ConstantFoldLoadThroughBitcast(C
, DestTy
, DL
);
600 } // end anonymous namespace
602 Constant
*llvm::ConstantFoldLoadFromConstPtr(Constant
*C
, Type
*Ty
,
603 const DataLayout
&DL
) {
604 // First, try the easy cases:
605 if (auto *GV
= dyn_cast
<GlobalVariable
>(C
))
606 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
607 return GV
->getInitializer();
609 if (auto *GA
= dyn_cast
<GlobalAlias
>(C
))
610 if (GA
->getAliasee() && !GA
->isInterposable())
611 return ConstantFoldLoadFromConstPtr(GA
->getAliasee(), Ty
, DL
);
613 // If the loaded value isn't a constant expr, we can't handle it.
614 auto *CE
= dyn_cast
<ConstantExpr
>(C
);
618 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
619 if (auto *GV
= dyn_cast
<GlobalVariable
>(CE
->getOperand(0))) {
620 if (GV
->isConstant() && GV
->hasDefinitiveInitializer()) {
622 ConstantFoldLoadThroughGEPConstantExpr(GV
->getInitializer(), CE
))
628 if (CE
->getOpcode() == Instruction::BitCast
)
629 if (Constant
*LoadedC
= ConstantFoldLoadThroughBitcastExpr(CE
, Ty
, DL
))
632 // Instead of loading constant c string, use corresponding integer value
633 // directly if string length is small enough.
635 if (getConstantStringInfo(CE
, Str
) && !Str
.empty()) {
636 size_t StrLen
= Str
.size();
637 unsigned NumBits
= Ty
->getPrimitiveSizeInBits();
638 // Replace load with immediate integer if the result is an integer or fp
640 if ((NumBits
>> 3) == StrLen
+ 1 && (NumBits
& 7) == 0 &&
641 (isa
<IntegerType
>(Ty
) || Ty
->isFloatingPointTy())) {
642 APInt
StrVal(NumBits
, 0);
643 APInt
SingleChar(NumBits
, 0);
644 if (DL
.isLittleEndian()) {
645 for (unsigned char C
: reverse(Str
.bytes())) {
646 SingleChar
= static_cast<uint64_t>(C
);
647 StrVal
= (StrVal
<< 8) | SingleChar
;
650 for (unsigned char C
: Str
.bytes()) {
651 SingleChar
= static_cast<uint64_t>(C
);
652 StrVal
= (StrVal
<< 8) | SingleChar
;
654 // Append NULL at the end.
656 StrVal
= (StrVal
<< 8) | SingleChar
;
659 Constant
*Res
= ConstantInt::get(CE
->getContext(), StrVal
);
660 if (Ty
->isFloatingPointTy())
661 Res
= ConstantExpr::getBitCast(Res
, Ty
);
666 // If this load comes from anywhere in a constant global, and if the global
667 // is all undef or zero, we know what it loads.
668 if (auto *GV
= dyn_cast
<GlobalVariable
>(GetUnderlyingObject(CE
, DL
))) {
669 if (GV
->isConstant() && GV
->hasDefinitiveInitializer()) {
670 if (GV
->getInitializer()->isNullValue())
671 return Constant::getNullValue(Ty
);
672 if (isa
<UndefValue
>(GV
->getInitializer()))
673 return UndefValue::get(Ty
);
677 // Try hard to fold loads from bitcasted strange and non-type-safe things.
678 return FoldReinterpretLoadFromConstPtr(CE
, Ty
, DL
);
683 Constant
*ConstantFoldLoadInst(const LoadInst
*LI
, const DataLayout
&DL
) {
684 if (LI
->isVolatile()) return nullptr;
686 if (auto *C
= dyn_cast
<Constant
>(LI
->getOperand(0)))
687 return ConstantFoldLoadFromConstPtr(C
, LI
->getType(), DL
);
692 /// One of Op0/Op1 is a constant expression.
693 /// Attempt to symbolically evaluate the result of a binary operator merging
694 /// these together. If target data info is available, it is provided as DL,
695 /// otherwise DL is null.
696 Constant
*SymbolicallyEvaluateBinop(unsigned Opc
, Constant
*Op0
, Constant
*Op1
,
697 const DataLayout
&DL
) {
700 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
701 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
704 if (Opc
== Instruction::And
) {
705 KnownBits Known0
= computeKnownBits(Op0
, DL
);
706 KnownBits Known1
= computeKnownBits(Op1
, DL
);
707 if ((Known1
.One
| Known0
.Zero
).isAllOnesValue()) {
708 // All the bits of Op0 that the 'and' could be masking are already zero.
711 if ((Known0
.One
| Known1
.Zero
).isAllOnesValue()) {
712 // All the bits of Op1 that the 'and' could be masking are already zero.
716 Known0
.Zero
|= Known1
.Zero
;
717 Known0
.One
&= Known1
.One
;
718 if (Known0
.isConstant())
719 return ConstantInt::get(Op0
->getType(), Known0
.getConstant());
722 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
723 // constant. This happens frequently when iterating over a global array.
724 if (Opc
== Instruction::Sub
) {
725 GlobalValue
*GV1
, *GV2
;
728 if (IsConstantOffsetFromGlobal(Op0
, GV1
, Offs1
, DL
))
729 if (IsConstantOffsetFromGlobal(Op1
, GV2
, Offs2
, DL
) && GV1
== GV2
) {
730 unsigned OpSize
= DL
.getTypeSizeInBits(Op0
->getType());
732 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
733 // PtrToInt may change the bitwidth so we have convert to the right size
735 return ConstantInt::get(Op0
->getType(), Offs1
.zextOrTrunc(OpSize
) -
736 Offs2
.zextOrTrunc(OpSize
));
743 /// If array indices are not pointer-sized integers, explicitly cast them so
744 /// that they aren't implicitly casted by the getelementptr.
745 Constant
*CastGEPIndices(Type
*SrcElemTy
, ArrayRef
<Constant
*> Ops
,
746 Type
*ResultTy
, Optional
<unsigned> InRangeIndex
,
747 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
) {
748 Type
*IntPtrTy
= DL
.getIntPtrType(ResultTy
);
749 Type
*IntPtrScalarTy
= IntPtrTy
->getScalarType();
752 SmallVector
<Constant
*, 32> NewIdxs
;
753 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
755 !isa
<StructType
>(GetElementPtrInst::getIndexedType(
756 SrcElemTy
, Ops
.slice(1, i
- 1)))) &&
757 Ops
[i
]->getType()->getScalarType() != IntPtrScalarTy
) {
759 Type
*NewType
= Ops
[i
]->getType()->isVectorTy()
761 : IntPtrTy
->getScalarType();
762 NewIdxs
.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops
[i
],
768 NewIdxs
.push_back(Ops
[i
]);
774 Constant
*C
= ConstantExpr::getGetElementPtr(
775 SrcElemTy
, Ops
[0], NewIdxs
, /*InBounds=*/false, InRangeIndex
);
776 if (Constant
*Folded
= ConstantFoldConstant(C
, DL
, TLI
))
782 /// Strip the pointer casts, but preserve the address space information.
783 Constant
* StripPtrCastKeepAS(Constant
* Ptr
, Type
*&ElemTy
) {
784 assert(Ptr
->getType()->isPointerTy() && "Not a pointer type");
785 auto *OldPtrTy
= cast
<PointerType
>(Ptr
->getType());
786 Ptr
= Ptr
->stripPointerCasts();
787 auto *NewPtrTy
= cast
<PointerType
>(Ptr
->getType());
789 ElemTy
= NewPtrTy
->getPointerElementType();
791 // Preserve the address space number of the pointer.
792 if (NewPtrTy
->getAddressSpace() != OldPtrTy
->getAddressSpace()) {
793 NewPtrTy
= ElemTy
->getPointerTo(OldPtrTy
->getAddressSpace());
794 Ptr
= ConstantExpr::getPointerCast(Ptr
, NewPtrTy
);
799 /// If we can symbolically evaluate the GEP constant expression, do so.
800 Constant
*SymbolicallyEvaluateGEP(const GEPOperator
*GEP
,
801 ArrayRef
<Constant
*> Ops
,
802 const DataLayout
&DL
,
803 const TargetLibraryInfo
*TLI
) {
804 const GEPOperator
*InnermostGEP
= GEP
;
805 bool InBounds
= GEP
->isInBounds();
807 Type
*SrcElemTy
= GEP
->getSourceElementType();
808 Type
*ResElemTy
= GEP
->getResultElementType();
809 Type
*ResTy
= GEP
->getType();
810 if (!SrcElemTy
->isSized())
813 if (Constant
*C
= CastGEPIndices(SrcElemTy
, Ops
, ResTy
,
814 GEP
->getInRangeIndex(), DL
, TLI
))
817 Constant
*Ptr
= Ops
[0];
818 if (!Ptr
->getType()->isPointerTy())
821 Type
*IntPtrTy
= DL
.getIntPtrType(Ptr
->getType());
823 // If this is a constant expr gep that is effectively computing an
824 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
825 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
826 if (!isa
<ConstantInt
>(Ops
[i
])) {
828 // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
829 // "inttoptr (sub (ptrtoint Ptr), V)"
830 if (Ops
.size() == 2 && ResElemTy
->isIntegerTy(8)) {
831 auto *CE
= dyn_cast
<ConstantExpr
>(Ops
[1]);
832 assert((!CE
|| CE
->getType() == IntPtrTy
) &&
833 "CastGEPIndices didn't canonicalize index types!");
834 if (CE
&& CE
->getOpcode() == Instruction::Sub
&&
835 CE
->getOperand(0)->isNullValue()) {
836 Constant
*Res
= ConstantExpr::getPtrToInt(Ptr
, CE
->getType());
837 Res
= ConstantExpr::getSub(Res
, CE
->getOperand(1));
838 Res
= ConstantExpr::getIntToPtr(Res
, ResTy
);
839 if (auto *FoldedRes
= ConstantFoldConstant(Res
, DL
, TLI
))
847 unsigned BitWidth
= DL
.getTypeSizeInBits(IntPtrTy
);
850 DL
.getIndexedOffsetInType(
852 makeArrayRef((Value
* const *)Ops
.data() + 1, Ops
.size() - 1)));
853 Ptr
= StripPtrCastKeepAS(Ptr
, SrcElemTy
);
855 // If this is a GEP of a GEP, fold it all into a single GEP.
856 while (auto *GEP
= dyn_cast
<GEPOperator
>(Ptr
)) {
858 InBounds
&= GEP
->isInBounds();
860 SmallVector
<Value
*, 4> NestedOps(GEP
->op_begin() + 1, GEP
->op_end());
862 // Do not try the incorporate the sub-GEP if some index is not a number.
863 bool AllConstantInt
= true;
864 for (Value
*NestedOp
: NestedOps
)
865 if (!isa
<ConstantInt
>(NestedOp
)) {
866 AllConstantInt
= false;
872 Ptr
= cast
<Constant
>(GEP
->getOperand(0));
873 SrcElemTy
= GEP
->getSourceElementType();
874 Offset
+= APInt(BitWidth
, DL
.getIndexedOffsetInType(SrcElemTy
, NestedOps
));
875 Ptr
= StripPtrCastKeepAS(Ptr
, SrcElemTy
);
878 // If the base value for this address is a literal integer value, fold the
879 // getelementptr to the resulting integer value casted to the pointer type.
880 APInt
BasePtr(BitWidth
, 0);
881 if (auto *CE
= dyn_cast
<ConstantExpr
>(Ptr
)) {
882 if (CE
->getOpcode() == Instruction::IntToPtr
) {
883 if (auto *Base
= dyn_cast
<ConstantInt
>(CE
->getOperand(0)))
884 BasePtr
= Base
->getValue().zextOrTrunc(BitWidth
);
888 auto *PTy
= cast
<PointerType
>(Ptr
->getType());
889 if ((Ptr
->isNullValue() || BasePtr
!= 0) &&
890 !DL
.isNonIntegralPointerType(PTy
)) {
891 Constant
*C
= ConstantInt::get(Ptr
->getContext(), Offset
+ BasePtr
);
892 return ConstantExpr::getIntToPtr(C
, ResTy
);
895 // Otherwise form a regular getelementptr. Recompute the indices so that
896 // we eliminate over-indexing of the notional static type array bounds.
897 // This makes it easy to determine if the getelementptr is "inbounds".
898 // Also, this helps GlobalOpt do SROA on GlobalVariables.
900 SmallVector
<Constant
*, 32> NewIdxs
;
903 if (!Ty
->isStructTy()) {
904 if (Ty
->isPointerTy()) {
905 // The only pointer indexing we'll do is on the first index of the GEP.
906 if (!NewIdxs
.empty())
911 // Only handle pointers to sized types, not pointers to functions.
914 } else if (auto *ATy
= dyn_cast
<SequentialType
>(Ty
)) {
915 Ty
= ATy
->getElementType();
917 // We've reached some non-indexable type.
921 // Determine which element of the array the offset points into.
922 APInt
ElemSize(BitWidth
, DL
.getTypeAllocSize(Ty
));
924 // The element size is 0. This may be [0 x Ty]*, so just use a zero
925 // index for this level and proceed to the next level to see if it can
926 // accommodate the offset.
927 NewIdxs
.push_back(ConstantInt::get(IntPtrTy
, 0));
929 // The element size is non-zero divide the offset by the element
930 // size (rounding down), to compute the index at this level.
932 APInt NewIdx
= Offset
.sdiv_ov(ElemSize
, Overflow
);
935 Offset
-= NewIdx
* ElemSize
;
936 NewIdxs
.push_back(ConstantInt::get(IntPtrTy
, NewIdx
));
939 auto *STy
= cast
<StructType
>(Ty
);
940 // If we end up with an offset that isn't valid for this struct type, we
941 // can't re-form this GEP in a regular form, so bail out. The pointer
942 // operand likely went through casts that are necessary to make the GEP
944 const StructLayout
&SL
= *DL
.getStructLayout(STy
);
945 if (Offset
.isNegative() || Offset
.uge(SL
.getSizeInBytes()))
948 // Determine which field of the struct the offset points into. The
949 // getZExtValue is fine as we've already ensured that the offset is
950 // within the range representable by the StructLayout API.
951 unsigned ElIdx
= SL
.getElementContainingOffset(Offset
.getZExtValue());
952 NewIdxs
.push_back(ConstantInt::get(Type::getInt32Ty(Ty
->getContext()),
954 Offset
-= APInt(BitWidth
, SL
.getElementOffset(ElIdx
));
955 Ty
= STy
->getTypeAtIndex(ElIdx
);
957 } while (Ty
!= ResElemTy
);
959 // If we haven't used up the entire offset by descending the static
960 // type, then the offset is pointing into the middle of an indivisible
961 // member, so we can't simplify it.
965 // Preserve the inrange index from the innermost GEP if possible. We must
966 // have calculated the same indices up to and including the inrange index.
967 Optional
<unsigned> InRangeIndex
;
968 if (Optional
<unsigned> LastIRIndex
= InnermostGEP
->getInRangeIndex())
969 if (SrcElemTy
== InnermostGEP
->getSourceElementType() &&
970 NewIdxs
.size() > *LastIRIndex
) {
971 InRangeIndex
= LastIRIndex
;
972 for (unsigned I
= 0; I
<= *LastIRIndex
; ++I
)
973 if (NewIdxs
[I
] != InnermostGEP
->getOperand(I
+ 1))
978 Constant
*C
= ConstantExpr::getGetElementPtr(SrcElemTy
, Ptr
, NewIdxs
,
979 InBounds
, InRangeIndex
);
980 assert(C
->getType()->getPointerElementType() == Ty
&&
981 "Computed GetElementPtr has unexpected type!");
983 // If we ended up indexing a member with a type that doesn't match
984 // the type of what the original indices indexed, add a cast.
986 C
= FoldBitCast(C
, ResTy
, DL
);
991 /// Attempt to constant fold an instruction with the
992 /// specified opcode and operands. If successful, the constant result is
993 /// returned, if not, null is returned. Note that this function can fail when
994 /// attempting to fold instructions like loads and stores, which have no
995 /// constant expression form.
996 Constant
*ConstantFoldInstOperandsImpl(const Value
*InstOrCE
, unsigned Opcode
,
997 ArrayRef
<Constant
*> Ops
,
998 const DataLayout
&DL
,
999 const TargetLibraryInfo
*TLI
) {
1000 Type
*DestTy
= InstOrCE
->getType();
1002 // Handle easy binops first.
1003 if (Instruction::isBinaryOp(Opcode
))
1004 return ConstantFoldBinaryOpOperands(Opcode
, Ops
[0], Ops
[1], DL
);
1006 if (Instruction::isCast(Opcode
))
1007 return ConstantFoldCastOperand(Opcode
, Ops
[0], DestTy
, DL
);
1009 if (auto *GEP
= dyn_cast
<GEPOperator
>(InstOrCE
)) {
1010 if (Constant
*C
= SymbolicallyEvaluateGEP(GEP
, Ops
, DL
, TLI
))
1013 return ConstantExpr::getGetElementPtr(GEP
->getSourceElementType(), Ops
[0],
1014 Ops
.slice(1), GEP
->isInBounds(),
1015 GEP
->getInRangeIndex());
1018 if (auto *CE
= dyn_cast
<ConstantExpr
>(InstOrCE
))
1019 return CE
->getWithOperands(Ops
);
1022 default: return nullptr;
1023 case Instruction::ICmp
:
1024 case Instruction::FCmp
: llvm_unreachable("Invalid for compares");
1025 case Instruction::Call
:
1026 if (auto *F
= dyn_cast
<Function
>(Ops
.back())) {
1027 const auto *Call
= cast
<CallBase
>(InstOrCE
);
1028 if (canConstantFoldCallTo(Call
, F
))
1029 return ConstantFoldCall(Call
, F
, Ops
.slice(0, Ops
.size() - 1), TLI
);
1032 case Instruction::Select
:
1033 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2]);
1034 case Instruction::ExtractElement
:
1035 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1]);
1036 case Instruction::InsertElement
:
1037 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2]);
1038 case Instruction::ShuffleVector
:
1039 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2]);
1043 } // end anonymous namespace
1045 //===----------------------------------------------------------------------===//
1046 // Constant Folding public APIs
1047 //===----------------------------------------------------------------------===//
1052 ConstantFoldConstantImpl(const Constant
*C
, const DataLayout
&DL
,
1053 const TargetLibraryInfo
*TLI
,
1054 SmallDenseMap
<Constant
*, Constant
*> &FoldedOps
) {
1055 if (!isa
<ConstantVector
>(C
) && !isa
<ConstantExpr
>(C
))
1058 SmallVector
<Constant
*, 8> Ops
;
1059 for (const Use
&NewU
: C
->operands()) {
1060 auto *NewC
= cast
<Constant
>(&NewU
);
1061 // Recursively fold the ConstantExpr's operands. If we have already folded
1062 // a ConstantExpr, we don't have to process it again.
1063 if (isa
<ConstantVector
>(NewC
) || isa
<ConstantExpr
>(NewC
)) {
1064 auto It
= FoldedOps
.find(NewC
);
1065 if (It
== FoldedOps
.end()) {
1067 ConstantFoldConstantImpl(NewC
, DL
, TLI
, FoldedOps
)) {
1068 FoldedOps
.insert({NewC
, FoldedC
});
1071 FoldedOps
.insert({NewC
, NewC
});
1077 Ops
.push_back(NewC
);
1080 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1081 if (CE
->isCompare())
1082 return ConstantFoldCompareInstOperands(CE
->getPredicate(), Ops
[0], Ops
[1],
1085 return ConstantFoldInstOperandsImpl(CE
, CE
->getOpcode(), Ops
, DL
, TLI
);
1088 assert(isa
<ConstantVector
>(C
));
1089 return ConstantVector::get(Ops
);
1092 } // end anonymous namespace
1094 Constant
*llvm::ConstantFoldInstruction(Instruction
*I
, const DataLayout
&DL
,
1095 const TargetLibraryInfo
*TLI
) {
1096 // Handle PHI nodes quickly here...
1097 if (auto *PN
= dyn_cast
<PHINode
>(I
)) {
1098 Constant
*CommonValue
= nullptr;
1100 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1101 for (Value
*Incoming
: PN
->incoming_values()) {
1102 // If the incoming value is undef then skip it. Note that while we could
1103 // skip the value if it is equal to the phi node itself we choose not to
1104 // because that would break the rule that constant folding only applies if
1105 // all operands are constants.
1106 if (isa
<UndefValue
>(Incoming
))
1108 // If the incoming value is not a constant, then give up.
1109 auto *C
= dyn_cast
<Constant
>(Incoming
);
1112 // Fold the PHI's operands.
1113 if (auto *FoldedC
= ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
))
1115 // If the incoming value is a different constant to
1116 // the one we saw previously, then give up.
1117 if (CommonValue
&& C
!= CommonValue
)
1122 // If we reach here, all incoming values are the same constant or undef.
1123 return CommonValue
? CommonValue
: UndefValue::get(PN
->getType());
1126 // Scan the operand list, checking to see if they are all constants, if so,
1127 // hand off to ConstantFoldInstOperandsImpl.
1128 if (!all_of(I
->operands(), [](Use
&U
) { return isa
<Constant
>(U
); }))
1131 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1132 SmallVector
<Constant
*, 8> Ops
;
1133 for (const Use
&OpU
: I
->operands()) {
1134 auto *Op
= cast
<Constant
>(&OpU
);
1135 // Fold the Instruction's operands.
1136 if (auto *FoldedOp
= ConstantFoldConstantImpl(Op
, DL
, TLI
, FoldedOps
))
1142 if (const auto *CI
= dyn_cast
<CmpInst
>(I
))
1143 return ConstantFoldCompareInstOperands(CI
->getPredicate(), Ops
[0], Ops
[1],
1146 if (const auto *LI
= dyn_cast
<LoadInst
>(I
))
1147 return ConstantFoldLoadInst(LI
, DL
);
1149 if (auto *IVI
= dyn_cast
<InsertValueInst
>(I
)) {
1150 return ConstantExpr::getInsertValue(
1151 cast
<Constant
>(IVI
->getAggregateOperand()),
1152 cast
<Constant
>(IVI
->getInsertedValueOperand()),
1156 if (auto *EVI
= dyn_cast
<ExtractValueInst
>(I
)) {
1157 return ConstantExpr::getExtractValue(
1158 cast
<Constant
>(EVI
->getAggregateOperand()),
1162 return ConstantFoldInstOperands(I
, Ops
, DL
, TLI
);
1165 Constant
*llvm::ConstantFoldConstant(const Constant
*C
, const DataLayout
&DL
,
1166 const TargetLibraryInfo
*TLI
) {
1167 SmallDenseMap
<Constant
*, Constant
*> FoldedOps
;
1168 return ConstantFoldConstantImpl(C
, DL
, TLI
, FoldedOps
);
1171 Constant
*llvm::ConstantFoldInstOperands(Instruction
*I
,
1172 ArrayRef
<Constant
*> Ops
,
1173 const DataLayout
&DL
,
1174 const TargetLibraryInfo
*TLI
) {
1175 return ConstantFoldInstOperandsImpl(I
, I
->getOpcode(), Ops
, DL
, TLI
);
1178 Constant
*llvm::ConstantFoldCompareInstOperands(unsigned Predicate
,
1179 Constant
*Ops0
, Constant
*Ops1
,
1180 const DataLayout
&DL
,
1181 const TargetLibraryInfo
*TLI
) {
1182 // fold: icmp (inttoptr x), null -> icmp x, 0
1183 // fold: icmp null, (inttoptr x) -> icmp 0, x
1184 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1185 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1186 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1187 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1189 // FIXME: The following comment is out of data and the DataLayout is here now.
1190 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1191 // around to know if bit truncation is happening.
1192 if (auto *CE0
= dyn_cast
<ConstantExpr
>(Ops0
)) {
1193 if (Ops1
->isNullValue()) {
1194 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1195 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1196 // Convert the integer value to the right size to ensure we get the
1197 // proper extension or truncation.
1198 Constant
*C
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
1200 Constant
*Null
= Constant::getNullValue(C
->getType());
1201 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1204 // Only do this transformation if the int is intptrty in size, otherwise
1205 // there is a truncation or extension that we aren't modeling.
1206 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1207 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1208 if (CE0
->getType() == IntPtrTy
) {
1209 Constant
*C
= CE0
->getOperand(0);
1210 Constant
*Null
= Constant::getNullValue(C
->getType());
1211 return ConstantFoldCompareInstOperands(Predicate
, C
, Null
, DL
, TLI
);
1216 if (auto *CE1
= dyn_cast
<ConstantExpr
>(Ops1
)) {
1217 if (CE0
->getOpcode() == CE1
->getOpcode()) {
1218 if (CE0
->getOpcode() == Instruction::IntToPtr
) {
1219 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getType());
1221 // Convert the integer value to the right size to ensure we get the
1222 // proper extension or truncation.
1223 Constant
*C0
= ConstantExpr::getIntegerCast(CE0
->getOperand(0),
1225 Constant
*C1
= ConstantExpr::getIntegerCast(CE1
->getOperand(0),
1227 return ConstantFoldCompareInstOperands(Predicate
, C0
, C1
, DL
, TLI
);
1230 // Only do this transformation if the int is intptrty in size, otherwise
1231 // there is a truncation or extension that we aren't modeling.
1232 if (CE0
->getOpcode() == Instruction::PtrToInt
) {
1233 Type
*IntPtrTy
= DL
.getIntPtrType(CE0
->getOperand(0)->getType());
1234 if (CE0
->getType() == IntPtrTy
&&
1235 CE0
->getOperand(0)->getType() == CE1
->getOperand(0)->getType()) {
1236 return ConstantFoldCompareInstOperands(
1237 Predicate
, CE0
->getOperand(0), CE1
->getOperand(0), DL
, TLI
);
1243 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1244 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1245 if ((Predicate
== ICmpInst::ICMP_EQ
|| Predicate
== ICmpInst::ICMP_NE
) &&
1246 CE0
->getOpcode() == Instruction::Or
&& Ops1
->isNullValue()) {
1247 Constant
*LHS
= ConstantFoldCompareInstOperands(
1248 Predicate
, CE0
->getOperand(0), Ops1
, DL
, TLI
);
1249 Constant
*RHS
= ConstantFoldCompareInstOperands(
1250 Predicate
, CE0
->getOperand(1), Ops1
, DL
, TLI
);
1252 Predicate
== ICmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1253 return ConstantFoldBinaryOpOperands(OpC
, LHS
, RHS
, DL
);
1255 } else if (isa
<ConstantExpr
>(Ops1
)) {
1256 // If RHS is a constant expression, but the left side isn't, swap the
1257 // operands and try again.
1258 Predicate
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)Predicate
);
1259 return ConstantFoldCompareInstOperands(Predicate
, Ops1
, Ops0
, DL
, TLI
);
1262 return ConstantExpr::getCompare(Predicate
, Ops0
, Ops1
);
1265 Constant
*llvm::ConstantFoldBinaryOpOperands(unsigned Opcode
, Constant
*LHS
,
1267 const DataLayout
&DL
) {
1268 assert(Instruction::isBinaryOp(Opcode
));
1269 if (isa
<ConstantExpr
>(LHS
) || isa
<ConstantExpr
>(RHS
))
1270 if (Constant
*C
= SymbolicallyEvaluateBinop(Opcode
, LHS
, RHS
, DL
))
1273 return ConstantExpr::get(Opcode
, LHS
, RHS
);
1276 Constant
*llvm::ConstantFoldCastOperand(unsigned Opcode
, Constant
*C
,
1277 Type
*DestTy
, const DataLayout
&DL
) {
1278 assert(Instruction::isCast(Opcode
));
1281 llvm_unreachable("Missing case");
1282 case Instruction::PtrToInt
:
1283 // If the input is a inttoptr, eliminate the pair. This requires knowing
1284 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1285 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1286 if (CE
->getOpcode() == Instruction::IntToPtr
) {
1287 Constant
*Input
= CE
->getOperand(0);
1288 unsigned InWidth
= Input
->getType()->getScalarSizeInBits();
1289 unsigned PtrWidth
= DL
.getPointerTypeSizeInBits(CE
->getType());
1290 if (PtrWidth
< InWidth
) {
1292 ConstantInt::get(CE
->getContext(),
1293 APInt::getLowBitsSet(InWidth
, PtrWidth
));
1294 Input
= ConstantExpr::getAnd(Input
, Mask
);
1296 // Do a zext or trunc to get to the dest size.
1297 return ConstantExpr::getIntegerCast(Input
, DestTy
, false);
1300 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1301 case Instruction::IntToPtr
:
1302 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1303 // the int size is >= the ptr size and the address spaces are the same.
1304 // This requires knowing the width of a pointer, so it can't be done in
1305 // ConstantExpr::getCast.
1306 if (auto *CE
= dyn_cast
<ConstantExpr
>(C
)) {
1307 if (CE
->getOpcode() == Instruction::PtrToInt
) {
1308 Constant
*SrcPtr
= CE
->getOperand(0);
1309 unsigned SrcPtrSize
= DL
.getPointerTypeSizeInBits(SrcPtr
->getType());
1310 unsigned MidIntSize
= CE
->getType()->getScalarSizeInBits();
1312 if (MidIntSize
>= SrcPtrSize
) {
1313 unsigned SrcAS
= SrcPtr
->getType()->getPointerAddressSpace();
1314 if (SrcAS
== DestTy
->getPointerAddressSpace())
1315 return FoldBitCast(CE
->getOperand(0), DestTy
, DL
);
1320 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1321 case Instruction::Trunc
:
1322 case Instruction::ZExt
:
1323 case Instruction::SExt
:
1324 case Instruction::FPTrunc
:
1325 case Instruction::FPExt
:
1326 case Instruction::UIToFP
:
1327 case Instruction::SIToFP
:
1328 case Instruction::FPToUI
:
1329 case Instruction::FPToSI
:
1330 case Instruction::AddrSpaceCast
:
1331 return ConstantExpr::getCast(Opcode
, C
, DestTy
);
1332 case Instruction::BitCast
:
1333 return FoldBitCast(C
, DestTy
, DL
);
1337 Constant
*llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant
*C
,
1339 if (!CE
->getOperand(1)->isNullValue())
1340 return nullptr; // Do not allow stepping over the value!
1342 // Loop over all of the operands, tracking down which value we are
1344 for (unsigned i
= 2, e
= CE
->getNumOperands(); i
!= e
; ++i
) {
1345 C
= C
->getAggregateElement(CE
->getOperand(i
));
1353 llvm::ConstantFoldLoadThroughGEPIndices(Constant
*C
,
1354 ArrayRef
<Constant
*> Indices
) {
1355 // Loop over all of the operands, tracking down which value we are
1357 for (Constant
*Index
: Indices
) {
1358 C
= C
->getAggregateElement(Index
);
1365 //===----------------------------------------------------------------------===//
1366 // Constant Folding for Calls
1369 bool llvm::canConstantFoldCallTo(const CallBase
*Call
, const Function
*F
) {
1370 if (Call
->isNoBuiltin() || Call
->isStrictFP())
1372 switch (F
->getIntrinsicID()) {
1373 case Intrinsic::fabs
:
1374 case Intrinsic::minnum
:
1375 case Intrinsic::maxnum
:
1376 case Intrinsic::minimum
:
1377 case Intrinsic::maximum
:
1378 case Intrinsic::log
:
1379 case Intrinsic::log2
:
1380 case Intrinsic::log10
:
1381 case Intrinsic::exp
:
1382 case Intrinsic::exp2
:
1383 case Intrinsic::floor
:
1384 case Intrinsic::ceil
:
1385 case Intrinsic::sqrt
:
1386 case Intrinsic::sin
:
1387 case Intrinsic::cos
:
1388 case Intrinsic::trunc
:
1389 case Intrinsic::rint
:
1390 case Intrinsic::nearbyint
:
1391 case Intrinsic::pow
:
1392 case Intrinsic::powi
:
1393 case Intrinsic::bswap
:
1394 case Intrinsic::ctpop
:
1395 case Intrinsic::ctlz
:
1396 case Intrinsic::cttz
:
1397 case Intrinsic::fshl
:
1398 case Intrinsic::fshr
:
1399 case Intrinsic::fma
:
1400 case Intrinsic::fmuladd
:
1401 case Intrinsic::copysign
:
1402 case Intrinsic::launder_invariant_group
:
1403 case Intrinsic::strip_invariant_group
:
1404 case Intrinsic::round
:
1405 case Intrinsic::masked_load
:
1406 case Intrinsic::sadd_with_overflow
:
1407 case Intrinsic::uadd_with_overflow
:
1408 case Intrinsic::ssub_with_overflow
:
1409 case Intrinsic::usub_with_overflow
:
1410 case Intrinsic::smul_with_overflow
:
1411 case Intrinsic::umul_with_overflow
:
1412 case Intrinsic::sadd_sat
:
1413 case Intrinsic::uadd_sat
:
1414 case Intrinsic::ssub_sat
:
1415 case Intrinsic::usub_sat
:
1416 case Intrinsic::convert_from_fp16
:
1417 case Intrinsic::convert_to_fp16
:
1418 case Intrinsic::bitreverse
:
1419 case Intrinsic::x86_sse_cvtss2si
:
1420 case Intrinsic::x86_sse_cvtss2si64
:
1421 case Intrinsic::x86_sse_cvttss2si
:
1422 case Intrinsic::x86_sse_cvttss2si64
:
1423 case Intrinsic::x86_sse2_cvtsd2si
:
1424 case Intrinsic::x86_sse2_cvtsd2si64
:
1425 case Intrinsic::x86_sse2_cvttsd2si
:
1426 case Intrinsic::x86_sse2_cvttsd2si64
:
1427 case Intrinsic::x86_avx512_vcvtss2si32
:
1428 case Intrinsic::x86_avx512_vcvtss2si64
:
1429 case Intrinsic::x86_avx512_cvttss2si
:
1430 case Intrinsic::x86_avx512_cvttss2si64
:
1431 case Intrinsic::x86_avx512_vcvtsd2si32
:
1432 case Intrinsic::x86_avx512_vcvtsd2si64
:
1433 case Intrinsic::x86_avx512_cvttsd2si
:
1434 case Intrinsic::x86_avx512_cvttsd2si64
:
1435 case Intrinsic::x86_avx512_vcvtss2usi32
:
1436 case Intrinsic::x86_avx512_vcvtss2usi64
:
1437 case Intrinsic::x86_avx512_cvttss2usi
:
1438 case Intrinsic::x86_avx512_cvttss2usi64
:
1439 case Intrinsic::x86_avx512_vcvtsd2usi32
:
1440 case Intrinsic::x86_avx512_vcvtsd2usi64
:
1441 case Intrinsic::x86_avx512_cvttsd2usi
:
1442 case Intrinsic::x86_avx512_cvttsd2usi64
:
1443 case Intrinsic::is_constant
:
1447 case Intrinsic::not_intrinsic
: break;
1452 StringRef Name
= F
->getName();
1454 // In these cases, the check of the length is required. We don't want to
1455 // return true for a name like "cos\0blah" which strcmp would return equal to
1456 // "cos", but has length 8.
1461 return Name
== "acos" || Name
== "asin" || Name
== "atan" ||
1462 Name
== "atan2" || Name
== "acosf" || Name
== "asinf" ||
1463 Name
== "atanf" || Name
== "atan2f";
1465 return Name
== "ceil" || Name
== "cos" || Name
== "cosh" ||
1466 Name
== "ceilf" || Name
== "cosf" || Name
== "coshf";
1468 return Name
== "exp" || Name
== "exp2" || Name
== "expf" || Name
== "exp2f";
1470 return Name
== "fabs" || Name
== "floor" || Name
== "fmod" ||
1471 Name
== "fabsf" || Name
== "floorf" || Name
== "fmodf";
1473 return Name
== "log" || Name
== "log10" || Name
== "logf" ||
1476 return Name
== "pow" || Name
== "powf";
1478 return Name
== "round" || Name
== "roundf";
1480 return Name
== "sin" || Name
== "sinh" || Name
== "sqrt" ||
1481 Name
== "sinf" || Name
== "sinhf" || Name
== "sqrtf";
1483 return Name
== "tan" || Name
== "tanh" || Name
== "tanf" || Name
== "tanhf";
1486 // Check for various function names that get used for the math functions
1487 // when the header files are preprocessed with the macro
1488 // __FINITE_MATH_ONLY__ enabled.
1489 // The '12' here is the length of the shortest name that can match.
1490 // We need to check the size before looking at Name[1] and Name[2]
1491 // so we may as well check a limit that will eliminate mismatches.
1492 if (Name
.size() < 12 || Name
[1] != '_')
1498 return Name
== "__acos_finite" || Name
== "__acosf_finite" ||
1499 Name
== "__asin_finite" || Name
== "__asinf_finite" ||
1500 Name
== "__atan2_finite" || Name
== "__atan2f_finite";
1502 return Name
== "__cosh_finite" || Name
== "__coshf_finite";
1504 return Name
== "__exp_finite" || Name
== "__expf_finite" ||
1505 Name
== "__exp2_finite" || Name
== "__exp2f_finite";
1507 return Name
== "__log_finite" || Name
== "__logf_finite" ||
1508 Name
== "__log10_finite" || Name
== "__log10f_finite";
1510 return Name
== "__pow_finite" || Name
== "__powf_finite";
1512 return Name
== "__sinh_finite" || Name
== "__sinhf_finite";
1519 Constant
*GetConstantFoldFPValue(double V
, Type
*Ty
) {
1520 if (Ty
->isHalfTy()) {
1523 APF
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
, &unused
);
1524 return ConstantFP::get(Ty
->getContext(), APF
);
1526 if (Ty
->isFloatTy())
1527 return ConstantFP::get(Ty
->getContext(), APFloat((float)V
));
1528 if (Ty
->isDoubleTy())
1529 return ConstantFP::get(Ty
->getContext(), APFloat(V
));
1530 llvm_unreachable("Can only constant fold half/float/double");
1533 /// Clear the floating-point exception state.
1534 inline void llvm_fenv_clearexcept() {
1535 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1536 feclearexcept(FE_ALL_EXCEPT
);
1541 /// Test if a floating-point exception was raised.
1542 inline bool llvm_fenv_testexcept() {
1543 int errno_val
= errno
;
1544 if (errno_val
== ERANGE
|| errno_val
== EDOM
)
1546 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1547 if (fetestexcept(FE_ALL_EXCEPT
& ~FE_INEXACT
))
1553 Constant
*ConstantFoldFP(double (*NativeFP
)(double), double V
, Type
*Ty
) {
1554 llvm_fenv_clearexcept();
1556 if (llvm_fenv_testexcept()) {
1557 llvm_fenv_clearexcept();
1561 return GetConstantFoldFPValue(V
, Ty
);
1564 Constant
*ConstantFoldBinaryFP(double (*NativeFP
)(double, double), double V
,
1565 double W
, Type
*Ty
) {
1566 llvm_fenv_clearexcept();
1568 if (llvm_fenv_testexcept()) {
1569 llvm_fenv_clearexcept();
1573 return GetConstantFoldFPValue(V
, Ty
);
1576 /// Attempt to fold an SSE floating point to integer conversion of a constant
1577 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1578 /// used (toward nearest, ties to even). This matches the behavior of the
1579 /// non-truncating SSE instructions in the default rounding mode. The desired
1580 /// integer type Ty is used to select how many bits are available for the
1581 /// result. Returns null if the conversion cannot be performed, otherwise
1582 /// returns the Constant value resulting from the conversion.
1583 Constant
*ConstantFoldSSEConvertToInt(const APFloat
&Val
, bool roundTowardZero
,
1584 Type
*Ty
, bool IsSigned
) {
1585 // All of these conversion intrinsics form an integer of at most 64bits.
1586 unsigned ResultWidth
= Ty
->getIntegerBitWidth();
1587 assert(ResultWidth
<= 64 &&
1588 "Can only constant fold conversions to 64 and 32 bit ints");
1591 bool isExact
= false;
1592 APFloat::roundingMode mode
= roundTowardZero
? APFloat::rmTowardZero
1593 : APFloat::rmNearestTiesToEven
;
1594 APFloat::opStatus status
=
1595 Val
.convertToInteger(makeMutableArrayRef(UIntVal
), ResultWidth
,
1596 IsSigned
, mode
, &isExact
);
1597 if (status
!= APFloat::opOK
&&
1598 (!roundTowardZero
|| status
!= APFloat::opInexact
))
1600 return ConstantInt::get(Ty
, UIntVal
, IsSigned
);
1603 double getValueAsDouble(ConstantFP
*Op
) {
1604 Type
*Ty
= Op
->getType();
1606 if (Ty
->isFloatTy())
1607 return Op
->getValueAPF().convertToFloat();
1609 if (Ty
->isDoubleTy())
1610 return Op
->getValueAPF().convertToDouble();
1613 APFloat APF
= Op
->getValueAPF();
1614 APF
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
, &unused
);
1615 return APF
.convertToDouble();
1618 static bool isManifestConstant(const Constant
*c
) {
1619 if (isa
<ConstantData
>(c
)) {
1621 } else if (isa
<ConstantAggregate
>(c
) || isa
<ConstantExpr
>(c
)) {
1622 for (const Value
*subc
: c
->operand_values()) {
1623 if (!isManifestConstant(cast
<Constant
>(subc
)))
1631 static bool getConstIntOrUndef(Value
*Op
, const APInt
*&C
) {
1632 if (auto *CI
= dyn_cast
<ConstantInt
>(Op
)) {
1633 C
= &CI
->getValue();
1636 if (isa
<UndefValue
>(Op
)) {
1643 Constant
*ConstantFoldScalarCall(StringRef Name
, unsigned IntrinsicID
, Type
*Ty
,
1644 ArrayRef
<Constant
*> Operands
,
1645 const TargetLibraryInfo
*TLI
,
1646 const CallBase
*Call
) {
1647 if (Operands
.size() == 1) {
1648 if (IntrinsicID
== Intrinsic::is_constant
) {
1649 // We know we have a "Constant" argument. But we want to only
1650 // return true for manifest constants, not those that depend on
1651 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1652 if (isManifestConstant(Operands
[0]))
1653 return ConstantInt::getTrue(Ty
->getContext());
1656 if (isa
<UndefValue
>(Operands
[0])) {
1657 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1658 // ctpop() is between 0 and bitwidth, pick 0 for undef.
1659 if (IntrinsicID
== Intrinsic::cos
||
1660 IntrinsicID
== Intrinsic::ctpop
)
1661 return Constant::getNullValue(Ty
);
1662 if (IntrinsicID
== Intrinsic::bswap
||
1663 IntrinsicID
== Intrinsic::bitreverse
||
1664 IntrinsicID
== Intrinsic::launder_invariant_group
||
1665 IntrinsicID
== Intrinsic::strip_invariant_group
)
1669 if (isa
<ConstantPointerNull
>(Operands
[0])) {
1670 // launder(null) == null == strip(null) iff in addrspace 0
1671 if (IntrinsicID
== Intrinsic::launder_invariant_group
||
1672 IntrinsicID
== Intrinsic::strip_invariant_group
) {
1673 // If instruction is not yet put in a basic block (e.g. when cloning
1674 // a function during inlining), Call's caller may not be available.
1675 // So check Call's BB first before querying Call->getCaller.
1676 const Function
*Caller
=
1677 Call
->getParent() ? Call
->getCaller() : nullptr;
1679 !NullPointerIsDefined(
1680 Caller
, Operands
[0]->getType()->getPointerAddressSpace())) {
1687 if (auto *Op
= dyn_cast
<ConstantFP
>(Operands
[0])) {
1688 if (IntrinsicID
== Intrinsic::convert_to_fp16
) {
1689 APFloat
Val(Op
->getValueAPF());
1692 Val
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
, &lost
);
1694 return ConstantInt::get(Ty
->getContext(), Val
.bitcastToAPInt());
1697 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy())
1700 if (IntrinsicID
== Intrinsic::round
) {
1701 APFloat V
= Op
->getValueAPF();
1702 V
.roundToIntegral(APFloat::rmNearestTiesToAway
);
1703 return ConstantFP::get(Ty
->getContext(), V
);
1706 if (IntrinsicID
== Intrinsic::floor
) {
1707 APFloat V
= Op
->getValueAPF();
1708 V
.roundToIntegral(APFloat::rmTowardNegative
);
1709 return ConstantFP::get(Ty
->getContext(), V
);
1712 if (IntrinsicID
== Intrinsic::ceil
) {
1713 APFloat V
= Op
->getValueAPF();
1714 V
.roundToIntegral(APFloat::rmTowardPositive
);
1715 return ConstantFP::get(Ty
->getContext(), V
);
1718 if (IntrinsicID
== Intrinsic::trunc
) {
1719 APFloat V
= Op
->getValueAPF();
1720 V
.roundToIntegral(APFloat::rmTowardZero
);
1721 return ConstantFP::get(Ty
->getContext(), V
);
1724 if (IntrinsicID
== Intrinsic::rint
) {
1725 APFloat V
= Op
->getValueAPF();
1726 V
.roundToIntegral(APFloat::rmNearestTiesToEven
);
1727 return ConstantFP::get(Ty
->getContext(), V
);
1730 if (IntrinsicID
== Intrinsic::nearbyint
) {
1731 APFloat V
= Op
->getValueAPF();
1732 V
.roundToIntegral(APFloat::rmNearestTiesToEven
);
1733 return ConstantFP::get(Ty
->getContext(), V
);
1736 /// We only fold functions with finite arguments. Folding NaN and inf is
1737 /// likely to be aborted with an exception anyway, and some host libms
1738 /// have known errors raising exceptions.
1739 if (Op
->getValueAPF().isNaN() || Op
->getValueAPF().isInfinity())
1742 /// Currently APFloat versions of these functions do not exist, so we use
1743 /// the host native double versions. Float versions are not called
1744 /// directly but for all these it is true (float)(f((double)arg)) ==
1745 /// f(arg). Long double not supported yet.
1746 double V
= getValueAsDouble(Op
);
1748 switch (IntrinsicID
) {
1750 case Intrinsic::fabs
:
1751 return ConstantFoldFP(fabs
, V
, Ty
);
1752 case Intrinsic::log2
:
1753 return ConstantFoldFP(Log2
, V
, Ty
);
1754 case Intrinsic::log
:
1755 return ConstantFoldFP(log
, V
, Ty
);
1756 case Intrinsic::log10
:
1757 return ConstantFoldFP(log10
, V
, Ty
);
1758 case Intrinsic::exp
:
1759 return ConstantFoldFP(exp
, V
, Ty
);
1760 case Intrinsic::exp2
:
1761 return ConstantFoldFP(exp2
, V
, Ty
);
1762 case Intrinsic::sin
:
1763 return ConstantFoldFP(sin
, V
, Ty
);
1764 case Intrinsic::cos
:
1765 return ConstantFoldFP(cos
, V
, Ty
);
1766 case Intrinsic::sqrt
:
1767 return ConstantFoldFP(sqrt
, V
, Ty
);
1773 char NameKeyChar
= Name
[0];
1774 if (Name
[0] == '_' && Name
.size() > 2 && Name
[1] == '_')
1775 NameKeyChar
= Name
[2];
1777 switch (NameKeyChar
) {
1779 if ((Name
== "acos" && TLI
->has(LibFunc_acos
)) ||
1780 (Name
== "acosf" && TLI
->has(LibFunc_acosf
)) ||
1781 (Name
== "__acos_finite" && TLI
->has(LibFunc_acos_finite
)) ||
1782 (Name
== "__acosf_finite" && TLI
->has(LibFunc_acosf_finite
)))
1783 return ConstantFoldFP(acos
, V
, Ty
);
1784 else if ((Name
== "asin" && TLI
->has(LibFunc_asin
)) ||
1785 (Name
== "asinf" && TLI
->has(LibFunc_asinf
)) ||
1786 (Name
== "__asin_finite" && TLI
->has(LibFunc_asin_finite
)) ||
1787 (Name
== "__asinf_finite" && TLI
->has(LibFunc_asinf_finite
)))
1788 return ConstantFoldFP(asin
, V
, Ty
);
1789 else if ((Name
== "atan" && TLI
->has(LibFunc_atan
)) ||
1790 (Name
== "atanf" && TLI
->has(LibFunc_atanf
)))
1791 return ConstantFoldFP(atan
, V
, Ty
);
1794 if ((Name
== "ceil" && TLI
->has(LibFunc_ceil
)) ||
1795 (Name
== "ceilf" && TLI
->has(LibFunc_ceilf
)))
1796 return ConstantFoldFP(ceil
, V
, Ty
);
1797 else if ((Name
== "cos" && TLI
->has(LibFunc_cos
)) ||
1798 (Name
== "cosf" && TLI
->has(LibFunc_cosf
)))
1799 return ConstantFoldFP(cos
, V
, Ty
);
1800 else if ((Name
== "cosh" && TLI
->has(LibFunc_cosh
)) ||
1801 (Name
== "coshf" && TLI
->has(LibFunc_coshf
)) ||
1802 (Name
== "__cosh_finite" && TLI
->has(LibFunc_cosh_finite
)) ||
1803 (Name
== "__coshf_finite" && TLI
->has(LibFunc_coshf_finite
)))
1804 return ConstantFoldFP(cosh
, V
, Ty
);
1807 if ((Name
== "exp" && TLI
->has(LibFunc_exp
)) ||
1808 (Name
== "expf" && TLI
->has(LibFunc_expf
)) ||
1809 (Name
== "__exp_finite" && TLI
->has(LibFunc_exp_finite
)) ||
1810 (Name
== "__expf_finite" && TLI
->has(LibFunc_expf_finite
)))
1811 return ConstantFoldFP(exp
, V
, Ty
);
1812 if ((Name
== "exp2" && TLI
->has(LibFunc_exp2
)) ||
1813 (Name
== "exp2f" && TLI
->has(LibFunc_exp2f
)) ||
1814 (Name
== "__exp2_finite" && TLI
->has(LibFunc_exp2_finite
)) ||
1815 (Name
== "__exp2f_finite" && TLI
->has(LibFunc_exp2f_finite
)))
1816 // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1818 return ConstantFoldBinaryFP(pow
, 2.0, V
, Ty
);
1821 if ((Name
== "fabs" && TLI
->has(LibFunc_fabs
)) ||
1822 (Name
== "fabsf" && TLI
->has(LibFunc_fabsf
)))
1823 return ConstantFoldFP(fabs
, V
, Ty
);
1824 else if ((Name
== "floor" && TLI
->has(LibFunc_floor
)) ||
1825 (Name
== "floorf" && TLI
->has(LibFunc_floorf
)))
1826 return ConstantFoldFP(floor
, V
, Ty
);
1829 if ((Name
== "log" && V
> 0 && TLI
->has(LibFunc_log
)) ||
1830 (Name
== "logf" && V
> 0 && TLI
->has(LibFunc_logf
)) ||
1831 (Name
== "__log_finite" && V
> 0 &&
1832 TLI
->has(LibFunc_log_finite
)) ||
1833 (Name
== "__logf_finite" && V
> 0 &&
1834 TLI
->has(LibFunc_logf_finite
)))
1835 return ConstantFoldFP(log
, V
, Ty
);
1836 else if ((Name
== "log10" && V
> 0 && TLI
->has(LibFunc_log10
)) ||
1837 (Name
== "log10f" && V
> 0 && TLI
->has(LibFunc_log10f
)) ||
1838 (Name
== "__log10_finite" && V
> 0 &&
1839 TLI
->has(LibFunc_log10_finite
)) ||
1840 (Name
== "__log10f_finite" && V
> 0 &&
1841 TLI
->has(LibFunc_log10f_finite
)))
1842 return ConstantFoldFP(log10
, V
, Ty
);
1845 if ((Name
== "round" && TLI
->has(LibFunc_round
)) ||
1846 (Name
== "roundf" && TLI
->has(LibFunc_roundf
)))
1847 return ConstantFoldFP(round
, V
, Ty
);
1850 if ((Name
== "sin" && TLI
->has(LibFunc_sin
)) ||
1851 (Name
== "sinf" && TLI
->has(LibFunc_sinf
)))
1852 return ConstantFoldFP(sin
, V
, Ty
);
1853 else if ((Name
== "sinh" && TLI
->has(LibFunc_sinh
)) ||
1854 (Name
== "sinhf" && TLI
->has(LibFunc_sinhf
)) ||
1855 (Name
== "__sinh_finite" && TLI
->has(LibFunc_sinh_finite
)) ||
1856 (Name
== "__sinhf_finite" && TLI
->has(LibFunc_sinhf_finite
)))
1857 return ConstantFoldFP(sinh
, V
, Ty
);
1858 else if ((Name
== "sqrt" && V
>= 0 && TLI
->has(LibFunc_sqrt
)) ||
1859 (Name
== "sqrtf" && V
>= 0 && TLI
->has(LibFunc_sqrtf
)))
1860 return ConstantFoldFP(sqrt
, V
, Ty
);
1863 if ((Name
== "tan" && TLI
->has(LibFunc_tan
)) ||
1864 (Name
== "tanf" && TLI
->has(LibFunc_tanf
)))
1865 return ConstantFoldFP(tan
, V
, Ty
);
1866 else if ((Name
== "tanh" && TLI
->has(LibFunc_tanh
)) ||
1867 (Name
== "tanhf" && TLI
->has(LibFunc_tanhf
)))
1868 return ConstantFoldFP(tanh
, V
, Ty
);
1876 if (auto *Op
= dyn_cast
<ConstantInt
>(Operands
[0])) {
1877 switch (IntrinsicID
) {
1878 case Intrinsic::bswap
:
1879 return ConstantInt::get(Ty
->getContext(), Op
->getValue().byteSwap());
1880 case Intrinsic::ctpop
:
1881 return ConstantInt::get(Ty
, Op
->getValue().countPopulation());
1882 case Intrinsic::bitreverse
:
1883 return ConstantInt::get(Ty
->getContext(), Op
->getValue().reverseBits());
1884 case Intrinsic::convert_from_fp16
: {
1885 APFloat
Val(APFloat::IEEEhalf(), Op
->getValue());
1888 APFloat::opStatus status
= Val
.convert(
1889 Ty
->getFltSemantics(), APFloat::rmNearestTiesToEven
, &lost
);
1891 // Conversion is always precise.
1893 assert(status
== APFloat::opOK
&& !lost
&&
1894 "Precision lost during fp16 constfolding");
1896 return ConstantFP::get(Ty
->getContext(), Val
);
1903 // Support ConstantVector in case we have an Undef in the top.
1904 if (isa
<ConstantVector
>(Operands
[0]) ||
1905 isa
<ConstantDataVector
>(Operands
[0])) {
1906 auto *Op
= cast
<Constant
>(Operands
[0]);
1907 switch (IntrinsicID
) {
1909 case Intrinsic::x86_sse_cvtss2si
:
1910 case Intrinsic::x86_sse_cvtss2si64
:
1911 case Intrinsic::x86_sse2_cvtsd2si
:
1912 case Intrinsic::x86_sse2_cvtsd2si64
:
1913 if (ConstantFP
*FPOp
=
1914 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
1915 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
1916 /*roundTowardZero=*/false, Ty
,
1919 case Intrinsic::x86_sse_cvttss2si
:
1920 case Intrinsic::x86_sse_cvttss2si64
:
1921 case Intrinsic::x86_sse2_cvttsd2si
:
1922 case Intrinsic::x86_sse2_cvttsd2si64
:
1923 if (ConstantFP
*FPOp
=
1924 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
1925 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
1926 /*roundTowardZero=*/true, Ty
,
1935 if (Operands
.size() == 2) {
1936 if (auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
1937 if (!Ty
->isHalfTy() && !Ty
->isFloatTy() && !Ty
->isDoubleTy())
1939 double Op1V
= getValueAsDouble(Op1
);
1941 if (auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
1942 if (Op2
->getType() != Op1
->getType())
1945 double Op2V
= getValueAsDouble(Op2
);
1946 if (IntrinsicID
== Intrinsic::pow
) {
1947 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
1949 if (IntrinsicID
== Intrinsic::copysign
) {
1950 APFloat V1
= Op1
->getValueAPF();
1951 const APFloat
&V2
= Op2
->getValueAPF();
1953 return ConstantFP::get(Ty
->getContext(), V1
);
1956 if (IntrinsicID
== Intrinsic::minnum
) {
1957 const APFloat
&C1
= Op1
->getValueAPF();
1958 const APFloat
&C2
= Op2
->getValueAPF();
1959 return ConstantFP::get(Ty
->getContext(), minnum(C1
, C2
));
1962 if (IntrinsicID
== Intrinsic::maxnum
) {
1963 const APFloat
&C1
= Op1
->getValueAPF();
1964 const APFloat
&C2
= Op2
->getValueAPF();
1965 return ConstantFP::get(Ty
->getContext(), maxnum(C1
, C2
));
1968 if (IntrinsicID
== Intrinsic::minimum
) {
1969 const APFloat
&C1
= Op1
->getValueAPF();
1970 const APFloat
&C2
= Op2
->getValueAPF();
1971 return ConstantFP::get(Ty
->getContext(), minimum(C1
, C2
));
1974 if (IntrinsicID
== Intrinsic::maximum
) {
1975 const APFloat
&C1
= Op1
->getValueAPF();
1976 const APFloat
&C2
= Op2
->getValueAPF();
1977 return ConstantFP::get(Ty
->getContext(), maximum(C1
, C2
));
1982 if ((Name
== "pow" && TLI
->has(LibFunc_pow
)) ||
1983 (Name
== "powf" && TLI
->has(LibFunc_powf
)) ||
1984 (Name
== "__pow_finite" && TLI
->has(LibFunc_pow_finite
)) ||
1985 (Name
== "__powf_finite" && TLI
->has(LibFunc_powf_finite
)))
1986 return ConstantFoldBinaryFP(pow
, Op1V
, Op2V
, Ty
);
1987 if ((Name
== "fmod" && TLI
->has(LibFunc_fmod
)) ||
1988 (Name
== "fmodf" && TLI
->has(LibFunc_fmodf
)))
1989 return ConstantFoldBinaryFP(fmod
, Op1V
, Op2V
, Ty
);
1990 if ((Name
== "atan2" && TLI
->has(LibFunc_atan2
)) ||
1991 (Name
== "atan2f" && TLI
->has(LibFunc_atan2f
)) ||
1992 (Name
== "__atan2_finite" && TLI
->has(LibFunc_atan2_finite
)) ||
1993 (Name
== "__atan2f_finite" && TLI
->has(LibFunc_atan2f_finite
)))
1994 return ConstantFoldBinaryFP(atan2
, Op1V
, Op2V
, Ty
);
1995 } else if (auto *Op2C
= dyn_cast
<ConstantInt
>(Operands
[1])) {
1996 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isHalfTy())
1997 return ConstantFP::get(Ty
->getContext(),
1998 APFloat((float)std::pow((float)Op1V
,
1999 (int)Op2C
->getZExtValue())));
2000 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isFloatTy())
2001 return ConstantFP::get(Ty
->getContext(),
2002 APFloat((float)std::pow((float)Op1V
,
2003 (int)Op2C
->getZExtValue())));
2004 if (IntrinsicID
== Intrinsic::powi
&& Ty
->isDoubleTy())
2005 return ConstantFP::get(Ty
->getContext(),
2006 APFloat((double)std::pow((double)Op1V
,
2007 (int)Op2C
->getZExtValue())));
2012 if (Operands
[0]->getType()->isIntegerTy() &&
2013 Operands
[1]->getType()->isIntegerTy()) {
2014 const APInt
*C0
, *C1
;
2015 if (!getConstIntOrUndef(Operands
[0], C0
) ||
2016 !getConstIntOrUndef(Operands
[1], C1
))
2019 switch (IntrinsicID
) {
2021 case Intrinsic::smul_with_overflow
:
2022 case Intrinsic::umul_with_overflow
:
2023 // Even if both operands are undef, we cannot fold muls to undef
2024 // in the general case. For example, on i2 there are no inputs
2025 // that would produce { i2 -1, i1 true } as the result.
2027 return Constant::getNullValue(Ty
);
2029 case Intrinsic::sadd_with_overflow
:
2030 case Intrinsic::uadd_with_overflow
:
2031 case Intrinsic::ssub_with_overflow
:
2032 case Intrinsic::usub_with_overflow
: {
2034 return UndefValue::get(Ty
);
2038 switch (IntrinsicID
) {
2039 default: llvm_unreachable("Invalid case");
2040 case Intrinsic::sadd_with_overflow
:
2041 Res
= C0
->sadd_ov(*C1
, Overflow
);
2043 case Intrinsic::uadd_with_overflow
:
2044 Res
= C0
->uadd_ov(*C1
, Overflow
);
2046 case Intrinsic::ssub_with_overflow
:
2047 Res
= C0
->ssub_ov(*C1
, Overflow
);
2049 case Intrinsic::usub_with_overflow
:
2050 Res
= C0
->usub_ov(*C1
, Overflow
);
2052 case Intrinsic::smul_with_overflow
:
2053 Res
= C0
->smul_ov(*C1
, Overflow
);
2055 case Intrinsic::umul_with_overflow
:
2056 Res
= C0
->umul_ov(*C1
, Overflow
);
2060 ConstantInt::get(Ty
->getContext(), Res
),
2061 ConstantInt::get(Type::getInt1Ty(Ty
->getContext()), Overflow
)
2063 return ConstantStruct::get(cast
<StructType
>(Ty
), Ops
);
2065 case Intrinsic::uadd_sat
:
2066 case Intrinsic::sadd_sat
:
2068 return UndefValue::get(Ty
);
2070 return Constant::getAllOnesValue(Ty
);
2071 if (IntrinsicID
== Intrinsic::uadd_sat
)
2072 return ConstantInt::get(Ty
, C0
->uadd_sat(*C1
));
2074 return ConstantInt::get(Ty
, C0
->sadd_sat(*C1
));
2075 case Intrinsic::usub_sat
:
2076 case Intrinsic::ssub_sat
:
2078 return UndefValue::get(Ty
);
2080 return Constant::getNullValue(Ty
);
2081 if (IntrinsicID
== Intrinsic::usub_sat
)
2082 return ConstantInt::get(Ty
, C0
->usub_sat(*C1
));
2084 return ConstantInt::get(Ty
, C0
->ssub_sat(*C1
));
2085 case Intrinsic::cttz
:
2086 case Intrinsic::ctlz
:
2087 assert(C1
&& "Must be constant int");
2089 // cttz(0, 1) and ctlz(0, 1) are undef.
2090 if (C1
->isOneValue() && (!C0
|| C0
->isNullValue()))
2091 return UndefValue::get(Ty
);
2093 return Constant::getNullValue(Ty
);
2094 if (IntrinsicID
== Intrinsic::cttz
)
2095 return ConstantInt::get(Ty
, C0
->countTrailingZeros());
2097 return ConstantInt::get(Ty
, C0
->countLeadingZeros());
2103 // Support ConstantVector in case we have an Undef in the top.
2104 if ((isa
<ConstantVector
>(Operands
[0]) ||
2105 isa
<ConstantDataVector
>(Operands
[0])) &&
2106 // Check for default rounding mode.
2107 // FIXME: Support other rounding modes?
2108 isa
<ConstantInt
>(Operands
[1]) &&
2109 cast
<ConstantInt
>(Operands
[1])->getValue() == 4) {
2110 auto *Op
= cast
<Constant
>(Operands
[0]);
2111 switch (IntrinsicID
) {
2113 case Intrinsic::x86_avx512_vcvtss2si32
:
2114 case Intrinsic::x86_avx512_vcvtss2si64
:
2115 case Intrinsic::x86_avx512_vcvtsd2si32
:
2116 case Intrinsic::x86_avx512_vcvtsd2si64
:
2117 if (ConstantFP
*FPOp
=
2118 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2119 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2120 /*roundTowardZero=*/false, Ty
,
2123 case Intrinsic::x86_avx512_vcvtss2usi32
:
2124 case Intrinsic::x86_avx512_vcvtss2usi64
:
2125 case Intrinsic::x86_avx512_vcvtsd2usi32
:
2126 case Intrinsic::x86_avx512_vcvtsd2usi64
:
2127 if (ConstantFP
*FPOp
=
2128 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2129 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2130 /*roundTowardZero=*/false, Ty
,
2133 case Intrinsic::x86_avx512_cvttss2si
:
2134 case Intrinsic::x86_avx512_cvttss2si64
:
2135 case Intrinsic::x86_avx512_cvttsd2si
:
2136 case Intrinsic::x86_avx512_cvttsd2si64
:
2137 if (ConstantFP
*FPOp
=
2138 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2139 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2140 /*roundTowardZero=*/true, Ty
,
2143 case Intrinsic::x86_avx512_cvttss2usi
:
2144 case Intrinsic::x86_avx512_cvttss2usi64
:
2145 case Intrinsic::x86_avx512_cvttsd2usi
:
2146 case Intrinsic::x86_avx512_cvttsd2usi64
:
2147 if (ConstantFP
*FPOp
=
2148 dyn_cast_or_null
<ConstantFP
>(Op
->getAggregateElement(0U)))
2149 return ConstantFoldSSEConvertToInt(FPOp
->getValueAPF(),
2150 /*roundTowardZero=*/true, Ty
,
2158 if (Operands
.size() != 3)
2161 if (const auto *Op1
= dyn_cast
<ConstantFP
>(Operands
[0])) {
2162 if (const auto *Op2
= dyn_cast
<ConstantFP
>(Operands
[1])) {
2163 if (const auto *Op3
= dyn_cast
<ConstantFP
>(Operands
[2])) {
2164 switch (IntrinsicID
) {
2166 case Intrinsic::fma
:
2167 case Intrinsic::fmuladd
: {
2168 APFloat V
= Op1
->getValueAPF();
2169 APFloat::opStatus s
= V
.fusedMultiplyAdd(Op2
->getValueAPF(),
2171 APFloat::rmNearestTiesToEven
);
2172 if (s
!= APFloat::opInvalidOp
)
2173 return ConstantFP::get(Ty
->getContext(), V
);
2182 if (IntrinsicID
== Intrinsic::fshl
|| IntrinsicID
== Intrinsic::fshr
) {
2183 const APInt
*C0
, *C1
, *C2
;
2184 if (!getConstIntOrUndef(Operands
[0], C0
) ||
2185 !getConstIntOrUndef(Operands
[1], C1
) ||
2186 !getConstIntOrUndef(Operands
[2], C2
))
2189 bool IsRight
= IntrinsicID
== Intrinsic::fshr
;
2191 return Operands
[IsRight
? 1 : 0];
2193 return UndefValue::get(Ty
);
2195 // The shift amount is interpreted as modulo the bitwidth. If the shift
2196 // amount is effectively 0, avoid UB due to oversized inverse shift below.
2197 unsigned BitWidth
= C2
->getBitWidth();
2198 unsigned ShAmt
= C2
->urem(BitWidth
);
2200 return Operands
[IsRight
? 1 : 0];
2202 // (C0 << ShlAmt) | (C1 >> LshrAmt)
2203 unsigned LshrAmt
= IsRight
? ShAmt
: BitWidth
- ShAmt
;
2204 unsigned ShlAmt
= !IsRight
? ShAmt
: BitWidth
- ShAmt
;
2206 return ConstantInt::get(Ty
, C1
->lshr(LshrAmt
));
2208 return ConstantInt::get(Ty
, C0
->shl(ShlAmt
));
2209 return ConstantInt::get(Ty
, C0
->shl(ShlAmt
) | C1
->lshr(LshrAmt
));
2215 Constant
*ConstantFoldVectorCall(StringRef Name
, unsigned IntrinsicID
,
2216 VectorType
*VTy
, ArrayRef
<Constant
*> Operands
,
2217 const DataLayout
&DL
,
2218 const TargetLibraryInfo
*TLI
,
2219 const CallBase
*Call
) {
2220 SmallVector
<Constant
*, 4> Result(VTy
->getNumElements());
2221 SmallVector
<Constant
*, 4> Lane(Operands
.size());
2222 Type
*Ty
= VTy
->getElementType();
2224 if (IntrinsicID
== Intrinsic::masked_load
) {
2225 auto *SrcPtr
= Operands
[0];
2226 auto *Mask
= Operands
[2];
2227 auto *Passthru
= Operands
[3];
2229 Constant
*VecData
= ConstantFoldLoadFromConstPtr(SrcPtr
, VTy
, DL
);
2231 SmallVector
<Constant
*, 32> NewElements
;
2232 for (unsigned I
= 0, E
= VTy
->getNumElements(); I
!= E
; ++I
) {
2233 auto *MaskElt
= Mask
->getAggregateElement(I
);
2236 auto *PassthruElt
= Passthru
->getAggregateElement(I
);
2237 auto *VecElt
= VecData
? VecData
->getAggregateElement(I
) : nullptr;
2238 if (isa
<UndefValue
>(MaskElt
)) {
2240 NewElements
.push_back(PassthruElt
);
2242 NewElements
.push_back(VecElt
);
2246 if (MaskElt
->isNullValue()) {
2249 NewElements
.push_back(PassthruElt
);
2250 } else if (MaskElt
->isOneValue()) {
2253 NewElements
.push_back(VecElt
);
2258 if (NewElements
.size() != VTy
->getNumElements())
2260 return ConstantVector::get(NewElements
);
2263 for (unsigned I
= 0, E
= VTy
->getNumElements(); I
!= E
; ++I
) {
2264 // Gather a column of constants.
2265 for (unsigned J
= 0, JE
= Operands
.size(); J
!= JE
; ++J
) {
2266 // These intrinsics use a scalar type for their second argument.
2268 (IntrinsicID
== Intrinsic::cttz
|| IntrinsicID
== Intrinsic::ctlz
||
2269 IntrinsicID
== Intrinsic::powi
)) {
2270 Lane
[J
] = Operands
[J
];
2274 Constant
*Agg
= Operands
[J
]->getAggregateElement(I
);
2281 // Use the regular scalar folding to simplify this column.
2283 ConstantFoldScalarCall(Name
, IntrinsicID
, Ty
, Lane
, TLI
, Call
);
2289 return ConstantVector::get(Result
);
2292 } // end anonymous namespace
2294 Constant
*llvm::ConstantFoldCall(const CallBase
*Call
, Function
*F
,
2295 ArrayRef
<Constant
*> Operands
,
2296 const TargetLibraryInfo
*TLI
) {
2297 if (Call
->isNoBuiltin() || Call
->isStrictFP())
2301 StringRef Name
= F
->getName();
2303 Type
*Ty
= F
->getReturnType();
2305 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
2306 return ConstantFoldVectorCall(Name
, F
->getIntrinsicID(), VTy
, Operands
,
2307 F
->getParent()->getDataLayout(), TLI
, Call
);
2309 return ConstantFoldScalarCall(Name
, F
->getIntrinsicID(), Ty
, Operands
, TLI
,
2313 bool llvm::isMathLibCallNoop(const CallBase
*Call
,
2314 const TargetLibraryInfo
*TLI
) {
2315 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
2316 // (and to some extent ConstantFoldScalarCall).
2317 if (Call
->isNoBuiltin() || Call
->isStrictFP())
2319 Function
*F
= Call
->getCalledFunction();
2324 if (!TLI
|| !TLI
->getLibFunc(*F
, Func
))
2327 if (Call
->getNumArgOperands() == 1) {
2328 if (ConstantFP
*OpC
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(0))) {
2329 const APFloat
&Op
= OpC
->getValueAPF();
2337 case LibFunc_log10l
:
2339 case LibFunc_log10f
:
2340 return Op
.isNaN() || (!Op
.isZero() && !Op
.isNegative());
2345 // FIXME: These boundaries are slightly conservative.
2346 if (OpC
->getType()->isDoubleTy())
2347 return Op
.compare(APFloat(-745.0)) != APFloat::cmpLessThan
&&
2348 Op
.compare(APFloat(709.0)) != APFloat::cmpGreaterThan
;
2349 if (OpC
->getType()->isFloatTy())
2350 return Op
.compare(APFloat(-103.0f
)) != APFloat::cmpLessThan
&&
2351 Op
.compare(APFloat(88.0f
)) != APFloat::cmpGreaterThan
;
2357 // FIXME: These boundaries are slightly conservative.
2358 if (OpC
->getType()->isDoubleTy())
2359 return Op
.compare(APFloat(-1074.0)) != APFloat::cmpLessThan
&&
2360 Op
.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan
;
2361 if (OpC
->getType()->isFloatTy())
2362 return Op
.compare(APFloat(-149.0f
)) != APFloat::cmpLessThan
&&
2363 Op
.compare(APFloat(127.0f
)) != APFloat::cmpGreaterThan
;
2372 return !Op
.isInfinity();
2376 case LibFunc_tanf
: {
2377 // FIXME: Stop using the host math library.
2378 // FIXME: The computation isn't done in the right precision.
2379 Type
*Ty
= OpC
->getType();
2380 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy()) {
2381 double OpV
= getValueAsDouble(OpC
);
2382 return ConstantFoldFP(tan
, OpV
, Ty
) != nullptr;
2393 return Op
.compare(APFloat(Op
.getSemantics(), "-1")) !=
2394 APFloat::cmpLessThan
&&
2395 Op
.compare(APFloat(Op
.getSemantics(), "1")) !=
2396 APFloat::cmpGreaterThan
;
2404 // FIXME: These boundaries are slightly conservative.
2405 if (OpC
->getType()->isDoubleTy())
2406 return Op
.compare(APFloat(-710.0)) != APFloat::cmpLessThan
&&
2407 Op
.compare(APFloat(710.0)) != APFloat::cmpGreaterThan
;
2408 if (OpC
->getType()->isFloatTy())
2409 return Op
.compare(APFloat(-89.0f
)) != APFloat::cmpLessThan
&&
2410 Op
.compare(APFloat(89.0f
)) != APFloat::cmpGreaterThan
;
2416 return Op
.isNaN() || Op
.isZero() || !Op
.isNegative();
2418 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
2426 if (Call
->getNumArgOperands() == 2) {
2427 ConstantFP
*Op0C
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(0));
2428 ConstantFP
*Op1C
= dyn_cast
<ConstantFP
>(Call
->getArgOperand(1));
2430 const APFloat
&Op0
= Op0C
->getValueAPF();
2431 const APFloat
&Op1
= Op1C
->getValueAPF();
2436 case LibFunc_powf
: {
2437 // FIXME: Stop using the host math library.
2438 // FIXME: The computation isn't done in the right precision.
2439 Type
*Ty
= Op0C
->getType();
2440 if (Ty
->isDoubleTy() || Ty
->isFloatTy() || Ty
->isHalfTy()) {
2441 if (Ty
== Op1C
->getType()) {
2442 double Op0V
= getValueAsDouble(Op0C
);
2443 double Op1V
= getValueAsDouble(Op1C
);
2444 return ConstantFoldBinaryFP(pow
, Op0V
, Op1V
, Ty
) != nullptr;
2453 return Op0
.isNaN() || Op1
.isNaN() ||
2454 (!Op0
.isInfinity() && !Op1
.isZero());