1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions. This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
44 using namespace llvm::PatternMatch
;
46 #define DEBUG_TYPE "instsimplify"
48 enum { RecursionLimit
= 3 };
50 STATISTIC(NumExpand
, "Number of expansions");
51 STATISTIC(NumReassoc
, "Number of reassociations");
53 static Value
*SimplifyAndInst(Value
*, Value
*, const SimplifyQuery
&, unsigned);
54 static Value
*SimplifyBinOp(unsigned, Value
*, Value
*, const SimplifyQuery
&,
56 static Value
*SimplifyFPBinOp(unsigned, Value
*, Value
*, const FastMathFlags
&,
57 const SimplifyQuery
&, unsigned);
58 static Value
*SimplifyCmpInst(unsigned, Value
*, Value
*, const SimplifyQuery
&,
60 static Value
*SimplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
61 const SimplifyQuery
&Q
, unsigned MaxRecurse
);
62 static Value
*SimplifyOrInst(Value
*, Value
*, const SimplifyQuery
&, unsigned);
63 static Value
*SimplifyXorInst(Value
*, Value
*, const SimplifyQuery
&, unsigned);
64 static Value
*SimplifyCastInst(unsigned, Value
*, Type
*,
65 const SimplifyQuery
&, unsigned);
66 static Value
*SimplifyGEPInst(Type
*, ArrayRef
<Value
*>, const SimplifyQuery
&,
69 static Value
*foldSelectWithBinaryOp(Value
*Cond
, Value
*TrueVal
,
71 BinaryOperator::BinaryOps BinOpCode
;
72 if (auto *BO
= dyn_cast
<BinaryOperator
>(Cond
))
73 BinOpCode
= BO
->getOpcode();
77 CmpInst::Predicate ExpectedPred
, Pred1
, Pred2
;
78 if (BinOpCode
== BinaryOperator::Or
) {
79 ExpectedPred
= ICmpInst::ICMP_NE
;
80 } else if (BinOpCode
== BinaryOperator::And
) {
81 ExpectedPred
= ICmpInst::ICMP_EQ
;
85 // %A = icmp eq %TV, %FV
86 // %B = icmp eq %X, %Y (and one of these is a select operand)
88 // %D = select %C, %TV, %FV
92 // %A = icmp ne %TV, %FV
93 // %B = icmp ne %X, %Y (and one of these is a select operand)
95 // %D = select %C, %TV, %FV
99 if (!match(Cond
, m_c_BinOp(m_c_ICmp(Pred1
, m_Specific(TrueVal
),
100 m_Specific(FalseVal
)),
101 m_ICmp(Pred2
, m_Value(X
), m_Value(Y
)))) ||
102 Pred1
!= Pred2
|| Pred1
!= ExpectedPred
)
105 if (X
== TrueVal
|| X
== FalseVal
|| Y
== TrueVal
|| Y
== FalseVal
)
106 return BinOpCode
== BinaryOperator::Or
? TrueVal
: FalseVal
;
111 /// For a boolean type or a vector of boolean type, return false or a vector
112 /// with every element false.
113 static Constant
*getFalse(Type
*Ty
) {
114 return ConstantInt::getFalse(Ty
);
117 /// For a boolean type or a vector of boolean type, return true or a vector
118 /// with every element true.
119 static Constant
*getTrue(Type
*Ty
) {
120 return ConstantInt::getTrue(Ty
);
123 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
124 static bool isSameCompare(Value
*V
, CmpInst::Predicate Pred
, Value
*LHS
,
126 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(V
);
129 CmpInst::Predicate CPred
= Cmp
->getPredicate();
130 Value
*CLHS
= Cmp
->getOperand(0), *CRHS
= Cmp
->getOperand(1);
131 if (CPred
== Pred
&& CLHS
== LHS
&& CRHS
== RHS
)
133 return CPred
== CmpInst::getSwappedPredicate(Pred
) && CLHS
== RHS
&&
137 /// Does the given value dominate the specified phi node?
138 static bool valueDominatesPHI(Value
*V
, PHINode
*P
, const DominatorTree
*DT
) {
139 Instruction
*I
= dyn_cast
<Instruction
>(V
);
141 // Arguments and constants dominate all instructions.
144 // If we are processing instructions (and/or basic blocks) that have not been
145 // fully added to a function, the parent nodes may still be null. Simply
146 // return the conservative answer in these cases.
147 if (!I
->getParent() || !P
->getParent() || !I
->getFunction())
150 // If we have a DominatorTree then do a precise test.
152 return DT
->dominates(I
, P
);
154 // Otherwise, if the instruction is in the entry block and is not an invoke,
155 // then it obviously dominates all phi nodes.
156 if (I
->getParent() == &I
->getFunction()->getEntryBlock() &&
163 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
164 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
165 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
166 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
167 /// Returns the simplified value, or null if no simplification was performed.
168 static Value
*ExpandBinOp(Instruction::BinaryOps Opcode
, Value
*LHS
, Value
*RHS
,
169 Instruction::BinaryOps OpcodeToExpand
,
170 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
171 // Recursion is always used, so bail out at once if we already hit the limit.
175 // Check whether the expression has the form "(A op' B) op C".
176 if (BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
))
177 if (Op0
->getOpcode() == OpcodeToExpand
) {
178 // It does! Try turning it into "(A op C) op' (B op C)".
179 Value
*A
= Op0
->getOperand(0), *B
= Op0
->getOperand(1), *C
= RHS
;
180 // Do "A op C" and "B op C" both simplify?
181 if (Value
*L
= SimplifyBinOp(Opcode
, A
, C
, Q
, MaxRecurse
))
182 if (Value
*R
= SimplifyBinOp(Opcode
, B
, C
, Q
, MaxRecurse
)) {
183 // They do! Return "L op' R" if it simplifies or is already available.
184 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
185 if ((L
== A
&& R
== B
) || (Instruction::isCommutative(OpcodeToExpand
)
186 && L
== B
&& R
== A
)) {
190 // Otherwise return "L op' R" if it simplifies.
191 if (Value
*V
= SimplifyBinOp(OpcodeToExpand
, L
, R
, Q
, MaxRecurse
)) {
198 // Check whether the expression has the form "A op (B op' C)".
199 if (BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
))
200 if (Op1
->getOpcode() == OpcodeToExpand
) {
201 // It does! Try turning it into "(A op B) op' (A op C)".
202 Value
*A
= LHS
, *B
= Op1
->getOperand(0), *C
= Op1
->getOperand(1);
203 // Do "A op B" and "A op C" both simplify?
204 if (Value
*L
= SimplifyBinOp(Opcode
, A
, B
, Q
, MaxRecurse
))
205 if (Value
*R
= SimplifyBinOp(Opcode
, A
, C
, Q
, MaxRecurse
)) {
206 // They do! Return "L op' R" if it simplifies or is already available.
207 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
208 if ((L
== B
&& R
== C
) || (Instruction::isCommutative(OpcodeToExpand
)
209 && L
== C
&& R
== B
)) {
213 // Otherwise return "L op' R" if it simplifies.
214 if (Value
*V
= SimplifyBinOp(OpcodeToExpand
, L
, R
, Q
, MaxRecurse
)) {
224 /// Generic simplifications for associative binary operations.
225 /// Returns the simpler value, or null if none was found.
226 static Value
*SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode
,
227 Value
*LHS
, Value
*RHS
,
228 const SimplifyQuery
&Q
,
229 unsigned MaxRecurse
) {
230 assert(Instruction::isAssociative(Opcode
) && "Not an associative operation!");
232 // Recursion is always used, so bail out at once if we already hit the limit.
236 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
);
237 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
);
239 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
240 if (Op0
&& Op0
->getOpcode() == Opcode
) {
241 Value
*A
= Op0
->getOperand(0);
242 Value
*B
= Op0
->getOperand(1);
245 // Does "B op C" simplify?
246 if (Value
*V
= SimplifyBinOp(Opcode
, B
, C
, Q
, MaxRecurse
)) {
247 // It does! Return "A op V" if it simplifies or is already available.
248 // If V equals B then "A op V" is just the LHS.
249 if (V
== B
) return LHS
;
250 // Otherwise return "A op V" if it simplifies.
251 if (Value
*W
= SimplifyBinOp(Opcode
, A
, V
, Q
, MaxRecurse
)) {
258 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
259 if (Op1
&& Op1
->getOpcode() == Opcode
) {
261 Value
*B
= Op1
->getOperand(0);
262 Value
*C
= Op1
->getOperand(1);
264 // Does "A op B" simplify?
265 if (Value
*V
= SimplifyBinOp(Opcode
, A
, B
, Q
, MaxRecurse
)) {
266 // It does! Return "V op C" if it simplifies or is already available.
267 // If V equals B then "V op C" is just the RHS.
268 if (V
== B
) return RHS
;
269 // Otherwise return "V op C" if it simplifies.
270 if (Value
*W
= SimplifyBinOp(Opcode
, V
, C
, Q
, MaxRecurse
)) {
277 // The remaining transforms require commutativity as well as associativity.
278 if (!Instruction::isCommutative(Opcode
))
281 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
282 if (Op0
&& Op0
->getOpcode() == Opcode
) {
283 Value
*A
= Op0
->getOperand(0);
284 Value
*B
= Op0
->getOperand(1);
287 // Does "C op A" simplify?
288 if (Value
*V
= SimplifyBinOp(Opcode
, C
, A
, Q
, MaxRecurse
)) {
289 // It does! Return "V op B" if it simplifies or is already available.
290 // If V equals A then "V op B" is just the LHS.
291 if (V
== A
) return LHS
;
292 // Otherwise return "V op B" if it simplifies.
293 if (Value
*W
= SimplifyBinOp(Opcode
, V
, B
, Q
, MaxRecurse
)) {
300 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
301 if (Op1
&& Op1
->getOpcode() == Opcode
) {
303 Value
*B
= Op1
->getOperand(0);
304 Value
*C
= Op1
->getOperand(1);
306 // Does "C op A" simplify?
307 if (Value
*V
= SimplifyBinOp(Opcode
, C
, A
, Q
, MaxRecurse
)) {
308 // It does! Return "B op V" if it simplifies or is already available.
309 // If V equals C then "B op V" is just the RHS.
310 if (V
== C
) return RHS
;
311 // Otherwise return "B op V" if it simplifies.
312 if (Value
*W
= SimplifyBinOp(Opcode
, B
, V
, Q
, MaxRecurse
)) {
322 /// In the case of a binary operation with a select instruction as an operand,
323 /// try to simplify the binop by seeing whether evaluating it on both branches
324 /// of the select results in the same value. Returns the common value if so,
325 /// otherwise returns null.
326 static Value
*ThreadBinOpOverSelect(Instruction::BinaryOps Opcode
, Value
*LHS
,
327 Value
*RHS
, const SimplifyQuery
&Q
,
328 unsigned MaxRecurse
) {
329 // Recursion is always used, so bail out at once if we already hit the limit.
334 if (isa
<SelectInst
>(LHS
)) {
335 SI
= cast
<SelectInst
>(LHS
);
337 assert(isa
<SelectInst
>(RHS
) && "No select instruction operand!");
338 SI
= cast
<SelectInst
>(RHS
);
341 // Evaluate the BinOp on the true and false branches of the select.
345 TV
= SimplifyBinOp(Opcode
, SI
->getTrueValue(), RHS
, Q
, MaxRecurse
);
346 FV
= SimplifyBinOp(Opcode
, SI
->getFalseValue(), RHS
, Q
, MaxRecurse
);
348 TV
= SimplifyBinOp(Opcode
, LHS
, SI
->getTrueValue(), Q
, MaxRecurse
);
349 FV
= SimplifyBinOp(Opcode
, LHS
, SI
->getFalseValue(), Q
, MaxRecurse
);
352 // If they simplified to the same value, then return the common value.
353 // If they both failed to simplify then return null.
357 // If one branch simplified to undef, return the other one.
358 if (TV
&& isa
<UndefValue
>(TV
))
360 if (FV
&& isa
<UndefValue
>(FV
))
363 // If applying the operation did not change the true and false select values,
364 // then the result of the binop is the select itself.
365 if (TV
== SI
->getTrueValue() && FV
== SI
->getFalseValue())
368 // If one branch simplified and the other did not, and the simplified
369 // value is equal to the unsimplified one, return the simplified value.
370 // For example, select (cond, X, X & Z) & Z -> X & Z.
371 if ((FV
&& !TV
) || (TV
&& !FV
)) {
372 // Check that the simplified value has the form "X op Y" where "op" is the
373 // same as the original operation.
374 Instruction
*Simplified
= dyn_cast
<Instruction
>(FV
? FV
: TV
);
375 if (Simplified
&& Simplified
->getOpcode() == unsigned(Opcode
)) {
376 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
377 // We already know that "op" is the same as for the simplified value. See
378 // if the operands match too. If so, return the simplified value.
379 Value
*UnsimplifiedBranch
= FV
? SI
->getTrueValue() : SI
->getFalseValue();
380 Value
*UnsimplifiedLHS
= SI
== LHS
? UnsimplifiedBranch
: LHS
;
381 Value
*UnsimplifiedRHS
= SI
== LHS
? RHS
: UnsimplifiedBranch
;
382 if (Simplified
->getOperand(0) == UnsimplifiedLHS
&&
383 Simplified
->getOperand(1) == UnsimplifiedRHS
)
385 if (Simplified
->isCommutative() &&
386 Simplified
->getOperand(1) == UnsimplifiedLHS
&&
387 Simplified
->getOperand(0) == UnsimplifiedRHS
)
395 /// In the case of a comparison with a select instruction, try to simplify the
396 /// comparison by seeing whether both branches of the select result in the same
397 /// value. Returns the common value if so, otherwise returns null.
398 static Value
*ThreadCmpOverSelect(CmpInst::Predicate Pred
, Value
*LHS
,
399 Value
*RHS
, const SimplifyQuery
&Q
,
400 unsigned MaxRecurse
) {
401 // Recursion is always used, so bail out at once if we already hit the limit.
405 // Make sure the select is on the LHS.
406 if (!isa
<SelectInst
>(LHS
)) {
408 Pred
= CmpInst::getSwappedPredicate(Pred
);
410 assert(isa
<SelectInst
>(LHS
) && "Not comparing with a select instruction!");
411 SelectInst
*SI
= cast
<SelectInst
>(LHS
);
412 Value
*Cond
= SI
->getCondition();
413 Value
*TV
= SI
->getTrueValue();
414 Value
*FV
= SI
->getFalseValue();
416 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
417 // Does "cmp TV, RHS" simplify?
418 Value
*TCmp
= SimplifyCmpInst(Pred
, TV
, RHS
, Q
, MaxRecurse
);
420 // It not only simplified, it simplified to the select condition. Replace
422 TCmp
= getTrue(Cond
->getType());
424 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
425 // condition then we can replace it with 'true'. Otherwise give up.
426 if (!isSameCompare(Cond
, Pred
, TV
, RHS
))
428 TCmp
= getTrue(Cond
->getType());
431 // Does "cmp FV, RHS" simplify?
432 Value
*FCmp
= SimplifyCmpInst(Pred
, FV
, RHS
, Q
, MaxRecurse
);
434 // It not only simplified, it simplified to the select condition. Replace
436 FCmp
= getFalse(Cond
->getType());
438 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
439 // condition then we can replace it with 'false'. Otherwise give up.
440 if (!isSameCompare(Cond
, Pred
, FV
, RHS
))
442 FCmp
= getFalse(Cond
->getType());
445 // If both sides simplified to the same value, then use it as the result of
446 // the original comparison.
450 // The remaining cases only make sense if the select condition has the same
451 // type as the result of the comparison, so bail out if this is not so.
452 if (Cond
->getType()->isVectorTy() != RHS
->getType()->isVectorTy())
454 // If the false value simplified to false, then the result of the compare
455 // is equal to "Cond && TCmp". This also catches the case when the false
456 // value simplified to false and the true value to true, returning "Cond".
457 if (match(FCmp
, m_Zero()))
458 if (Value
*V
= SimplifyAndInst(Cond
, TCmp
, Q
, MaxRecurse
))
460 // If the true value simplified to true, then the result of the compare
461 // is equal to "Cond || FCmp".
462 if (match(TCmp
, m_One()))
463 if (Value
*V
= SimplifyOrInst(Cond
, FCmp
, Q
, MaxRecurse
))
465 // Finally, if the false value simplified to true and the true value to
466 // false, then the result of the compare is equal to "!Cond".
467 if (match(FCmp
, m_One()) && match(TCmp
, m_Zero()))
469 SimplifyXorInst(Cond
, Constant::getAllOnesValue(Cond
->getType()),
476 /// In the case of a binary operation with an operand that is a PHI instruction,
477 /// try to simplify the binop by seeing whether evaluating it on the incoming
478 /// phi values yields the same result for every value. If so returns the common
479 /// value, otherwise returns null.
480 static Value
*ThreadBinOpOverPHI(Instruction::BinaryOps Opcode
, Value
*LHS
,
481 Value
*RHS
, const SimplifyQuery
&Q
,
482 unsigned MaxRecurse
) {
483 // Recursion is always used, so bail out at once if we already hit the limit.
488 if (isa
<PHINode
>(LHS
)) {
489 PI
= cast
<PHINode
>(LHS
);
490 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
491 if (!valueDominatesPHI(RHS
, PI
, Q
.DT
))
494 assert(isa
<PHINode
>(RHS
) && "No PHI instruction operand!");
495 PI
= cast
<PHINode
>(RHS
);
496 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
497 if (!valueDominatesPHI(LHS
, PI
, Q
.DT
))
501 // Evaluate the BinOp on the incoming phi values.
502 Value
*CommonValue
= nullptr;
503 for (Value
*Incoming
: PI
->incoming_values()) {
504 // If the incoming value is the phi node itself, it can safely be skipped.
505 if (Incoming
== PI
) continue;
506 Value
*V
= PI
== LHS
?
507 SimplifyBinOp(Opcode
, Incoming
, RHS
, Q
, MaxRecurse
) :
508 SimplifyBinOp(Opcode
, LHS
, Incoming
, Q
, MaxRecurse
);
509 // If the operation failed to simplify, or simplified to a different value
510 // to previously, then give up.
511 if (!V
|| (CommonValue
&& V
!= CommonValue
))
519 /// In the case of a comparison with a PHI instruction, try to simplify the
520 /// comparison by seeing whether comparing with all of the incoming phi values
521 /// yields the same result every time. If so returns the common result,
522 /// otherwise returns null.
523 static Value
*ThreadCmpOverPHI(CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
,
524 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
525 // Recursion is always used, so bail out at once if we already hit the limit.
529 // Make sure the phi is on the LHS.
530 if (!isa
<PHINode
>(LHS
)) {
532 Pred
= CmpInst::getSwappedPredicate(Pred
);
534 assert(isa
<PHINode
>(LHS
) && "Not comparing with a phi instruction!");
535 PHINode
*PI
= cast
<PHINode
>(LHS
);
537 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
538 if (!valueDominatesPHI(RHS
, PI
, Q
.DT
))
541 // Evaluate the BinOp on the incoming phi values.
542 Value
*CommonValue
= nullptr;
543 for (Value
*Incoming
: PI
->incoming_values()) {
544 // If the incoming value is the phi node itself, it can safely be skipped.
545 if (Incoming
== PI
) continue;
546 Value
*V
= SimplifyCmpInst(Pred
, Incoming
, RHS
, Q
, MaxRecurse
);
547 // If the operation failed to simplify, or simplified to a different value
548 // to previously, then give up.
549 if (!V
|| (CommonValue
&& V
!= CommonValue
))
557 static Constant
*foldOrCommuteConstant(Instruction::BinaryOps Opcode
,
558 Value
*&Op0
, Value
*&Op1
,
559 const SimplifyQuery
&Q
) {
560 if (auto *CLHS
= dyn_cast
<Constant
>(Op0
)) {
561 if (auto *CRHS
= dyn_cast
<Constant
>(Op1
))
562 return ConstantFoldBinaryOpOperands(Opcode
, CLHS
, CRHS
, Q
.DL
);
564 // Canonicalize the constant to the RHS if this is a commutative operation.
565 if (Instruction::isCommutative(Opcode
))
571 /// Given operands for an Add, see if we can fold the result.
572 /// If not, this returns null.
573 static Value
*SimplifyAddInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
574 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
575 if (Constant
*C
= foldOrCommuteConstant(Instruction::Add
, Op0
, Op1
, Q
))
578 // X + undef -> undef
579 if (match(Op1
, m_Undef()))
583 if (match(Op1
, m_Zero()))
586 // If two operands are negative, return 0.
587 if (isKnownNegation(Op0
, Op1
))
588 return Constant::getNullValue(Op0
->getType());
594 if (match(Op1
, m_Sub(m_Value(Y
), m_Specific(Op0
))) ||
595 match(Op0
, m_Sub(m_Value(Y
), m_Specific(Op1
))))
598 // X + ~X -> -1 since ~X = -X-1
599 Type
*Ty
= Op0
->getType();
600 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
601 match(Op1
, m_Not(m_Specific(Op0
))))
602 return Constant::getAllOnesValue(Ty
);
604 // add nsw/nuw (xor Y, signmask), signmask --> Y
605 // The no-wrapping add guarantees that the top bit will be set by the add.
606 // Therefore, the xor must be clearing the already set sign bit of Y.
607 if ((IsNSW
|| IsNUW
) && match(Op1
, m_SignMask()) &&
608 match(Op0
, m_Xor(m_Value(Y
), m_SignMask())))
611 // add nuw %x, -1 -> -1, because %x can only be 0.
612 if (IsNUW
&& match(Op1
, m_AllOnes()))
613 return Op1
; // Which is -1.
616 if (MaxRecurse
&& Op0
->getType()->isIntOrIntVectorTy(1))
617 if (Value
*V
= SimplifyXorInst(Op0
, Op1
, Q
, MaxRecurse
-1))
620 // Try some generic simplifications for associative operations.
621 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Add
, Op0
, Op1
, Q
,
625 // Threading Add over selects and phi nodes is pointless, so don't bother.
626 // Threading over the select in "A + select(cond, B, C)" means evaluating
627 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
628 // only if B and C are equal. If B and C are equal then (since we assume
629 // that operands have already been simplified) "select(cond, B, C)" should
630 // have been simplified to the common value of B and C already. Analysing
631 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
632 // for threading over phi nodes.
637 Value
*llvm::SimplifyAddInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
638 const SimplifyQuery
&Query
) {
639 return ::SimplifyAddInst(Op0
, Op1
, IsNSW
, IsNUW
, Query
, RecursionLimit
);
642 /// Compute the base pointer and cumulative constant offsets for V.
644 /// This strips all constant offsets off of V, leaving it the base pointer, and
645 /// accumulates the total constant offset applied in the returned constant. It
646 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
647 /// no constant offsets applied.
649 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
650 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
652 static Constant
*stripAndComputeConstantOffsets(const DataLayout
&DL
, Value
*&V
,
653 bool AllowNonInbounds
= false) {
654 assert(V
->getType()->isPtrOrPtrVectorTy());
656 Type
*IntPtrTy
= DL
.getIntPtrType(V
->getType())->getScalarType();
657 APInt Offset
= APInt::getNullValue(IntPtrTy
->getIntegerBitWidth());
659 // Even though we don't look through PHI nodes, we could be called on an
660 // instruction in an unreachable block, which may be on a cycle.
661 SmallPtrSet
<Value
*, 4> Visited
;
664 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
665 if ((!AllowNonInbounds
&& !GEP
->isInBounds()) ||
666 !GEP
->accumulateConstantOffset(DL
, Offset
))
668 V
= GEP
->getPointerOperand();
669 } else if (Operator::getOpcode(V
) == Instruction::BitCast
) {
670 V
= cast
<Operator
>(V
)->getOperand(0);
671 } else if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
672 if (GA
->isInterposable())
674 V
= GA
->getAliasee();
676 if (auto *Call
= dyn_cast
<CallBase
>(V
))
677 if (Value
*RV
= Call
->getReturnedArgOperand()) {
683 assert(V
->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
684 } while (Visited
.insert(V
).second
);
686 Constant
*OffsetIntPtr
= ConstantInt::get(IntPtrTy
, Offset
);
687 if (V
->getType()->isVectorTy())
688 return ConstantVector::getSplat(V
->getType()->getVectorNumElements(),
693 /// Compute the constant difference between two pointer values.
694 /// If the difference is not a constant, returns zero.
695 static Constant
*computePointerDifference(const DataLayout
&DL
, Value
*LHS
,
697 Constant
*LHSOffset
= stripAndComputeConstantOffsets(DL
, LHS
);
698 Constant
*RHSOffset
= stripAndComputeConstantOffsets(DL
, RHS
);
700 // If LHS and RHS are not related via constant offsets to the same base
701 // value, there is nothing we can do here.
705 // Otherwise, the difference of LHS - RHS can be computed as:
707 // = (LHSOffset + Base) - (RHSOffset + Base)
708 // = LHSOffset - RHSOffset
709 return ConstantExpr::getSub(LHSOffset
, RHSOffset
);
712 /// Given operands for a Sub, see if we can fold the result.
713 /// If not, this returns null.
714 static Value
*SimplifySubInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
715 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
716 if (Constant
*C
= foldOrCommuteConstant(Instruction::Sub
, Op0
, Op1
, Q
))
719 // X - undef -> undef
720 // undef - X -> undef
721 if (match(Op0
, m_Undef()) || match(Op1
, m_Undef()))
722 return UndefValue::get(Op0
->getType());
725 if (match(Op1
, m_Zero()))
730 return Constant::getNullValue(Op0
->getType());
732 // Is this a negation?
733 if (match(Op0
, m_Zero())) {
734 // 0 - X -> 0 if the sub is NUW.
736 return Constant::getNullValue(Op0
->getType());
738 KnownBits Known
= computeKnownBits(Op1
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
739 if (Known
.Zero
.isMaxSignedValue()) {
740 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
741 // Op1 must be 0 because negating the minimum signed value is undefined.
743 return Constant::getNullValue(Op0
->getType());
745 // 0 - X -> X if X is 0 or the minimum signed value.
750 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
751 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
752 Value
*X
= nullptr, *Y
= nullptr, *Z
= Op1
;
753 if (MaxRecurse
&& match(Op0
, m_Add(m_Value(X
), m_Value(Y
)))) { // (X + Y) - Z
754 // See if "V === Y - Z" simplifies.
755 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, Y
, Z
, Q
, MaxRecurse
-1))
756 // It does! Now see if "X + V" simplifies.
757 if (Value
*W
= SimplifyBinOp(Instruction::Add
, X
, V
, Q
, MaxRecurse
-1)) {
758 // It does, we successfully reassociated!
762 // See if "V === X - Z" simplifies.
763 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, X
, Z
, Q
, MaxRecurse
-1))
764 // It does! Now see if "Y + V" simplifies.
765 if (Value
*W
= SimplifyBinOp(Instruction::Add
, Y
, V
, Q
, MaxRecurse
-1)) {
766 // It does, we successfully reassociated!
772 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
773 // For example, X - (X + 1) -> -1
775 if (MaxRecurse
&& match(Op1
, m_Add(m_Value(Y
), m_Value(Z
)))) { // X - (Y + Z)
776 // See if "V === X - Y" simplifies.
777 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, X
, Y
, Q
, MaxRecurse
-1))
778 // It does! Now see if "V - Z" simplifies.
779 if (Value
*W
= SimplifyBinOp(Instruction::Sub
, V
, Z
, Q
, MaxRecurse
-1)) {
780 // It does, we successfully reassociated!
784 // See if "V === X - Z" simplifies.
785 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, X
, Z
, Q
, MaxRecurse
-1))
786 // It does! Now see if "V - Y" simplifies.
787 if (Value
*W
= SimplifyBinOp(Instruction::Sub
, V
, Y
, Q
, MaxRecurse
-1)) {
788 // It does, we successfully reassociated!
794 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
795 // For example, X - (X - Y) -> Y.
797 if (MaxRecurse
&& match(Op1
, m_Sub(m_Value(X
), m_Value(Y
)))) // Z - (X - Y)
798 // See if "V === Z - X" simplifies.
799 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, Z
, X
, Q
, MaxRecurse
-1))
800 // It does! Now see if "V + Y" simplifies.
801 if (Value
*W
= SimplifyBinOp(Instruction::Add
, V
, Y
, Q
, MaxRecurse
-1)) {
802 // It does, we successfully reassociated!
807 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
808 if (MaxRecurse
&& match(Op0
, m_Trunc(m_Value(X
))) &&
809 match(Op1
, m_Trunc(m_Value(Y
))))
810 if (X
->getType() == Y
->getType())
811 // See if "V === X - Y" simplifies.
812 if (Value
*V
= SimplifyBinOp(Instruction::Sub
, X
, Y
, Q
, MaxRecurse
-1))
813 // It does! Now see if "trunc V" simplifies.
814 if (Value
*W
= SimplifyCastInst(Instruction::Trunc
, V
, Op0
->getType(),
816 // It does, return the simplified "trunc V".
819 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
820 if (match(Op0
, m_PtrToInt(m_Value(X
))) &&
821 match(Op1
, m_PtrToInt(m_Value(Y
))))
822 if (Constant
*Result
= computePointerDifference(Q
.DL
, X
, Y
))
823 return ConstantExpr::getIntegerCast(Result
, Op0
->getType(), true);
826 if (MaxRecurse
&& Op0
->getType()->isIntOrIntVectorTy(1))
827 if (Value
*V
= SimplifyXorInst(Op0
, Op1
, Q
, MaxRecurse
-1))
830 // Threading Sub over selects and phi nodes is pointless, so don't bother.
831 // Threading over the select in "A - select(cond, B, C)" means evaluating
832 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
833 // only if B and C are equal. If B and C are equal then (since we assume
834 // that operands have already been simplified) "select(cond, B, C)" should
835 // have been simplified to the common value of B and C already. Analysing
836 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
837 // for threading over phi nodes.
842 Value
*llvm::SimplifySubInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
843 const SimplifyQuery
&Q
) {
844 return ::SimplifySubInst(Op0
, Op1
, isNSW
, isNUW
, Q
, RecursionLimit
);
847 /// Given operands for a Mul, see if we can fold the result.
848 /// If not, this returns null.
849 static Value
*SimplifyMulInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
850 unsigned MaxRecurse
) {
851 if (Constant
*C
= foldOrCommuteConstant(Instruction::Mul
, Op0
, Op1
, Q
))
856 if (match(Op1
, m_CombineOr(m_Undef(), m_Zero())))
857 return Constant::getNullValue(Op0
->getType());
860 if (match(Op1
, m_One()))
863 // (X / Y) * Y -> X if the division is exact.
865 if (Q
.IIQ
.UseInstrInfo
&&
867 m_Exact(m_IDiv(m_Value(X
), m_Specific(Op1
)))) || // (X / Y) * Y
868 match(Op1
, m_Exact(m_IDiv(m_Value(X
), m_Specific(Op0
)))))) // Y * (X / Y)
872 if (MaxRecurse
&& Op0
->getType()->isIntOrIntVectorTy(1))
873 if (Value
*V
= SimplifyAndInst(Op0
, Op1
, Q
, MaxRecurse
-1))
876 // Try some generic simplifications for associative operations.
877 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Mul
, Op0
, Op1
, Q
,
881 // Mul distributes over Add. Try some generic simplifications based on this.
882 if (Value
*V
= ExpandBinOp(Instruction::Mul
, Op0
, Op1
, Instruction::Add
,
886 // If the operation is with the result of a select instruction, check whether
887 // operating on either branch of the select always yields the same value.
888 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
889 if (Value
*V
= ThreadBinOpOverSelect(Instruction::Mul
, Op0
, Op1
, Q
,
893 // If the operation is with the result of a phi instruction, check whether
894 // operating on all incoming values of the phi always yields the same value.
895 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
896 if (Value
*V
= ThreadBinOpOverPHI(Instruction::Mul
, Op0
, Op1
, Q
,
903 Value
*llvm::SimplifyMulInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
904 return ::SimplifyMulInst(Op0
, Op1
, Q
, RecursionLimit
);
907 /// Check for common or similar folds of integer division or integer remainder.
908 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
909 static Value
*simplifyDivRem(Value
*Op0
, Value
*Op1
, bool IsDiv
) {
910 Type
*Ty
= Op0
->getType();
912 // X / undef -> undef
913 // X % undef -> undef
914 if (match(Op1
, m_Undef()))
919 // We don't need to preserve faults!
920 if (match(Op1
, m_Zero()))
921 return UndefValue::get(Ty
);
923 // If any element of a constant divisor vector is zero or undef, the whole op
925 auto *Op1C
= dyn_cast
<Constant
>(Op1
);
926 if (Op1C
&& Ty
->isVectorTy()) {
927 unsigned NumElts
= Ty
->getVectorNumElements();
928 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
929 Constant
*Elt
= Op1C
->getAggregateElement(i
);
930 if (Elt
&& (Elt
->isNullValue() || isa
<UndefValue
>(Elt
)))
931 return UndefValue::get(Ty
);
937 if (match(Op0
, m_Undef()))
938 return Constant::getNullValue(Ty
);
942 if (match(Op0
, m_Zero()))
943 return Constant::getNullValue(Op0
->getType());
948 return IsDiv
? ConstantInt::get(Ty
, 1) : Constant::getNullValue(Ty
);
952 // If this is a boolean op (single-bit element type), we can't have
953 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
954 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
956 if (match(Op1
, m_One()) || Ty
->isIntOrIntVectorTy(1) ||
957 (match(Op1
, m_ZExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)))
958 return IsDiv
? Op0
: Constant::getNullValue(Ty
);
963 /// Given a predicate and two operands, return true if the comparison is true.
964 /// This is a helper for div/rem simplification where we return some other value
965 /// when we can prove a relationship between the operands.
966 static bool isICmpTrue(ICmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
,
967 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
968 Value
*V
= SimplifyICmpInst(Pred
, LHS
, RHS
, Q
, MaxRecurse
);
969 Constant
*C
= dyn_cast_or_null
<Constant
>(V
);
970 return (C
&& C
->isAllOnesValue());
973 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
974 /// to simplify X % Y to X.
975 static bool isDivZero(Value
*X
, Value
*Y
, const SimplifyQuery
&Q
,
976 unsigned MaxRecurse
, bool IsSigned
) {
977 // Recursion is always used, so bail out at once if we already hit the limit.
984 // We require that 1 operand is a simple constant. That could be extended to
985 // 2 variables if we computed the sign bit for each.
987 // Make sure that a constant is not the minimum signed value because taking
988 // the abs() of that is undefined.
989 Type
*Ty
= X
->getType();
991 if (match(X
, m_APInt(C
)) && !C
->isMinSignedValue()) {
992 // Is the variable divisor magnitude always greater than the constant
993 // dividend magnitude?
994 // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
995 Constant
*PosDividendC
= ConstantInt::get(Ty
, C
->abs());
996 Constant
*NegDividendC
= ConstantInt::get(Ty
, -C
->abs());
997 if (isICmpTrue(CmpInst::ICMP_SLT
, Y
, NegDividendC
, Q
, MaxRecurse
) ||
998 isICmpTrue(CmpInst::ICMP_SGT
, Y
, PosDividendC
, Q
, MaxRecurse
))
1001 if (match(Y
, m_APInt(C
))) {
1002 // Special-case: we can't take the abs() of a minimum signed value. If
1003 // that's the divisor, then all we have to do is prove that the dividend
1004 // is also not the minimum signed value.
1005 if (C
->isMinSignedValue())
1006 return isICmpTrue(CmpInst::ICMP_NE
, X
, Y
, Q
, MaxRecurse
);
1008 // Is the variable dividend magnitude always less than the constant
1009 // divisor magnitude?
1010 // |X| < |C| --> X > -abs(C) and X < abs(C)
1011 Constant
*PosDivisorC
= ConstantInt::get(Ty
, C
->abs());
1012 Constant
*NegDivisorC
= ConstantInt::get(Ty
, -C
->abs());
1013 if (isICmpTrue(CmpInst::ICMP_SGT
, X
, NegDivisorC
, Q
, MaxRecurse
) &&
1014 isICmpTrue(CmpInst::ICMP_SLT
, X
, PosDivisorC
, Q
, MaxRecurse
))
1020 // IsSigned == false.
1021 // Is the dividend unsigned less than the divisor?
1022 return isICmpTrue(ICmpInst::ICMP_ULT
, X
, Y
, Q
, MaxRecurse
);
1025 /// These are simplifications common to SDiv and UDiv.
1026 static Value
*simplifyDiv(Instruction::BinaryOps Opcode
, Value
*Op0
, Value
*Op1
,
1027 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1028 if (Constant
*C
= foldOrCommuteConstant(Opcode
, Op0
, Op1
, Q
))
1031 if (Value
*V
= simplifyDivRem(Op0
, Op1
, true))
1034 bool IsSigned
= Opcode
== Instruction::SDiv
;
1036 // (X * Y) / Y -> X if the multiplication does not overflow.
1038 if (match(Op0
, m_c_Mul(m_Value(X
), m_Specific(Op1
)))) {
1039 auto *Mul
= cast
<OverflowingBinaryOperator
>(Op0
);
1040 // If the Mul does not overflow, then we are good to go.
1041 if ((IsSigned
&& Q
.IIQ
.hasNoSignedWrap(Mul
)) ||
1042 (!IsSigned
&& Q
.IIQ
.hasNoUnsignedWrap(Mul
)))
1044 // If X has the form X = A / Y, then X * Y cannot overflow.
1045 if ((IsSigned
&& match(X
, m_SDiv(m_Value(), m_Specific(Op1
)))) ||
1046 (!IsSigned
&& match(X
, m_UDiv(m_Value(), m_Specific(Op1
)))))
1050 // (X rem Y) / Y -> 0
1051 if ((IsSigned
&& match(Op0
, m_SRem(m_Value(), m_Specific(Op1
)))) ||
1052 (!IsSigned
&& match(Op0
, m_URem(m_Value(), m_Specific(Op1
)))))
1053 return Constant::getNullValue(Op0
->getType());
1055 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1056 ConstantInt
*C1
, *C2
;
1057 if (!IsSigned
&& match(Op0
, m_UDiv(m_Value(X
), m_ConstantInt(C1
))) &&
1058 match(Op1
, m_ConstantInt(C2
))) {
1060 (void)C1
->getValue().umul_ov(C2
->getValue(), Overflow
);
1062 return Constant::getNullValue(Op0
->getType());
1065 // If the operation is with the result of a select instruction, check whether
1066 // operating on either branch of the select always yields the same value.
1067 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1068 if (Value
*V
= ThreadBinOpOverSelect(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1071 // If the operation is with the result of a phi instruction, check whether
1072 // operating on all incoming values of the phi always yields the same value.
1073 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1074 if (Value
*V
= ThreadBinOpOverPHI(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1077 if (isDivZero(Op0
, Op1
, Q
, MaxRecurse
, IsSigned
))
1078 return Constant::getNullValue(Op0
->getType());
1083 /// These are simplifications common to SRem and URem.
1084 static Value
*simplifyRem(Instruction::BinaryOps Opcode
, Value
*Op0
, Value
*Op1
,
1085 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1086 if (Constant
*C
= foldOrCommuteConstant(Opcode
, Op0
, Op1
, Q
))
1089 if (Value
*V
= simplifyDivRem(Op0
, Op1
, false))
1092 // (X % Y) % Y -> X % Y
1093 if ((Opcode
== Instruction::SRem
&&
1094 match(Op0
, m_SRem(m_Value(), m_Specific(Op1
)))) ||
1095 (Opcode
== Instruction::URem
&&
1096 match(Op0
, m_URem(m_Value(), m_Specific(Op1
)))))
1099 // (X << Y) % X -> 0
1100 if (Q
.IIQ
.UseInstrInfo
&&
1101 ((Opcode
== Instruction::SRem
&&
1102 match(Op0
, m_NSWShl(m_Specific(Op1
), m_Value()))) ||
1103 (Opcode
== Instruction::URem
&&
1104 match(Op0
, m_NUWShl(m_Specific(Op1
), m_Value())))))
1105 return Constant::getNullValue(Op0
->getType());
1107 // If the operation is with the result of a select instruction, check whether
1108 // operating on either branch of the select always yields the same value.
1109 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1110 if (Value
*V
= ThreadBinOpOverSelect(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1113 // If the operation is with the result of a phi instruction, check whether
1114 // operating on all incoming values of the phi always yields the same value.
1115 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1116 if (Value
*V
= ThreadBinOpOverPHI(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1119 // If X / Y == 0, then X % Y == X.
1120 if (isDivZero(Op0
, Op1
, Q
, MaxRecurse
, Opcode
== Instruction::SRem
))
1126 /// Given operands for an SDiv, see if we can fold the result.
1127 /// If not, this returns null.
1128 static Value
*SimplifySDivInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1129 unsigned MaxRecurse
) {
1130 // If two operands are negated and no signed overflow, return -1.
1131 if (isKnownNegation(Op0
, Op1
, /*NeedNSW=*/true))
1132 return Constant::getAllOnesValue(Op0
->getType());
1134 return simplifyDiv(Instruction::SDiv
, Op0
, Op1
, Q
, MaxRecurse
);
1137 Value
*llvm::SimplifySDivInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1138 return ::SimplifySDivInst(Op0
, Op1
, Q
, RecursionLimit
);
1141 /// Given operands for a UDiv, see if we can fold the result.
1142 /// If not, this returns null.
1143 static Value
*SimplifyUDivInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1144 unsigned MaxRecurse
) {
1145 return simplifyDiv(Instruction::UDiv
, Op0
, Op1
, Q
, MaxRecurse
);
1148 Value
*llvm::SimplifyUDivInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1149 return ::SimplifyUDivInst(Op0
, Op1
, Q
, RecursionLimit
);
1152 /// Given operands for an SRem, see if we can fold the result.
1153 /// If not, this returns null.
1154 static Value
*SimplifySRemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1155 unsigned MaxRecurse
) {
1156 // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1157 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1159 if (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1))
1160 return ConstantInt::getNullValue(Op0
->getType());
1162 // If the two operands are negated, return 0.
1163 if (isKnownNegation(Op0
, Op1
))
1164 return ConstantInt::getNullValue(Op0
->getType());
1166 return simplifyRem(Instruction::SRem
, Op0
, Op1
, Q
, MaxRecurse
);
1169 Value
*llvm::SimplifySRemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1170 return ::SimplifySRemInst(Op0
, Op1
, Q
, RecursionLimit
);
1173 /// Given operands for a URem, see if we can fold the result.
1174 /// If not, this returns null.
1175 static Value
*SimplifyURemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1176 unsigned MaxRecurse
) {
1177 return simplifyRem(Instruction::URem
, Op0
, Op1
, Q
, MaxRecurse
);
1180 Value
*llvm::SimplifyURemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1181 return ::SimplifyURemInst(Op0
, Op1
, Q
, RecursionLimit
);
1184 /// Returns true if a shift by \c Amount always yields undef.
1185 static bool isUndefShift(Value
*Amount
) {
1186 Constant
*C
= dyn_cast
<Constant
>(Amount
);
1190 // X shift by undef -> undef because it may shift by the bitwidth.
1191 if (isa
<UndefValue
>(C
))
1194 // Shifting by the bitwidth or more is undefined.
1195 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
1196 if (CI
->getValue().getLimitedValue() >=
1197 CI
->getType()->getScalarSizeInBits())
1200 // If all lanes of a vector shift are undefined the whole shift is.
1201 if (isa
<ConstantVector
>(C
) || isa
<ConstantDataVector
>(C
)) {
1202 for (unsigned I
= 0, E
= C
->getType()->getVectorNumElements(); I
!= E
; ++I
)
1203 if (!isUndefShift(C
->getAggregateElement(I
)))
1211 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1212 /// If not, this returns null.
1213 static Value
*SimplifyShift(Instruction::BinaryOps Opcode
, Value
*Op0
,
1214 Value
*Op1
, const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1215 if (Constant
*C
= foldOrCommuteConstant(Opcode
, Op0
, Op1
, Q
))
1218 // 0 shift by X -> 0
1219 if (match(Op0
, m_Zero()))
1220 return Constant::getNullValue(Op0
->getType());
1222 // X shift by 0 -> X
1223 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1226 if (match(Op1
, m_Zero()) ||
1227 (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)))
1230 // Fold undefined shifts.
1231 if (isUndefShift(Op1
))
1232 return UndefValue::get(Op0
->getType());
1234 // If the operation is with the result of a select instruction, check whether
1235 // operating on either branch of the select always yields the same value.
1236 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1237 if (Value
*V
= ThreadBinOpOverSelect(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1240 // If the operation is with the result of a phi instruction, check whether
1241 // operating on all incoming values of the phi always yields the same value.
1242 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1243 if (Value
*V
= ThreadBinOpOverPHI(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1246 // If any bits in the shift amount make that value greater than or equal to
1247 // the number of bits in the type, the shift is undefined.
1248 KnownBits Known
= computeKnownBits(Op1
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1249 if (Known
.One
.getLimitedValue() >= Known
.getBitWidth())
1250 return UndefValue::get(Op0
->getType());
1252 // If all valid bits in the shift amount are known zero, the first operand is
1254 unsigned NumValidShiftBits
= Log2_32_Ceil(Known
.getBitWidth());
1255 if (Known
.countMinTrailingZeros() >= NumValidShiftBits
)
1261 /// Given operands for an Shl, LShr or AShr, see if we can
1262 /// fold the result. If not, this returns null.
1263 static Value
*SimplifyRightShift(Instruction::BinaryOps Opcode
, Value
*Op0
,
1264 Value
*Op1
, bool isExact
, const SimplifyQuery
&Q
,
1265 unsigned MaxRecurse
) {
1266 if (Value
*V
= SimplifyShift(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1271 return Constant::getNullValue(Op0
->getType());
1274 // undef >> X -> undef (if it's exact)
1275 if (match(Op0
, m_Undef()))
1276 return isExact
? Op0
: Constant::getNullValue(Op0
->getType());
1278 // The low bit cannot be shifted out of an exact shift if it is set.
1280 KnownBits Op0Known
= computeKnownBits(Op0
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1281 if (Op0Known
.One
[0])
1288 /// Given operands for an Shl, see if we can fold the result.
1289 /// If not, this returns null.
1290 static Value
*SimplifyShlInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
1291 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1292 if (Value
*V
= SimplifyShift(Instruction::Shl
, Op0
, Op1
, Q
, MaxRecurse
))
1296 // undef << X -> undef if (if it's NSW/NUW)
1297 if (match(Op0
, m_Undef()))
1298 return isNSW
|| isNUW
? Op0
: Constant::getNullValue(Op0
->getType());
1300 // (X >> A) << A -> X
1302 if (Q
.IIQ
.UseInstrInfo
&&
1303 match(Op0
, m_Exact(m_Shr(m_Value(X
), m_Specific(Op1
)))))
1306 // shl nuw i8 C, %x -> C iff C has sign bit set.
1307 if (isNUW
&& match(Op0
, m_Negative()))
1309 // NOTE: could use computeKnownBits() / LazyValueInfo,
1310 // but the cost-benefit analysis suggests it isn't worth it.
1315 Value
*llvm::SimplifyShlInst(Value
*Op0
, Value
*Op1
, bool isNSW
, bool isNUW
,
1316 const SimplifyQuery
&Q
) {
1317 return ::SimplifyShlInst(Op0
, Op1
, isNSW
, isNUW
, Q
, RecursionLimit
);
1320 /// Given operands for an LShr, see if we can fold the result.
1321 /// If not, this returns null.
1322 static Value
*SimplifyLShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1323 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1324 if (Value
*V
= SimplifyRightShift(Instruction::LShr
, Op0
, Op1
, isExact
, Q
,
1328 // (X << A) >> A -> X
1330 if (match(Op0
, m_NUWShl(m_Value(X
), m_Specific(Op1
))))
1333 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
1334 // We can return X as we do in the above case since OR alters no bits in X.
1335 // SimplifyDemandedBits in InstCombine can do more general optimization for
1336 // bit manipulation. This pattern aims to provide opportunities for other
1337 // optimizers by supporting a simple but common case in InstSimplify.
1339 const APInt
*ShRAmt
, *ShLAmt
;
1340 if (match(Op1
, m_APInt(ShRAmt
)) &&
1341 match(Op0
, m_c_Or(m_NUWShl(m_Value(X
), m_APInt(ShLAmt
)), m_Value(Y
))) &&
1342 *ShRAmt
== *ShLAmt
) {
1343 const KnownBits YKnown
= computeKnownBits(Y
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1344 const unsigned Width
= Op0
->getType()->getScalarSizeInBits();
1345 const unsigned EffWidthY
= Width
- YKnown
.countMinLeadingZeros();
1346 if (ShRAmt
->uge(EffWidthY
))
1353 Value
*llvm::SimplifyLShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1354 const SimplifyQuery
&Q
) {
1355 return ::SimplifyLShrInst(Op0
, Op1
, isExact
, Q
, RecursionLimit
);
1358 /// Given operands for an AShr, see if we can fold the result.
1359 /// If not, this returns null.
1360 static Value
*SimplifyAShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1361 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1362 if (Value
*V
= SimplifyRightShift(Instruction::AShr
, Op0
, Op1
, isExact
, Q
,
1366 // all ones >>a X -> -1
1367 // Do not return Op0 because it may contain undef elements if it's a vector.
1368 if (match(Op0
, m_AllOnes()))
1369 return Constant::getAllOnesValue(Op0
->getType());
1371 // (X << A) >> A -> X
1373 if (Q
.IIQ
.UseInstrInfo
&& match(Op0
, m_NSWShl(m_Value(X
), m_Specific(Op1
))))
1376 // Arithmetic shifting an all-sign-bit value is a no-op.
1377 unsigned NumSignBits
= ComputeNumSignBits(Op0
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1378 if (NumSignBits
== Op0
->getType()->getScalarSizeInBits())
1384 Value
*llvm::SimplifyAShrInst(Value
*Op0
, Value
*Op1
, bool isExact
,
1385 const SimplifyQuery
&Q
) {
1386 return ::SimplifyAShrInst(Op0
, Op1
, isExact
, Q
, RecursionLimit
);
1389 /// Commuted variants are assumed to be handled by calling this function again
1390 /// with the parameters swapped.
1391 static Value
*simplifyUnsignedRangeCheck(ICmpInst
*ZeroICmp
,
1392 ICmpInst
*UnsignedICmp
, bool IsAnd
) {
1395 ICmpInst::Predicate EqPred
;
1396 if (!match(ZeroICmp
, m_ICmp(EqPred
, m_Value(Y
), m_Zero())) ||
1397 !ICmpInst::isEquality(EqPred
))
1400 ICmpInst::Predicate UnsignedPred
;
1401 if (match(UnsignedICmp
, m_ICmp(UnsignedPred
, m_Value(X
), m_Specific(Y
))) &&
1402 ICmpInst::isUnsigned(UnsignedPred
))
1404 else if (match(UnsignedICmp
,
1405 m_ICmp(UnsignedPred
, m_Specific(Y
), m_Value(X
))) &&
1406 ICmpInst::isUnsigned(UnsignedPred
))
1407 UnsignedPred
= ICmpInst::getSwappedPredicate(UnsignedPred
);
1411 // X < Y && Y != 0 --> X < Y
1412 // X < Y || Y != 0 --> Y != 0
1413 if (UnsignedPred
== ICmpInst::ICMP_ULT
&& EqPred
== ICmpInst::ICMP_NE
)
1414 return IsAnd
? UnsignedICmp
: ZeroICmp
;
1416 // X >= Y || Y != 0 --> true
1417 // X >= Y || Y == 0 --> X >= Y
1418 if (UnsignedPred
== ICmpInst::ICMP_UGE
&& !IsAnd
) {
1419 if (EqPred
== ICmpInst::ICMP_NE
)
1420 return getTrue(UnsignedICmp
->getType());
1421 return UnsignedICmp
;
1424 // X < Y && Y == 0 --> false
1425 if (UnsignedPred
== ICmpInst::ICMP_ULT
&& EqPred
== ICmpInst::ICMP_EQ
&&
1427 return getFalse(UnsignedICmp
->getType());
1432 /// Commuted variants are assumed to be handled by calling this function again
1433 /// with the parameters swapped.
1434 static Value
*simplifyAndOfICmpsWithSameOperands(ICmpInst
*Op0
, ICmpInst
*Op1
) {
1435 ICmpInst::Predicate Pred0
, Pred1
;
1437 if (!match(Op0
, m_ICmp(Pred0
, m_Value(A
), m_Value(B
))) ||
1438 !match(Op1
, m_ICmp(Pred1
, m_Specific(A
), m_Specific(B
))))
1441 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1442 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1443 // can eliminate Op1 from this 'and'.
1444 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0
, Pred1
))
1447 // Check for any combination of predicates that are guaranteed to be disjoint.
1448 if ((Pred0
== ICmpInst::getInversePredicate(Pred1
)) ||
1449 (Pred0
== ICmpInst::ICMP_EQ
&& ICmpInst::isFalseWhenEqual(Pred1
)) ||
1450 (Pred0
== ICmpInst::ICMP_SLT
&& Pred1
== ICmpInst::ICMP_SGT
) ||
1451 (Pred0
== ICmpInst::ICMP_ULT
&& Pred1
== ICmpInst::ICMP_UGT
))
1452 return getFalse(Op0
->getType());
1457 /// Commuted variants are assumed to be handled by calling this function again
1458 /// with the parameters swapped.
1459 static Value
*simplifyOrOfICmpsWithSameOperands(ICmpInst
*Op0
, ICmpInst
*Op1
) {
1460 ICmpInst::Predicate Pred0
, Pred1
;
1462 if (!match(Op0
, m_ICmp(Pred0
, m_Value(A
), m_Value(B
))) ||
1463 !match(Op1
, m_ICmp(Pred1
, m_Specific(A
), m_Specific(B
))))
1466 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1467 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1468 // can eliminate Op0 from this 'or'.
1469 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0
, Pred1
))
1472 // Check for any combination of predicates that cover the entire range of
1474 if ((Pred0
== ICmpInst::getInversePredicate(Pred1
)) ||
1475 (Pred0
== ICmpInst::ICMP_NE
&& ICmpInst::isTrueWhenEqual(Pred1
)) ||
1476 (Pred0
== ICmpInst::ICMP_SLE
&& Pred1
== ICmpInst::ICMP_SGE
) ||
1477 (Pred0
== ICmpInst::ICMP_ULE
&& Pred1
== ICmpInst::ICMP_UGE
))
1478 return getTrue(Op0
->getType());
1483 /// Test if a pair of compares with a shared operand and 2 constants has an
1484 /// empty set intersection, full set union, or if one compare is a superset of
1486 static Value
*simplifyAndOrOfICmpsWithConstants(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
,
1488 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1489 if (Cmp0
->getOperand(0) != Cmp1
->getOperand(0))
1492 const APInt
*C0
, *C1
;
1493 if (!match(Cmp0
->getOperand(1), m_APInt(C0
)) ||
1494 !match(Cmp1
->getOperand(1), m_APInt(C1
)))
1497 auto Range0
= ConstantRange::makeExactICmpRegion(Cmp0
->getPredicate(), *C0
);
1498 auto Range1
= ConstantRange::makeExactICmpRegion(Cmp1
->getPredicate(), *C1
);
1500 // For and-of-compares, check if the intersection is empty:
1501 // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1502 if (IsAnd
&& Range0
.intersectWith(Range1
).isEmptySet())
1503 return getFalse(Cmp0
->getType());
1505 // For or-of-compares, check if the union is full:
1506 // (icmp X, C0) || (icmp X, C1) --> full set --> true
1507 if (!IsAnd
&& Range0
.unionWith(Range1
).isFullSet())
1508 return getTrue(Cmp0
->getType());
1510 // Is one range a superset of the other?
1511 // If this is and-of-compares, take the smaller set:
1512 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1513 // If this is or-of-compares, take the larger set:
1514 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1515 if (Range0
.contains(Range1
))
1516 return IsAnd
? Cmp1
: Cmp0
;
1517 if (Range1
.contains(Range0
))
1518 return IsAnd
? Cmp0
: Cmp1
;
1523 static Value
*simplifyAndOrOfICmpsWithZero(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
,
1525 ICmpInst::Predicate P0
= Cmp0
->getPredicate(), P1
= Cmp1
->getPredicate();
1526 if (!match(Cmp0
->getOperand(1), m_Zero()) ||
1527 !match(Cmp1
->getOperand(1), m_Zero()) || P0
!= P1
)
1530 if ((IsAnd
&& P0
!= ICmpInst::ICMP_NE
) || (!IsAnd
&& P1
!= ICmpInst::ICMP_EQ
))
1533 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1534 Value
*X
= Cmp0
->getOperand(0);
1535 Value
*Y
= Cmp1
->getOperand(0);
1537 // If one of the compares is a masked version of a (not) null check, then
1538 // that compare implies the other, so we eliminate the other. Optionally, look
1539 // through a pointer-to-int cast to match a null check of a pointer type.
1541 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1542 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1543 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1544 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1545 if (match(Y
, m_c_And(m_Specific(X
), m_Value())) ||
1546 match(Y
, m_c_And(m_PtrToInt(m_Specific(X
)), m_Value())))
1549 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1550 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1551 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1552 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1553 if (match(X
, m_c_And(m_Specific(Y
), m_Value())) ||
1554 match(X
, m_c_And(m_PtrToInt(m_Specific(Y
)), m_Value())))
1560 static Value
*simplifyAndOfICmpsWithAdd(ICmpInst
*Op0
, ICmpInst
*Op1
,
1561 const InstrInfoQuery
&IIQ
) {
1562 // (icmp (add V, C0), C1) & (icmp V, C0)
1563 ICmpInst::Predicate Pred0
, Pred1
;
1564 const APInt
*C0
, *C1
;
1566 if (!match(Op0
, m_ICmp(Pred0
, m_Add(m_Value(V
), m_APInt(C0
)), m_APInt(C1
))))
1569 if (!match(Op1
, m_ICmp(Pred1
, m_Specific(V
), m_Value())))
1572 auto *AddInst
= cast
<OverflowingBinaryOperator
>(Op0
->getOperand(0));
1573 if (AddInst
->getOperand(1) != Op1
->getOperand(1))
1576 Type
*ITy
= Op0
->getType();
1577 bool isNSW
= IIQ
.hasNoSignedWrap(AddInst
);
1578 bool isNUW
= IIQ
.hasNoUnsignedWrap(AddInst
);
1580 const APInt Delta
= *C1
- *C0
;
1581 if (C0
->isStrictlyPositive()) {
1583 if (Pred0
== ICmpInst::ICMP_ULT
&& Pred1
== ICmpInst::ICMP_SGT
)
1584 return getFalse(ITy
);
1585 if (Pred0
== ICmpInst::ICMP_SLT
&& Pred1
== ICmpInst::ICMP_SGT
&& isNSW
)
1586 return getFalse(ITy
);
1589 if (Pred0
== ICmpInst::ICMP_ULE
&& Pred1
== ICmpInst::ICMP_SGT
)
1590 return getFalse(ITy
);
1591 if (Pred0
== ICmpInst::ICMP_SLE
&& Pred1
== ICmpInst::ICMP_SGT
&& isNSW
)
1592 return getFalse(ITy
);
1595 if (C0
->getBoolValue() && isNUW
) {
1597 if (Pred0
== ICmpInst::ICMP_ULT
&& Pred1
== ICmpInst::ICMP_UGT
)
1598 return getFalse(ITy
);
1600 if (Pred0
== ICmpInst::ICMP_ULE
&& Pred1
== ICmpInst::ICMP_UGT
)
1601 return getFalse(ITy
);
1607 static Value
*simplifyAndOfICmps(ICmpInst
*Op0
, ICmpInst
*Op1
,
1608 const InstrInfoQuery
&IIQ
) {
1609 if (Value
*X
= simplifyUnsignedRangeCheck(Op0
, Op1
, /*IsAnd=*/true))
1611 if (Value
*X
= simplifyUnsignedRangeCheck(Op1
, Op0
, /*IsAnd=*/true))
1614 if (Value
*X
= simplifyAndOfICmpsWithSameOperands(Op0
, Op1
))
1616 if (Value
*X
= simplifyAndOfICmpsWithSameOperands(Op1
, Op0
))
1619 if (Value
*X
= simplifyAndOrOfICmpsWithConstants(Op0
, Op1
, true))
1622 if (Value
*X
= simplifyAndOrOfICmpsWithZero(Op0
, Op1
, true))
1625 if (Value
*X
= simplifyAndOfICmpsWithAdd(Op0
, Op1
, IIQ
))
1627 if (Value
*X
= simplifyAndOfICmpsWithAdd(Op1
, Op0
, IIQ
))
1633 static Value
*simplifyOrOfICmpsWithAdd(ICmpInst
*Op0
, ICmpInst
*Op1
,
1634 const InstrInfoQuery
&IIQ
) {
1635 // (icmp (add V, C0), C1) | (icmp V, C0)
1636 ICmpInst::Predicate Pred0
, Pred1
;
1637 const APInt
*C0
, *C1
;
1639 if (!match(Op0
, m_ICmp(Pred0
, m_Add(m_Value(V
), m_APInt(C0
)), m_APInt(C1
))))
1642 if (!match(Op1
, m_ICmp(Pred1
, m_Specific(V
), m_Value())))
1645 auto *AddInst
= cast
<BinaryOperator
>(Op0
->getOperand(0));
1646 if (AddInst
->getOperand(1) != Op1
->getOperand(1))
1649 Type
*ITy
= Op0
->getType();
1650 bool isNSW
= IIQ
.hasNoSignedWrap(AddInst
);
1651 bool isNUW
= IIQ
.hasNoUnsignedWrap(AddInst
);
1653 const APInt Delta
= *C1
- *C0
;
1654 if (C0
->isStrictlyPositive()) {
1656 if (Pred0
== ICmpInst::ICMP_UGE
&& Pred1
== ICmpInst::ICMP_SLE
)
1657 return getTrue(ITy
);
1658 if (Pred0
== ICmpInst::ICMP_SGE
&& Pred1
== ICmpInst::ICMP_SLE
&& isNSW
)
1659 return getTrue(ITy
);
1662 if (Pred0
== ICmpInst::ICMP_UGT
&& Pred1
== ICmpInst::ICMP_SLE
)
1663 return getTrue(ITy
);
1664 if (Pred0
== ICmpInst::ICMP_SGT
&& Pred1
== ICmpInst::ICMP_SLE
&& isNSW
)
1665 return getTrue(ITy
);
1668 if (C0
->getBoolValue() && isNUW
) {
1670 if (Pred0
== ICmpInst::ICMP_UGE
&& Pred1
== ICmpInst::ICMP_ULE
)
1671 return getTrue(ITy
);
1673 if (Pred0
== ICmpInst::ICMP_UGT
&& Pred1
== ICmpInst::ICMP_ULE
)
1674 return getTrue(ITy
);
1680 static Value
*simplifyOrOfICmps(ICmpInst
*Op0
, ICmpInst
*Op1
,
1681 const InstrInfoQuery
&IIQ
) {
1682 if (Value
*X
= simplifyUnsignedRangeCheck(Op0
, Op1
, /*IsAnd=*/false))
1684 if (Value
*X
= simplifyUnsignedRangeCheck(Op1
, Op0
, /*IsAnd=*/false))
1687 if (Value
*X
= simplifyOrOfICmpsWithSameOperands(Op0
, Op1
))
1689 if (Value
*X
= simplifyOrOfICmpsWithSameOperands(Op1
, Op0
))
1692 if (Value
*X
= simplifyAndOrOfICmpsWithConstants(Op0
, Op1
, false))
1695 if (Value
*X
= simplifyAndOrOfICmpsWithZero(Op0
, Op1
, false))
1698 if (Value
*X
= simplifyOrOfICmpsWithAdd(Op0
, Op1
, IIQ
))
1700 if (Value
*X
= simplifyOrOfICmpsWithAdd(Op1
, Op0
, IIQ
))
1706 static Value
*simplifyAndOrOfFCmps(const TargetLibraryInfo
*TLI
,
1707 FCmpInst
*LHS
, FCmpInst
*RHS
, bool IsAnd
) {
1708 Value
*LHS0
= LHS
->getOperand(0), *LHS1
= LHS
->getOperand(1);
1709 Value
*RHS0
= RHS
->getOperand(0), *RHS1
= RHS
->getOperand(1);
1710 if (LHS0
->getType() != RHS0
->getType())
1713 FCmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
1714 if ((PredL
== FCmpInst::FCMP_ORD
&& PredR
== FCmpInst::FCMP_ORD
&& IsAnd
) ||
1715 (PredL
== FCmpInst::FCMP_UNO
&& PredR
== FCmpInst::FCMP_UNO
&& !IsAnd
)) {
1716 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1717 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1718 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1719 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1720 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1721 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1722 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1723 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1724 if ((isKnownNeverNaN(LHS0
, TLI
) && (LHS1
== RHS0
|| LHS1
== RHS1
)) ||
1725 (isKnownNeverNaN(LHS1
, TLI
) && (LHS0
== RHS0
|| LHS0
== RHS1
)))
1728 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1729 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1730 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1731 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1732 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1733 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1734 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1735 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1736 if ((isKnownNeverNaN(RHS0
, TLI
) && (RHS1
== LHS0
|| RHS1
== LHS1
)) ||
1737 (isKnownNeverNaN(RHS1
, TLI
) && (RHS0
== LHS0
|| RHS0
== LHS1
)))
1744 static Value
*simplifyAndOrOfCmps(const SimplifyQuery
&Q
,
1745 Value
*Op0
, Value
*Op1
, bool IsAnd
) {
1746 // Look through casts of the 'and' operands to find compares.
1747 auto *Cast0
= dyn_cast
<CastInst
>(Op0
);
1748 auto *Cast1
= dyn_cast
<CastInst
>(Op1
);
1749 if (Cast0
&& Cast1
&& Cast0
->getOpcode() == Cast1
->getOpcode() &&
1750 Cast0
->getSrcTy() == Cast1
->getSrcTy()) {
1751 Op0
= Cast0
->getOperand(0);
1752 Op1
= Cast1
->getOperand(0);
1756 auto *ICmp0
= dyn_cast
<ICmpInst
>(Op0
);
1757 auto *ICmp1
= dyn_cast
<ICmpInst
>(Op1
);
1759 V
= IsAnd
? simplifyAndOfICmps(ICmp0
, ICmp1
, Q
.IIQ
)
1760 : simplifyOrOfICmps(ICmp0
, ICmp1
, Q
.IIQ
);
1762 auto *FCmp0
= dyn_cast
<FCmpInst
>(Op0
);
1763 auto *FCmp1
= dyn_cast
<FCmpInst
>(Op1
);
1765 V
= simplifyAndOrOfFCmps(Q
.TLI
, FCmp0
, FCmp1
, IsAnd
);
1772 // If we looked through casts, we can only handle a constant simplification
1773 // because we are not allowed to create a cast instruction here.
1774 if (auto *C
= dyn_cast
<Constant
>(V
))
1775 return ConstantExpr::getCast(Cast0
->getOpcode(), C
, Cast0
->getType());
1780 /// Given operands for an And, see if we can fold the result.
1781 /// If not, this returns null.
1782 static Value
*SimplifyAndInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1783 unsigned MaxRecurse
) {
1784 if (Constant
*C
= foldOrCommuteConstant(Instruction::And
, Op0
, Op1
, Q
))
1788 if (match(Op1
, m_Undef()))
1789 return Constant::getNullValue(Op0
->getType());
1796 if (match(Op1
, m_Zero()))
1797 return Constant::getNullValue(Op0
->getType());
1800 if (match(Op1
, m_AllOnes()))
1803 // A & ~A = ~A & A = 0
1804 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
1805 match(Op1
, m_Not(m_Specific(Op0
))))
1806 return Constant::getNullValue(Op0
->getType());
1809 if (match(Op0
, m_c_Or(m_Specific(Op1
), m_Value())))
1813 if (match(Op1
, m_c_Or(m_Specific(Op0
), m_Value())))
1816 // A mask that only clears known zeros of a shifted value is a no-op.
1820 if (match(Op1
, m_APInt(Mask
))) {
1821 // If all bits in the inverted and shifted mask are clear:
1822 // and (shl X, ShAmt), Mask --> shl X, ShAmt
1823 if (match(Op0
, m_Shl(m_Value(X
), m_APInt(ShAmt
))) &&
1824 (~(*Mask
)).lshr(*ShAmt
).isNullValue())
1827 // If all bits in the inverted and shifted mask are clear:
1828 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1829 if (match(Op0
, m_LShr(m_Value(X
), m_APInt(ShAmt
))) &&
1830 (~(*Mask
)).shl(*ShAmt
).isNullValue())
1834 // A & (-A) = A if A is a power of two or zero.
1835 if (match(Op0
, m_Neg(m_Specific(Op1
))) ||
1836 match(Op1
, m_Neg(m_Specific(Op0
)))) {
1837 if (isKnownToBeAPowerOfTwo(Op0
, Q
.DL
, /*OrZero*/ true, 0, Q
.AC
, Q
.CxtI
,
1840 if (isKnownToBeAPowerOfTwo(Op1
, Q
.DL
, /*OrZero*/ true, 0, Q
.AC
, Q
.CxtI
,
1845 if (Value
*V
= simplifyAndOrOfCmps(Q
, Op0
, Op1
, true))
1848 // Try some generic simplifications for associative operations.
1849 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::And
, Op0
, Op1
, Q
,
1853 // And distributes over Or. Try some generic simplifications based on this.
1854 if (Value
*V
= ExpandBinOp(Instruction::And
, Op0
, Op1
, Instruction::Or
,
1858 // And distributes over Xor. Try some generic simplifications based on this.
1859 if (Value
*V
= ExpandBinOp(Instruction::And
, Op0
, Op1
, Instruction::Xor
,
1863 // If the operation is with the result of a select instruction, check whether
1864 // operating on either branch of the select always yields the same value.
1865 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1866 if (Value
*V
= ThreadBinOpOverSelect(Instruction::And
, Op0
, Op1
, Q
,
1870 // If the operation is with the result of a phi instruction, check whether
1871 // operating on all incoming values of the phi always yields the same value.
1872 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1873 if (Value
*V
= ThreadBinOpOverPHI(Instruction::And
, Op0
, Op1
, Q
,
1877 // Assuming the effective width of Y is not larger than A, i.e. all bits
1878 // from X and Y are disjoint in (X << A) | Y,
1879 // if the mask of this AND op covers all bits of X or Y, while it covers
1880 // no bits from the other, we can bypass this AND op. E.g.,
1881 // ((X << A) | Y) & Mask -> Y,
1882 // if Mask = ((1 << effective_width_of(Y)) - 1)
1883 // ((X << A) | Y) & Mask -> X << A,
1884 // if Mask = ((1 << effective_width_of(X)) - 1) << A
1885 // SimplifyDemandedBits in InstCombine can optimize the general case.
1886 // This pattern aims to help other passes for a common case.
1887 Value
*Y
, *XShifted
;
1888 if (match(Op1
, m_APInt(Mask
)) &&
1889 match(Op0
, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X
), m_APInt(ShAmt
)),
1892 const unsigned Width
= Op0
->getType()->getScalarSizeInBits();
1893 const unsigned ShftCnt
= ShAmt
->getLimitedValue(Width
);
1894 const KnownBits YKnown
= computeKnownBits(Y
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1895 const unsigned EffWidthY
= Width
- YKnown
.countMinLeadingZeros();
1896 if (EffWidthY
<= ShftCnt
) {
1897 const KnownBits XKnown
= computeKnownBits(X
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
,
1899 const unsigned EffWidthX
= Width
- XKnown
.countMinLeadingZeros();
1900 const APInt EffBitsY
= APInt::getLowBitsSet(Width
, EffWidthY
);
1901 const APInt EffBitsX
= APInt::getLowBitsSet(Width
, EffWidthX
) << ShftCnt
;
1902 // If the mask is extracting all bits from X or Y as is, we can skip
1904 if (EffBitsY
.isSubsetOf(*Mask
) && !EffBitsX
.intersects(*Mask
))
1906 if (EffBitsX
.isSubsetOf(*Mask
) && !EffBitsY
.intersects(*Mask
))
1914 Value
*llvm::SimplifyAndInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1915 return ::SimplifyAndInst(Op0
, Op1
, Q
, RecursionLimit
);
1918 /// Given operands for an Or, see if we can fold the result.
1919 /// If not, this returns null.
1920 static Value
*SimplifyOrInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1921 unsigned MaxRecurse
) {
1922 if (Constant
*C
= foldOrCommuteConstant(Instruction::Or
, Op0
, Op1
, Q
))
1927 // Do not return Op1 because it may contain undef elements if it's a vector.
1928 if (match(Op1
, m_Undef()) || match(Op1
, m_AllOnes()))
1929 return Constant::getAllOnesValue(Op0
->getType());
1933 if (Op0
== Op1
|| match(Op1
, m_Zero()))
1936 // A | ~A = ~A | A = -1
1937 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
1938 match(Op1
, m_Not(m_Specific(Op0
))))
1939 return Constant::getAllOnesValue(Op0
->getType());
1942 if (match(Op0
, m_c_And(m_Specific(Op1
), m_Value())))
1946 if (match(Op1
, m_c_And(m_Specific(Op0
), m_Value())))
1949 // ~(A & ?) | A = -1
1950 if (match(Op0
, m_Not(m_c_And(m_Specific(Op1
), m_Value()))))
1951 return Constant::getAllOnesValue(Op1
->getType());
1953 // A | ~(A & ?) = -1
1954 if (match(Op1
, m_Not(m_c_And(m_Specific(Op1
), m_Value()))))
1955 return Constant::getAllOnesValue(Op0
->getType());
1958 // (A & ~B) | (A ^ B) -> (A ^ B)
1959 // (~B & A) | (A ^ B) -> (A ^ B)
1960 // (A & ~B) | (B ^ A) -> (B ^ A)
1961 // (~B & A) | (B ^ A) -> (B ^ A)
1962 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) &&
1963 (match(Op0
, m_c_And(m_Specific(A
), m_Not(m_Specific(B
)))) ||
1964 match(Op0
, m_c_And(m_Not(m_Specific(A
)), m_Specific(B
)))))
1967 // Commute the 'or' operands.
1968 // (A ^ B) | (A & ~B) -> (A ^ B)
1969 // (A ^ B) | (~B & A) -> (A ^ B)
1970 // (B ^ A) | (A & ~B) -> (B ^ A)
1971 // (B ^ A) | (~B & A) -> (B ^ A)
1972 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
))) &&
1973 (match(Op1
, m_c_And(m_Specific(A
), m_Not(m_Specific(B
)))) ||
1974 match(Op1
, m_c_And(m_Not(m_Specific(A
)), m_Specific(B
)))))
1977 // (A & B) | (~A ^ B) -> (~A ^ B)
1978 // (B & A) | (~A ^ B) -> (~A ^ B)
1979 // (A & B) | (B ^ ~A) -> (B ^ ~A)
1980 // (B & A) | (B ^ ~A) -> (B ^ ~A)
1981 if (match(Op0
, m_And(m_Value(A
), m_Value(B
))) &&
1982 (match(Op1
, m_c_Xor(m_Specific(A
), m_Not(m_Specific(B
)))) ||
1983 match(Op1
, m_c_Xor(m_Not(m_Specific(A
)), m_Specific(B
)))))
1986 // (~A ^ B) | (A & B) -> (~A ^ B)
1987 // (~A ^ B) | (B & A) -> (~A ^ B)
1988 // (B ^ ~A) | (A & B) -> (B ^ ~A)
1989 // (B ^ ~A) | (B & A) -> (B ^ ~A)
1990 if (match(Op1
, m_And(m_Value(A
), m_Value(B
))) &&
1991 (match(Op0
, m_c_Xor(m_Specific(A
), m_Not(m_Specific(B
)))) ||
1992 match(Op0
, m_c_Xor(m_Not(m_Specific(A
)), m_Specific(B
)))))
1995 if (Value
*V
= simplifyAndOrOfCmps(Q
, Op0
, Op1
, false))
1998 // Try some generic simplifications for associative operations.
1999 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Or
, Op0
, Op1
, Q
,
2003 // Or distributes over And. Try some generic simplifications based on this.
2004 if (Value
*V
= ExpandBinOp(Instruction::Or
, Op0
, Op1
, Instruction::And
, Q
,
2008 // If the operation is with the result of a select instruction, check whether
2009 // operating on either branch of the select always yields the same value.
2010 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
2011 if (Value
*V
= ThreadBinOpOverSelect(Instruction::Or
, Op0
, Op1
, Q
,
2015 // (A & C1)|(B & C2)
2016 const APInt
*C1
, *C2
;
2017 if (match(Op0
, m_And(m_Value(A
), m_APInt(C1
))) &&
2018 match(Op1
, m_And(m_Value(B
), m_APInt(C2
)))) {
2020 // (A & C1)|(B & C2)
2021 // If we have: ((V + N) & C1) | (V & C2)
2022 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2023 // replace with V+N.
2025 if (C2
->isMask() && // C2 == 0+1+
2026 match(A
, m_c_Add(m_Specific(B
), m_Value(N
)))) {
2027 // Add commutes, try both ways.
2028 if (MaskedValueIsZero(N
, *C2
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2031 // Or commutes, try both ways.
2033 match(B
, m_c_Add(m_Specific(A
), m_Value(N
)))) {
2034 // Add commutes, try both ways.
2035 if (MaskedValueIsZero(N
, *C1
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2041 // If the operation is with the result of a phi instruction, check whether
2042 // operating on all incoming values of the phi always yields the same value.
2043 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
2044 if (Value
*V
= ThreadBinOpOverPHI(Instruction::Or
, Op0
, Op1
, Q
, MaxRecurse
))
2050 Value
*llvm::SimplifyOrInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
2051 return ::SimplifyOrInst(Op0
, Op1
, Q
, RecursionLimit
);
2054 /// Given operands for a Xor, see if we can fold the result.
2055 /// If not, this returns null.
2056 static Value
*SimplifyXorInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
2057 unsigned MaxRecurse
) {
2058 if (Constant
*C
= foldOrCommuteConstant(Instruction::Xor
, Op0
, Op1
, Q
))
2061 // A ^ undef -> undef
2062 if (match(Op1
, m_Undef()))
2066 if (match(Op1
, m_Zero()))
2071 return Constant::getNullValue(Op0
->getType());
2073 // A ^ ~A = ~A ^ A = -1
2074 if (match(Op0
, m_Not(m_Specific(Op1
))) ||
2075 match(Op1
, m_Not(m_Specific(Op0
))))
2076 return Constant::getAllOnesValue(Op0
->getType());
2078 // Try some generic simplifications for associative operations.
2079 if (Value
*V
= SimplifyAssociativeBinOp(Instruction::Xor
, Op0
, Op1
, Q
,
2083 // Threading Xor over selects and phi nodes is pointless, so don't bother.
2084 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2085 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2086 // only if B and C are equal. If B and C are equal then (since we assume
2087 // that operands have already been simplified) "select(cond, B, C)" should
2088 // have been simplified to the common value of B and C already. Analysing
2089 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
2090 // for threading over phi nodes.
2095 Value
*llvm::SimplifyXorInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
2096 return ::SimplifyXorInst(Op0
, Op1
, Q
, RecursionLimit
);
2100 static Type
*GetCompareTy(Value
*Op
) {
2101 return CmpInst::makeCmpResultType(Op
->getType());
2104 /// Rummage around inside V looking for something equivalent to the comparison
2105 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2106 /// Helper function for analyzing max/min idioms.
2107 static Value
*ExtractEquivalentCondition(Value
*V
, CmpInst::Predicate Pred
,
2108 Value
*LHS
, Value
*RHS
) {
2109 SelectInst
*SI
= dyn_cast
<SelectInst
>(V
);
2112 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(SI
->getCondition());
2115 Value
*CmpLHS
= Cmp
->getOperand(0), *CmpRHS
= Cmp
->getOperand(1);
2116 if (Pred
== Cmp
->getPredicate() && LHS
== CmpLHS
&& RHS
== CmpRHS
)
2118 if (Pred
== CmpInst::getSwappedPredicate(Cmp
->getPredicate()) &&
2119 LHS
== CmpRHS
&& RHS
== CmpLHS
)
2124 // A significant optimization not implemented here is assuming that alloca
2125 // addresses are not equal to incoming argument values. They don't *alias*,
2126 // as we say, but that doesn't mean they aren't equal, so we take a
2127 // conservative approach.
2129 // This is inspired in part by C++11 5.10p1:
2130 // "Two pointers of the same type compare equal if and only if they are both
2131 // null, both point to the same function, or both represent the same
2134 // This is pretty permissive.
2136 // It's also partly due to C11 6.5.9p6:
2137 // "Two pointers compare equal if and only if both are null pointers, both are
2138 // pointers to the same object (including a pointer to an object and a
2139 // subobject at its beginning) or function, both are pointers to one past the
2140 // last element of the same array object, or one is a pointer to one past the
2141 // end of one array object and the other is a pointer to the start of a
2142 // different array object that happens to immediately follow the first array
2143 // object in the address space.)
2145 // C11's version is more restrictive, however there's no reason why an argument
2146 // couldn't be a one-past-the-end value for a stack object in the caller and be
2147 // equal to the beginning of a stack object in the callee.
2149 // If the C and C++ standards are ever made sufficiently restrictive in this
2150 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2151 // this optimization.
2153 computePointerICmp(const DataLayout
&DL
, const TargetLibraryInfo
*TLI
,
2154 const DominatorTree
*DT
, CmpInst::Predicate Pred
,
2155 AssumptionCache
*AC
, const Instruction
*CxtI
,
2156 const InstrInfoQuery
&IIQ
, Value
*LHS
, Value
*RHS
) {
2157 // First, skip past any trivial no-ops.
2158 LHS
= LHS
->stripPointerCasts();
2159 RHS
= RHS
->stripPointerCasts();
2161 // A non-null pointer is not equal to a null pointer.
2162 if (llvm::isKnownNonZero(LHS
, DL
, 0, nullptr, nullptr, nullptr,
2163 IIQ
.UseInstrInfo
) &&
2164 isa
<ConstantPointerNull
>(RHS
) &&
2165 (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_NE
))
2166 return ConstantInt::get(GetCompareTy(LHS
),
2167 !CmpInst::isTrueWhenEqual(Pred
));
2169 // We can only fold certain predicates on pointer comparisons.
2174 // Equality comaprisons are easy to fold.
2175 case CmpInst::ICMP_EQ
:
2176 case CmpInst::ICMP_NE
:
2179 // We can only handle unsigned relational comparisons because 'inbounds' on
2180 // a GEP only protects against unsigned wrapping.
2181 case CmpInst::ICMP_UGT
:
2182 case CmpInst::ICMP_UGE
:
2183 case CmpInst::ICMP_ULT
:
2184 case CmpInst::ICMP_ULE
:
2185 // However, we have to switch them to their signed variants to handle
2186 // negative indices from the base pointer.
2187 Pred
= ICmpInst::getSignedPredicate(Pred
);
2191 // Strip off any constant offsets so that we can reason about them.
2192 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2193 // here and compare base addresses like AliasAnalysis does, however there are
2194 // numerous hazards. AliasAnalysis and its utilities rely on special rules
2195 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2196 // doesn't need to guarantee pointer inequality when it says NoAlias.
2197 Constant
*LHSOffset
= stripAndComputeConstantOffsets(DL
, LHS
);
2198 Constant
*RHSOffset
= stripAndComputeConstantOffsets(DL
, RHS
);
2200 // If LHS and RHS are related via constant offsets to the same base
2201 // value, we can replace it with an icmp which just compares the offsets.
2203 return ConstantExpr::getICmp(Pred
, LHSOffset
, RHSOffset
);
2205 // Various optimizations for (in)equality comparisons.
2206 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_NE
) {
2207 // Different non-empty allocations that exist at the same time have
2208 // different addresses (if the program can tell). Global variables always
2209 // exist, so they always exist during the lifetime of each other and all
2210 // allocas. Two different allocas usually have different addresses...
2212 // However, if there's an @llvm.stackrestore dynamically in between two
2213 // allocas, they may have the same address. It's tempting to reduce the
2214 // scope of the problem by only looking at *static* allocas here. That would
2215 // cover the majority of allocas while significantly reducing the likelihood
2216 // of having an @llvm.stackrestore pop up in the middle. However, it's not
2217 // actually impossible for an @llvm.stackrestore to pop up in the middle of
2218 // an entry block. Also, if we have a block that's not attached to a
2219 // function, we can't tell if it's "static" under the current definition.
2220 // Theoretically, this problem could be fixed by creating a new kind of
2221 // instruction kind specifically for static allocas. Such a new instruction
2222 // could be required to be at the top of the entry block, thus preventing it
2223 // from being subject to a @llvm.stackrestore. Instcombine could even
2224 // convert regular allocas into these special allocas. It'd be nifty.
2225 // However, until then, this problem remains open.
2227 // So, we'll assume that two non-empty allocas have different addresses
2230 // With all that, if the offsets are within the bounds of their allocations
2231 // (and not one-past-the-end! so we can't use inbounds!), and their
2232 // allocations aren't the same, the pointers are not equal.
2234 // Note that it's not necessary to check for LHS being a global variable
2235 // address, due to canonicalization and constant folding.
2236 if (isa
<AllocaInst
>(LHS
) &&
2237 (isa
<AllocaInst
>(RHS
) || isa
<GlobalVariable
>(RHS
))) {
2238 ConstantInt
*LHSOffsetCI
= dyn_cast
<ConstantInt
>(LHSOffset
);
2239 ConstantInt
*RHSOffsetCI
= dyn_cast
<ConstantInt
>(RHSOffset
);
2240 uint64_t LHSSize
, RHSSize
;
2241 ObjectSizeOpts Opts
;
2242 Opts
.NullIsUnknownSize
=
2243 NullPointerIsDefined(cast
<AllocaInst
>(LHS
)->getFunction());
2244 if (LHSOffsetCI
&& RHSOffsetCI
&&
2245 getObjectSize(LHS
, LHSSize
, DL
, TLI
, Opts
) &&
2246 getObjectSize(RHS
, RHSSize
, DL
, TLI
, Opts
)) {
2247 const APInt
&LHSOffsetValue
= LHSOffsetCI
->getValue();
2248 const APInt
&RHSOffsetValue
= RHSOffsetCI
->getValue();
2249 if (!LHSOffsetValue
.isNegative() &&
2250 !RHSOffsetValue
.isNegative() &&
2251 LHSOffsetValue
.ult(LHSSize
) &&
2252 RHSOffsetValue
.ult(RHSSize
)) {
2253 return ConstantInt::get(GetCompareTy(LHS
),
2254 !CmpInst::isTrueWhenEqual(Pred
));
2258 // Repeat the above check but this time without depending on DataLayout
2259 // or being able to compute a precise size.
2260 if (!cast
<PointerType
>(LHS
->getType())->isEmptyTy() &&
2261 !cast
<PointerType
>(RHS
->getType())->isEmptyTy() &&
2262 LHSOffset
->isNullValue() &&
2263 RHSOffset
->isNullValue())
2264 return ConstantInt::get(GetCompareTy(LHS
),
2265 !CmpInst::isTrueWhenEqual(Pred
));
2268 // Even if an non-inbounds GEP occurs along the path we can still optimize
2269 // equality comparisons concerning the result. We avoid walking the whole
2270 // chain again by starting where the last calls to
2271 // stripAndComputeConstantOffsets left off and accumulate the offsets.
2272 Constant
*LHSNoBound
= stripAndComputeConstantOffsets(DL
, LHS
, true);
2273 Constant
*RHSNoBound
= stripAndComputeConstantOffsets(DL
, RHS
, true);
2275 return ConstantExpr::getICmp(Pred
,
2276 ConstantExpr::getAdd(LHSOffset
, LHSNoBound
),
2277 ConstantExpr::getAdd(RHSOffset
, RHSNoBound
));
2279 // If one side of the equality comparison must come from a noalias call
2280 // (meaning a system memory allocation function), and the other side must
2281 // come from a pointer that cannot overlap with dynamically-allocated
2282 // memory within the lifetime of the current function (allocas, byval
2283 // arguments, globals), then determine the comparison result here.
2284 SmallVector
<Value
*, 8> LHSUObjs
, RHSUObjs
;
2285 GetUnderlyingObjects(LHS
, LHSUObjs
, DL
);
2286 GetUnderlyingObjects(RHS
, RHSUObjs
, DL
);
2288 // Is the set of underlying objects all noalias calls?
2289 auto IsNAC
= [](ArrayRef
<Value
*> Objects
) {
2290 return all_of(Objects
, isNoAliasCall
);
2293 // Is the set of underlying objects all things which must be disjoint from
2294 // noalias calls. For allocas, we consider only static ones (dynamic
2295 // allocas might be transformed into calls to malloc not simultaneously
2296 // live with the compared-to allocation). For globals, we exclude symbols
2297 // that might be resolve lazily to symbols in another dynamically-loaded
2298 // library (and, thus, could be malloc'ed by the implementation).
2299 auto IsAllocDisjoint
= [](ArrayRef
<Value
*> Objects
) {
2300 return all_of(Objects
, [](Value
*V
) {
2301 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
))
2302 return AI
->getParent() && AI
->getFunction() && AI
->isStaticAlloca();
2303 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
))
2304 return (GV
->hasLocalLinkage() || GV
->hasHiddenVisibility() ||
2305 GV
->hasProtectedVisibility() || GV
->hasGlobalUnnamedAddr()) &&
2306 !GV
->isThreadLocal();
2307 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
2308 return A
->hasByValAttr();
2313 if ((IsNAC(LHSUObjs
) && IsAllocDisjoint(RHSUObjs
)) ||
2314 (IsNAC(RHSUObjs
) && IsAllocDisjoint(LHSUObjs
)))
2315 return ConstantInt::get(GetCompareTy(LHS
),
2316 !CmpInst::isTrueWhenEqual(Pred
));
2318 // Fold comparisons for non-escaping pointer even if the allocation call
2319 // cannot be elided. We cannot fold malloc comparison to null. Also, the
2320 // dynamic allocation call could be either of the operands.
2321 Value
*MI
= nullptr;
2322 if (isAllocLikeFn(LHS
, TLI
) &&
2323 llvm::isKnownNonZero(RHS
, DL
, 0, nullptr, CxtI
, DT
))
2325 else if (isAllocLikeFn(RHS
, TLI
) &&
2326 llvm::isKnownNonZero(LHS
, DL
, 0, nullptr, CxtI
, DT
))
2328 // FIXME: We should also fold the compare when the pointer escapes, but the
2329 // compare dominates the pointer escape
2330 if (MI
&& !PointerMayBeCaptured(MI
, true, true))
2331 return ConstantInt::get(GetCompareTy(LHS
),
2332 CmpInst::isFalseWhenEqual(Pred
));
2339 /// Fold an icmp when its operands have i1 scalar type.
2340 static Value
*simplifyICmpOfBools(CmpInst::Predicate Pred
, Value
*LHS
,
2341 Value
*RHS
, const SimplifyQuery
&Q
) {
2342 Type
*ITy
= GetCompareTy(LHS
); // The return type.
2343 Type
*OpTy
= LHS
->getType(); // The operand type.
2344 if (!OpTy
->isIntOrIntVectorTy(1))
2347 // A boolean compared to true/false can be simplified in 14 out of the 20
2348 // (10 predicates * 2 constants) possible combinations. Cases not handled here
2349 // require a 'not' of the LHS, so those must be transformed in InstCombine.
2350 if (match(RHS
, m_Zero())) {
2352 case CmpInst::ICMP_NE
: // X != 0 -> X
2353 case CmpInst::ICMP_UGT
: // X >u 0 -> X
2354 case CmpInst::ICMP_SLT
: // X <s 0 -> X
2357 case CmpInst::ICMP_ULT
: // X <u 0 -> false
2358 case CmpInst::ICMP_SGT
: // X >s 0 -> false
2359 return getFalse(ITy
);
2361 case CmpInst::ICMP_UGE
: // X >=u 0 -> true
2362 case CmpInst::ICMP_SLE
: // X <=s 0 -> true
2363 return getTrue(ITy
);
2367 } else if (match(RHS
, m_One())) {
2369 case CmpInst::ICMP_EQ
: // X == 1 -> X
2370 case CmpInst::ICMP_UGE
: // X >=u 1 -> X
2371 case CmpInst::ICMP_SLE
: // X <=s -1 -> X
2374 case CmpInst::ICMP_UGT
: // X >u 1 -> false
2375 case CmpInst::ICMP_SLT
: // X <s -1 -> false
2376 return getFalse(ITy
);
2378 case CmpInst::ICMP_ULE
: // X <=u 1 -> true
2379 case CmpInst::ICMP_SGE
: // X >=s -1 -> true
2380 return getTrue(ITy
);
2389 case ICmpInst::ICMP_UGE
:
2390 if (isImpliedCondition(RHS
, LHS
, Q
.DL
).getValueOr(false))
2391 return getTrue(ITy
);
2393 case ICmpInst::ICMP_SGE
:
2394 /// For signed comparison, the values for an i1 are 0 and -1
2395 /// respectively. This maps into a truth table of:
2396 /// LHS | RHS | LHS >=s RHS | LHS implies RHS
2397 /// 0 | 0 | 1 (0 >= 0) | 1
2398 /// 0 | 1 | 1 (0 >= -1) | 1
2399 /// 1 | 0 | 0 (-1 >= 0) | 0
2400 /// 1 | 1 | 1 (-1 >= -1) | 1
2401 if (isImpliedCondition(LHS
, RHS
, Q
.DL
).getValueOr(false))
2402 return getTrue(ITy
);
2404 case ICmpInst::ICMP_ULE
:
2405 if (isImpliedCondition(LHS
, RHS
, Q
.DL
).getValueOr(false))
2406 return getTrue(ITy
);
2413 /// Try hard to fold icmp with zero RHS because this is a common case.
2414 static Value
*simplifyICmpWithZero(CmpInst::Predicate Pred
, Value
*LHS
,
2415 Value
*RHS
, const SimplifyQuery
&Q
) {
2416 if (!match(RHS
, m_Zero()))
2419 Type
*ITy
= GetCompareTy(LHS
); // The return type.
2422 llvm_unreachable("Unknown ICmp predicate!");
2423 case ICmpInst::ICMP_ULT
:
2424 return getFalse(ITy
);
2425 case ICmpInst::ICMP_UGE
:
2426 return getTrue(ITy
);
2427 case ICmpInst::ICMP_EQ
:
2428 case ICmpInst::ICMP_ULE
:
2429 if (isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
, Q
.IIQ
.UseInstrInfo
))
2430 return getFalse(ITy
);
2432 case ICmpInst::ICMP_NE
:
2433 case ICmpInst::ICMP_UGT
:
2434 if (isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
, Q
.IIQ
.UseInstrInfo
))
2435 return getTrue(ITy
);
2437 case ICmpInst::ICMP_SLT
: {
2438 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2439 if (LHSKnown
.isNegative())
2440 return getTrue(ITy
);
2441 if (LHSKnown
.isNonNegative())
2442 return getFalse(ITy
);
2445 case ICmpInst::ICMP_SLE
: {
2446 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2447 if (LHSKnown
.isNegative())
2448 return getTrue(ITy
);
2449 if (LHSKnown
.isNonNegative() &&
2450 isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2451 return getFalse(ITy
);
2454 case ICmpInst::ICMP_SGE
: {
2455 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2456 if (LHSKnown
.isNegative())
2457 return getFalse(ITy
);
2458 if (LHSKnown
.isNonNegative())
2459 return getTrue(ITy
);
2462 case ICmpInst::ICMP_SGT
: {
2463 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2464 if (LHSKnown
.isNegative())
2465 return getFalse(ITy
);
2466 if (LHSKnown
.isNonNegative() &&
2467 isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2468 return getTrue(ITy
);
2476 /// Many binary operators with a constant operand have an easy-to-compute
2477 /// range of outputs. This can be used to fold a comparison to always true or
2479 static void setLimitsForBinOp(BinaryOperator
&BO
, APInt
&Lower
, APInt
&Upper
,
2480 const InstrInfoQuery
&IIQ
) {
2481 unsigned Width
= Lower
.getBitWidth();
2483 switch (BO
.getOpcode()) {
2484 case Instruction::Add
:
2485 if (match(BO
.getOperand(1), m_APInt(C
)) && !C
->isNullValue()) {
2486 // FIXME: If we have both nuw and nsw, we should reduce the range further.
2487 if (IIQ
.hasNoUnsignedWrap(cast
<OverflowingBinaryOperator
>(&BO
))) {
2488 // 'add nuw x, C' produces [C, UINT_MAX].
2490 } else if (IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(&BO
))) {
2491 if (C
->isNegative()) {
2492 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
2493 Lower
= APInt::getSignedMinValue(Width
);
2494 Upper
= APInt::getSignedMaxValue(Width
) + *C
+ 1;
2496 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
2497 Lower
= APInt::getSignedMinValue(Width
) + *C
;
2498 Upper
= APInt::getSignedMaxValue(Width
) + 1;
2504 case Instruction::And
:
2505 if (match(BO
.getOperand(1), m_APInt(C
)))
2506 // 'and x, C' produces [0, C].
2510 case Instruction::Or
:
2511 if (match(BO
.getOperand(1), m_APInt(C
)))
2512 // 'or x, C' produces [C, UINT_MAX].
2516 case Instruction::AShr
:
2517 if (match(BO
.getOperand(1), m_APInt(C
)) && C
->ult(Width
)) {
2518 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
2519 Lower
= APInt::getSignedMinValue(Width
).ashr(*C
);
2520 Upper
= APInt::getSignedMaxValue(Width
).ashr(*C
) + 1;
2521 } else if (match(BO
.getOperand(0), m_APInt(C
))) {
2522 unsigned ShiftAmount
= Width
- 1;
2523 if (!C
->isNullValue() && IIQ
.isExact(&BO
))
2524 ShiftAmount
= C
->countTrailingZeros();
2525 if (C
->isNegative()) {
2526 // 'ashr C, x' produces [C, C >> (Width-1)]
2528 Upper
= C
->ashr(ShiftAmount
) + 1;
2530 // 'ashr C, x' produces [C >> (Width-1), C]
2531 Lower
= C
->ashr(ShiftAmount
);
2537 case Instruction::LShr
:
2538 if (match(BO
.getOperand(1), m_APInt(C
)) && C
->ult(Width
)) {
2539 // 'lshr x, C' produces [0, UINT_MAX >> C].
2540 Upper
= APInt::getAllOnesValue(Width
).lshr(*C
) + 1;
2541 } else if (match(BO
.getOperand(0), m_APInt(C
))) {
2542 // 'lshr C, x' produces [C >> (Width-1), C].
2543 unsigned ShiftAmount
= Width
- 1;
2544 if (!C
->isNullValue() && IIQ
.isExact(&BO
))
2545 ShiftAmount
= C
->countTrailingZeros();
2546 Lower
= C
->lshr(ShiftAmount
);
2551 case Instruction::Shl
:
2552 if (match(BO
.getOperand(0), m_APInt(C
))) {
2553 if (IIQ
.hasNoUnsignedWrap(&BO
)) {
2554 // 'shl nuw C, x' produces [C, C << CLZ(C)]
2556 Upper
= Lower
.shl(Lower
.countLeadingZeros()) + 1;
2557 } else if (BO
.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
2558 if (C
->isNegative()) {
2559 // 'shl nsw C, x' produces [C << CLO(C)-1, C]
2560 unsigned ShiftAmount
= C
->countLeadingOnes() - 1;
2561 Lower
= C
->shl(ShiftAmount
);
2564 // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
2565 unsigned ShiftAmount
= C
->countLeadingZeros() - 1;
2567 Upper
= C
->shl(ShiftAmount
) + 1;
2573 case Instruction::SDiv
:
2574 if (match(BO
.getOperand(1), m_APInt(C
))) {
2575 APInt IntMin
= APInt::getSignedMinValue(Width
);
2576 APInt IntMax
= APInt::getSignedMaxValue(Width
);
2577 if (C
->isAllOnesValue()) {
2578 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2579 // where C != -1 and C != 0 and C != 1
2582 } else if (C
->countLeadingZeros() < Width
- 1) {
2583 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
2584 // where C != -1 and C != 0 and C != 1
2585 Lower
= IntMin
.sdiv(*C
);
2586 Upper
= IntMax
.sdiv(*C
);
2587 if (Lower
.sgt(Upper
))
2588 std::swap(Lower
, Upper
);
2590 assert(Upper
!= Lower
&& "Upper part of range has wrapped!");
2592 } else if (match(BO
.getOperand(0), m_APInt(C
))) {
2593 if (C
->isMinSignedValue()) {
2594 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2596 Upper
= Lower
.lshr(1) + 1;
2598 // 'sdiv C, x' produces [-|C|, |C|].
2599 Upper
= C
->abs() + 1;
2600 Lower
= (-Upper
) + 1;
2605 case Instruction::UDiv
:
2606 if (match(BO
.getOperand(1), m_APInt(C
)) && !C
->isNullValue()) {
2607 // 'udiv x, C' produces [0, UINT_MAX / C].
2608 Upper
= APInt::getMaxValue(Width
).udiv(*C
) + 1;
2609 } else if (match(BO
.getOperand(0), m_APInt(C
))) {
2610 // 'udiv C, x' produces [0, C].
2615 case Instruction::SRem
:
2616 if (match(BO
.getOperand(1), m_APInt(C
))) {
2617 // 'srem x, C' produces (-|C|, |C|).
2619 Lower
= (-Upper
) + 1;
2623 case Instruction::URem
:
2624 if (match(BO
.getOperand(1), m_APInt(C
)))
2625 // 'urem x, C' produces [0, C).
2634 /// Some intrinsics with a constant operand have an easy-to-compute range of
2635 /// outputs. This can be used to fold a comparison to always true or always
2637 static void setLimitsForIntrinsic(IntrinsicInst
&II
, APInt
&Lower
,
2639 unsigned Width
= Lower
.getBitWidth();
2641 switch (II
.getIntrinsicID()) {
2642 case Intrinsic::uadd_sat
:
2643 // uadd.sat(x, C) produces [C, UINT_MAX].
2644 if (match(II
.getOperand(0), m_APInt(C
)) ||
2645 match(II
.getOperand(1), m_APInt(C
)))
2648 case Intrinsic::sadd_sat
:
2649 if (match(II
.getOperand(0), m_APInt(C
)) ||
2650 match(II
.getOperand(1), m_APInt(C
))) {
2651 if (C
->isNegative()) {
2652 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
2653 Lower
= APInt::getSignedMinValue(Width
);
2654 Upper
= APInt::getSignedMaxValue(Width
) + *C
+ 1;
2656 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
2657 Lower
= APInt::getSignedMinValue(Width
) + *C
;
2658 Upper
= APInt::getSignedMaxValue(Width
) + 1;
2662 case Intrinsic::usub_sat
:
2663 // usub.sat(C, x) produces [0, C].
2664 if (match(II
.getOperand(0), m_APInt(C
)))
2666 // usub.sat(x, C) produces [0, UINT_MAX - C].
2667 else if (match(II
.getOperand(1), m_APInt(C
)))
2668 Upper
= APInt::getMaxValue(Width
) - *C
+ 1;
2670 case Intrinsic::ssub_sat
:
2671 if (match(II
.getOperand(0), m_APInt(C
))) {
2672 if (C
->isNegative()) {
2673 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
2674 Lower
= APInt::getSignedMinValue(Width
);
2675 Upper
= *C
- APInt::getSignedMinValue(Width
) + 1;
2677 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
2678 Lower
= *C
- APInt::getSignedMaxValue(Width
);
2679 Upper
= APInt::getSignedMaxValue(Width
) + 1;
2681 } else if (match(II
.getOperand(1), m_APInt(C
))) {
2682 if (C
->isNegative()) {
2683 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
2684 Lower
= APInt::getSignedMinValue(Width
) - *C
;
2685 Upper
= APInt::getSignedMaxValue(Width
) + 1;
2687 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
2688 Lower
= APInt::getSignedMinValue(Width
);
2689 Upper
= APInt::getSignedMaxValue(Width
) - *C
+ 1;
2698 static Value
*simplifyICmpWithConstant(CmpInst::Predicate Pred
, Value
*LHS
,
2699 Value
*RHS
, const InstrInfoQuery
&IIQ
) {
2700 Type
*ITy
= GetCompareTy(RHS
); // The return type.
2703 // Sign-bit checks can be optimized to true/false after unsigned
2704 // floating-point casts:
2705 // icmp slt (bitcast (uitofp X)), 0 --> false
2706 // icmp sgt (bitcast (uitofp X)), -1 --> true
2707 if (match(LHS
, m_BitCast(m_UIToFP(m_Value(X
))))) {
2708 if (Pred
== ICmpInst::ICMP_SLT
&& match(RHS
, m_Zero()))
2709 return ConstantInt::getFalse(ITy
);
2710 if (Pred
== ICmpInst::ICMP_SGT
&& match(RHS
, m_AllOnes()))
2711 return ConstantInt::getTrue(ITy
);
2715 if (!match(RHS
, m_APInt(C
)))
2718 // Rule out tautological comparisons (eg., ult 0 or uge 0).
2719 ConstantRange RHS_CR
= ConstantRange::makeExactICmpRegion(Pred
, *C
);
2720 if (RHS_CR
.isEmptySet())
2721 return ConstantInt::getFalse(ITy
);
2722 if (RHS_CR
.isFullSet())
2723 return ConstantInt::getTrue(ITy
);
2725 // Find the range of possible values for binary operators.
2726 unsigned Width
= C
->getBitWidth();
2727 APInt Lower
= APInt(Width
, 0);
2728 APInt Upper
= APInt(Width
, 0);
2729 if (auto *BO
= dyn_cast
<BinaryOperator
>(LHS
))
2730 setLimitsForBinOp(*BO
, Lower
, Upper
, IIQ
);
2731 else if (auto *II
= dyn_cast
<IntrinsicInst
>(LHS
))
2732 setLimitsForIntrinsic(*II
, Lower
, Upper
);
2734 ConstantRange LHS_CR
=
2735 Lower
!= Upper
? ConstantRange(Lower
, Upper
) : ConstantRange(Width
, true);
2737 if (auto *I
= dyn_cast
<Instruction
>(LHS
))
2738 if (auto *Ranges
= IIQ
.getMetadata(I
, LLVMContext::MD_range
))
2739 LHS_CR
= LHS_CR
.intersectWith(getConstantRangeFromMetadata(*Ranges
));
2741 if (!LHS_CR
.isFullSet()) {
2742 if (RHS_CR
.contains(LHS_CR
))
2743 return ConstantInt::getTrue(ITy
);
2744 if (RHS_CR
.inverse().contains(LHS_CR
))
2745 return ConstantInt::getFalse(ITy
);
2751 /// TODO: A large part of this logic is duplicated in InstCombine's
2752 /// foldICmpBinOp(). We should be able to share that and avoid the code
2754 static Value
*simplifyICmpWithBinOp(CmpInst::Predicate Pred
, Value
*LHS
,
2755 Value
*RHS
, const SimplifyQuery
&Q
,
2756 unsigned MaxRecurse
) {
2757 Type
*ITy
= GetCompareTy(LHS
); // The return type.
2759 BinaryOperator
*LBO
= dyn_cast
<BinaryOperator
>(LHS
);
2760 BinaryOperator
*RBO
= dyn_cast
<BinaryOperator
>(RHS
);
2761 if (MaxRecurse
&& (LBO
|| RBO
)) {
2762 // Analyze the case when either LHS or RHS is an add instruction.
2763 Value
*A
= nullptr, *B
= nullptr, *C
= nullptr, *D
= nullptr;
2764 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2765 bool NoLHSWrapProblem
= false, NoRHSWrapProblem
= false;
2766 if (LBO
&& LBO
->getOpcode() == Instruction::Add
) {
2767 A
= LBO
->getOperand(0);
2768 B
= LBO
->getOperand(1);
2770 ICmpInst::isEquality(Pred
) ||
2771 (CmpInst::isUnsigned(Pred
) &&
2772 Q
.IIQ
.hasNoUnsignedWrap(cast
<OverflowingBinaryOperator
>(LBO
))) ||
2773 (CmpInst::isSigned(Pred
) &&
2774 Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(LBO
)));
2776 if (RBO
&& RBO
->getOpcode() == Instruction::Add
) {
2777 C
= RBO
->getOperand(0);
2778 D
= RBO
->getOperand(1);
2780 ICmpInst::isEquality(Pred
) ||
2781 (CmpInst::isUnsigned(Pred
) &&
2782 Q
.IIQ
.hasNoUnsignedWrap(cast
<OverflowingBinaryOperator
>(RBO
))) ||
2783 (CmpInst::isSigned(Pred
) &&
2784 Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(RBO
)));
2787 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2788 if ((A
== RHS
|| B
== RHS
) && NoLHSWrapProblem
)
2789 if (Value
*V
= SimplifyICmpInst(Pred
, A
== RHS
? B
: A
,
2790 Constant::getNullValue(RHS
->getType()), Q
,
2794 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2795 if ((C
== LHS
|| D
== LHS
) && NoRHSWrapProblem
)
2797 SimplifyICmpInst(Pred
, Constant::getNullValue(LHS
->getType()),
2798 C
== LHS
? D
: C
, Q
, MaxRecurse
- 1))
2801 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2802 if (A
&& C
&& (A
== C
|| A
== D
|| B
== C
|| B
== D
) && NoLHSWrapProblem
&&
2804 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2807 // C + B == C + D -> B == D
2810 } else if (A
== D
) {
2811 // D + B == C + D -> B == C
2814 } else if (B
== C
) {
2815 // A + C == C + D -> A == D
2820 // A + D == C + D -> A == C
2824 if (Value
*V
= SimplifyICmpInst(Pred
, Y
, Z
, Q
, MaxRecurse
- 1))
2831 // icmp pred (or X, Y), X
2832 if (LBO
&& match(LBO
, m_c_Or(m_Value(Y
), m_Specific(RHS
)))) {
2833 if (Pred
== ICmpInst::ICMP_ULT
)
2834 return getFalse(ITy
);
2835 if (Pred
== ICmpInst::ICMP_UGE
)
2836 return getTrue(ITy
);
2838 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SGE
) {
2839 KnownBits RHSKnown
= computeKnownBits(RHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2840 KnownBits YKnown
= computeKnownBits(Y
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2841 if (RHSKnown
.isNonNegative() && YKnown
.isNegative())
2842 return Pred
== ICmpInst::ICMP_SLT
? getTrue(ITy
) : getFalse(ITy
);
2843 if (RHSKnown
.isNegative() || YKnown
.isNonNegative())
2844 return Pred
== ICmpInst::ICMP_SLT
? getFalse(ITy
) : getTrue(ITy
);
2847 // icmp pred X, (or X, Y)
2848 if (RBO
&& match(RBO
, m_c_Or(m_Value(Y
), m_Specific(LHS
)))) {
2849 if (Pred
== ICmpInst::ICMP_ULE
)
2850 return getTrue(ITy
);
2851 if (Pred
== ICmpInst::ICMP_UGT
)
2852 return getFalse(ITy
);
2854 if (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLE
) {
2855 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2856 KnownBits YKnown
= computeKnownBits(Y
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2857 if (LHSKnown
.isNonNegative() && YKnown
.isNegative())
2858 return Pred
== ICmpInst::ICMP_SGT
? getTrue(ITy
) : getFalse(ITy
);
2859 if (LHSKnown
.isNegative() || YKnown
.isNonNegative())
2860 return Pred
== ICmpInst::ICMP_SGT
? getFalse(ITy
) : getTrue(ITy
);
2865 // icmp pred (and X, Y), X
2866 if (LBO
&& match(LBO
, m_c_And(m_Value(), m_Specific(RHS
)))) {
2867 if (Pred
== ICmpInst::ICMP_UGT
)
2868 return getFalse(ITy
);
2869 if (Pred
== ICmpInst::ICMP_ULE
)
2870 return getTrue(ITy
);
2872 // icmp pred X, (and X, Y)
2873 if (RBO
&& match(RBO
, m_c_And(m_Value(), m_Specific(LHS
)))) {
2874 if (Pred
== ICmpInst::ICMP_UGE
)
2875 return getTrue(ITy
);
2876 if (Pred
== ICmpInst::ICMP_ULT
)
2877 return getFalse(ITy
);
2880 // 0 - (zext X) pred C
2881 if (!CmpInst::isUnsigned(Pred
) && match(LHS
, m_Neg(m_ZExt(m_Value())))) {
2882 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
)) {
2883 if (RHSC
->getValue().isStrictlyPositive()) {
2884 if (Pred
== ICmpInst::ICMP_SLT
)
2885 return ConstantInt::getTrue(RHSC
->getContext());
2886 if (Pred
== ICmpInst::ICMP_SGE
)
2887 return ConstantInt::getFalse(RHSC
->getContext());
2888 if (Pred
== ICmpInst::ICMP_EQ
)
2889 return ConstantInt::getFalse(RHSC
->getContext());
2890 if (Pred
== ICmpInst::ICMP_NE
)
2891 return ConstantInt::getTrue(RHSC
->getContext());
2893 if (RHSC
->getValue().isNonNegative()) {
2894 if (Pred
== ICmpInst::ICMP_SLE
)
2895 return ConstantInt::getTrue(RHSC
->getContext());
2896 if (Pred
== ICmpInst::ICMP_SGT
)
2897 return ConstantInt::getFalse(RHSC
->getContext());
2902 // icmp pred (urem X, Y), Y
2903 if (LBO
&& match(LBO
, m_URem(m_Value(), m_Specific(RHS
)))) {
2907 case ICmpInst::ICMP_SGT
:
2908 case ICmpInst::ICMP_SGE
: {
2909 KnownBits Known
= computeKnownBits(RHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2910 if (!Known
.isNonNegative())
2914 case ICmpInst::ICMP_EQ
:
2915 case ICmpInst::ICMP_UGT
:
2916 case ICmpInst::ICMP_UGE
:
2917 return getFalse(ITy
);
2918 case ICmpInst::ICMP_SLT
:
2919 case ICmpInst::ICMP_SLE
: {
2920 KnownBits Known
= computeKnownBits(RHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2921 if (!Known
.isNonNegative())
2925 case ICmpInst::ICMP_NE
:
2926 case ICmpInst::ICMP_ULT
:
2927 case ICmpInst::ICMP_ULE
:
2928 return getTrue(ITy
);
2932 // icmp pred X, (urem Y, X)
2933 if (RBO
&& match(RBO
, m_URem(m_Value(), m_Specific(LHS
)))) {
2937 case ICmpInst::ICMP_SGT
:
2938 case ICmpInst::ICMP_SGE
: {
2939 KnownBits Known
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2940 if (!Known
.isNonNegative())
2944 case ICmpInst::ICMP_NE
:
2945 case ICmpInst::ICMP_UGT
:
2946 case ICmpInst::ICMP_UGE
:
2947 return getTrue(ITy
);
2948 case ICmpInst::ICMP_SLT
:
2949 case ICmpInst::ICMP_SLE
: {
2950 KnownBits Known
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2951 if (!Known
.isNonNegative())
2955 case ICmpInst::ICMP_EQ
:
2956 case ICmpInst::ICMP_ULT
:
2957 case ICmpInst::ICMP_ULE
:
2958 return getFalse(ITy
);
2964 if (LBO
&& (match(LBO
, m_LShr(m_Specific(RHS
), m_Value())) ||
2965 match(LBO
, m_UDiv(m_Specific(RHS
), m_Value())))) {
2966 // icmp pred (X op Y), X
2967 if (Pred
== ICmpInst::ICMP_UGT
)
2968 return getFalse(ITy
);
2969 if (Pred
== ICmpInst::ICMP_ULE
)
2970 return getTrue(ITy
);
2975 if (RBO
&& (match(RBO
, m_LShr(m_Specific(LHS
), m_Value())) ||
2976 match(RBO
, m_UDiv(m_Specific(LHS
), m_Value())))) {
2977 // icmp pred X, (X op Y)
2978 if (Pred
== ICmpInst::ICMP_ULT
)
2979 return getFalse(ITy
);
2980 if (Pred
== ICmpInst::ICMP_UGE
)
2981 return getTrue(ITy
);
2988 // where CI2 is a power of 2 and CI isn't
2989 if (auto *CI
= dyn_cast
<ConstantInt
>(RHS
)) {
2990 const APInt
*CI2Val
, *CIVal
= &CI
->getValue();
2991 if (LBO
&& match(LBO
, m_Shl(m_APInt(CI2Val
), m_Value())) &&
2992 CI2Val
->isPowerOf2()) {
2993 if (!CIVal
->isPowerOf2()) {
2994 // CI2 << X can equal zero in some circumstances,
2995 // this simplification is unsafe if CI is zero.
2997 // We know it is safe if:
2998 // - The shift is nsw, we can't shift out the one bit.
2999 // - The shift is nuw, we can't shift out the one bit.
3002 if (Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(LBO
)) ||
3003 Q
.IIQ
.hasNoUnsignedWrap(cast
<OverflowingBinaryOperator
>(LBO
)) ||
3004 CI2Val
->isOneValue() || !CI
->isZero()) {
3005 if (Pred
== ICmpInst::ICMP_EQ
)
3006 return ConstantInt::getFalse(RHS
->getContext());
3007 if (Pred
== ICmpInst::ICMP_NE
)
3008 return ConstantInt::getTrue(RHS
->getContext());
3011 if (CIVal
->isSignMask() && CI2Val
->isOneValue()) {
3012 if (Pred
== ICmpInst::ICMP_UGT
)
3013 return ConstantInt::getFalse(RHS
->getContext());
3014 if (Pred
== ICmpInst::ICMP_ULE
)
3015 return ConstantInt::getTrue(RHS
->getContext());
3020 if (MaxRecurse
&& LBO
&& RBO
&& LBO
->getOpcode() == RBO
->getOpcode() &&
3021 LBO
->getOperand(1) == RBO
->getOperand(1)) {
3022 switch (LBO
->getOpcode()) {
3025 case Instruction::UDiv
:
3026 case Instruction::LShr
:
3027 if (ICmpInst::isSigned(Pred
) || !Q
.IIQ
.isExact(LBO
) ||
3028 !Q
.IIQ
.isExact(RBO
))
3030 if (Value
*V
= SimplifyICmpInst(Pred
, LBO
->getOperand(0),
3031 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
3034 case Instruction::SDiv
:
3035 if (!ICmpInst::isEquality(Pred
) || !Q
.IIQ
.isExact(LBO
) ||
3036 !Q
.IIQ
.isExact(RBO
))
3038 if (Value
*V
= SimplifyICmpInst(Pred
, LBO
->getOperand(0),
3039 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
3042 case Instruction::AShr
:
3043 if (!Q
.IIQ
.isExact(LBO
) || !Q
.IIQ
.isExact(RBO
))
3045 if (Value
*V
= SimplifyICmpInst(Pred
, LBO
->getOperand(0),
3046 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
3049 case Instruction::Shl
: {
3050 bool NUW
= Q
.IIQ
.hasNoUnsignedWrap(LBO
) && Q
.IIQ
.hasNoUnsignedWrap(RBO
);
3051 bool NSW
= Q
.IIQ
.hasNoSignedWrap(LBO
) && Q
.IIQ
.hasNoSignedWrap(RBO
);
3054 if (!NSW
&& ICmpInst::isSigned(Pred
))
3056 if (Value
*V
= SimplifyICmpInst(Pred
, LBO
->getOperand(0),
3057 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
3066 static Value
*simplifyICmpWithAbsNabs(CmpInst::Predicate Pred
, Value
*Op0
,
3068 // We need a comparison with a constant.
3070 if (!match(Op1
, m_APInt(C
)))
3073 // matchSelectPattern returns the negation part of an abs pattern in SP1.
3074 // If the negate has an NSW flag, abs(INT_MIN) is undefined. Without that
3075 // constraint, we can't make a contiguous range for the result of abs.
3076 ICmpInst::Predicate AbsPred
= ICmpInst::BAD_ICMP_PREDICATE
;
3078 SelectPatternFlavor SPF
= matchSelectPattern(Op0
, SP0
, SP1
).Flavor
;
3079 if (SPF
== SelectPatternFlavor::SPF_ABS
&&
3080 cast
<Instruction
>(SP1
)->hasNoSignedWrap())
3081 // The result of abs(X) is >= 0 (with nsw).
3082 AbsPred
= ICmpInst::ICMP_SGE
;
3083 if (SPF
== SelectPatternFlavor::SPF_NABS
)
3084 // The result of -abs(X) is <= 0.
3085 AbsPred
= ICmpInst::ICMP_SLE
;
3087 if (AbsPred
== ICmpInst::BAD_ICMP_PREDICATE
)
3090 // If there is no intersection between abs/nabs and the range of this icmp,
3091 // the icmp must be false. If the abs/nabs range is a subset of the icmp
3092 // range, the icmp must be true.
3093 APInt Zero
= APInt::getNullValue(C
->getBitWidth());
3094 ConstantRange AbsRange
= ConstantRange::makeExactICmpRegion(AbsPred
, Zero
);
3095 ConstantRange CmpRange
= ConstantRange::makeExactICmpRegion(Pred
, *C
);
3096 if (AbsRange
.intersectWith(CmpRange
).isEmptySet())
3097 return getFalse(GetCompareTy(Op0
));
3098 if (CmpRange
.contains(AbsRange
))
3099 return getTrue(GetCompareTy(Op0
));
3104 /// Simplify integer comparisons where at least one operand of the compare
3105 /// matches an integer min/max idiom.
3106 static Value
*simplifyICmpWithMinMax(CmpInst::Predicate Pred
, Value
*LHS
,
3107 Value
*RHS
, const SimplifyQuery
&Q
,
3108 unsigned MaxRecurse
) {
3109 Type
*ITy
= GetCompareTy(LHS
); // The return type.
3111 CmpInst::Predicate P
= CmpInst::BAD_ICMP_PREDICATE
;
3112 CmpInst::Predicate EqP
; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3114 // Signed variants on "max(a,b)>=a -> true".
3115 if (match(LHS
, m_SMax(m_Value(A
), m_Value(B
))) && (A
== RHS
|| B
== RHS
)) {
3117 std::swap(A
, B
); // smax(A, B) pred A.
3118 EqP
= CmpInst::ICMP_SGE
; // "A == smax(A, B)" iff "A sge B".
3119 // We analyze this as smax(A, B) pred A.
3121 } else if (match(RHS
, m_SMax(m_Value(A
), m_Value(B
))) &&
3122 (A
== LHS
|| B
== LHS
)) {
3124 std::swap(A
, B
); // A pred smax(A, B).
3125 EqP
= CmpInst::ICMP_SGE
; // "A == smax(A, B)" iff "A sge B".
3126 // We analyze this as smax(A, B) swapped-pred A.
3127 P
= CmpInst::getSwappedPredicate(Pred
);
3128 } else if (match(LHS
, m_SMin(m_Value(A
), m_Value(B
))) &&
3129 (A
== RHS
|| B
== RHS
)) {
3131 std::swap(A
, B
); // smin(A, B) pred A.
3132 EqP
= CmpInst::ICMP_SLE
; // "A == smin(A, B)" iff "A sle B".
3133 // We analyze this as smax(-A, -B) swapped-pred -A.
3134 // Note that we do not need to actually form -A or -B thanks to EqP.
3135 P
= CmpInst::getSwappedPredicate(Pred
);
3136 } else if (match(RHS
, m_SMin(m_Value(A
), m_Value(B
))) &&
3137 (A
== LHS
|| B
== LHS
)) {
3139 std::swap(A
, B
); // A pred smin(A, B).
3140 EqP
= CmpInst::ICMP_SLE
; // "A == smin(A, B)" iff "A sle B".
3141 // We analyze this as smax(-A, -B) pred -A.
3142 // Note that we do not need to actually form -A or -B thanks to EqP.
3145 if (P
!= CmpInst::BAD_ICMP_PREDICATE
) {
3146 // Cases correspond to "max(A, B) p A".
3150 case CmpInst::ICMP_EQ
:
3151 case CmpInst::ICMP_SLE
:
3152 // Equivalent to "A EqP B". This may be the same as the condition tested
3153 // in the max/min; if so, we can just return that.
3154 if (Value
*V
= ExtractEquivalentCondition(LHS
, EqP
, A
, B
))
3156 if (Value
*V
= ExtractEquivalentCondition(RHS
, EqP
, A
, B
))
3158 // Otherwise, see if "A EqP B" simplifies.
3160 if (Value
*V
= SimplifyICmpInst(EqP
, A
, B
, Q
, MaxRecurse
- 1))
3163 case CmpInst::ICMP_NE
:
3164 case CmpInst::ICMP_SGT
: {
3165 CmpInst::Predicate InvEqP
= CmpInst::getInversePredicate(EqP
);
3166 // Equivalent to "A InvEqP B". This may be the same as the condition
3167 // tested in the max/min; if so, we can just return that.
3168 if (Value
*V
= ExtractEquivalentCondition(LHS
, InvEqP
, A
, B
))
3170 if (Value
*V
= ExtractEquivalentCondition(RHS
, InvEqP
, A
, B
))
3172 // Otherwise, see if "A InvEqP B" simplifies.
3174 if (Value
*V
= SimplifyICmpInst(InvEqP
, A
, B
, Q
, MaxRecurse
- 1))
3178 case CmpInst::ICMP_SGE
:
3180 return getTrue(ITy
);
3181 case CmpInst::ICMP_SLT
:
3183 return getFalse(ITy
);
3187 // Unsigned variants on "max(a,b)>=a -> true".
3188 P
= CmpInst::BAD_ICMP_PREDICATE
;
3189 if (match(LHS
, m_UMax(m_Value(A
), m_Value(B
))) && (A
== RHS
|| B
== RHS
)) {
3191 std::swap(A
, B
); // umax(A, B) pred A.
3192 EqP
= CmpInst::ICMP_UGE
; // "A == umax(A, B)" iff "A uge B".
3193 // We analyze this as umax(A, B) pred A.
3195 } else if (match(RHS
, m_UMax(m_Value(A
), m_Value(B
))) &&
3196 (A
== LHS
|| B
== LHS
)) {
3198 std::swap(A
, B
); // A pred umax(A, B).
3199 EqP
= CmpInst::ICMP_UGE
; // "A == umax(A, B)" iff "A uge B".
3200 // We analyze this as umax(A, B) swapped-pred A.
3201 P
= CmpInst::getSwappedPredicate(Pred
);
3202 } else if (match(LHS
, m_UMin(m_Value(A
), m_Value(B
))) &&
3203 (A
== RHS
|| B
== RHS
)) {
3205 std::swap(A
, B
); // umin(A, B) pred A.
3206 EqP
= CmpInst::ICMP_ULE
; // "A == umin(A, B)" iff "A ule B".
3207 // We analyze this as umax(-A, -B) swapped-pred -A.
3208 // Note that we do not need to actually form -A or -B thanks to EqP.
3209 P
= CmpInst::getSwappedPredicate(Pred
);
3210 } else if (match(RHS
, m_UMin(m_Value(A
), m_Value(B
))) &&
3211 (A
== LHS
|| B
== LHS
)) {
3213 std::swap(A
, B
); // A pred umin(A, B).
3214 EqP
= CmpInst::ICMP_ULE
; // "A == umin(A, B)" iff "A ule B".
3215 // We analyze this as umax(-A, -B) pred -A.
3216 // Note that we do not need to actually form -A or -B thanks to EqP.
3219 if (P
!= CmpInst::BAD_ICMP_PREDICATE
) {
3220 // Cases correspond to "max(A, B) p A".
3224 case CmpInst::ICMP_EQ
:
3225 case CmpInst::ICMP_ULE
:
3226 // Equivalent to "A EqP B". This may be the same as the condition tested
3227 // in the max/min; if so, we can just return that.
3228 if (Value
*V
= ExtractEquivalentCondition(LHS
, EqP
, A
, B
))
3230 if (Value
*V
= ExtractEquivalentCondition(RHS
, EqP
, A
, B
))
3232 // Otherwise, see if "A EqP B" simplifies.
3234 if (Value
*V
= SimplifyICmpInst(EqP
, A
, B
, Q
, MaxRecurse
- 1))
3237 case CmpInst::ICMP_NE
:
3238 case CmpInst::ICMP_UGT
: {
3239 CmpInst::Predicate InvEqP
= CmpInst::getInversePredicate(EqP
);
3240 // Equivalent to "A InvEqP B". This may be the same as the condition
3241 // tested in the max/min; if so, we can just return that.
3242 if (Value
*V
= ExtractEquivalentCondition(LHS
, InvEqP
, A
, B
))
3244 if (Value
*V
= ExtractEquivalentCondition(RHS
, InvEqP
, A
, B
))
3246 // Otherwise, see if "A InvEqP B" simplifies.
3248 if (Value
*V
= SimplifyICmpInst(InvEqP
, A
, B
, Q
, MaxRecurse
- 1))
3252 case CmpInst::ICMP_UGE
:
3254 return getTrue(ITy
);
3255 case CmpInst::ICMP_ULT
:
3257 return getFalse(ITy
);
3261 // Variants on "max(x,y) >= min(x,z)".
3263 if (match(LHS
, m_SMax(m_Value(A
), m_Value(B
))) &&
3264 match(RHS
, m_SMin(m_Value(C
), m_Value(D
))) &&
3265 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
3266 // max(x, ?) pred min(x, ?).
3267 if (Pred
== CmpInst::ICMP_SGE
)
3269 return getTrue(ITy
);
3270 if (Pred
== CmpInst::ICMP_SLT
)
3272 return getFalse(ITy
);
3273 } else if (match(LHS
, m_SMin(m_Value(A
), m_Value(B
))) &&
3274 match(RHS
, m_SMax(m_Value(C
), m_Value(D
))) &&
3275 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
3276 // min(x, ?) pred max(x, ?).
3277 if (Pred
== CmpInst::ICMP_SLE
)
3279 return getTrue(ITy
);
3280 if (Pred
== CmpInst::ICMP_SGT
)
3282 return getFalse(ITy
);
3283 } else if (match(LHS
, m_UMax(m_Value(A
), m_Value(B
))) &&
3284 match(RHS
, m_UMin(m_Value(C
), m_Value(D
))) &&
3285 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
3286 // max(x, ?) pred min(x, ?).
3287 if (Pred
== CmpInst::ICMP_UGE
)
3289 return getTrue(ITy
);
3290 if (Pred
== CmpInst::ICMP_ULT
)
3292 return getFalse(ITy
);
3293 } else if (match(LHS
, m_UMin(m_Value(A
), m_Value(B
))) &&
3294 match(RHS
, m_UMax(m_Value(C
), m_Value(D
))) &&
3295 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
3296 // min(x, ?) pred max(x, ?).
3297 if (Pred
== CmpInst::ICMP_ULE
)
3299 return getTrue(ITy
);
3300 if (Pred
== CmpInst::ICMP_UGT
)
3302 return getFalse(ITy
);
3308 /// Given operands for an ICmpInst, see if we can fold the result.
3309 /// If not, this returns null.
3310 static Value
*SimplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
3311 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
3312 CmpInst::Predicate Pred
= (CmpInst::Predicate
)Predicate
;
3313 assert(CmpInst::isIntPredicate(Pred
) && "Not an integer compare!");
3315 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
)) {
3316 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
3317 return ConstantFoldCompareInstOperands(Pred
, CLHS
, CRHS
, Q
.DL
, Q
.TLI
);
3319 // If we have a constant, make sure it is on the RHS.
3320 std::swap(LHS
, RHS
);
3321 Pred
= CmpInst::getSwappedPredicate(Pred
);
3324 Type
*ITy
= GetCompareTy(LHS
); // The return type.
3326 // icmp X, X -> true/false
3327 // icmp X, undef -> true/false because undef could be X.
3328 if (LHS
== RHS
|| isa
<UndefValue
>(RHS
))
3329 return ConstantInt::get(ITy
, CmpInst::isTrueWhenEqual(Pred
));
3331 if (Value
*V
= simplifyICmpOfBools(Pred
, LHS
, RHS
, Q
))
3334 if (Value
*V
= simplifyICmpWithZero(Pred
, LHS
, RHS
, Q
))
3337 if (Value
*V
= simplifyICmpWithConstant(Pred
, LHS
, RHS
, Q
.IIQ
))
3340 // If both operands have range metadata, use the metadata
3341 // to simplify the comparison.
3342 if (isa
<Instruction
>(RHS
) && isa
<Instruction
>(LHS
)) {
3343 auto RHS_Instr
= cast
<Instruction
>(RHS
);
3344 auto LHS_Instr
= cast
<Instruction
>(LHS
);
3346 if (Q
.IIQ
.getMetadata(RHS_Instr
, LLVMContext::MD_range
) &&
3347 Q
.IIQ
.getMetadata(LHS_Instr
, LLVMContext::MD_range
)) {
3348 auto RHS_CR
= getConstantRangeFromMetadata(
3349 *RHS_Instr
->getMetadata(LLVMContext::MD_range
));
3350 auto LHS_CR
= getConstantRangeFromMetadata(
3351 *LHS_Instr
->getMetadata(LLVMContext::MD_range
));
3353 auto Satisfied_CR
= ConstantRange::makeSatisfyingICmpRegion(Pred
, RHS_CR
);
3354 if (Satisfied_CR
.contains(LHS_CR
))
3355 return ConstantInt::getTrue(RHS
->getContext());
3357 auto InversedSatisfied_CR
= ConstantRange::makeSatisfyingICmpRegion(
3358 CmpInst::getInversePredicate(Pred
), RHS_CR
);
3359 if (InversedSatisfied_CR
.contains(LHS_CR
))
3360 return ConstantInt::getFalse(RHS
->getContext());
3364 // Compare of cast, for example (zext X) != 0 -> X != 0
3365 if (isa
<CastInst
>(LHS
) && (isa
<Constant
>(RHS
) || isa
<CastInst
>(RHS
))) {
3366 Instruction
*LI
= cast
<CastInst
>(LHS
);
3367 Value
*SrcOp
= LI
->getOperand(0);
3368 Type
*SrcTy
= SrcOp
->getType();
3369 Type
*DstTy
= LI
->getType();
3371 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3372 // if the integer type is the same size as the pointer type.
3373 if (MaxRecurse
&& isa
<PtrToIntInst
>(LI
) &&
3374 Q
.DL
.getTypeSizeInBits(SrcTy
) == DstTy
->getPrimitiveSizeInBits()) {
3375 if (Constant
*RHSC
= dyn_cast
<Constant
>(RHS
)) {
3376 // Transfer the cast to the constant.
3377 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
,
3378 ConstantExpr::getIntToPtr(RHSC
, SrcTy
),
3381 } else if (PtrToIntInst
*RI
= dyn_cast
<PtrToIntInst
>(RHS
)) {
3382 if (RI
->getOperand(0)->getType() == SrcTy
)
3383 // Compare without the cast.
3384 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
, RI
->getOperand(0),
3390 if (isa
<ZExtInst
>(LHS
)) {
3391 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3393 if (ZExtInst
*RI
= dyn_cast
<ZExtInst
>(RHS
)) {
3394 if (MaxRecurse
&& SrcTy
== RI
->getOperand(0)->getType())
3395 // Compare X and Y. Note that signed predicates become unsigned.
3396 if (Value
*V
= SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred
),
3397 SrcOp
, RI
->getOperand(0), Q
,
3401 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3402 // too. If not, then try to deduce the result of the comparison.
3403 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
)) {
3404 // Compute the constant that would happen if we truncated to SrcTy then
3405 // reextended to DstTy.
3406 Constant
*Trunc
= ConstantExpr::getTrunc(CI
, SrcTy
);
3407 Constant
*RExt
= ConstantExpr::getCast(CastInst::ZExt
, Trunc
, DstTy
);
3409 // If the re-extended constant didn't change then this is effectively
3410 // also a case of comparing two zero-extended values.
3411 if (RExt
== CI
&& MaxRecurse
)
3412 if (Value
*V
= SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred
),
3413 SrcOp
, Trunc
, Q
, MaxRecurse
-1))
3416 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3417 // there. Use this to work out the result of the comparison.
3420 default: llvm_unreachable("Unknown ICmp predicate!");
3422 case ICmpInst::ICMP_EQ
:
3423 case ICmpInst::ICMP_UGT
:
3424 case ICmpInst::ICMP_UGE
:
3425 return ConstantInt::getFalse(CI
->getContext());
3427 case ICmpInst::ICMP_NE
:
3428 case ICmpInst::ICMP_ULT
:
3429 case ICmpInst::ICMP_ULE
:
3430 return ConstantInt::getTrue(CI
->getContext());
3432 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
3433 // is non-negative then LHS <s RHS.
3434 case ICmpInst::ICMP_SGT
:
3435 case ICmpInst::ICMP_SGE
:
3436 return CI
->getValue().isNegative() ?
3437 ConstantInt::getTrue(CI
->getContext()) :
3438 ConstantInt::getFalse(CI
->getContext());
3440 case ICmpInst::ICMP_SLT
:
3441 case ICmpInst::ICMP_SLE
:
3442 return CI
->getValue().isNegative() ?
3443 ConstantInt::getFalse(CI
->getContext()) :
3444 ConstantInt::getTrue(CI
->getContext());
3450 if (isa
<SExtInst
>(LHS
)) {
3451 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3453 if (SExtInst
*RI
= dyn_cast
<SExtInst
>(RHS
)) {
3454 if (MaxRecurse
&& SrcTy
== RI
->getOperand(0)->getType())
3455 // Compare X and Y. Note that the predicate does not change.
3456 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
, RI
->getOperand(0),
3460 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3461 // too. If not, then try to deduce the result of the comparison.
3462 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(RHS
)) {
3463 // Compute the constant that would happen if we truncated to SrcTy then
3464 // reextended to DstTy.
3465 Constant
*Trunc
= ConstantExpr::getTrunc(CI
, SrcTy
);
3466 Constant
*RExt
= ConstantExpr::getCast(CastInst::SExt
, Trunc
, DstTy
);
3468 // If the re-extended constant didn't change then this is effectively
3469 // also a case of comparing two sign-extended values.
3470 if (RExt
== CI
&& MaxRecurse
)
3471 if (Value
*V
= SimplifyICmpInst(Pred
, SrcOp
, Trunc
, Q
, MaxRecurse
-1))
3474 // Otherwise the upper bits of LHS are all equal, while RHS has varying
3475 // bits there. Use this to work out the result of the comparison.
3478 default: llvm_unreachable("Unknown ICmp predicate!");
3479 case ICmpInst::ICMP_EQ
:
3480 return ConstantInt::getFalse(CI
->getContext());
3481 case ICmpInst::ICMP_NE
:
3482 return ConstantInt::getTrue(CI
->getContext());
3484 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
3486 case ICmpInst::ICMP_SGT
:
3487 case ICmpInst::ICMP_SGE
:
3488 return CI
->getValue().isNegative() ?
3489 ConstantInt::getTrue(CI
->getContext()) :
3490 ConstantInt::getFalse(CI
->getContext());
3491 case ICmpInst::ICMP_SLT
:
3492 case ICmpInst::ICMP_SLE
:
3493 return CI
->getValue().isNegative() ?
3494 ConstantInt::getFalse(CI
->getContext()) :
3495 ConstantInt::getTrue(CI
->getContext());
3497 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
3499 case ICmpInst::ICMP_UGT
:
3500 case ICmpInst::ICMP_UGE
:
3501 // Comparison is true iff the LHS <s 0.
3503 if (Value
*V
= SimplifyICmpInst(ICmpInst::ICMP_SLT
, SrcOp
,
3504 Constant::getNullValue(SrcTy
),
3508 case ICmpInst::ICMP_ULT
:
3509 case ICmpInst::ICMP_ULE
:
3510 // Comparison is true iff the LHS >=s 0.
3512 if (Value
*V
= SimplifyICmpInst(ICmpInst::ICMP_SGE
, SrcOp
,
3513 Constant::getNullValue(SrcTy
),
3523 // icmp eq|ne X, Y -> false|true if X != Y
3524 if (ICmpInst::isEquality(Pred
) &&
3525 isKnownNonEqual(LHS
, RHS
, Q
.DL
, Q
.AC
, Q
.CxtI
, Q
.DT
, Q
.IIQ
.UseInstrInfo
)) {
3526 return Pred
== ICmpInst::ICMP_NE
? getTrue(ITy
) : getFalse(ITy
);
3529 if (Value
*V
= simplifyICmpWithBinOp(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3532 if (Value
*V
= simplifyICmpWithMinMax(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3535 if (Value
*V
= simplifyICmpWithAbsNabs(Pred
, LHS
, RHS
))
3538 // Simplify comparisons of related pointers using a powerful, recursive
3539 // GEP-walk when we have target data available..
3540 if (LHS
->getType()->isPointerTy())
3541 if (auto *C
= computePointerICmp(Q
.DL
, Q
.TLI
, Q
.DT
, Pred
, Q
.AC
, Q
.CxtI
,
3544 if (auto *CLHS
= dyn_cast
<PtrToIntOperator
>(LHS
))
3545 if (auto *CRHS
= dyn_cast
<PtrToIntOperator
>(RHS
))
3546 if (Q
.DL
.getTypeSizeInBits(CLHS
->getPointerOperandType()) ==
3547 Q
.DL
.getTypeSizeInBits(CLHS
->getType()) &&
3548 Q
.DL
.getTypeSizeInBits(CRHS
->getPointerOperandType()) ==
3549 Q
.DL
.getTypeSizeInBits(CRHS
->getType()))
3550 if (auto *C
= computePointerICmp(Q
.DL
, Q
.TLI
, Q
.DT
, Pred
, Q
.AC
, Q
.CxtI
,
3551 Q
.IIQ
, CLHS
->getPointerOperand(),
3552 CRHS
->getPointerOperand()))
3555 if (GetElementPtrInst
*GLHS
= dyn_cast
<GetElementPtrInst
>(LHS
)) {
3556 if (GEPOperator
*GRHS
= dyn_cast
<GEPOperator
>(RHS
)) {
3557 if (GLHS
->getPointerOperand() == GRHS
->getPointerOperand() &&
3558 GLHS
->hasAllConstantIndices() && GRHS
->hasAllConstantIndices() &&
3559 (ICmpInst::isEquality(Pred
) ||
3560 (GLHS
->isInBounds() && GRHS
->isInBounds() &&
3561 Pred
== ICmpInst::getSignedPredicate(Pred
)))) {
3562 // The bases are equal and the indices are constant. Build a constant
3563 // expression GEP with the same indices and a null base pointer to see
3564 // what constant folding can make out of it.
3565 Constant
*Null
= Constant::getNullValue(GLHS
->getPointerOperandType());
3566 SmallVector
<Value
*, 4> IndicesLHS(GLHS
->idx_begin(), GLHS
->idx_end());
3567 Constant
*NewLHS
= ConstantExpr::getGetElementPtr(
3568 GLHS
->getSourceElementType(), Null
, IndicesLHS
);
3570 SmallVector
<Value
*, 4> IndicesRHS(GRHS
->idx_begin(), GRHS
->idx_end());
3571 Constant
*NewRHS
= ConstantExpr::getGetElementPtr(
3572 GLHS
->getSourceElementType(), Null
, IndicesRHS
);
3573 return ConstantExpr::getICmp(Pred
, NewLHS
, NewRHS
);
3578 // If the comparison is with the result of a select instruction, check whether
3579 // comparing with either branch of the select always yields the same value.
3580 if (isa
<SelectInst
>(LHS
) || isa
<SelectInst
>(RHS
))
3581 if (Value
*V
= ThreadCmpOverSelect(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3584 // If the comparison is with the result of a phi instruction, check whether
3585 // doing the compare with each incoming phi value yields a common result.
3586 if (isa
<PHINode
>(LHS
) || isa
<PHINode
>(RHS
))
3587 if (Value
*V
= ThreadCmpOverPHI(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3593 Value
*llvm::SimplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
3594 const SimplifyQuery
&Q
) {
3595 return ::SimplifyICmpInst(Predicate
, LHS
, RHS
, Q
, RecursionLimit
);
3598 /// Given operands for an FCmpInst, see if we can fold the result.
3599 /// If not, this returns null.
3600 static Value
*SimplifyFCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
3601 FastMathFlags FMF
, const SimplifyQuery
&Q
,
3602 unsigned MaxRecurse
) {
3603 CmpInst::Predicate Pred
= (CmpInst::Predicate
)Predicate
;
3604 assert(CmpInst::isFPPredicate(Pred
) && "Not an FP compare!");
3606 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
)) {
3607 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
3608 return ConstantFoldCompareInstOperands(Pred
, CLHS
, CRHS
, Q
.DL
, Q
.TLI
);
3610 // If we have a constant, make sure it is on the RHS.
3611 std::swap(LHS
, RHS
);
3612 Pred
= CmpInst::getSwappedPredicate(Pred
);
3615 // Fold trivial predicates.
3616 Type
*RetTy
= GetCompareTy(LHS
);
3617 if (Pred
== FCmpInst::FCMP_FALSE
)
3618 return getFalse(RetTy
);
3619 if (Pred
== FCmpInst::FCMP_TRUE
)
3620 return getTrue(RetTy
);
3622 // Fold (un)ordered comparison if we can determine there are no NaNs.
3623 if (Pred
== FCmpInst::FCMP_UNO
|| Pred
== FCmpInst::FCMP_ORD
)
3625 (isKnownNeverNaN(LHS
, Q
.TLI
) && isKnownNeverNaN(RHS
, Q
.TLI
)))
3626 return ConstantInt::get(RetTy
, Pred
== FCmpInst::FCMP_ORD
);
3628 // NaN is unordered; NaN is not ordered.
3629 assert((FCmpInst::isOrdered(Pred
) || FCmpInst::isUnordered(Pred
)) &&
3630 "Comparison must be either ordered or unordered");
3631 if (match(RHS
, m_NaN()))
3632 return ConstantInt::get(RetTy
, CmpInst::isUnordered(Pred
));
3634 // fcmp pred x, undef and fcmp pred undef, x
3635 // fold to true if unordered, false if ordered
3636 if (isa
<UndefValue
>(LHS
) || isa
<UndefValue
>(RHS
)) {
3637 // Choosing NaN for the undef will always make unordered comparison succeed
3638 // and ordered comparison fail.
3639 return ConstantInt::get(RetTy
, CmpInst::isUnordered(Pred
));
3642 // fcmp x,x -> true/false. Not all compares are foldable.
3644 if (CmpInst::isTrueWhenEqual(Pred
))
3645 return getTrue(RetTy
);
3646 if (CmpInst::isFalseWhenEqual(Pred
))
3647 return getFalse(RetTy
);
3650 // Handle fcmp with constant RHS.
3652 if (match(RHS
, m_APFloat(C
))) {
3653 // Check whether the constant is an infinity.
3654 if (C
->isInfinity()) {
3655 if (C
->isNegative()) {
3657 case FCmpInst::FCMP_OLT
:
3658 // No value is ordered and less than negative infinity.
3659 return getFalse(RetTy
);
3660 case FCmpInst::FCMP_UGE
:
3661 // All values are unordered with or at least negative infinity.
3662 return getTrue(RetTy
);
3668 case FCmpInst::FCMP_OGT
:
3669 // No value is ordered and greater than infinity.
3670 return getFalse(RetTy
);
3671 case FCmpInst::FCMP_ULE
:
3672 // All values are unordered with and at most infinity.
3673 return getTrue(RetTy
);
3681 case FCmpInst::FCMP_OGE
:
3682 if (FMF
.noNaNs() && CannotBeOrderedLessThanZero(LHS
, Q
.TLI
))
3683 return getTrue(RetTy
);
3685 case FCmpInst::FCMP_UGE
:
3686 if (CannotBeOrderedLessThanZero(LHS
, Q
.TLI
))
3687 return getTrue(RetTy
);
3689 case FCmpInst::FCMP_ULT
:
3690 if (FMF
.noNaNs() && CannotBeOrderedLessThanZero(LHS
, Q
.TLI
))
3691 return getFalse(RetTy
);
3693 case FCmpInst::FCMP_OLT
:
3694 if (CannotBeOrderedLessThanZero(LHS
, Q
.TLI
))
3695 return getFalse(RetTy
);
3700 } else if (C
->isNegative()) {
3701 assert(!C
->isNaN() && "Unexpected NaN constant!");
3702 // TODO: We can catch more cases by using a range check rather than
3703 // relying on CannotBeOrderedLessThanZero.
3705 case FCmpInst::FCMP_UGE
:
3706 case FCmpInst::FCMP_UGT
:
3707 case FCmpInst::FCMP_UNE
:
3708 // (X >= 0) implies (X > C) when (C < 0)
3709 if (CannotBeOrderedLessThanZero(LHS
, Q
.TLI
))
3710 return getTrue(RetTy
);
3712 case FCmpInst::FCMP_OEQ
:
3713 case FCmpInst::FCMP_OLE
:
3714 case FCmpInst::FCMP_OLT
:
3715 // (X >= 0) implies !(X < C) when (C < 0)
3716 if (CannotBeOrderedLessThanZero(LHS
, Q
.TLI
))
3717 return getFalse(RetTy
);
3725 // If the comparison is with the result of a select instruction, check whether
3726 // comparing with either branch of the select always yields the same value.
3727 if (isa
<SelectInst
>(LHS
) || isa
<SelectInst
>(RHS
))
3728 if (Value
*V
= ThreadCmpOverSelect(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3731 // If the comparison is with the result of a phi instruction, check whether
3732 // doing the compare with each incoming phi value yields a common result.
3733 if (isa
<PHINode
>(LHS
) || isa
<PHINode
>(RHS
))
3734 if (Value
*V
= ThreadCmpOverPHI(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
3740 Value
*llvm::SimplifyFCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
3741 FastMathFlags FMF
, const SimplifyQuery
&Q
) {
3742 return ::SimplifyFCmpInst(Predicate
, LHS
, RHS
, FMF
, Q
, RecursionLimit
);
3745 /// See if V simplifies when its operand Op is replaced with RepOp.
3746 static const Value
*SimplifyWithOpReplaced(Value
*V
, Value
*Op
, Value
*RepOp
,
3747 const SimplifyQuery
&Q
,
3748 unsigned MaxRecurse
) {
3749 // Trivial replacement.
3753 // We cannot replace a constant, and shouldn't even try.
3754 if (isa
<Constant
>(Op
))
3757 auto *I
= dyn_cast
<Instruction
>(V
);
3761 // If this is a binary operator, try to simplify it with the replaced op.
3762 if (auto *B
= dyn_cast
<BinaryOperator
>(I
)) {
3764 // %cmp = icmp eq i32 %x, 2147483647
3765 // %add = add nsw i32 %x, 1
3766 // %sel = select i1 %cmp, i32 -2147483648, i32 %add
3768 // We can't replace %sel with %add unless we strip away the flags.
3769 if (isa
<OverflowingBinaryOperator
>(B
))
3770 if (Q
.IIQ
.hasNoSignedWrap(B
) || Q
.IIQ
.hasNoUnsignedWrap(B
))
3772 if (isa
<PossiblyExactOperator
>(B
) && Q
.IIQ
.isExact(B
))
3776 if (B
->getOperand(0) == Op
)
3777 return SimplifyBinOp(B
->getOpcode(), RepOp
, B
->getOperand(1), Q
,
3779 if (B
->getOperand(1) == Op
)
3780 return SimplifyBinOp(B
->getOpcode(), B
->getOperand(0), RepOp
, Q
,
3785 // Same for CmpInsts.
3786 if (CmpInst
*C
= dyn_cast
<CmpInst
>(I
)) {
3788 if (C
->getOperand(0) == Op
)
3789 return SimplifyCmpInst(C
->getPredicate(), RepOp
, C
->getOperand(1), Q
,
3791 if (C
->getOperand(1) == Op
)
3792 return SimplifyCmpInst(C
->getPredicate(), C
->getOperand(0), RepOp
, Q
,
3798 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
3800 SmallVector
<Value
*, 8> NewOps(GEP
->getNumOperands());
3801 transform(GEP
->operands(), NewOps
.begin(),
3802 [&](Value
*V
) { return V
== Op
? RepOp
: V
; });
3803 return SimplifyGEPInst(GEP
->getSourceElementType(), NewOps
, Q
,
3808 // TODO: We could hand off more cases to instsimplify here.
3810 // If all operands are constant after substituting Op for RepOp then we can
3811 // constant fold the instruction.
3812 if (Constant
*CRepOp
= dyn_cast
<Constant
>(RepOp
)) {
3813 // Build a list of all constant operands.
3814 SmallVector
<Constant
*, 8> ConstOps
;
3815 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
3816 if (I
->getOperand(i
) == Op
)
3817 ConstOps
.push_back(CRepOp
);
3818 else if (Constant
*COp
= dyn_cast
<Constant
>(I
->getOperand(i
)))
3819 ConstOps
.push_back(COp
);
3824 // All operands were constants, fold it.
3825 if (ConstOps
.size() == I
->getNumOperands()) {
3826 if (CmpInst
*C
= dyn_cast
<CmpInst
>(I
))
3827 return ConstantFoldCompareInstOperands(C
->getPredicate(), ConstOps
[0],
3828 ConstOps
[1], Q
.DL
, Q
.TLI
);
3830 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
3831 if (!LI
->isVolatile())
3832 return ConstantFoldLoadFromConstPtr(ConstOps
[0], LI
->getType(), Q
.DL
);
3834 return ConstantFoldInstOperands(I
, ConstOps
, Q
.DL
, Q
.TLI
);
3841 /// Try to simplify a select instruction when its condition operand is an
3842 /// integer comparison where one operand of the compare is a constant.
3843 static Value
*simplifySelectBitTest(Value
*TrueVal
, Value
*FalseVal
, Value
*X
,
3844 const APInt
*Y
, bool TrueWhenUnset
) {
3847 // (X & Y) == 0 ? X & ~Y : X --> X
3848 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
3849 if (FalseVal
== X
&& match(TrueVal
, m_And(m_Specific(X
), m_APInt(C
))) &&
3851 return TrueWhenUnset
? FalseVal
: TrueVal
;
3853 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
3854 // (X & Y) != 0 ? X : X & ~Y --> X
3855 if (TrueVal
== X
&& match(FalseVal
, m_And(m_Specific(X
), m_APInt(C
))) &&
3857 return TrueWhenUnset
? FalseVal
: TrueVal
;
3859 if (Y
->isPowerOf2()) {
3860 // (X & Y) == 0 ? X | Y : X --> X | Y
3861 // (X & Y) != 0 ? X | Y : X --> X
3862 if (FalseVal
== X
&& match(TrueVal
, m_Or(m_Specific(X
), m_APInt(C
))) &&
3864 return TrueWhenUnset
? TrueVal
: FalseVal
;
3866 // (X & Y) == 0 ? X : X | Y --> X
3867 // (X & Y) != 0 ? X : X | Y --> X | Y
3868 if (TrueVal
== X
&& match(FalseVal
, m_Or(m_Specific(X
), m_APInt(C
))) &&
3870 return TrueWhenUnset
? TrueVal
: FalseVal
;
3876 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3878 static Value
*simplifySelectWithFakeICmpEq(Value
*CmpLHS
, Value
*CmpRHS
,
3879 ICmpInst::Predicate Pred
,
3880 Value
*TrueVal
, Value
*FalseVal
) {
3883 if (!decomposeBitTestICmp(CmpLHS
, CmpRHS
, Pred
, X
, Mask
))
3886 return simplifySelectBitTest(TrueVal
, FalseVal
, X
, &Mask
,
3887 Pred
== ICmpInst::ICMP_EQ
);
3890 /// Try to simplify a select instruction when its condition operand is an
3891 /// integer comparison.
3892 static Value
*simplifySelectWithICmpCond(Value
*CondVal
, Value
*TrueVal
,
3893 Value
*FalseVal
, const SimplifyQuery
&Q
,
3894 unsigned MaxRecurse
) {
3895 ICmpInst::Predicate Pred
;
3896 Value
*CmpLHS
, *CmpRHS
;
3897 if (!match(CondVal
, m_ICmp(Pred
, m_Value(CmpLHS
), m_Value(CmpRHS
))))
3900 if (ICmpInst::isEquality(Pred
) && match(CmpRHS
, m_Zero())) {
3903 if (match(CmpLHS
, m_And(m_Value(X
), m_APInt(Y
))))
3904 if (Value
*V
= simplifySelectBitTest(TrueVal
, FalseVal
, X
, Y
,
3905 Pred
== ICmpInst::ICMP_EQ
))
3908 // Test for zero-shift-guard-ops around funnel shifts. These are used to
3909 // avoid UB from oversized shifts in raw IR rotate patterns, but the
3910 // intrinsics do not have that problem.
3912 auto isFsh
= m_CombineOr(m_Intrinsic
<Intrinsic::fshl
>(m_Value(X
), m_Value(),
3914 m_Intrinsic
<Intrinsic::fshr
>(m_Value(), m_Value(X
),
3916 // (ShAmt != 0) ? fshl(X, *, ShAmt) : X --> fshl(X, *, ShAmt)
3917 // (ShAmt != 0) ? fshr(*, X, ShAmt) : X --> fshr(*, X, ShAmt)
3918 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
3919 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
3920 if (match(TrueVal
, isFsh
) && FalseVal
== X
&& CmpLHS
== ShAmt
)
3921 return Pred
== ICmpInst::ICMP_NE
? TrueVal
: X
;
3923 // (ShAmt == 0) ? X : fshl(X, *, ShAmt) --> fshl(X, *, ShAmt)
3924 // (ShAmt == 0) ? X : fshr(*, X, ShAmt) --> fshr(*, X, ShAmt)
3925 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
3926 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
3927 if (match(FalseVal
, isFsh
) && TrueVal
== X
&& CmpLHS
== ShAmt
)
3928 return Pred
== ICmpInst::ICMP_EQ
? FalseVal
: X
;
3931 // Check for other compares that behave like bit test.
3932 if (Value
*V
= simplifySelectWithFakeICmpEq(CmpLHS
, CmpRHS
, Pred
,
3936 // If we have an equality comparison, then we know the value in one of the
3937 // arms of the select. See if substituting this value into the arm and
3938 // simplifying the result yields the same value as the other arm.
3939 if (Pred
== ICmpInst::ICMP_EQ
) {
3940 if (SimplifyWithOpReplaced(FalseVal
, CmpLHS
, CmpRHS
, Q
, MaxRecurse
) ==
3942 SimplifyWithOpReplaced(FalseVal
, CmpRHS
, CmpLHS
, Q
, MaxRecurse
) ==
3945 if (SimplifyWithOpReplaced(TrueVal
, CmpLHS
, CmpRHS
, Q
, MaxRecurse
) ==
3947 SimplifyWithOpReplaced(TrueVal
, CmpRHS
, CmpLHS
, Q
, MaxRecurse
) ==
3950 } else if (Pred
== ICmpInst::ICMP_NE
) {
3951 if (SimplifyWithOpReplaced(TrueVal
, CmpLHS
, CmpRHS
, Q
, MaxRecurse
) ==
3953 SimplifyWithOpReplaced(TrueVal
, CmpRHS
, CmpLHS
, Q
, MaxRecurse
) ==
3956 if (SimplifyWithOpReplaced(FalseVal
, CmpLHS
, CmpRHS
, Q
, MaxRecurse
) ==
3958 SimplifyWithOpReplaced(FalseVal
, CmpRHS
, CmpLHS
, Q
, MaxRecurse
) ==
3966 /// Try to simplify a select instruction when its condition operand is a
3967 /// floating-point comparison.
3968 static Value
*simplifySelectWithFCmp(Value
*Cond
, Value
*T
, Value
*F
) {
3969 FCmpInst::Predicate Pred
;
3970 if (!match(Cond
, m_FCmp(Pred
, m_Specific(T
), m_Specific(F
))) &&
3971 !match(Cond
, m_FCmp(Pred
, m_Specific(F
), m_Specific(T
))))
3974 // TODO: The transform may not be valid with -0.0. An incomplete way of
3975 // testing for that possibility is to check if at least one operand is a
3976 // non-zero constant.
3978 if ((match(T
, m_APFloat(C
)) && C
->isNonZero()) ||
3979 (match(F
, m_APFloat(C
)) && C
->isNonZero())) {
3980 // (T == F) ? T : F --> F
3981 // (F == T) ? T : F --> F
3982 if (Pred
== FCmpInst::FCMP_OEQ
)
3985 // (T != F) ? T : F --> T
3986 // (F != T) ? T : F --> T
3987 if (Pred
== FCmpInst::FCMP_UNE
)
3994 /// Given operands for a SelectInst, see if we can fold the result.
3995 /// If not, this returns null.
3996 static Value
*SimplifySelectInst(Value
*Cond
, Value
*TrueVal
, Value
*FalseVal
,
3997 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
3998 if (auto *CondC
= dyn_cast
<Constant
>(Cond
)) {
3999 if (auto *TrueC
= dyn_cast
<Constant
>(TrueVal
))
4000 if (auto *FalseC
= dyn_cast
<Constant
>(FalseVal
))
4001 return ConstantFoldSelectInstruction(CondC
, TrueC
, FalseC
);
4003 // select undef, X, Y -> X or Y
4004 if (isa
<UndefValue
>(CondC
))
4005 return isa
<Constant
>(FalseVal
) ? FalseVal
: TrueVal
;
4007 // TODO: Vector constants with undef elements don't simplify.
4009 // select true, X, Y -> X
4010 if (CondC
->isAllOnesValue())
4012 // select false, X, Y -> Y
4013 if (CondC
->isNullValue())
4017 // select ?, X, X -> X
4018 if (TrueVal
== FalseVal
)
4021 if (isa
<UndefValue
>(TrueVal
)) // select ?, undef, X -> X
4023 if (isa
<UndefValue
>(FalseVal
)) // select ?, X, undef -> X
4027 simplifySelectWithICmpCond(Cond
, TrueVal
, FalseVal
, Q
, MaxRecurse
))
4030 if (Value
*V
= simplifySelectWithFCmp(Cond
, TrueVal
, FalseVal
))
4033 if (Value
*V
= foldSelectWithBinaryOp(Cond
, TrueVal
, FalseVal
))
4036 Optional
<bool> Imp
= isImpliedByDomCondition(Cond
, Q
.CxtI
, Q
.DL
);
4038 return *Imp
? TrueVal
: FalseVal
;
4043 Value
*llvm::SimplifySelectInst(Value
*Cond
, Value
*TrueVal
, Value
*FalseVal
,
4044 const SimplifyQuery
&Q
) {
4045 return ::SimplifySelectInst(Cond
, TrueVal
, FalseVal
, Q
, RecursionLimit
);
4048 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4049 /// If not, this returns null.
4050 static Value
*SimplifyGEPInst(Type
*SrcTy
, ArrayRef
<Value
*> Ops
,
4051 const SimplifyQuery
&Q
, unsigned) {
4052 // The type of the GEP pointer operand.
4054 cast
<PointerType
>(Ops
[0]->getType()->getScalarType())->getAddressSpace();
4056 // getelementptr P -> P.
4057 if (Ops
.size() == 1)
4060 // Compute the (pointer) type returned by the GEP instruction.
4061 Type
*LastType
= GetElementPtrInst::getIndexedType(SrcTy
, Ops
.slice(1));
4062 Type
*GEPTy
= PointerType::get(LastType
, AS
);
4063 if (VectorType
*VT
= dyn_cast
<VectorType
>(Ops
[0]->getType()))
4064 GEPTy
= VectorType::get(GEPTy
, VT
->getNumElements());
4065 else if (VectorType
*VT
= dyn_cast
<VectorType
>(Ops
[1]->getType()))
4066 GEPTy
= VectorType::get(GEPTy
, VT
->getNumElements());
4068 if (isa
<UndefValue
>(Ops
[0]))
4069 return UndefValue::get(GEPTy
);
4071 if (Ops
.size() == 2) {
4072 // getelementptr P, 0 -> P.
4073 if (match(Ops
[1], m_Zero()) && Ops
[0]->getType() == GEPTy
)
4077 if (Ty
->isSized()) {
4080 uint64_t TyAllocSize
= Q
.DL
.getTypeAllocSize(Ty
);
4081 // getelementptr P, N -> P if P points to a type of zero size.
4082 if (TyAllocSize
== 0 && Ops
[0]->getType() == GEPTy
)
4085 // The following transforms are only safe if the ptrtoint cast
4086 // doesn't truncate the pointers.
4087 if (Ops
[1]->getType()->getScalarSizeInBits() ==
4088 Q
.DL
.getIndexSizeInBits(AS
)) {
4089 auto PtrToIntOrZero
= [GEPTy
](Value
*P
) -> Value
* {
4090 if (match(P
, m_Zero()))
4091 return Constant::getNullValue(GEPTy
);
4093 if (match(P
, m_PtrToInt(m_Value(Temp
))))
4094 if (Temp
->getType() == GEPTy
)
4099 // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4100 if (TyAllocSize
== 1 &&
4101 match(Ops
[1], m_Sub(m_Value(P
), m_PtrToInt(m_Specific(Ops
[0])))))
4102 if (Value
*R
= PtrToIntOrZero(P
))
4105 // getelementptr V, (ashr (sub P, V), C) -> Q
4106 // if P points to a type of size 1 << C.
4108 m_AShr(m_Sub(m_Value(P
), m_PtrToInt(m_Specific(Ops
[0]))),
4109 m_ConstantInt(C
))) &&
4110 TyAllocSize
== 1ULL << C
)
4111 if (Value
*R
= PtrToIntOrZero(P
))
4114 // getelementptr V, (sdiv (sub P, V), C) -> Q
4115 // if P points to a type of size C.
4117 m_SDiv(m_Sub(m_Value(P
), m_PtrToInt(m_Specific(Ops
[0]))),
4118 m_SpecificInt(TyAllocSize
))))
4119 if (Value
*R
= PtrToIntOrZero(P
))
4125 if (Q
.DL
.getTypeAllocSize(LastType
) == 1 &&
4126 all_of(Ops
.slice(1).drop_back(1),
4127 [](Value
*Idx
) { return match(Idx
, m_Zero()); })) {
4129 Q
.DL
.getIndexSizeInBits(Ops
[0]->getType()->getPointerAddressSpace());
4130 if (Q
.DL
.getTypeSizeInBits(Ops
.back()->getType()) == IdxWidth
) {
4131 APInt
BasePtrOffset(IdxWidth
, 0);
4132 Value
*StrippedBasePtr
=
4133 Ops
[0]->stripAndAccumulateInBoundsConstantOffsets(Q
.DL
,
4136 // gep (gep V, C), (sub 0, V) -> C
4137 if (match(Ops
.back(),
4138 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr
))))) {
4139 auto *CI
= ConstantInt::get(GEPTy
->getContext(), BasePtrOffset
);
4140 return ConstantExpr::getIntToPtr(CI
, GEPTy
);
4142 // gep (gep V, C), (xor V, -1) -> C-1
4143 if (match(Ops
.back(),
4144 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr
)), m_AllOnes()))) {
4145 auto *CI
= ConstantInt::get(GEPTy
->getContext(), BasePtrOffset
- 1);
4146 return ConstantExpr::getIntToPtr(CI
, GEPTy
);
4151 // Check to see if this is constant foldable.
4152 if (!all_of(Ops
, [](Value
*V
) { return isa
<Constant
>(V
); }))
4155 auto *CE
= ConstantExpr::getGetElementPtr(SrcTy
, cast
<Constant
>(Ops
[0]),
4157 if (auto *CEFolded
= ConstantFoldConstant(CE
, Q
.DL
))
4162 Value
*llvm::SimplifyGEPInst(Type
*SrcTy
, ArrayRef
<Value
*> Ops
,
4163 const SimplifyQuery
&Q
) {
4164 return ::SimplifyGEPInst(SrcTy
, Ops
, Q
, RecursionLimit
);
4167 /// Given operands for an InsertValueInst, see if we can fold the result.
4168 /// If not, this returns null.
4169 static Value
*SimplifyInsertValueInst(Value
*Agg
, Value
*Val
,
4170 ArrayRef
<unsigned> Idxs
, const SimplifyQuery
&Q
,
4172 if (Constant
*CAgg
= dyn_cast
<Constant
>(Agg
))
4173 if (Constant
*CVal
= dyn_cast
<Constant
>(Val
))
4174 return ConstantFoldInsertValueInstruction(CAgg
, CVal
, Idxs
);
4176 // insertvalue x, undef, n -> x
4177 if (match(Val
, m_Undef()))
4180 // insertvalue x, (extractvalue y, n), n
4181 if (ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(Val
))
4182 if (EV
->getAggregateOperand()->getType() == Agg
->getType() &&
4183 EV
->getIndices() == Idxs
) {
4184 // insertvalue undef, (extractvalue y, n), n -> y
4185 if (match(Agg
, m_Undef()))
4186 return EV
->getAggregateOperand();
4188 // insertvalue y, (extractvalue y, n), n -> y
4189 if (Agg
== EV
->getAggregateOperand())
4196 Value
*llvm::SimplifyInsertValueInst(Value
*Agg
, Value
*Val
,
4197 ArrayRef
<unsigned> Idxs
,
4198 const SimplifyQuery
&Q
) {
4199 return ::SimplifyInsertValueInst(Agg
, Val
, Idxs
, Q
, RecursionLimit
);
4202 Value
*llvm::SimplifyInsertElementInst(Value
*Vec
, Value
*Val
, Value
*Idx
,
4203 const SimplifyQuery
&Q
) {
4204 // Try to constant fold.
4205 auto *VecC
= dyn_cast
<Constant
>(Vec
);
4206 auto *ValC
= dyn_cast
<Constant
>(Val
);
4207 auto *IdxC
= dyn_cast
<Constant
>(Idx
);
4208 if (VecC
&& ValC
&& IdxC
)
4209 return ConstantFoldInsertElementInstruction(VecC
, ValC
, IdxC
);
4211 // Fold into undef if index is out of bounds.
4212 if (auto *CI
= dyn_cast
<ConstantInt
>(Idx
)) {
4213 uint64_t NumElements
= cast
<VectorType
>(Vec
->getType())->getNumElements();
4214 if (CI
->uge(NumElements
))
4215 return UndefValue::get(Vec
->getType());
4218 // If index is undef, it might be out of bounds (see above case)
4219 if (isa
<UndefValue
>(Idx
))
4220 return UndefValue::get(Vec
->getType());
4225 /// Given operands for an ExtractValueInst, see if we can fold the result.
4226 /// If not, this returns null.
4227 static Value
*SimplifyExtractValueInst(Value
*Agg
, ArrayRef
<unsigned> Idxs
,
4228 const SimplifyQuery
&, unsigned) {
4229 if (auto *CAgg
= dyn_cast
<Constant
>(Agg
))
4230 return ConstantFoldExtractValueInstruction(CAgg
, Idxs
);
4232 // extractvalue x, (insertvalue y, elt, n), n -> elt
4233 unsigned NumIdxs
= Idxs
.size();
4234 for (auto *IVI
= dyn_cast
<InsertValueInst
>(Agg
); IVI
!= nullptr;
4235 IVI
= dyn_cast
<InsertValueInst
>(IVI
->getAggregateOperand())) {
4236 ArrayRef
<unsigned> InsertValueIdxs
= IVI
->getIndices();
4237 unsigned NumInsertValueIdxs
= InsertValueIdxs
.size();
4238 unsigned NumCommonIdxs
= std::min(NumInsertValueIdxs
, NumIdxs
);
4239 if (InsertValueIdxs
.slice(0, NumCommonIdxs
) ==
4240 Idxs
.slice(0, NumCommonIdxs
)) {
4241 if (NumIdxs
== NumInsertValueIdxs
)
4242 return IVI
->getInsertedValueOperand();
4250 Value
*llvm::SimplifyExtractValueInst(Value
*Agg
, ArrayRef
<unsigned> Idxs
,
4251 const SimplifyQuery
&Q
) {
4252 return ::SimplifyExtractValueInst(Agg
, Idxs
, Q
, RecursionLimit
);
4255 /// Given operands for an ExtractElementInst, see if we can fold the result.
4256 /// If not, this returns null.
4257 static Value
*SimplifyExtractElementInst(Value
*Vec
, Value
*Idx
, const SimplifyQuery
&,
4259 if (auto *CVec
= dyn_cast
<Constant
>(Vec
)) {
4260 if (auto *CIdx
= dyn_cast
<Constant
>(Idx
))
4261 return ConstantFoldExtractElementInstruction(CVec
, CIdx
);
4263 // The index is not relevant if our vector is a splat.
4264 if (auto *Splat
= CVec
->getSplatValue())
4267 if (isa
<UndefValue
>(Vec
))
4268 return UndefValue::get(Vec
->getType()->getVectorElementType());
4271 // If extracting a specified index from the vector, see if we can recursively
4272 // find a previously computed scalar that was inserted into the vector.
4273 if (auto *IdxC
= dyn_cast
<ConstantInt
>(Idx
)) {
4274 if (IdxC
->getValue().uge(Vec
->getType()->getVectorNumElements()))
4275 // definitely out of bounds, thus undefined result
4276 return UndefValue::get(Vec
->getType()->getVectorElementType());
4277 if (Value
*Elt
= findScalarElement(Vec
, IdxC
->getZExtValue()))
4281 // An undef extract index can be arbitrarily chosen to be an out-of-range
4282 // index value, which would result in the instruction being undef.
4283 if (isa
<UndefValue
>(Idx
))
4284 return UndefValue::get(Vec
->getType()->getVectorElementType());
4289 Value
*llvm::SimplifyExtractElementInst(Value
*Vec
, Value
*Idx
,
4290 const SimplifyQuery
&Q
) {
4291 return ::SimplifyExtractElementInst(Vec
, Idx
, Q
, RecursionLimit
);
4294 /// See if we can fold the given phi. If not, returns null.
4295 static Value
*SimplifyPHINode(PHINode
*PN
, const SimplifyQuery
&Q
) {
4296 // If all of the PHI's incoming values are the same then replace the PHI node
4297 // with the common value.
4298 Value
*CommonValue
= nullptr;
4299 bool HasUndefInput
= false;
4300 for (Value
*Incoming
: PN
->incoming_values()) {
4301 // If the incoming value is the phi node itself, it can safely be skipped.
4302 if (Incoming
== PN
) continue;
4303 if (isa
<UndefValue
>(Incoming
)) {
4304 // Remember that we saw an undef value, but otherwise ignore them.
4305 HasUndefInput
= true;
4308 if (CommonValue
&& Incoming
!= CommonValue
)
4309 return nullptr; // Not the same, bail out.
4310 CommonValue
= Incoming
;
4313 // If CommonValue is null then all of the incoming values were either undef or
4314 // equal to the phi node itself.
4316 return UndefValue::get(PN
->getType());
4318 // If we have a PHI node like phi(X, undef, X), where X is defined by some
4319 // instruction, we cannot return X as the result of the PHI node unless it
4320 // dominates the PHI block.
4322 return valueDominatesPHI(CommonValue
, PN
, Q
.DT
) ? CommonValue
: nullptr;
4327 static Value
*SimplifyCastInst(unsigned CastOpc
, Value
*Op
,
4328 Type
*Ty
, const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4329 if (auto *C
= dyn_cast
<Constant
>(Op
))
4330 return ConstantFoldCastOperand(CastOpc
, C
, Ty
, Q
.DL
);
4332 if (auto *CI
= dyn_cast
<CastInst
>(Op
)) {
4333 auto *Src
= CI
->getOperand(0);
4334 Type
*SrcTy
= Src
->getType();
4335 Type
*MidTy
= CI
->getType();
4337 if (Src
->getType() == Ty
) {
4338 auto FirstOp
= static_cast<Instruction::CastOps
>(CI
->getOpcode());
4339 auto SecondOp
= static_cast<Instruction::CastOps
>(CastOpc
);
4341 SrcTy
->isPtrOrPtrVectorTy() ? Q
.DL
.getIntPtrType(SrcTy
) : nullptr;
4343 MidTy
->isPtrOrPtrVectorTy() ? Q
.DL
.getIntPtrType(MidTy
) : nullptr;
4345 DstTy
->isPtrOrPtrVectorTy() ? Q
.DL
.getIntPtrType(DstTy
) : nullptr;
4346 if (CastInst::isEliminableCastPair(FirstOp
, SecondOp
, SrcTy
, MidTy
, DstTy
,
4347 SrcIntPtrTy
, MidIntPtrTy
,
4348 DstIntPtrTy
) == Instruction::BitCast
)
4354 if (CastOpc
== Instruction::BitCast
)
4355 if (Op
->getType() == Ty
)
4361 Value
*llvm::SimplifyCastInst(unsigned CastOpc
, Value
*Op
, Type
*Ty
,
4362 const SimplifyQuery
&Q
) {
4363 return ::SimplifyCastInst(CastOpc
, Op
, Ty
, Q
, RecursionLimit
);
4366 /// For the given destination element of a shuffle, peek through shuffles to
4367 /// match a root vector source operand that contains that element in the same
4368 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4369 static Value
*foldIdentityShuffles(int DestElt
, Value
*Op0
, Value
*Op1
,
4370 int MaskVal
, Value
*RootVec
,
4371 unsigned MaxRecurse
) {
4375 // Bail out if any mask value is undefined. That kind of shuffle may be
4376 // simplified further based on demanded bits or other folds.
4380 // The mask value chooses which source operand we need to look at next.
4381 int InVecNumElts
= Op0
->getType()->getVectorNumElements();
4382 int RootElt
= MaskVal
;
4383 Value
*SourceOp
= Op0
;
4384 if (MaskVal
>= InVecNumElts
) {
4385 RootElt
= MaskVal
- InVecNumElts
;
4389 // If the source operand is a shuffle itself, look through it to find the
4390 // matching root vector.
4391 if (auto *SourceShuf
= dyn_cast
<ShuffleVectorInst
>(SourceOp
)) {
4392 return foldIdentityShuffles(
4393 DestElt
, SourceShuf
->getOperand(0), SourceShuf
->getOperand(1),
4394 SourceShuf
->getMaskValue(RootElt
), RootVec
, MaxRecurse
);
4397 // TODO: Look through bitcasts? What if the bitcast changes the vector element
4400 // The source operand is not a shuffle. Initialize the root vector value for
4401 // this shuffle if that has not been done yet.
4405 // Give up as soon as a source operand does not match the existing root value.
4406 if (RootVec
!= SourceOp
)
4409 // The element must be coming from the same lane in the source vector
4410 // (although it may have crossed lanes in intermediate shuffles).
4411 if (RootElt
!= DestElt
)
4417 static Value
*SimplifyShuffleVectorInst(Value
*Op0
, Value
*Op1
, Constant
*Mask
,
4418 Type
*RetTy
, const SimplifyQuery
&Q
,
4419 unsigned MaxRecurse
) {
4420 if (isa
<UndefValue
>(Mask
))
4421 return UndefValue::get(RetTy
);
4423 Type
*InVecTy
= Op0
->getType();
4424 unsigned MaskNumElts
= Mask
->getType()->getVectorNumElements();
4425 unsigned InVecNumElts
= InVecTy
->getVectorNumElements();
4427 SmallVector
<int, 32> Indices
;
4428 ShuffleVectorInst::getShuffleMask(Mask
, Indices
);
4429 assert(MaskNumElts
== Indices
.size() &&
4430 "Size of Indices not same as number of mask elements?");
4432 // Canonicalization: If mask does not select elements from an input vector,
4433 // replace that input vector with undef.
4434 bool MaskSelects0
= false, MaskSelects1
= false;
4435 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
4436 if (Indices
[i
] == -1)
4438 if ((unsigned)Indices
[i
] < InVecNumElts
)
4439 MaskSelects0
= true;
4441 MaskSelects1
= true;
4444 Op0
= UndefValue::get(InVecTy
);
4446 Op1
= UndefValue::get(InVecTy
);
4448 auto *Op0Const
= dyn_cast
<Constant
>(Op0
);
4449 auto *Op1Const
= dyn_cast
<Constant
>(Op1
);
4451 // If all operands are constant, constant fold the shuffle.
4452 if (Op0Const
&& Op1Const
)
4453 return ConstantFoldShuffleVectorInstruction(Op0Const
, Op1Const
, Mask
);
4455 // Canonicalization: if only one input vector is constant, it shall be the
4457 if (Op0Const
&& !Op1Const
) {
4458 std::swap(Op0
, Op1
);
4459 ShuffleVectorInst::commuteShuffleMask(Indices
, InVecNumElts
);
4462 // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4463 // value type is same as the input vectors' type.
4464 if (auto *OpShuf
= dyn_cast
<ShuffleVectorInst
>(Op0
))
4465 if (isa
<UndefValue
>(Op1
) && RetTy
== InVecTy
&&
4466 OpShuf
->getMask()->getSplatValue())
4469 // Don't fold a shuffle with undef mask elements. This may get folded in a
4470 // better way using demanded bits or other analysis.
4471 // TODO: Should we allow this?
4472 if (find(Indices
, -1) != Indices
.end())
4475 // Check if every element of this shuffle can be mapped back to the
4476 // corresponding element of a single root vector. If so, we don't need this
4477 // shuffle. This handles simple identity shuffles as well as chains of
4478 // shuffles that may widen/narrow and/or move elements across lanes and back.
4479 Value
*RootVec
= nullptr;
4480 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
4481 // Note that recursion is limited for each vector element, so if any element
4482 // exceeds the limit, this will fail to simplify.
4484 foldIdentityShuffles(i
, Op0
, Op1
, Indices
[i
], RootVec
, MaxRecurse
);
4486 // We can't replace a widening/narrowing shuffle with one of its operands.
4487 if (!RootVec
|| RootVec
->getType() != RetTy
)
4493 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4494 Value
*llvm::SimplifyShuffleVectorInst(Value
*Op0
, Value
*Op1
, Constant
*Mask
,
4495 Type
*RetTy
, const SimplifyQuery
&Q
) {
4496 return ::SimplifyShuffleVectorInst(Op0
, Op1
, Mask
, RetTy
, Q
, RecursionLimit
);
4499 static Constant
*propagateNaN(Constant
*In
) {
4500 // If the input is a vector with undef elements, just return a default NaN.
4502 return ConstantFP::getNaN(In
->getType());
4504 // Propagate the existing NaN constant when possible.
4505 // TODO: Should we quiet a signaling NaN?
4509 static Constant
*simplifyFPBinop(Value
*Op0
, Value
*Op1
) {
4510 if (isa
<UndefValue
>(Op0
) || isa
<UndefValue
>(Op1
))
4511 return ConstantFP::getNaN(Op0
->getType());
4513 if (match(Op0
, m_NaN()))
4514 return propagateNaN(cast
<Constant
>(Op0
));
4515 if (match(Op1
, m_NaN()))
4516 return propagateNaN(cast
<Constant
>(Op1
));
4521 /// Given operands for an FAdd, see if we can fold the result. If not, this
4523 static Value
*SimplifyFAddInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4524 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4525 if (Constant
*C
= foldOrCommuteConstant(Instruction::FAdd
, Op0
, Op1
, Q
))
4528 if (Constant
*C
= simplifyFPBinop(Op0
, Op1
))
4532 if (match(Op1
, m_NegZeroFP()))
4535 // fadd X, 0 ==> X, when we know X is not -0
4536 if (match(Op1
, m_PosZeroFP()) &&
4537 (FMF
.noSignedZeros() || CannotBeNegativeZero(Op0
, Q
.TLI
)))
4540 // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant)
4541 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4542 // Negative zeros are allowed because we always end up with positive zero:
4543 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4544 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4545 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4546 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4547 if (FMF
.noNaNs() && (match(Op0
, m_FSub(m_AnyZeroFP(), m_Specific(Op1
))) ||
4548 match(Op1
, m_FSub(m_AnyZeroFP(), m_Specific(Op0
)))))
4549 return ConstantFP::getNullValue(Op0
->getType());
4551 // (X - Y) + Y --> X
4552 // Y + (X - Y) --> X
4554 if (FMF
.noSignedZeros() && FMF
.allowReassoc() &&
4555 (match(Op0
, m_FSub(m_Value(X
), m_Specific(Op1
))) ||
4556 match(Op1
, m_FSub(m_Value(X
), m_Specific(Op0
)))))
4562 /// Given operands for an FSub, see if we can fold the result. If not, this
4564 static Value
*SimplifyFSubInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4565 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4566 if (Constant
*C
= foldOrCommuteConstant(Instruction::FSub
, Op0
, Op1
, Q
))
4569 if (Constant
*C
= simplifyFPBinop(Op0
, Op1
))
4573 if (match(Op1
, m_PosZeroFP()))
4576 // fsub X, -0 ==> X, when we know X is not -0
4577 if (match(Op1
, m_NegZeroFP()) &&
4578 (FMF
.noSignedZeros() || CannotBeNegativeZero(Op0
, Q
.TLI
)))
4581 // fsub -0.0, (fsub -0.0, X) ==> X
4583 if (match(Op0
, m_NegZeroFP()) &&
4584 match(Op1
, m_FSub(m_NegZeroFP(), m_Value(X
))))
4587 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4588 if (FMF
.noSignedZeros() && match(Op0
, m_AnyZeroFP()) &&
4589 match(Op1
, m_FSub(m_AnyZeroFP(), m_Value(X
))))
4592 // fsub nnan x, x ==> 0.0
4593 if (FMF
.noNaNs() && Op0
== Op1
)
4594 return Constant::getNullValue(Op0
->getType());
4596 // Y - (Y - X) --> X
4597 // (X + Y) - Y --> X
4598 if (FMF
.noSignedZeros() && FMF
.allowReassoc() &&
4599 (match(Op1
, m_FSub(m_Specific(Op0
), m_Value(X
))) ||
4600 match(Op0
, m_c_FAdd(m_Specific(Op1
), m_Value(X
)))))
4606 /// Given the operands for an FMul, see if we can fold the result
4607 static Value
*SimplifyFMulInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4608 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4609 if (Constant
*C
= foldOrCommuteConstant(Instruction::FMul
, Op0
, Op1
, Q
))
4612 if (Constant
*C
= simplifyFPBinop(Op0
, Op1
))
4615 // fmul X, 1.0 ==> X
4616 if (match(Op1
, m_FPOne()))
4619 // fmul nnan nsz X, 0 ==> 0
4620 if (FMF
.noNaNs() && FMF
.noSignedZeros() && match(Op1
, m_AnyZeroFP()))
4621 return ConstantFP::getNullValue(Op0
->getType());
4623 // sqrt(X) * sqrt(X) --> X, if we can:
4624 // 1. Remove the intermediate rounding (reassociate).
4625 // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4626 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4628 if (Op0
== Op1
&& match(Op0
, m_Intrinsic
<Intrinsic::sqrt
>(m_Value(X
))) &&
4629 FMF
.allowReassoc() && FMF
.noNaNs() && FMF
.noSignedZeros())
4635 Value
*llvm::SimplifyFAddInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4636 const SimplifyQuery
&Q
) {
4637 return ::SimplifyFAddInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
);
4641 Value
*llvm::SimplifyFSubInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4642 const SimplifyQuery
&Q
) {
4643 return ::SimplifyFSubInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
);
4646 Value
*llvm::SimplifyFMulInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4647 const SimplifyQuery
&Q
) {
4648 return ::SimplifyFMulInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
);
4651 static Value
*SimplifyFDivInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4652 const SimplifyQuery
&Q
, unsigned) {
4653 if (Constant
*C
= foldOrCommuteConstant(Instruction::FDiv
, Op0
, Op1
, Q
))
4656 if (Constant
*C
= simplifyFPBinop(Op0
, Op1
))
4660 if (match(Op1
, m_FPOne()))
4664 // Requires that NaNs are off (X could be zero) and signed zeroes are
4665 // ignored (X could be positive or negative, so the output sign is unknown).
4666 if (FMF
.noNaNs() && FMF
.noSignedZeros() && match(Op0
, m_AnyZeroFP()))
4667 return ConstantFP::getNullValue(Op0
->getType());
4670 // X / X -> 1.0 is legal when NaNs are ignored.
4671 // We can ignore infinities because INF/INF is NaN.
4673 return ConstantFP::get(Op0
->getType(), 1.0);
4675 // (X * Y) / Y --> X if we can reassociate to the above form.
4677 if (FMF
.allowReassoc() && match(Op0
, m_c_FMul(m_Value(X
), m_Specific(Op1
))))
4680 // -X / X -> -1.0 and
4681 // X / -X -> -1.0 are legal when NaNs are ignored.
4682 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4683 if (match(Op0
, m_FNegNSZ(m_Specific(Op1
))) ||
4684 match(Op1
, m_FNegNSZ(m_Specific(Op0
))))
4685 return ConstantFP::get(Op0
->getType(), -1.0);
4691 Value
*llvm::SimplifyFDivInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4692 const SimplifyQuery
&Q
) {
4693 return ::SimplifyFDivInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
);
4696 static Value
*SimplifyFRemInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4697 const SimplifyQuery
&Q
, unsigned) {
4698 if (Constant
*C
= foldOrCommuteConstant(Instruction::FRem
, Op0
, Op1
, Q
))
4701 if (Constant
*C
= simplifyFPBinop(Op0
, Op1
))
4704 // Unlike fdiv, the result of frem always matches the sign of the dividend.
4705 // The constant match may include undef elements in a vector, so return a full
4706 // zero constant as the result.
4709 if (match(Op0
, m_PosZeroFP()))
4710 return ConstantFP::getNullValue(Op0
->getType());
4712 if (match(Op0
, m_NegZeroFP()))
4713 return ConstantFP::getNegativeZero(Op0
->getType());
4719 Value
*llvm::SimplifyFRemInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
4720 const SimplifyQuery
&Q
) {
4721 return ::SimplifyFRemInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
);
4724 //=== Helper functions for higher up the class hierarchy.
4726 /// Given operands for a BinaryOperator, see if we can fold the result.
4727 /// If not, this returns null.
4728 static Value
*SimplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
4729 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4731 case Instruction::Add
:
4732 return SimplifyAddInst(LHS
, RHS
, false, false, Q
, MaxRecurse
);
4733 case Instruction::Sub
:
4734 return SimplifySubInst(LHS
, RHS
, false, false, Q
, MaxRecurse
);
4735 case Instruction::Mul
:
4736 return SimplifyMulInst(LHS
, RHS
, Q
, MaxRecurse
);
4737 case Instruction::SDiv
:
4738 return SimplifySDivInst(LHS
, RHS
, Q
, MaxRecurse
);
4739 case Instruction::UDiv
:
4740 return SimplifyUDivInst(LHS
, RHS
, Q
, MaxRecurse
);
4741 case Instruction::SRem
:
4742 return SimplifySRemInst(LHS
, RHS
, Q
, MaxRecurse
);
4743 case Instruction::URem
:
4744 return SimplifyURemInst(LHS
, RHS
, Q
, MaxRecurse
);
4745 case Instruction::Shl
:
4746 return SimplifyShlInst(LHS
, RHS
, false, false, Q
, MaxRecurse
);
4747 case Instruction::LShr
:
4748 return SimplifyLShrInst(LHS
, RHS
, false, Q
, MaxRecurse
);
4749 case Instruction::AShr
:
4750 return SimplifyAShrInst(LHS
, RHS
, false, Q
, MaxRecurse
);
4751 case Instruction::And
:
4752 return SimplifyAndInst(LHS
, RHS
, Q
, MaxRecurse
);
4753 case Instruction::Or
:
4754 return SimplifyOrInst(LHS
, RHS
, Q
, MaxRecurse
);
4755 case Instruction::Xor
:
4756 return SimplifyXorInst(LHS
, RHS
, Q
, MaxRecurse
);
4757 case Instruction::FAdd
:
4758 return SimplifyFAddInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4759 case Instruction::FSub
:
4760 return SimplifyFSubInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4761 case Instruction::FMul
:
4762 return SimplifyFMulInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4763 case Instruction::FDiv
:
4764 return SimplifyFDivInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4765 case Instruction::FRem
:
4766 return SimplifyFRemInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4768 llvm_unreachable("Unexpected opcode");
4772 /// Given operands for a BinaryOperator, see if we can fold the result.
4773 /// If not, this returns null.
4774 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4775 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4776 static Value
*SimplifyFPBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
4777 const FastMathFlags
&FMF
, const SimplifyQuery
&Q
,
4778 unsigned MaxRecurse
) {
4780 case Instruction::FAdd
:
4781 return SimplifyFAddInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
4782 case Instruction::FSub
:
4783 return SimplifyFSubInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
4784 case Instruction::FMul
:
4785 return SimplifyFMulInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
4786 case Instruction::FDiv
:
4787 return SimplifyFDivInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
4789 return SimplifyBinOp(Opcode
, LHS
, RHS
, Q
, MaxRecurse
);
4793 Value
*llvm::SimplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
4794 const SimplifyQuery
&Q
) {
4795 return ::SimplifyBinOp(Opcode
, LHS
, RHS
, Q
, RecursionLimit
);
4798 Value
*llvm::SimplifyFPBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
4799 FastMathFlags FMF
, const SimplifyQuery
&Q
) {
4800 return ::SimplifyFPBinOp(Opcode
, LHS
, RHS
, FMF
, Q
, RecursionLimit
);
4803 /// Given operands for a CmpInst, see if we can fold the result.
4804 static Value
*SimplifyCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
4805 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4806 if (CmpInst::isIntPredicate((CmpInst::Predicate
)Predicate
))
4807 return SimplifyICmpInst(Predicate
, LHS
, RHS
, Q
, MaxRecurse
);
4808 return SimplifyFCmpInst(Predicate
, LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
4811 Value
*llvm::SimplifyCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
4812 const SimplifyQuery
&Q
) {
4813 return ::SimplifyCmpInst(Predicate
, LHS
, RHS
, Q
, RecursionLimit
);
4816 static bool IsIdempotent(Intrinsic::ID ID
) {
4818 default: return false;
4820 // Unary idempotent: f(f(x)) = f(x)
4821 case Intrinsic::fabs
:
4822 case Intrinsic::floor
:
4823 case Intrinsic::ceil
:
4824 case Intrinsic::trunc
:
4825 case Intrinsic::rint
:
4826 case Intrinsic::nearbyint
:
4827 case Intrinsic::round
:
4828 case Intrinsic::canonicalize
:
4833 static Value
*SimplifyRelativeLoad(Constant
*Ptr
, Constant
*Offset
,
4834 const DataLayout
&DL
) {
4835 GlobalValue
*PtrSym
;
4837 if (!IsConstantOffsetFromGlobal(Ptr
, PtrSym
, PtrOffset
, DL
))
4840 Type
*Int8PtrTy
= Type::getInt8PtrTy(Ptr
->getContext());
4841 Type
*Int32Ty
= Type::getInt32Ty(Ptr
->getContext());
4842 Type
*Int32PtrTy
= Int32Ty
->getPointerTo();
4843 Type
*Int64Ty
= Type::getInt64Ty(Ptr
->getContext());
4845 auto *OffsetConstInt
= dyn_cast
<ConstantInt
>(Offset
);
4846 if (!OffsetConstInt
|| OffsetConstInt
->getType()->getBitWidth() > 64)
4849 uint64_t OffsetInt
= OffsetConstInt
->getSExtValue();
4850 if (OffsetInt
% 4 != 0)
4853 Constant
*C
= ConstantExpr::getGetElementPtr(
4854 Int32Ty
, ConstantExpr::getBitCast(Ptr
, Int32PtrTy
),
4855 ConstantInt::get(Int64Ty
, OffsetInt
/ 4));
4856 Constant
*Loaded
= ConstantFoldLoadFromConstPtr(C
, Int32Ty
, DL
);
4860 auto *LoadedCE
= dyn_cast
<ConstantExpr
>(Loaded
);
4864 if (LoadedCE
->getOpcode() == Instruction::Trunc
) {
4865 LoadedCE
= dyn_cast
<ConstantExpr
>(LoadedCE
->getOperand(0));
4870 if (LoadedCE
->getOpcode() != Instruction::Sub
)
4873 auto *LoadedLHS
= dyn_cast
<ConstantExpr
>(LoadedCE
->getOperand(0));
4874 if (!LoadedLHS
|| LoadedLHS
->getOpcode() != Instruction::PtrToInt
)
4876 auto *LoadedLHSPtr
= LoadedLHS
->getOperand(0);
4878 Constant
*LoadedRHS
= LoadedCE
->getOperand(1);
4879 GlobalValue
*LoadedRHSSym
;
4880 APInt LoadedRHSOffset
;
4881 if (!IsConstantOffsetFromGlobal(LoadedRHS
, LoadedRHSSym
, LoadedRHSOffset
,
4883 PtrSym
!= LoadedRHSSym
|| PtrOffset
!= LoadedRHSOffset
)
4886 return ConstantExpr::getBitCast(LoadedLHSPtr
, Int8PtrTy
);
4889 static bool maskIsAllZeroOrUndef(Value
*Mask
) {
4890 auto *ConstMask
= dyn_cast
<Constant
>(Mask
);
4893 if (ConstMask
->isNullValue() || isa
<UndefValue
>(ConstMask
))
4895 for (unsigned I
= 0, E
= ConstMask
->getType()->getVectorNumElements(); I
!= E
;
4897 if (auto *MaskElt
= ConstMask
->getAggregateElement(I
))
4898 if (MaskElt
->isNullValue() || isa
<UndefValue
>(MaskElt
))
4905 static Value
*simplifyUnaryIntrinsic(Function
*F
, Value
*Op0
,
4906 const SimplifyQuery
&Q
) {
4907 // Idempotent functions return the same result when called repeatedly.
4908 Intrinsic::ID IID
= F
->getIntrinsicID();
4909 if (IsIdempotent(IID
))
4910 if (auto *II
= dyn_cast
<IntrinsicInst
>(Op0
))
4911 if (II
->getIntrinsicID() == IID
)
4916 case Intrinsic::fabs
:
4917 if (SignBitMustBeZero(Op0
, Q
.TLI
)) return Op0
;
4919 case Intrinsic::bswap
:
4920 // bswap(bswap(x)) -> x
4921 if (match(Op0
, m_BSwap(m_Value(X
)))) return X
;
4923 case Intrinsic::bitreverse
:
4924 // bitreverse(bitreverse(x)) -> x
4925 if (match(Op0
, m_BitReverse(m_Value(X
)))) return X
;
4927 case Intrinsic::exp
:
4929 if (Q
.CxtI
->hasAllowReassoc() &&
4930 match(Op0
, m_Intrinsic
<Intrinsic::log
>(m_Value(X
)))) return X
;
4932 case Intrinsic::exp2
:
4933 // exp2(log2(x)) -> x
4934 if (Q
.CxtI
->hasAllowReassoc() &&
4935 match(Op0
, m_Intrinsic
<Intrinsic::log2
>(m_Value(X
)))) return X
;
4937 case Intrinsic::log
:
4939 if (Q
.CxtI
->hasAllowReassoc() &&
4940 match(Op0
, m_Intrinsic
<Intrinsic::exp
>(m_Value(X
)))) return X
;
4942 case Intrinsic::log2
:
4943 // log2(exp2(x)) -> x
4944 if (Q
.CxtI
->hasAllowReassoc() &&
4945 (match(Op0
, m_Intrinsic
<Intrinsic::exp2
>(m_Value(X
))) ||
4946 match(Op0
, m_Intrinsic
<Intrinsic::pow
>(m_SpecificFP(2.0),
4947 m_Value(X
))))) return X
;
4949 case Intrinsic::log10
:
4950 // log10(pow(10.0, x)) -> x
4951 if (Q
.CxtI
->hasAllowReassoc() &&
4952 match(Op0
, m_Intrinsic
<Intrinsic::pow
>(m_SpecificFP(10.0),
4953 m_Value(X
)))) return X
;
4962 static Value
*simplifyBinaryIntrinsic(Function
*F
, Value
*Op0
, Value
*Op1
,
4963 const SimplifyQuery
&Q
) {
4964 Intrinsic::ID IID
= F
->getIntrinsicID();
4965 Type
*ReturnType
= F
->getReturnType();
4967 case Intrinsic::usub_with_overflow
:
4968 case Intrinsic::ssub_with_overflow
:
4969 // X - X -> { 0, false }
4971 return Constant::getNullValue(ReturnType
);
4972 // X - undef -> undef
4973 // undef - X -> undef
4974 if (isa
<UndefValue
>(Op0
) || isa
<UndefValue
>(Op1
))
4975 return UndefValue::get(ReturnType
);
4977 case Intrinsic::uadd_with_overflow
:
4978 case Intrinsic::sadd_with_overflow
:
4979 // X + undef -> undef
4980 if (isa
<UndefValue
>(Op0
) || isa
<UndefValue
>(Op1
))
4981 return UndefValue::get(ReturnType
);
4983 case Intrinsic::umul_with_overflow
:
4984 case Intrinsic::smul_with_overflow
:
4985 // 0 * X -> { 0, false }
4986 // X * 0 -> { 0, false }
4987 if (match(Op0
, m_Zero()) || match(Op1
, m_Zero()))
4988 return Constant::getNullValue(ReturnType
);
4989 // undef * X -> { 0, false }
4990 // X * undef -> { 0, false }
4991 if (match(Op0
, m_Undef()) || match(Op1
, m_Undef()))
4992 return Constant::getNullValue(ReturnType
);
4994 case Intrinsic::uadd_sat
:
4995 // sat(MAX + X) -> MAX
4996 // sat(X + MAX) -> MAX
4997 if (match(Op0
, m_AllOnes()) || match(Op1
, m_AllOnes()))
4998 return Constant::getAllOnesValue(ReturnType
);
5000 case Intrinsic::sadd_sat
:
5001 // sat(X + undef) -> -1
5002 // sat(undef + X) -> -1
5003 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5004 // For signed: Assume undef is ~X, in which case X + ~X = -1.
5005 if (match(Op0
, m_Undef()) || match(Op1
, m_Undef()))
5006 return Constant::getAllOnesValue(ReturnType
);
5009 if (match(Op1
, m_Zero()))
5012 if (match(Op0
, m_Zero()))
5015 case Intrinsic::usub_sat
:
5016 // sat(0 - X) -> 0, sat(X - MAX) -> 0
5017 if (match(Op0
, m_Zero()) || match(Op1
, m_AllOnes()))
5018 return Constant::getNullValue(ReturnType
);
5020 case Intrinsic::ssub_sat
:
5021 // X - X -> 0, X - undef -> 0, undef - X -> 0
5022 if (Op0
== Op1
|| match(Op0
, m_Undef()) || match(Op1
, m_Undef()))
5023 return Constant::getNullValue(ReturnType
);
5025 if (match(Op1
, m_Zero()))
5028 case Intrinsic::load_relative
:
5029 if (auto *C0
= dyn_cast
<Constant
>(Op0
))
5030 if (auto *C1
= dyn_cast
<Constant
>(Op1
))
5031 return SimplifyRelativeLoad(C0
, C1
, Q
.DL
);
5033 case Intrinsic::powi
:
5034 if (auto *Power
= dyn_cast
<ConstantInt
>(Op1
)) {
5035 // powi(x, 0) -> 1.0
5036 if (Power
->isZero())
5037 return ConstantFP::get(Op0
->getType(), 1.0);
5043 case Intrinsic::maxnum
:
5044 case Intrinsic::minnum
:
5045 case Intrinsic::maximum
:
5046 case Intrinsic::minimum
: {
5047 // If the arguments are the same, this is a no-op.
5048 if (Op0
== Op1
) return Op0
;
5050 // If one argument is undef, return the other argument.
5051 if (match(Op0
, m_Undef()))
5053 if (match(Op1
, m_Undef()))
5056 // If one argument is NaN, return other or NaN appropriately.
5057 bool PropagateNaN
= IID
== Intrinsic::minimum
|| IID
== Intrinsic::maximum
;
5058 if (match(Op0
, m_NaN()))
5059 return PropagateNaN
? Op0
: Op1
;
5060 if (match(Op1
, m_NaN()))
5061 return PropagateNaN
? Op1
: Op0
;
5063 // Min/max of the same operation with common operand:
5064 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5065 if (auto *M0
= dyn_cast
<IntrinsicInst
>(Op0
))
5066 if (M0
->getIntrinsicID() == IID
&&
5067 (M0
->getOperand(0) == Op1
|| M0
->getOperand(1) == Op1
))
5069 if (auto *M1
= dyn_cast
<IntrinsicInst
>(Op1
))
5070 if (M1
->getIntrinsicID() == IID
&&
5071 (M1
->getOperand(0) == Op0
|| M1
->getOperand(1) == Op0
))
5074 // min(X, -Inf) --> -Inf (and commuted variant)
5075 // max(X, +Inf) --> +Inf (and commuted variant)
5076 bool UseNegInf
= IID
== Intrinsic::minnum
|| IID
== Intrinsic::minimum
;
5078 if ((match(Op0
, m_APFloat(C
)) && C
->isInfinity() &&
5079 C
->isNegative() == UseNegInf
) ||
5080 (match(Op1
, m_APFloat(C
)) && C
->isInfinity() &&
5081 C
->isNegative() == UseNegInf
))
5082 return ConstantFP::getInfinity(ReturnType
, UseNegInf
);
5084 // TODO: minnum(nnan x, inf) -> x
5085 // TODO: minnum(nnan ninf x, flt_max) -> x
5086 // TODO: maxnum(nnan x, -inf) -> x
5087 // TODO: maxnum(nnan ninf x, -flt_max) -> x
5097 template <typename IterTy
>
5098 static Value
*simplifyIntrinsic(Function
*F
, IterTy ArgBegin
, IterTy ArgEnd
,
5099 const SimplifyQuery
&Q
) {
5100 // Intrinsics with no operands have some kind of side effect. Don't simplify.
5101 unsigned NumOperands
= std::distance(ArgBegin
, ArgEnd
);
5102 if (NumOperands
== 0)
5105 Intrinsic::ID IID
= F
->getIntrinsicID();
5106 if (NumOperands
== 1)
5107 return simplifyUnaryIntrinsic(F
, ArgBegin
[0], Q
);
5109 if (NumOperands
== 2)
5110 return simplifyBinaryIntrinsic(F
, ArgBegin
[0], ArgBegin
[1], Q
);
5112 // Handle intrinsics with 3 or more arguments.
5114 case Intrinsic::masked_load
: {
5115 Value
*MaskArg
= ArgBegin
[2];
5116 Value
*PassthruArg
= ArgBegin
[3];
5117 // If the mask is all zeros or undef, the "passthru" argument is the result.
5118 if (maskIsAllZeroOrUndef(MaskArg
))
5122 case Intrinsic::fshl
:
5123 case Intrinsic::fshr
: {
5124 Value
*Op0
= ArgBegin
[0], *Op1
= ArgBegin
[1], *ShAmtArg
= ArgBegin
[2];
5126 // If both operands are undef, the result is undef.
5127 if (match(Op0
, m_Undef()) && match(Op1
, m_Undef()))
5128 return UndefValue::get(F
->getReturnType());
5130 // If shift amount is undef, assume it is zero.
5131 if (match(ShAmtArg
, m_Undef()))
5132 return ArgBegin
[IID
== Intrinsic::fshl
? 0 : 1];
5134 const APInt
*ShAmtC
;
5135 if (match(ShAmtArg
, m_APInt(ShAmtC
))) {
5136 // If there's effectively no shift, return the 1st arg or 2nd arg.
5137 // TODO: For vectors, we could check each element of a non-splat constant.
5138 APInt BitWidth
= APInt(ShAmtC
->getBitWidth(), ShAmtC
->getBitWidth());
5139 if (ShAmtC
->urem(BitWidth
).isNullValue())
5140 return ArgBegin
[IID
== Intrinsic::fshl
? 0 : 1];
5149 template <typename IterTy
>
5150 static Value
*SimplifyCall(CallBase
*Call
, Value
*V
, IterTy ArgBegin
,
5151 IterTy ArgEnd
, const SimplifyQuery
&Q
,
5152 unsigned MaxRecurse
) {
5153 Type
*Ty
= V
->getType();
5154 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
5155 Ty
= PTy
->getElementType();
5156 FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
5158 // call undef -> undef
5159 // call null -> undef
5160 if (isa
<UndefValue
>(V
) || isa
<ConstantPointerNull
>(V
))
5161 return UndefValue::get(FTy
->getReturnType());
5163 Function
*F
= dyn_cast
<Function
>(V
);
5167 if (F
->isIntrinsic())
5168 if (Value
*Ret
= simplifyIntrinsic(F
, ArgBegin
, ArgEnd
, Q
))
5171 if (!canConstantFoldCallTo(Call
, F
))
5174 SmallVector
<Constant
*, 4> ConstantArgs
;
5175 ConstantArgs
.reserve(ArgEnd
- ArgBegin
);
5176 for (IterTy I
= ArgBegin
, E
= ArgEnd
; I
!= E
; ++I
) {
5177 Constant
*C
= dyn_cast
<Constant
>(*I
);
5180 ConstantArgs
.push_back(C
);
5183 return ConstantFoldCall(Call
, F
, ConstantArgs
, Q
.TLI
);
5186 Value
*llvm::SimplifyCall(CallBase
*Call
, Value
*V
, User::op_iterator ArgBegin
,
5187 User::op_iterator ArgEnd
, const SimplifyQuery
&Q
) {
5188 return ::SimplifyCall(Call
, V
, ArgBegin
, ArgEnd
, Q
, RecursionLimit
);
5191 Value
*llvm::SimplifyCall(CallBase
*Call
, Value
*V
, ArrayRef
<Value
*> Args
,
5192 const SimplifyQuery
&Q
) {
5193 return ::SimplifyCall(Call
, V
, Args
.begin(), Args
.end(), Q
, RecursionLimit
);
5196 Value
*llvm::SimplifyCall(CallBase
*Call
, const SimplifyQuery
&Q
) {
5197 return ::SimplifyCall(Call
, Call
->getCalledValue(), Call
->arg_begin(),
5198 Call
->arg_end(), Q
, RecursionLimit
);
5201 /// See if we can compute a simplified version of this instruction.
5202 /// If not, this returns null.
5204 Value
*llvm::SimplifyInstruction(Instruction
*I
, const SimplifyQuery
&SQ
,
5205 OptimizationRemarkEmitter
*ORE
) {
5206 const SimplifyQuery Q
= SQ
.CxtI
? SQ
: SQ
.getWithInstruction(I
);
5209 switch (I
->getOpcode()) {
5211 Result
= ConstantFoldInstruction(I
, Q
.DL
, Q
.TLI
);
5213 case Instruction::FAdd
:
5214 Result
= SimplifyFAddInst(I
->getOperand(0), I
->getOperand(1),
5215 I
->getFastMathFlags(), Q
);
5217 case Instruction::Add
:
5219 SimplifyAddInst(I
->getOperand(0), I
->getOperand(1),
5220 Q
.IIQ
.hasNoSignedWrap(cast
<BinaryOperator
>(I
)),
5221 Q
.IIQ
.hasNoUnsignedWrap(cast
<BinaryOperator
>(I
)), Q
);
5223 case Instruction::FSub
:
5224 Result
= SimplifyFSubInst(I
->getOperand(0), I
->getOperand(1),
5225 I
->getFastMathFlags(), Q
);
5227 case Instruction::Sub
:
5229 SimplifySubInst(I
->getOperand(0), I
->getOperand(1),
5230 Q
.IIQ
.hasNoSignedWrap(cast
<BinaryOperator
>(I
)),
5231 Q
.IIQ
.hasNoUnsignedWrap(cast
<BinaryOperator
>(I
)), Q
);
5233 case Instruction::FMul
:
5234 Result
= SimplifyFMulInst(I
->getOperand(0), I
->getOperand(1),
5235 I
->getFastMathFlags(), Q
);
5237 case Instruction::Mul
:
5238 Result
= SimplifyMulInst(I
->getOperand(0), I
->getOperand(1), Q
);
5240 case Instruction::SDiv
:
5241 Result
= SimplifySDivInst(I
->getOperand(0), I
->getOperand(1), Q
);
5243 case Instruction::UDiv
:
5244 Result
= SimplifyUDivInst(I
->getOperand(0), I
->getOperand(1), Q
);
5246 case Instruction::FDiv
:
5247 Result
= SimplifyFDivInst(I
->getOperand(0), I
->getOperand(1),
5248 I
->getFastMathFlags(), Q
);
5250 case Instruction::SRem
:
5251 Result
= SimplifySRemInst(I
->getOperand(0), I
->getOperand(1), Q
);
5253 case Instruction::URem
:
5254 Result
= SimplifyURemInst(I
->getOperand(0), I
->getOperand(1), Q
);
5256 case Instruction::FRem
:
5257 Result
= SimplifyFRemInst(I
->getOperand(0), I
->getOperand(1),
5258 I
->getFastMathFlags(), Q
);
5260 case Instruction::Shl
:
5262 SimplifyShlInst(I
->getOperand(0), I
->getOperand(1),
5263 Q
.IIQ
.hasNoSignedWrap(cast
<BinaryOperator
>(I
)),
5264 Q
.IIQ
.hasNoUnsignedWrap(cast
<BinaryOperator
>(I
)), Q
);
5266 case Instruction::LShr
:
5267 Result
= SimplifyLShrInst(I
->getOperand(0), I
->getOperand(1),
5268 Q
.IIQ
.isExact(cast
<BinaryOperator
>(I
)), Q
);
5270 case Instruction::AShr
:
5271 Result
= SimplifyAShrInst(I
->getOperand(0), I
->getOperand(1),
5272 Q
.IIQ
.isExact(cast
<BinaryOperator
>(I
)), Q
);
5274 case Instruction::And
:
5275 Result
= SimplifyAndInst(I
->getOperand(0), I
->getOperand(1), Q
);
5277 case Instruction::Or
:
5278 Result
= SimplifyOrInst(I
->getOperand(0), I
->getOperand(1), Q
);
5280 case Instruction::Xor
:
5281 Result
= SimplifyXorInst(I
->getOperand(0), I
->getOperand(1), Q
);
5283 case Instruction::ICmp
:
5284 Result
= SimplifyICmpInst(cast
<ICmpInst
>(I
)->getPredicate(),
5285 I
->getOperand(0), I
->getOperand(1), Q
);
5287 case Instruction::FCmp
:
5289 SimplifyFCmpInst(cast
<FCmpInst
>(I
)->getPredicate(), I
->getOperand(0),
5290 I
->getOperand(1), I
->getFastMathFlags(), Q
);
5292 case Instruction::Select
:
5293 Result
= SimplifySelectInst(I
->getOperand(0), I
->getOperand(1),
5294 I
->getOperand(2), Q
);
5296 case Instruction::GetElementPtr
: {
5297 SmallVector
<Value
*, 8> Ops(I
->op_begin(), I
->op_end());
5298 Result
= SimplifyGEPInst(cast
<GetElementPtrInst
>(I
)->getSourceElementType(),
5302 case Instruction::InsertValue
: {
5303 InsertValueInst
*IV
= cast
<InsertValueInst
>(I
);
5304 Result
= SimplifyInsertValueInst(IV
->getAggregateOperand(),
5305 IV
->getInsertedValueOperand(),
5306 IV
->getIndices(), Q
);
5309 case Instruction::InsertElement
: {
5310 auto *IE
= cast
<InsertElementInst
>(I
);
5311 Result
= SimplifyInsertElementInst(IE
->getOperand(0), IE
->getOperand(1),
5312 IE
->getOperand(2), Q
);
5315 case Instruction::ExtractValue
: {
5316 auto *EVI
= cast
<ExtractValueInst
>(I
);
5317 Result
= SimplifyExtractValueInst(EVI
->getAggregateOperand(),
5318 EVI
->getIndices(), Q
);
5321 case Instruction::ExtractElement
: {
5322 auto *EEI
= cast
<ExtractElementInst
>(I
);
5323 Result
= SimplifyExtractElementInst(EEI
->getVectorOperand(),
5324 EEI
->getIndexOperand(), Q
);
5327 case Instruction::ShuffleVector
: {
5328 auto *SVI
= cast
<ShuffleVectorInst
>(I
);
5329 Result
= SimplifyShuffleVectorInst(SVI
->getOperand(0), SVI
->getOperand(1),
5330 SVI
->getMask(), SVI
->getType(), Q
);
5333 case Instruction::PHI
:
5334 Result
= SimplifyPHINode(cast
<PHINode
>(I
), Q
);
5336 case Instruction::Call
: {
5337 Result
= SimplifyCall(cast
<CallInst
>(I
), Q
);
5340 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5341 #include "llvm/IR/Instruction.def"
5342 #undef HANDLE_CAST_INST
5344 SimplifyCastInst(I
->getOpcode(), I
->getOperand(0), I
->getType(), Q
);
5346 case Instruction::Alloca
:
5347 // No simplifications for Alloca and it can't be constant folded.
5352 // In general, it is possible for computeKnownBits to determine all bits in a
5353 // value even when the operands are not all constants.
5354 if (!Result
&& I
->getType()->isIntOrIntVectorTy()) {
5355 KnownBits Known
= computeKnownBits(I
, Q
.DL
, /*Depth*/ 0, Q
.AC
, I
, Q
.DT
, ORE
);
5356 if (Known
.isConstant())
5357 Result
= ConstantInt::get(I
->getType(), Known
.getConstant());
5360 /// If called on unreachable code, the above logic may report that the
5361 /// instruction simplified to itself. Make life easier for users by
5362 /// detecting that case here, returning a safe value instead.
5363 return Result
== I
? UndefValue::get(I
->getType()) : Result
;
5366 /// Implementation of recursive simplification through an instruction's
5369 /// This is the common implementation of the recursive simplification routines.
5370 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5371 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5372 /// instructions to process and attempt to simplify it using
5373 /// InstructionSimplify.
5375 /// This routine returns 'true' only when *it* simplifies something. The passed
5376 /// in simplified value does not count toward this.
5377 static bool replaceAndRecursivelySimplifyImpl(Instruction
*I
, Value
*SimpleV
,
5378 const TargetLibraryInfo
*TLI
,
5379 const DominatorTree
*DT
,
5380 AssumptionCache
*AC
) {
5381 bool Simplified
= false;
5382 SmallSetVector
<Instruction
*, 8> Worklist
;
5383 const DataLayout
&DL
= I
->getModule()->getDataLayout();
5385 // If we have an explicit value to collapse to, do that round of the
5386 // simplification loop by hand initially.
5388 for (User
*U
: I
->users())
5390 Worklist
.insert(cast
<Instruction
>(U
));
5392 // Replace the instruction with its simplified value.
5393 I
->replaceAllUsesWith(SimpleV
);
5395 // Gracefully handle edge cases where the instruction is not wired into any
5397 if (I
->getParent() && !I
->isEHPad() && !I
->isTerminator() &&
5398 !I
->mayHaveSideEffects())
5399 I
->eraseFromParent();
5404 // Note that we must test the size on each iteration, the worklist can grow.
5405 for (unsigned Idx
= 0; Idx
!= Worklist
.size(); ++Idx
) {
5408 // See if this instruction simplifies.
5409 SimpleV
= SimplifyInstruction(I
, {DL
, TLI
, DT
, AC
});
5415 // Stash away all the uses of the old instruction so we can check them for
5416 // recursive simplifications after a RAUW. This is cheaper than checking all
5417 // uses of To on the recursive step in most cases.
5418 for (User
*U
: I
->users())
5419 Worklist
.insert(cast
<Instruction
>(U
));
5421 // Replace the instruction with its simplified value.
5422 I
->replaceAllUsesWith(SimpleV
);
5424 // Gracefully handle edge cases where the instruction is not wired into any
5426 if (I
->getParent() && !I
->isEHPad() && !I
->isTerminator() &&
5427 !I
->mayHaveSideEffects())
5428 I
->eraseFromParent();
5433 bool llvm::recursivelySimplifyInstruction(Instruction
*I
,
5434 const TargetLibraryInfo
*TLI
,
5435 const DominatorTree
*DT
,
5436 AssumptionCache
*AC
) {
5437 return replaceAndRecursivelySimplifyImpl(I
, nullptr, TLI
, DT
, AC
);
5440 bool llvm::replaceAndRecursivelySimplify(Instruction
*I
, Value
*SimpleV
,
5441 const TargetLibraryInfo
*TLI
,
5442 const DominatorTree
*DT
,
5443 AssumptionCache
*AC
) {
5444 assert(I
!= SimpleV
&& "replaceAndRecursivelySimplify(X,X) is not valid!");
5445 assert(SimpleV
&& "Must provide a simplified value.");
5446 return replaceAndRecursivelySimplifyImpl(I
, SimpleV
, TLI
, DT
, AC
);
5450 const SimplifyQuery
getBestSimplifyQuery(Pass
&P
, Function
&F
) {
5451 auto *DTWP
= P
.getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
5452 auto *DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
5453 auto *TLIWP
= P
.getAnalysisIfAvailable
<TargetLibraryInfoWrapperPass
>();
5454 auto *TLI
= TLIWP
? &TLIWP
->getTLI() : nullptr;
5455 auto *ACWP
= P
.getAnalysisIfAvailable
<AssumptionCacheTracker
>();
5456 auto *AC
= ACWP
? &ACWP
->getAssumptionCache(F
) : nullptr;
5457 return {F
.getParent()->getDataLayout(), TLI
, DT
, AC
};
5460 const SimplifyQuery
getBestSimplifyQuery(LoopStandardAnalysisResults
&AR
,
5461 const DataLayout
&DL
) {
5462 return {DL
, &AR
.TLI
, &AR
.DT
, &AR
.AC
};
5465 template <class T
, class... TArgs
>
5466 const SimplifyQuery
getBestSimplifyQuery(AnalysisManager
<T
, TArgs
...> &AM
,
5468 auto *DT
= AM
.template getCachedResult
<DominatorTreeAnalysis
>(F
);
5469 auto *TLI
= AM
.template getCachedResult
<TargetLibraryAnalysis
>(F
);
5470 auto *AC
= AM
.template getCachedResult
<AssumptionAnalysis
>(F
);
5471 return {F
.getParent()->getDataLayout(), TLI
, DT
, AC
};
5473 template const SimplifyQuery
getBestSimplifyQuery(AnalysisManager
<Function
> &,