Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Analysis / LazyValueInfo.cpp
blob4e915be303a404273772969a09a68d637f9bc20e
1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for lazy computation of value constraint
10 // information.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/LazyValueInfo.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Analysis/ValueLattice.h"
24 #include "llvm/IR/AssemblyAnnotationWriter.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <map>
40 using namespace llvm;
41 using namespace PatternMatch;
43 #define DEBUG_TYPE "lazy-value-info"
45 // This is the number of worklist items we will process to try to discover an
46 // answer for a given value.
47 static const unsigned MaxProcessedPerValue = 500;
49 char LazyValueInfoWrapperPass::ID = 0;
50 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
51 "Lazy Value Information Analysis", false, true)
52 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
53 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
54 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
55 "Lazy Value Information Analysis", false, true)
57 namespace llvm {
58 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
61 AnalysisKey LazyValueAnalysis::Key;
63 /// Returns true if this lattice value represents at most one possible value.
64 /// This is as precise as any lattice value can get while still representing
65 /// reachable code.
66 static bool hasSingleValue(const ValueLatticeElement &Val) {
67 if (Val.isConstantRange() &&
68 Val.getConstantRange().isSingleElement())
69 // Integer constants are single element ranges
70 return true;
71 if (Val.isConstant())
72 // Non integer constants
73 return true;
74 return false;
77 /// Combine two sets of facts about the same value into a single set of
78 /// facts. Note that this method is not suitable for merging facts along
79 /// different paths in a CFG; that's what the mergeIn function is for. This
80 /// is for merging facts gathered about the same value at the same location
81 /// through two independent means.
82 /// Notes:
83 /// * This method does not promise to return the most precise possible lattice
84 /// value implied by A and B. It is allowed to return any lattice element
85 /// which is at least as strong as *either* A or B (unless our facts
86 /// conflict, see below).
87 /// * Due to unreachable code, the intersection of two lattice values could be
88 /// contradictory. If this happens, we return some valid lattice value so as
89 /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
90 /// we do not make this guarantee. TODO: This would be a useful enhancement.
91 static ValueLatticeElement intersect(const ValueLatticeElement &A,
92 const ValueLatticeElement &B) {
93 // Undefined is the strongest state. It means the value is known to be along
94 // an unreachable path.
95 if (A.isUndefined())
96 return A;
97 if (B.isUndefined())
98 return B;
100 // If we gave up for one, but got a useable fact from the other, use it.
101 if (A.isOverdefined())
102 return B;
103 if (B.isOverdefined())
104 return A;
106 // Can't get any more precise than constants.
107 if (hasSingleValue(A))
108 return A;
109 if (hasSingleValue(B))
110 return B;
112 // Could be either constant range or not constant here.
113 if (!A.isConstantRange() || !B.isConstantRange()) {
114 // TODO: Arbitrary choice, could be improved
115 return A;
118 // Intersect two constant ranges
119 ConstantRange Range =
120 A.getConstantRange().intersectWith(B.getConstantRange());
121 // Note: An empty range is implicitly converted to overdefined internally.
122 // TODO: We could instead use Undefined here since we've proven a conflict
123 // and thus know this path must be unreachable.
124 return ValueLatticeElement::getRange(std::move(Range));
127 //===----------------------------------------------------------------------===//
128 // LazyValueInfoCache Decl
129 //===----------------------------------------------------------------------===//
131 namespace {
132 /// A callback value handle updates the cache when values are erased.
133 class LazyValueInfoCache;
134 struct LVIValueHandle final : public CallbackVH {
135 // Needs to access getValPtr(), which is protected.
136 friend struct DenseMapInfo<LVIValueHandle>;
138 LazyValueInfoCache *Parent;
140 LVIValueHandle(Value *V, LazyValueInfoCache *P)
141 : CallbackVH(V), Parent(P) { }
143 void deleted() override;
144 void allUsesReplacedWith(Value *V) override {
145 deleted();
148 } // end anonymous namespace
150 namespace {
151 /// This is the cache kept by LazyValueInfo which
152 /// maintains information about queries across the clients' queries.
153 class LazyValueInfoCache {
154 /// This is all of the cached block information for exactly one Value*.
155 /// The entries are sorted by the BasicBlock* of the
156 /// entries, allowing us to do a lookup with a binary search.
157 /// Over-defined lattice values are recorded in OverDefinedCache to reduce
158 /// memory overhead.
159 struct ValueCacheEntryTy {
160 ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {}
161 LVIValueHandle Handle;
162 SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals;
165 /// This tracks, on a per-block basis, the set of values that are
166 /// over-defined at the end of that block.
167 typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>>
168 OverDefinedCacheTy;
169 /// Keep track of all blocks that we have ever seen, so we
170 /// don't spend time removing unused blocks from our caches.
171 DenseSet<PoisoningVH<BasicBlock> > SeenBlocks;
173 /// This is all of the cached information for all values,
174 /// mapped from Value* to key information.
175 DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache;
176 OverDefinedCacheTy OverDefinedCache;
179 public:
180 void insertResult(Value *Val, BasicBlock *BB,
181 const ValueLatticeElement &Result) {
182 SeenBlocks.insert(BB);
184 // Insert over-defined values into their own cache to reduce memory
185 // overhead.
186 if (Result.isOverdefined())
187 OverDefinedCache[BB].insert(Val);
188 else {
189 auto It = ValueCache.find_as(Val);
190 if (It == ValueCache.end()) {
191 ValueCache[Val] = make_unique<ValueCacheEntryTy>(Val, this);
192 It = ValueCache.find_as(Val);
193 assert(It != ValueCache.end() && "Val was just added to the map!");
195 It->second->BlockVals[BB] = Result;
199 bool isOverdefined(Value *V, BasicBlock *BB) const {
200 auto ODI = OverDefinedCache.find(BB);
202 if (ODI == OverDefinedCache.end())
203 return false;
205 return ODI->second.count(V);
208 bool hasCachedValueInfo(Value *V, BasicBlock *BB) const {
209 if (isOverdefined(V, BB))
210 return true;
212 auto I = ValueCache.find_as(V);
213 if (I == ValueCache.end())
214 return false;
216 return I->second->BlockVals.count(BB);
219 ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const {
220 if (isOverdefined(V, BB))
221 return ValueLatticeElement::getOverdefined();
223 auto I = ValueCache.find_as(V);
224 if (I == ValueCache.end())
225 return ValueLatticeElement();
226 auto BBI = I->second->BlockVals.find(BB);
227 if (BBI == I->second->BlockVals.end())
228 return ValueLatticeElement();
229 return BBI->second;
232 /// clear - Empty the cache.
233 void clear() {
234 SeenBlocks.clear();
235 ValueCache.clear();
236 OverDefinedCache.clear();
239 /// Inform the cache that a given value has been deleted.
240 void eraseValue(Value *V);
242 /// This is part of the update interface to inform the cache
243 /// that a block has been deleted.
244 void eraseBlock(BasicBlock *BB);
246 /// Updates the cache to remove any influence an overdefined value in
247 /// OldSucc might have (unless also overdefined in NewSucc). This just
248 /// flushes elements from the cache and does not add any.
249 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
251 friend struct LVIValueHandle;
255 void LazyValueInfoCache::eraseValue(Value *V) {
256 for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) {
257 // Copy and increment the iterator immediately so we can erase behind
258 // ourselves.
259 auto Iter = I++;
260 SmallPtrSetImpl<Value *> &ValueSet = Iter->second;
261 ValueSet.erase(V);
262 if (ValueSet.empty())
263 OverDefinedCache.erase(Iter);
266 ValueCache.erase(V);
269 void LVIValueHandle::deleted() {
270 // This erasure deallocates *this, so it MUST happen after we're done
271 // using any and all members of *this.
272 Parent->eraseValue(*this);
275 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
276 // Shortcut if we have never seen this block.
277 DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
278 if (I == SeenBlocks.end())
279 return;
280 SeenBlocks.erase(I);
282 auto ODI = OverDefinedCache.find(BB);
283 if (ODI != OverDefinedCache.end())
284 OverDefinedCache.erase(ODI);
286 for (auto &I : ValueCache)
287 I.second->BlockVals.erase(BB);
290 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
291 BasicBlock *NewSucc) {
292 // When an edge in the graph has been threaded, values that we could not
293 // determine a value for before (i.e. were marked overdefined) may be
294 // possible to solve now. We do NOT try to proactively update these values.
295 // Instead, we clear their entries from the cache, and allow lazy updating to
296 // recompute them when needed.
298 // The updating process is fairly simple: we need to drop cached info
299 // for all values that were marked overdefined in OldSucc, and for those same
300 // values in any successor of OldSucc (except NewSucc) in which they were
301 // also marked overdefined.
302 std::vector<BasicBlock*> worklist;
303 worklist.push_back(OldSucc);
305 auto I = OverDefinedCache.find(OldSucc);
306 if (I == OverDefinedCache.end())
307 return; // Nothing to process here.
308 SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end());
310 // Use a worklist to perform a depth-first search of OldSucc's successors.
311 // NOTE: We do not need a visited list since any blocks we have already
312 // visited will have had their overdefined markers cleared already, and we
313 // thus won't loop to their successors.
314 while (!worklist.empty()) {
315 BasicBlock *ToUpdate = worklist.back();
316 worklist.pop_back();
318 // Skip blocks only accessible through NewSucc.
319 if (ToUpdate == NewSucc) continue;
321 // If a value was marked overdefined in OldSucc, and is here too...
322 auto OI = OverDefinedCache.find(ToUpdate);
323 if (OI == OverDefinedCache.end())
324 continue;
325 SmallPtrSetImpl<Value *> &ValueSet = OI->second;
327 bool changed = false;
328 for (Value *V : ValsToClear) {
329 if (!ValueSet.erase(V))
330 continue;
332 // If we removed anything, then we potentially need to update
333 // blocks successors too.
334 changed = true;
336 if (ValueSet.empty()) {
337 OverDefinedCache.erase(OI);
338 break;
342 if (!changed) continue;
344 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
349 namespace {
350 /// An assembly annotator class to print LazyValueCache information in
351 /// comments.
352 class LazyValueInfoImpl;
353 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
354 LazyValueInfoImpl *LVIImpl;
355 // While analyzing which blocks we can solve values for, we need the dominator
356 // information. Since this is an optional parameter in LVI, we require this
357 // DomTreeAnalysis pass in the printer pass, and pass the dominator
358 // tree to the LazyValueInfoAnnotatedWriter.
359 DominatorTree &DT;
361 public:
362 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
363 : LVIImpl(L), DT(DTree) {}
365 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
366 formatted_raw_ostream &OS);
368 virtual void emitInstructionAnnot(const Instruction *I,
369 formatted_raw_ostream &OS);
372 namespace {
373 // The actual implementation of the lazy analysis and update. Note that the
374 // inheritance from LazyValueInfoCache is intended to be temporary while
375 // splitting the code and then transitioning to a has-a relationship.
376 class LazyValueInfoImpl {
378 /// Cached results from previous queries
379 LazyValueInfoCache TheCache;
381 /// This stack holds the state of the value solver during a query.
382 /// It basically emulates the callstack of the naive
383 /// recursive value lookup process.
384 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
386 /// Keeps track of which block-value pairs are in BlockValueStack.
387 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
389 /// Push BV onto BlockValueStack unless it's already in there.
390 /// Returns true on success.
391 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
392 if (!BlockValueSet.insert(BV).second)
393 return false; // It's already in the stack.
395 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
396 << BV.first->getName() << "\n");
397 BlockValueStack.push_back(BV);
398 return true;
401 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
402 const DataLayout &DL; ///< A mandatory DataLayout
403 DominatorTree *DT; ///< An optional DT pointer.
404 DominatorTree *DisabledDT; ///< Stores DT if it's disabled.
406 ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB);
407 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
408 ValueLatticeElement &Result, Instruction *CxtI = nullptr);
409 bool hasBlockValue(Value *Val, BasicBlock *BB);
411 // These methods process one work item and may add more. A false value
412 // returned means that the work item was not completely processed and must
413 // be revisited after going through the new items.
414 bool solveBlockValue(Value *Val, BasicBlock *BB);
415 bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val,
416 BasicBlock *BB);
417 bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val,
418 BasicBlock *BB);
419 bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN,
420 BasicBlock *BB);
421 bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S,
422 BasicBlock *BB);
423 Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I,
424 BasicBlock *BB);
425 bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI,
426 BasicBlock *BB);
427 bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI,
428 BasicBlock *BB);
429 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
430 ValueLatticeElement &BBLV,
431 Instruction *BBI);
433 void solve();
435 public:
436 /// This is the query interface to determine the lattice
437 /// value for the specified Value* at the end of the specified block.
438 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
439 Instruction *CxtI = nullptr);
441 /// This is the query interface to determine the lattice
442 /// value for the specified Value* at the specified instruction (generally
443 /// from an assume intrinsic).
444 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
446 /// This is the query interface to determine the lattice
447 /// value for the specified Value* that is true on the specified edge.
448 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
449 BasicBlock *ToBB,
450 Instruction *CxtI = nullptr);
452 /// Complete flush all previously computed values
453 void clear() {
454 TheCache.clear();
457 /// Printing the LazyValueInfo Analysis.
458 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
459 LazyValueInfoAnnotatedWriter Writer(this, DTree);
460 F.print(OS, &Writer);
463 /// This is part of the update interface to inform the cache
464 /// that a block has been deleted.
465 void eraseBlock(BasicBlock *BB) {
466 TheCache.eraseBlock(BB);
469 /// Disables use of the DominatorTree within LVI.
470 void disableDT() {
471 if (DT) {
472 assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!");
473 std::swap(DT, DisabledDT);
477 /// Enables use of the DominatorTree within LVI. Does nothing if the class
478 /// instance was initialized without a DT pointer.
479 void enableDT() {
480 if (DisabledDT) {
481 assert(!DT && "Both DT and DisabledDT are not nullptr!");
482 std::swap(DT, DisabledDT);
486 /// This is the update interface to inform the cache that an edge from
487 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
488 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
490 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
491 DominatorTree *DT = nullptr)
492 : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {}
494 } // end anonymous namespace
497 void LazyValueInfoImpl::solve() {
498 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
499 BlockValueStack.begin(), BlockValueStack.end());
501 unsigned processedCount = 0;
502 while (!BlockValueStack.empty()) {
503 processedCount++;
504 // Abort if we have to process too many values to get a result for this one.
505 // Because of the design of the overdefined cache currently being per-block
506 // to avoid naming-related issues (IE it wants to try to give different
507 // results for the same name in different blocks), overdefined results don't
508 // get cached globally, which in turn means we will often try to rediscover
509 // the same overdefined result again and again. Once something like
510 // PredicateInfo is used in LVI or CVP, we should be able to make the
511 // overdefined cache global, and remove this throttle.
512 if (processedCount > MaxProcessedPerValue) {
513 LLVM_DEBUG(
514 dbgs() << "Giving up on stack because we are getting too deep\n");
515 // Fill in the original values
516 while (!StartingStack.empty()) {
517 std::pair<BasicBlock *, Value *> &e = StartingStack.back();
518 TheCache.insertResult(e.second, e.first,
519 ValueLatticeElement::getOverdefined());
520 StartingStack.pop_back();
522 BlockValueSet.clear();
523 BlockValueStack.clear();
524 return;
526 std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
527 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
529 if (solveBlockValue(e.second, e.first)) {
530 // The work item was completely processed.
531 assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
532 assert(TheCache.hasCachedValueInfo(e.second, e.first) &&
533 "Result should be in cache!");
535 LLVM_DEBUG(
536 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
537 << TheCache.getCachedValueInfo(e.second, e.first) << "\n");
539 BlockValueStack.pop_back();
540 BlockValueSet.erase(e);
541 } else {
542 // More work needs to be done before revisiting.
543 assert(BlockValueStack.back() != e && "Stack should have been pushed!");
548 bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) {
549 // If already a constant, there is nothing to compute.
550 if (isa<Constant>(Val))
551 return true;
553 return TheCache.hasCachedValueInfo(Val, BB);
556 ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val,
557 BasicBlock *BB) {
558 // If already a constant, there is nothing to compute.
559 if (Constant *VC = dyn_cast<Constant>(Val))
560 return ValueLatticeElement::get(VC);
562 return TheCache.getCachedValueInfo(Val, BB);
565 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
566 switch (BBI->getOpcode()) {
567 default: break;
568 case Instruction::Load:
569 case Instruction::Call:
570 case Instruction::Invoke:
571 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
572 if (isa<IntegerType>(BBI->getType())) {
573 return ValueLatticeElement::getRange(
574 getConstantRangeFromMetadata(*Ranges));
576 break;
578 // Nothing known - will be intersected with other facts
579 return ValueLatticeElement::getOverdefined();
582 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
583 if (isa<Constant>(Val))
584 return true;
586 if (TheCache.hasCachedValueInfo(Val, BB)) {
587 // If we have a cached value, use that.
588 LLVM_DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val="
589 << TheCache.getCachedValueInfo(Val, BB) << '\n');
591 // Since we're reusing a cached value, we don't need to update the
592 // OverDefinedCache. The cache will have been properly updated whenever the
593 // cached value was inserted.
594 return true;
597 // Hold off inserting this value into the Cache in case we have to return
598 // false and come back later.
599 ValueLatticeElement Res;
600 if (!solveBlockValueImpl(Res, Val, BB))
601 // Work pushed, will revisit
602 return false;
604 TheCache.insertResult(Val, BB, Res);
605 return true;
608 bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res,
609 Value *Val, BasicBlock *BB) {
611 Instruction *BBI = dyn_cast<Instruction>(Val);
612 if (!BBI || BBI->getParent() != BB)
613 return solveBlockValueNonLocal(Res, Val, BB);
615 if (PHINode *PN = dyn_cast<PHINode>(BBI))
616 return solveBlockValuePHINode(Res, PN, BB);
618 if (auto *SI = dyn_cast<SelectInst>(BBI))
619 return solveBlockValueSelect(Res, SI, BB);
621 // If this value is a nonnull pointer, record it's range and bailout. Note
622 // that for all other pointer typed values, we terminate the search at the
623 // definition. We could easily extend this to look through geps, bitcasts,
624 // and the like to prove non-nullness, but it's not clear that's worth it
625 // compile time wise. The context-insensitive value walk done inside
626 // isKnownNonZero gets most of the profitable cases at much less expense.
627 // This does mean that we have a sensitivity to where the defining
628 // instruction is placed, even if it could legally be hoisted much higher.
629 // That is unfortunate.
630 PointerType *PT = dyn_cast<PointerType>(BBI->getType());
631 if (PT && isKnownNonZero(BBI, DL)) {
632 Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
633 return true;
635 if (BBI->getType()->isIntegerTy()) {
636 if (auto *CI = dyn_cast<CastInst>(BBI))
637 return solveBlockValueCast(Res, CI, BB);
639 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
640 return solveBlockValueBinaryOp(Res, BO, BB);
643 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
644 << "' - unknown inst def found.\n");
645 Res = getFromRangeMetadata(BBI);
646 return true;
649 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
650 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
651 return L->getPointerAddressSpace() == 0 &&
652 GetUnderlyingObject(L->getPointerOperand(),
653 L->getModule()->getDataLayout()) == Ptr;
655 if (StoreInst *S = dyn_cast<StoreInst>(I)) {
656 return S->getPointerAddressSpace() == 0 &&
657 GetUnderlyingObject(S->getPointerOperand(),
658 S->getModule()->getDataLayout()) == Ptr;
660 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
661 if (MI->isVolatile()) return false;
663 // FIXME: check whether it has a valuerange that excludes zero?
664 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
665 if (!Len || Len->isZero()) return false;
667 if (MI->getDestAddressSpace() == 0)
668 if (GetUnderlyingObject(MI->getRawDest(),
669 MI->getModule()->getDataLayout()) == Ptr)
670 return true;
671 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
672 if (MTI->getSourceAddressSpace() == 0)
673 if (GetUnderlyingObject(MTI->getRawSource(),
674 MTI->getModule()->getDataLayout()) == Ptr)
675 return true;
677 return false;
680 /// Return true if the allocation associated with Val is ever dereferenced
681 /// within the given basic block. This establishes the fact Val is not null,
682 /// but does not imply that the memory at Val is dereferenceable. (Val may
683 /// point off the end of the dereferenceable part of the object.)
684 static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) {
685 assert(Val->getType()->isPointerTy());
687 const DataLayout &DL = BB->getModule()->getDataLayout();
688 Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
689 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
690 // inside InstructionDereferencesPointer either.
691 if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1))
692 for (Instruction &I : *BB)
693 if (InstructionDereferencesPointer(&I, UnderlyingVal))
694 return true;
695 return false;
698 bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV,
699 Value *Val, BasicBlock *BB) {
700 ValueLatticeElement Result; // Start Undefined.
702 // If this is the entry block, we must be asking about an argument. The
703 // value is overdefined.
704 if (BB == &BB->getParent()->getEntryBlock()) {
705 assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
706 // Before giving up, see if we can prove the pointer non-null local to
707 // this particular block.
708 PointerType *PTy = dyn_cast<PointerType>(Val->getType());
709 if (PTy &&
710 (isKnownNonZero(Val, DL) ||
711 (isObjectDereferencedInBlock(Val, BB) &&
712 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) {
713 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
714 } else {
715 Result = ValueLatticeElement::getOverdefined();
717 BBLV = Result;
718 return true;
721 // Loop over all of our predecessors, merging what we know from them into
722 // result. If we encounter an unexplored predecessor, we eagerly explore it
723 // in a depth first manner. In practice, this has the effect of discovering
724 // paths we can't analyze eagerly without spending compile times analyzing
725 // other paths. This heuristic benefits from the fact that predecessors are
726 // frequently arranged such that dominating ones come first and we quickly
727 // find a path to function entry. TODO: We should consider explicitly
728 // canonicalizing to make this true rather than relying on this happy
729 // accident.
730 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
731 ValueLatticeElement EdgeResult;
732 if (!getEdgeValue(Val, *PI, BB, EdgeResult))
733 // Explore that input, then return here
734 return false;
736 Result.mergeIn(EdgeResult, DL);
738 // If we hit overdefined, exit early. The BlockVals entry is already set
739 // to overdefined.
740 if (Result.isOverdefined()) {
741 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
742 << "' - overdefined because of pred (non local).\n");
743 // Before giving up, see if we can prove the pointer non-null local to
744 // this particular block.
745 PointerType *PTy = dyn_cast<PointerType>(Val->getType());
746 if (PTy && isObjectDereferencedInBlock(Val, BB) &&
747 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) {
748 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
751 BBLV = Result;
752 return true;
756 // Return the merged value, which is more precise than 'overdefined'.
757 assert(!Result.isOverdefined());
758 BBLV = Result;
759 return true;
762 bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV,
763 PHINode *PN, BasicBlock *BB) {
764 ValueLatticeElement Result; // Start Undefined.
766 // Loop over all of our predecessors, merging what we know from them into
767 // result. See the comment about the chosen traversal order in
768 // solveBlockValueNonLocal; the same reasoning applies here.
769 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
770 BasicBlock *PhiBB = PN->getIncomingBlock(i);
771 Value *PhiVal = PN->getIncomingValue(i);
772 ValueLatticeElement EdgeResult;
773 // Note that we can provide PN as the context value to getEdgeValue, even
774 // though the results will be cached, because PN is the value being used as
775 // the cache key in the caller.
776 if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN))
777 // Explore that input, then return here
778 return false;
780 Result.mergeIn(EdgeResult, DL);
782 // If we hit overdefined, exit early. The BlockVals entry is already set
783 // to overdefined.
784 if (Result.isOverdefined()) {
785 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
786 << "' - overdefined because of pred (local).\n");
788 BBLV = Result;
789 return true;
793 // Return the merged value, which is more precise than 'overdefined'.
794 assert(!Result.isOverdefined() && "Possible PHI in entry block?");
795 BBLV = Result;
796 return true;
799 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
800 bool isTrueDest = true);
802 // If we can determine a constraint on the value given conditions assumed by
803 // the program, intersect those constraints with BBLV
804 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
805 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
806 BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
807 if (!BBI)
808 return;
810 for (auto &AssumeVH : AC->assumptionsFor(Val)) {
811 if (!AssumeVH)
812 continue;
813 auto *I = cast<CallInst>(AssumeVH);
814 if (!isValidAssumeForContext(I, BBI, DT))
815 continue;
817 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
820 // If guards are not used in the module, don't spend time looking for them
821 auto *GuardDecl = BBI->getModule()->getFunction(
822 Intrinsic::getName(Intrinsic::experimental_guard));
823 if (!GuardDecl || GuardDecl->use_empty())
824 return;
826 if (BBI->getIterator() == BBI->getParent()->begin())
827 return;
828 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
829 BBI->getParent()->rend())) {
830 Value *Cond = nullptr;
831 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
832 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
836 bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV,
837 SelectInst *SI, BasicBlock *BB) {
839 // Recurse on our inputs if needed
840 if (!hasBlockValue(SI->getTrueValue(), BB)) {
841 if (pushBlockValue(std::make_pair(BB, SI->getTrueValue())))
842 return false;
843 BBLV = ValueLatticeElement::getOverdefined();
844 return true;
846 ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB);
847 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
848 // extra slots in the table if we can.
849 if (TrueVal.isOverdefined()) {
850 BBLV = ValueLatticeElement::getOverdefined();
851 return true;
854 if (!hasBlockValue(SI->getFalseValue(), BB)) {
855 if (pushBlockValue(std::make_pair(BB, SI->getFalseValue())))
856 return false;
857 BBLV = ValueLatticeElement::getOverdefined();
858 return true;
860 ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB);
861 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
862 // extra slots in the table if we can.
863 if (FalseVal.isOverdefined()) {
864 BBLV = ValueLatticeElement::getOverdefined();
865 return true;
868 if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
869 const ConstantRange &TrueCR = TrueVal.getConstantRange();
870 const ConstantRange &FalseCR = FalseVal.getConstantRange();
871 Value *LHS = nullptr;
872 Value *RHS = nullptr;
873 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
874 // Is this a min specifically of our two inputs? (Avoid the risk of
875 // ValueTracking getting smarter looking back past our immediate inputs.)
876 if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
877 LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
878 ConstantRange ResultCR = [&]() {
879 switch (SPR.Flavor) {
880 default:
881 llvm_unreachable("unexpected minmax type!");
882 case SPF_SMIN: /// Signed minimum
883 return TrueCR.smin(FalseCR);
884 case SPF_UMIN: /// Unsigned minimum
885 return TrueCR.umin(FalseCR);
886 case SPF_SMAX: /// Signed maximum
887 return TrueCR.smax(FalseCR);
888 case SPF_UMAX: /// Unsigned maximum
889 return TrueCR.umax(FalseCR);
891 }();
892 BBLV = ValueLatticeElement::getRange(ResultCR);
893 return true;
896 // TODO: ABS, NABS from the SelectPatternResult
899 // Can we constrain the facts about the true and false values by using the
900 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
901 // TODO: We could potentially refine an overdefined true value above.
902 Value *Cond = SI->getCondition();
903 TrueVal = intersect(TrueVal,
904 getValueFromCondition(SI->getTrueValue(), Cond, true));
905 FalseVal = intersect(FalseVal,
906 getValueFromCondition(SI->getFalseValue(), Cond, false));
908 // Handle clamp idioms such as:
909 // %24 = constantrange<0, 17>
910 // %39 = icmp eq i32 %24, 0
911 // %40 = add i32 %24, -1
912 // %siv.next = select i1 %39, i32 16, i32 %40
913 // %siv.next = constantrange<0, 17> not <-1, 17>
914 // In general, this can handle any clamp idiom which tests the edge
915 // condition via an equality or inequality.
916 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
917 ICmpInst::Predicate Pred = ICI->getPredicate();
918 Value *A = ICI->getOperand(0);
919 if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
920 auto addConstants = [](ConstantInt *A, ConstantInt *B) {
921 assert(A->getType() == B->getType());
922 return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
924 // See if either input is A + C2, subject to the constraint from the
925 // condition that A != C when that input is used. We can assume that
926 // that input doesn't include C + C2.
927 ConstantInt *CIAdded;
928 switch (Pred) {
929 default: break;
930 case ICmpInst::ICMP_EQ:
931 if (match(SI->getFalseValue(), m_Add(m_Specific(A),
932 m_ConstantInt(CIAdded)))) {
933 auto ResNot = addConstants(CIBase, CIAdded);
934 FalseVal = intersect(FalseVal,
935 ValueLatticeElement::getNot(ResNot));
937 break;
938 case ICmpInst::ICMP_NE:
939 if (match(SI->getTrueValue(), m_Add(m_Specific(A),
940 m_ConstantInt(CIAdded)))) {
941 auto ResNot = addConstants(CIBase, CIAdded);
942 TrueVal = intersect(TrueVal,
943 ValueLatticeElement::getNot(ResNot));
945 break;
950 ValueLatticeElement Result; // Start Undefined.
951 Result.mergeIn(TrueVal, DL);
952 Result.mergeIn(FalseVal, DL);
953 BBLV = Result;
954 return true;
957 Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op,
958 Instruction *I,
959 BasicBlock *BB) {
960 if (!hasBlockValue(I->getOperand(Op), BB))
961 if (pushBlockValue(std::make_pair(BB, I->getOperand(Op))))
962 return None;
964 const unsigned OperandBitWidth =
965 DL.getTypeSizeInBits(I->getOperand(Op)->getType());
966 ConstantRange Range = ConstantRange(OperandBitWidth);
967 if (hasBlockValue(I->getOperand(Op), BB)) {
968 ValueLatticeElement Val = getBlockValue(I->getOperand(Op), BB);
969 intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I);
970 if (Val.isConstantRange())
971 Range = Val.getConstantRange();
973 return Range;
976 bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV,
977 CastInst *CI,
978 BasicBlock *BB) {
979 if (!CI->getOperand(0)->getType()->isSized()) {
980 // Without knowing how wide the input is, we can't analyze it in any useful
981 // way.
982 BBLV = ValueLatticeElement::getOverdefined();
983 return true;
986 // Filter out casts we don't know how to reason about before attempting to
987 // recurse on our operand. This can cut a long search short if we know we're
988 // not going to be able to get any useful information anways.
989 switch (CI->getOpcode()) {
990 case Instruction::Trunc:
991 case Instruction::SExt:
992 case Instruction::ZExt:
993 case Instruction::BitCast:
994 break;
995 default:
996 // Unhandled instructions are overdefined.
997 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
998 << "' - overdefined (unknown cast).\n");
999 BBLV = ValueLatticeElement::getOverdefined();
1000 return true;
1003 // Figure out the range of the LHS. If that fails, we still apply the
1004 // transfer rule on the full set since we may be able to locally infer
1005 // interesting facts.
1006 Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB);
1007 if (!LHSRes.hasValue())
1008 // More work to do before applying this transfer rule.
1009 return false;
1010 ConstantRange LHSRange = LHSRes.getValue();
1012 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
1014 // NOTE: We're currently limited by the set of operations that ConstantRange
1015 // can evaluate symbolically. Enhancing that set will allows us to analyze
1016 // more definitions.
1017 BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
1018 ResultBitWidth));
1019 return true;
1022 bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV,
1023 BinaryOperator *BO,
1024 BasicBlock *BB) {
1026 assert(BO->getOperand(0)->getType()->isSized() &&
1027 "all operands to binary operators are sized");
1029 // Filter out operators we don't know how to reason about before attempting to
1030 // recurse on our operand(s). This can cut a long search short if we know
1031 // we're not going to be able to get any useful information anyways.
1032 switch (BO->getOpcode()) {
1033 case Instruction::Add:
1034 case Instruction::Sub:
1035 case Instruction::Mul:
1036 case Instruction::UDiv:
1037 case Instruction::Shl:
1038 case Instruction::LShr:
1039 case Instruction::AShr:
1040 case Instruction::And:
1041 case Instruction::Or:
1042 // continue into the code below
1043 break;
1044 default:
1045 // Unhandled instructions are overdefined.
1046 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1047 << "' - overdefined (unknown binary operator).\n");
1048 BBLV = ValueLatticeElement::getOverdefined();
1049 return true;
1052 // Figure out the ranges of the operands. If that fails, use a
1053 // conservative range, but apply the transfer rule anyways. This
1054 // lets us pick up facts from expressions like "and i32 (call i32
1055 // @foo()), 32"
1056 Optional<ConstantRange> LHSRes = getRangeForOperand(0, BO, BB);
1057 Optional<ConstantRange> RHSRes = getRangeForOperand(1, BO, BB);
1059 if (!LHSRes.hasValue() || !RHSRes.hasValue())
1060 // More work to do before applying this transfer rule.
1061 return false;
1063 ConstantRange LHSRange = LHSRes.getValue();
1064 ConstantRange RHSRange = RHSRes.getValue();
1066 // NOTE: We're currently limited by the set of operations that ConstantRange
1067 // can evaluate symbolically. Enhancing that set will allows us to analyze
1068 // more definitions.
1069 Instruction::BinaryOps BinOp = BO->getOpcode();
1070 BBLV = ValueLatticeElement::getRange(LHSRange.binaryOp(BinOp, RHSRange));
1071 return true;
1074 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
1075 bool isTrueDest) {
1076 Value *LHS = ICI->getOperand(0);
1077 Value *RHS = ICI->getOperand(1);
1078 CmpInst::Predicate Predicate = ICI->getPredicate();
1080 if (isa<Constant>(RHS)) {
1081 if (ICI->isEquality() && LHS == Val) {
1082 // We know that V has the RHS constant if this is a true SETEQ or
1083 // false SETNE.
1084 if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ))
1085 return ValueLatticeElement::get(cast<Constant>(RHS));
1086 else
1087 return ValueLatticeElement::getNot(cast<Constant>(RHS));
1091 if (!Val->getType()->isIntegerTy())
1092 return ValueLatticeElement::getOverdefined();
1094 // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
1095 // range of Val guaranteed by the condition. Recognize comparisons in the from
1096 // of:
1097 // icmp <pred> Val, ...
1098 // icmp <pred> (add Val, Offset), ...
1099 // The latter is the range checking idiom that InstCombine produces. Subtract
1100 // the offset from the allowed range for RHS in this case.
1102 // Val or (add Val, Offset) can be on either hand of the comparison
1103 if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) {
1104 std::swap(LHS, RHS);
1105 Predicate = CmpInst::getSwappedPredicate(Predicate);
1108 ConstantInt *Offset = nullptr;
1109 if (LHS != Val)
1110 match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset)));
1112 if (LHS == Val || Offset) {
1113 // Calculate the range of values that are allowed by the comparison
1114 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1115 /*isFullSet=*/true);
1116 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
1117 RHSRange = ConstantRange(CI->getValue());
1118 else if (Instruction *I = dyn_cast<Instruction>(RHS))
1119 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1120 RHSRange = getConstantRangeFromMetadata(*Ranges);
1122 // If we're interested in the false dest, invert the condition
1123 CmpInst::Predicate Pred =
1124 isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate);
1125 ConstantRange TrueValues =
1126 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1128 if (Offset) // Apply the offset from above.
1129 TrueValues = TrueValues.subtract(Offset->getValue());
1131 return ValueLatticeElement::getRange(std::move(TrueValues));
1134 return ValueLatticeElement::getOverdefined();
1137 static ValueLatticeElement
1138 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1139 DenseMap<Value*, ValueLatticeElement> &Visited);
1141 static ValueLatticeElement
1142 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
1143 DenseMap<Value*, ValueLatticeElement> &Visited) {
1144 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1145 return getValueFromICmpCondition(Val, ICI, isTrueDest);
1147 // Handle conditions in the form of (cond1 && cond2), we know that on the
1148 // true dest path both of the conditions hold. Similarly for conditions of
1149 // the form (cond1 || cond2), we know that on the false dest path neither
1150 // condition holds.
1151 BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
1152 if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
1153 (!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
1154 return ValueLatticeElement::getOverdefined();
1156 // Prevent infinite recursion if Cond references itself as in this example:
1157 // Cond: "%tmp4 = and i1 %tmp4, undef"
1158 // BL: "%tmp4 = and i1 %tmp4, undef"
1159 // BR: "i1 undef"
1160 Value *BL = BO->getOperand(0);
1161 Value *BR = BO->getOperand(1);
1162 if (BL == Cond || BR == Cond)
1163 return ValueLatticeElement::getOverdefined();
1165 return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited),
1166 getValueFromCondition(Val, BR, isTrueDest, Visited));
1169 static ValueLatticeElement
1170 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1171 DenseMap<Value*, ValueLatticeElement> &Visited) {
1172 auto I = Visited.find(Cond);
1173 if (I != Visited.end())
1174 return I->second;
1176 auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
1177 Visited[Cond] = Result;
1178 return Result;
1181 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
1182 bool isTrueDest) {
1183 assert(Cond && "precondition");
1184 DenseMap<Value*, ValueLatticeElement> Visited;
1185 return getValueFromCondition(Val, Cond, isTrueDest, Visited);
1188 // Return true if Usr has Op as an operand, otherwise false.
1189 static bool usesOperand(User *Usr, Value *Op) {
1190 return find(Usr->operands(), Op) != Usr->op_end();
1193 // Return true if the instruction type of Val is supported by
1194 // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this
1195 // before calling constantFoldUser() to find out if it's even worth attempting
1196 // to call it.
1197 static bool isOperationFoldable(User *Usr) {
1198 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr);
1201 // Check if Usr can be simplified to an integer constant when the value of one
1202 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1203 // lattice value range with a single element or otherwise return an overdefined
1204 // lattice value.
1205 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1206 const APInt &OpConstVal,
1207 const DataLayout &DL) {
1208 assert(isOperationFoldable(Usr) && "Precondition");
1209 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1210 // Check if Usr can be simplified to a constant.
1211 if (auto *CI = dyn_cast<CastInst>(Usr)) {
1212 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
1213 if (auto *C = dyn_cast_or_null<ConstantInt>(
1214 SimplifyCastInst(CI->getOpcode(), OpConst,
1215 CI->getDestTy(), DL))) {
1216 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1218 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1219 bool Op0Match = BO->getOperand(0) == Op;
1220 bool Op1Match = BO->getOperand(1) == Op;
1221 assert((Op0Match || Op1Match) &&
1222 "Operand 0 nor Operand 1 isn't a match");
1223 Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1224 Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1225 if (auto *C = dyn_cast_or_null<ConstantInt>(
1226 SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1227 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1230 return ValueLatticeElement::getOverdefined();
1233 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1234 /// Val is not constrained on the edge. Result is unspecified if return value
1235 /// is false.
1236 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
1237 BasicBlock *BBTo, ValueLatticeElement &Result) {
1238 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1239 // know that v != 0.
1240 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
1241 // If this is a conditional branch and only one successor goes to BBTo, then
1242 // we may be able to infer something from the condition.
1243 if (BI->isConditional() &&
1244 BI->getSuccessor(0) != BI->getSuccessor(1)) {
1245 bool isTrueDest = BI->getSuccessor(0) == BBTo;
1246 assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1247 "BBTo isn't a successor of BBFrom");
1248 Value *Condition = BI->getCondition();
1250 // If V is the condition of the branch itself, then we know exactly what
1251 // it is.
1252 if (Condition == Val) {
1253 Result = ValueLatticeElement::get(ConstantInt::get(
1254 Type::getInt1Ty(Val->getContext()), isTrueDest));
1255 return true;
1258 // If the condition of the branch is an equality comparison, we may be
1259 // able to infer the value.
1260 Result = getValueFromCondition(Val, Condition, isTrueDest);
1261 if (!Result.isOverdefined())
1262 return true;
1264 if (User *Usr = dyn_cast<User>(Val)) {
1265 assert(Result.isOverdefined() && "Result isn't overdefined");
1266 // Check with isOperationFoldable() first to avoid linearly iterating
1267 // over the operands unnecessarily which can be expensive for
1268 // instructions with many operands.
1269 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
1270 const DataLayout &DL = BBTo->getModule()->getDataLayout();
1271 if (usesOperand(Usr, Condition)) {
1272 // If Val has Condition as an operand and Val can be folded into a
1273 // constant with either Condition == true or Condition == false,
1274 // propagate the constant.
1275 // eg.
1276 // ; %Val is true on the edge to %then.
1277 // %Val = and i1 %Condition, true.
1278 // br %Condition, label %then, label %else
1279 APInt ConditionVal(1, isTrueDest ? 1 : 0);
1280 Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1281 } else {
1282 // If one of Val's operand has an inferred value, we may be able to
1283 // infer the value of Val.
1284 // eg.
1285 // ; %Val is 94 on the edge to %then.
1286 // %Val = add i8 %Op, 1
1287 // %Condition = icmp eq i8 %Op, 93
1288 // br i1 %Condition, label %then, label %else
1289 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1290 Value *Op = Usr->getOperand(i);
1291 ValueLatticeElement OpLatticeVal =
1292 getValueFromCondition(Op, Condition, isTrueDest);
1293 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
1294 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
1295 break;
1301 if (!Result.isOverdefined())
1302 return true;
1306 // If the edge was formed by a switch on the value, then we may know exactly
1307 // what it is.
1308 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1309 Value *Condition = SI->getCondition();
1310 if (!isa<IntegerType>(Val->getType()))
1311 return false;
1312 bool ValUsesConditionAndMayBeFoldable = false;
1313 if (Condition != Val) {
1314 // Check if Val has Condition as an operand.
1315 if (User *Usr = dyn_cast<User>(Val))
1316 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1317 usesOperand(Usr, Condition);
1318 if (!ValUsesConditionAndMayBeFoldable)
1319 return false;
1321 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1322 "Condition != Val nor Val doesn't use Condition");
1324 bool DefaultCase = SI->getDefaultDest() == BBTo;
1325 unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1326 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1328 for (auto Case : SI->cases()) {
1329 APInt CaseValue = Case.getCaseValue()->getValue();
1330 ConstantRange EdgeVal(CaseValue);
1331 if (ValUsesConditionAndMayBeFoldable) {
1332 User *Usr = cast<User>(Val);
1333 const DataLayout &DL = BBTo->getModule()->getDataLayout();
1334 ValueLatticeElement EdgeLatticeVal =
1335 constantFoldUser(Usr, Condition, CaseValue, DL);
1336 if (EdgeLatticeVal.isOverdefined())
1337 return false;
1338 EdgeVal = EdgeLatticeVal.getConstantRange();
1340 if (DefaultCase) {
1341 // It is possible that the default destination is the destination of
1342 // some cases. We cannot perform difference for those cases.
1343 // We know Condition != CaseValue in BBTo. In some cases we can use
1344 // this to infer Val == f(Condition) is != f(CaseValue). For now, we
1345 // only do this when f is identity (i.e. Val == Condition), but we
1346 // should be able to do this for any injective f.
1347 if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1348 EdgesVals = EdgesVals.difference(EdgeVal);
1349 } else if (Case.getCaseSuccessor() == BBTo)
1350 EdgesVals = EdgesVals.unionWith(EdgeVal);
1352 Result = ValueLatticeElement::getRange(std::move(EdgesVals));
1353 return true;
1355 return false;
1358 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1359 /// the basic block if the edge does not constrain Val.
1360 bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
1361 BasicBlock *BBTo,
1362 ValueLatticeElement &Result,
1363 Instruction *CxtI) {
1364 // If already a constant, there is nothing to compute.
1365 if (Constant *VC = dyn_cast<Constant>(Val)) {
1366 Result = ValueLatticeElement::get(VC);
1367 return true;
1370 ValueLatticeElement LocalResult;
1371 if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult))
1372 // If we couldn't constrain the value on the edge, LocalResult doesn't
1373 // provide any information.
1374 LocalResult = ValueLatticeElement::getOverdefined();
1376 if (hasSingleValue(LocalResult)) {
1377 // Can't get any more precise here
1378 Result = LocalResult;
1379 return true;
1382 if (!hasBlockValue(Val, BBFrom)) {
1383 if (pushBlockValue(std::make_pair(BBFrom, Val)))
1384 return false;
1385 // No new information.
1386 Result = LocalResult;
1387 return true;
1390 // Try to intersect ranges of the BB and the constraint on the edge.
1391 ValueLatticeElement InBlock = getBlockValue(Val, BBFrom);
1392 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
1393 BBFrom->getTerminator());
1394 // We can use the context instruction (generically the ultimate instruction
1395 // the calling pass is trying to simplify) here, even though the result of
1396 // this function is generally cached when called from the solve* functions
1397 // (and that cached result might be used with queries using a different
1398 // context instruction), because when this function is called from the solve*
1399 // functions, the context instruction is not provided. When called from
1400 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1401 // but then the result is not cached.
1402 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1404 Result = intersect(LocalResult, InBlock);
1405 return true;
1408 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1409 Instruction *CxtI) {
1410 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1411 << BB->getName() << "'\n");
1413 assert(BlockValueStack.empty() && BlockValueSet.empty());
1414 if (!hasBlockValue(V, BB)) {
1415 pushBlockValue(std::make_pair(BB, V));
1416 solve();
1418 ValueLatticeElement Result = getBlockValue(V, BB);
1419 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1421 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
1422 return Result;
1425 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1426 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
1427 << "'\n");
1429 if (auto *C = dyn_cast<Constant>(V))
1430 return ValueLatticeElement::get(C);
1432 ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1433 if (auto *I = dyn_cast<Instruction>(V))
1434 Result = getFromRangeMetadata(I);
1435 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1437 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
1438 return Result;
1441 ValueLatticeElement LazyValueInfoImpl::
1442 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1443 Instruction *CxtI) {
1444 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1445 << FromBB->getName() << "' to '" << ToBB->getName()
1446 << "'\n");
1448 ValueLatticeElement Result;
1449 if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
1450 solve();
1451 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
1452 (void)WasFastQuery;
1453 assert(WasFastQuery && "More work to do after problem solved?");
1456 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n");
1457 return Result;
1460 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1461 BasicBlock *NewSucc) {
1462 TheCache.threadEdgeImpl(OldSucc, NewSucc);
1465 //===----------------------------------------------------------------------===//
1466 // LazyValueInfo Impl
1467 //===----------------------------------------------------------------------===//
1469 /// This lazily constructs the LazyValueInfoImpl.
1470 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
1471 const DataLayout *DL,
1472 DominatorTree *DT = nullptr) {
1473 if (!PImpl) {
1474 assert(DL && "getCache() called with a null DataLayout");
1475 PImpl = new LazyValueInfoImpl(AC, *DL, DT);
1477 return *static_cast<LazyValueInfoImpl*>(PImpl);
1480 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1481 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1482 const DataLayout &DL = F.getParent()->getDataLayout();
1484 DominatorTreeWrapperPass *DTWP =
1485 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1486 Info.DT = DTWP ? &DTWP->getDomTree() : nullptr;
1487 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1489 if (Info.PImpl)
1490 getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear();
1492 // Fully lazy.
1493 return false;
1496 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1497 AU.setPreservesAll();
1498 AU.addRequired<AssumptionCacheTracker>();
1499 AU.addRequired<TargetLibraryInfoWrapperPass>();
1502 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1504 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1506 void LazyValueInfo::releaseMemory() {
1507 // If the cache was allocated, free it.
1508 if (PImpl) {
1509 delete &getImpl(PImpl, AC, nullptr);
1510 PImpl = nullptr;
1514 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1515 FunctionAnalysisManager::Invalidator &Inv) {
1516 // We need to invalidate if we have either failed to preserve this analyses
1517 // result directly or if any of its dependencies have been invalidated.
1518 auto PAC = PA.getChecker<LazyValueAnalysis>();
1519 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
1520 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)))
1521 return true;
1523 return false;
1526 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1528 LazyValueInfo LazyValueAnalysis::run(Function &F,
1529 FunctionAnalysisManager &FAM) {
1530 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1531 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1532 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
1534 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT);
1537 /// Returns true if we can statically tell that this value will never be a
1538 /// "useful" constant. In practice, this means we've got something like an
1539 /// alloca or a malloc call for which a comparison against a constant can
1540 /// only be guarding dead code. Note that we are potentially giving up some
1541 /// precision in dead code (a constant result) in favour of avoiding a
1542 /// expensive search for a easily answered common query.
1543 static bool isKnownNonConstant(Value *V) {
1544 V = V->stripPointerCasts();
1545 // The return val of alloc cannot be a Constant.
1546 if (isa<AllocaInst>(V))
1547 return true;
1548 return false;
1551 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
1552 Instruction *CxtI) {
1553 // Bail out early if V is known not to be a Constant.
1554 if (isKnownNonConstant(V))
1555 return nullptr;
1557 const DataLayout &DL = BB->getModule()->getDataLayout();
1558 ValueLatticeElement Result =
1559 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1561 if (Result.isConstant())
1562 return Result.getConstant();
1563 if (Result.isConstantRange()) {
1564 const ConstantRange &CR = Result.getConstantRange();
1565 if (const APInt *SingleVal = CR.getSingleElement())
1566 return ConstantInt::get(V->getContext(), *SingleVal);
1568 return nullptr;
1571 ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB,
1572 Instruction *CxtI) {
1573 assert(V->getType()->isIntegerTy());
1574 unsigned Width = V->getType()->getIntegerBitWidth();
1575 const DataLayout &DL = BB->getModule()->getDataLayout();
1576 ValueLatticeElement Result =
1577 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1578 if (Result.isUndefined())
1579 return ConstantRange(Width, /*isFullSet=*/false);
1580 if (Result.isConstantRange())
1581 return Result.getConstantRange();
1582 // We represent ConstantInt constants as constant ranges but other kinds
1583 // of integer constants, i.e. ConstantExpr will be tagged as constants
1584 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1585 "ConstantInt value must be represented as constantrange");
1586 return ConstantRange(Width, /*isFullSet=*/true);
1589 /// Determine whether the specified value is known to be a
1590 /// constant on the specified edge. Return null if not.
1591 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1592 BasicBlock *ToBB,
1593 Instruction *CxtI) {
1594 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1595 ValueLatticeElement Result =
1596 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1598 if (Result.isConstant())
1599 return Result.getConstant();
1600 if (Result.isConstantRange()) {
1601 const ConstantRange &CR = Result.getConstantRange();
1602 if (const APInt *SingleVal = CR.getSingleElement())
1603 return ConstantInt::get(V->getContext(), *SingleVal);
1605 return nullptr;
1608 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1609 BasicBlock *FromBB,
1610 BasicBlock *ToBB,
1611 Instruction *CxtI) {
1612 unsigned Width = V->getType()->getIntegerBitWidth();
1613 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1614 ValueLatticeElement Result =
1615 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1617 if (Result.isUndefined())
1618 return ConstantRange(Width, /*isFullSet=*/false);
1619 if (Result.isConstantRange())
1620 return Result.getConstantRange();
1621 // We represent ConstantInt constants as constant ranges but other kinds
1622 // of integer constants, i.e. ConstantExpr will be tagged as constants
1623 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1624 "ConstantInt value must be represented as constantrange");
1625 return ConstantRange(Width, /*isFullSet=*/true);
1628 static LazyValueInfo::Tristate
1629 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1630 const DataLayout &DL, TargetLibraryInfo *TLI) {
1631 // If we know the value is a constant, evaluate the conditional.
1632 Constant *Res = nullptr;
1633 if (Val.isConstant()) {
1634 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
1635 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1636 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1637 return LazyValueInfo::Unknown;
1640 if (Val.isConstantRange()) {
1641 ConstantInt *CI = dyn_cast<ConstantInt>(C);
1642 if (!CI) return LazyValueInfo::Unknown;
1644 const ConstantRange &CR = Val.getConstantRange();
1645 if (Pred == ICmpInst::ICMP_EQ) {
1646 if (!CR.contains(CI->getValue()))
1647 return LazyValueInfo::False;
1649 if (CR.isSingleElement())
1650 return LazyValueInfo::True;
1651 } else if (Pred == ICmpInst::ICMP_NE) {
1652 if (!CR.contains(CI->getValue()))
1653 return LazyValueInfo::True;
1655 if (CR.isSingleElement())
1656 return LazyValueInfo::False;
1657 } else {
1658 // Handle more complex predicates.
1659 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1660 (ICmpInst::Predicate)Pred, CI->getValue());
1661 if (TrueValues.contains(CR))
1662 return LazyValueInfo::True;
1663 if (TrueValues.inverse().contains(CR))
1664 return LazyValueInfo::False;
1666 return LazyValueInfo::Unknown;
1669 if (Val.isNotConstant()) {
1670 // If this is an equality comparison, we can try to fold it knowing that
1671 // "V != C1".
1672 if (Pred == ICmpInst::ICMP_EQ) {
1673 // !C1 == C -> false iff C1 == C.
1674 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1675 Val.getNotConstant(), C, DL,
1676 TLI);
1677 if (Res->isNullValue())
1678 return LazyValueInfo::False;
1679 } else if (Pred == ICmpInst::ICMP_NE) {
1680 // !C1 != C -> true iff C1 == C.
1681 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1682 Val.getNotConstant(), C, DL,
1683 TLI);
1684 if (Res->isNullValue())
1685 return LazyValueInfo::True;
1687 return LazyValueInfo::Unknown;
1690 return LazyValueInfo::Unknown;
1693 /// Determine whether the specified value comparison with a constant is known to
1694 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1695 LazyValueInfo::Tristate
1696 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1697 BasicBlock *FromBB, BasicBlock *ToBB,
1698 Instruction *CxtI) {
1699 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1700 ValueLatticeElement Result =
1701 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1703 return getPredicateResult(Pred, C, Result, DL, TLI);
1706 LazyValueInfo::Tristate
1707 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1708 Instruction *CxtI) {
1709 // Is or is not NonNull are common predicates being queried. If
1710 // isKnownNonZero can tell us the result of the predicate, we can
1711 // return it quickly. But this is only a fastpath, and falling
1712 // through would still be correct.
1713 const DataLayout &DL = CxtI->getModule()->getDataLayout();
1714 if (V->getType()->isPointerTy() && C->isNullValue() &&
1715 isKnownNonZero(V->stripPointerCasts(), DL)) {
1716 if (Pred == ICmpInst::ICMP_EQ)
1717 return LazyValueInfo::False;
1718 else if (Pred == ICmpInst::ICMP_NE)
1719 return LazyValueInfo::True;
1721 ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
1722 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1723 if (Ret != Unknown)
1724 return Ret;
1726 // Note: The following bit of code is somewhat distinct from the rest of LVI;
1727 // LVI as a whole tries to compute a lattice value which is conservatively
1728 // correct at a given location. In this case, we have a predicate which we
1729 // weren't able to prove about the merged result, and we're pushing that
1730 // predicate back along each incoming edge to see if we can prove it
1731 // separately for each input. As a motivating example, consider:
1732 // bb1:
1733 // %v1 = ... ; constantrange<1, 5>
1734 // br label %merge
1735 // bb2:
1736 // %v2 = ... ; constantrange<10, 20>
1737 // br label %merge
1738 // merge:
1739 // %phi = phi [%v1, %v2] ; constantrange<1,20>
1740 // %pred = icmp eq i32 %phi, 8
1741 // We can't tell from the lattice value for '%phi' that '%pred' is false
1742 // along each path, but by checking the predicate over each input separately,
1743 // we can.
1744 // We limit the search to one step backwards from the current BB and value.
1745 // We could consider extending this to search further backwards through the
1746 // CFG and/or value graph, but there are non-obvious compile time vs quality
1747 // tradeoffs.
1748 if (CxtI) {
1749 BasicBlock *BB = CxtI->getParent();
1751 // Function entry or an unreachable block. Bail to avoid confusing
1752 // analysis below.
1753 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1754 if (PI == PE)
1755 return Unknown;
1757 // If V is a PHI node in the same block as the context, we need to ask
1758 // questions about the predicate as applied to the incoming value along
1759 // each edge. This is useful for eliminating cases where the predicate is
1760 // known along all incoming edges.
1761 if (auto *PHI = dyn_cast<PHINode>(V))
1762 if (PHI->getParent() == BB) {
1763 Tristate Baseline = Unknown;
1764 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1765 Value *Incoming = PHI->getIncomingValue(i);
1766 BasicBlock *PredBB = PHI->getIncomingBlock(i);
1767 // Note that PredBB may be BB itself.
1768 Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
1769 CxtI);
1771 // Keep going as long as we've seen a consistent known result for
1772 // all inputs.
1773 Baseline = (i == 0) ? Result /* First iteration */
1774 : (Baseline == Result ? Baseline : Unknown); /* All others */
1775 if (Baseline == Unknown)
1776 break;
1778 if (Baseline != Unknown)
1779 return Baseline;
1782 // For a comparison where the V is outside this block, it's possible
1783 // that we've branched on it before. Look to see if the value is known
1784 // on all incoming edges.
1785 if (!isa<Instruction>(V) ||
1786 cast<Instruction>(V)->getParent() != BB) {
1787 // For predecessor edge, determine if the comparison is true or false
1788 // on that edge. If they're all true or all false, we can conclude
1789 // the value of the comparison in this block.
1790 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1791 if (Baseline != Unknown) {
1792 // Check that all remaining incoming values match the first one.
1793 while (++PI != PE) {
1794 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1795 if (Ret != Baseline) break;
1797 // If we terminated early, then one of the values didn't match.
1798 if (PI == PE) {
1799 return Baseline;
1804 return Unknown;
1807 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1808 BasicBlock *NewSucc) {
1809 if (PImpl) {
1810 const DataLayout &DL = PredBB->getModule()->getDataLayout();
1811 getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
1815 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1816 if (PImpl) {
1817 const DataLayout &DL = BB->getModule()->getDataLayout();
1818 getImpl(PImpl, AC, &DL, DT).eraseBlock(BB);
1823 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1824 if (PImpl) {
1825 getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS);
1829 void LazyValueInfo::disableDT() {
1830 if (PImpl)
1831 getImpl(PImpl, AC, DL, DT).disableDT();
1834 void LazyValueInfo::enableDT() {
1835 if (PImpl)
1836 getImpl(PImpl, AC, DL, DT).enableDT();
1839 // Print the LVI for the function arguments at the start of each basic block.
1840 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1841 const BasicBlock *BB, formatted_raw_ostream &OS) {
1842 // Find if there are latticevalues defined for arguments of the function.
1843 auto *F = BB->getParent();
1844 for (auto &Arg : F->args()) {
1845 ValueLatticeElement Result = LVIImpl->getValueInBlock(
1846 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
1847 if (Result.isUndefined())
1848 continue;
1849 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
1853 // This function prints the LVI analysis for the instruction I at the beginning
1854 // of various basic blocks. It relies on calculated values that are stored in
1855 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
1856 // LazyValueInfo for `I`, and print that info.
1857 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
1858 const Instruction *I, formatted_raw_ostream &OS) {
1860 auto *ParentBB = I->getParent();
1861 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
1862 // We can generate (solve) LVI values only for blocks that are dominated by
1863 // the I's parent. However, to avoid generating LVI for all dominating blocks,
1864 // that contain redundant/uninteresting information, we print LVI for
1865 // blocks that may use this LVI information (such as immediate successor
1866 // blocks, and blocks that contain uses of `I`).
1867 auto printResult = [&](const BasicBlock *BB) {
1868 if (!BlocksContainingLVI.insert(BB).second)
1869 return;
1870 ValueLatticeElement Result = LVIImpl->getValueInBlock(
1871 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
1872 OS << "; LatticeVal for: '" << *I << "' in BB: '";
1873 BB->printAsOperand(OS, false);
1874 OS << "' is: " << Result << "\n";
1877 printResult(ParentBB);
1878 // Print the LVI analysis results for the immediate successor blocks, that
1879 // are dominated by `ParentBB`.
1880 for (auto *BBSucc : successors(ParentBB))
1881 if (DT.dominates(ParentBB, BBSucc))
1882 printResult(BBSucc);
1884 // Print LVI in blocks where `I` is used.
1885 for (auto *U : I->users())
1886 if (auto *UseI = dyn_cast<Instruction>(U))
1887 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
1888 printResult(UseI->getParent());
1892 namespace {
1893 // Printer class for LazyValueInfo results.
1894 class LazyValueInfoPrinter : public FunctionPass {
1895 public:
1896 static char ID; // Pass identification, replacement for typeid
1897 LazyValueInfoPrinter() : FunctionPass(ID) {
1898 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
1901 void getAnalysisUsage(AnalysisUsage &AU) const override {
1902 AU.setPreservesAll();
1903 AU.addRequired<LazyValueInfoWrapperPass>();
1904 AU.addRequired<DominatorTreeWrapperPass>();
1907 // Get the mandatory dominator tree analysis and pass this in to the
1908 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
1909 bool runOnFunction(Function &F) override {
1910 dbgs() << "LVI for function '" << F.getName() << "':\n";
1911 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
1912 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1913 LVI.printLVI(F, DTree, dbgs());
1914 return false;
1919 char LazyValueInfoPrinter::ID = 0;
1920 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
1921 "Lazy Value Info Printer Pass", false, false)
1922 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
1923 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
1924 "Lazy Value Info Printer Pass", false, false)