Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Analysis / Loads.cpp
blob7da9bd718a51cb5d059a66a6a5236f25bbcc8ca5
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/GlobalAlias.h"
18 #include "llvm/IR/GlobalVariable.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/Operator.h"
23 #include "llvm/IR/Statepoint.h"
25 using namespace llvm;
27 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
28 const DataLayout &DL) {
29 APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
31 if (!BaseAlign) {
32 Type *Ty = Base->getType()->getPointerElementType();
33 if (!Ty->isSized())
34 return false;
35 BaseAlign = DL.getABITypeAlignment(Ty);
38 APInt Alignment(Offset.getBitWidth(), Align);
40 assert(Alignment.isPowerOf2() && "must be a power of 2!");
41 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
44 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
45 Type *Ty = Base->getType();
46 assert(Ty->isSized() && "must be sized");
47 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
48 return isAligned(Base, Offset, Align, DL);
51 /// Test if V is always a pointer to allocated and suitably aligned memory for
52 /// a simple load or store.
53 static bool isDereferenceableAndAlignedPointer(
54 const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
55 const Instruction *CtxI, const DominatorTree *DT,
56 SmallPtrSetImpl<const Value *> &Visited) {
57 // Already visited? Bail out, we've likely hit unreachable code.
58 if (!Visited.insert(V).second)
59 return false;
61 // Note that it is not safe to speculate into a malloc'd region because
62 // malloc may return null.
64 // bitcast instructions are no-ops as far as dereferenceability is concerned.
65 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
66 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
67 DL, CtxI, DT, Visited);
69 bool CheckForNonNull = false;
70 APInt KnownDerefBytes(Size.getBitWidth(),
71 V->getPointerDereferenceableBytes(DL, CheckForNonNull));
72 if (KnownDerefBytes.getBoolValue()) {
73 if (KnownDerefBytes.uge(Size))
74 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT))
75 return isAligned(V, Align, DL);
78 // For GEPs, determine if the indexing lands within the allocated object.
79 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
80 const Value *Base = GEP->getPointerOperand();
82 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
83 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
84 !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
85 return false;
87 // If the base pointer is dereferenceable for Offset+Size bytes, then the
88 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
89 // pointer is aligned to Align bytes, and the Offset is divisible by Align
90 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
91 // aligned to Align bytes.
93 // Offset and Size may have different bit widths if we have visited an
94 // addrspacecast, so we can't do arithmetic directly on the APInt values.
95 return isDereferenceableAndAlignedPointer(
96 Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
97 DL, CtxI, DT, Visited);
100 // For gc.relocate, look through relocations
101 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
102 return isDereferenceableAndAlignedPointer(
103 RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
105 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
106 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
107 DL, CtxI, DT, Visited);
109 if (const auto *Call = dyn_cast<CallBase>(V))
110 if (auto *RP = getArgumentAliasingToReturnedPointer(Call))
111 return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT,
112 Visited);
114 // If we don't know, assume the worst.
115 return false;
118 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
119 const APInt &Size,
120 const DataLayout &DL,
121 const Instruction *CtxI,
122 const DominatorTree *DT) {
123 SmallPtrSet<const Value *, 32> Visited;
124 return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
125 Visited);
128 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
129 const DataLayout &DL,
130 const Instruction *CtxI,
131 const DominatorTree *DT) {
132 // When dereferenceability information is provided by a dereferenceable
133 // attribute, we know exactly how many bytes are dereferenceable. If we can
134 // determine the exact offset to the attributed variable, we can use that
135 // information here.
136 Type *VTy = V->getType();
137 Type *Ty = VTy->getPointerElementType();
139 // Require ABI alignment for loads without alignment specification
140 if (Align == 0)
141 Align = DL.getABITypeAlignment(Ty);
143 if (!Ty->isSized())
144 return false;
146 SmallPtrSet<const Value *, 32> Visited;
147 return ::isDereferenceableAndAlignedPointer(
148 V, Align, APInt(DL.getIndexTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL,
149 CtxI, DT, Visited);
152 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
153 const Instruction *CtxI,
154 const DominatorTree *DT) {
155 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT);
158 /// Test if A and B will obviously have the same value.
160 /// This includes recognizing that %t0 and %t1 will have the same
161 /// value in code like this:
162 /// \code
163 /// %t0 = getelementptr \@a, 0, 3
164 /// store i32 0, i32* %t0
165 /// %t1 = getelementptr \@a, 0, 3
166 /// %t2 = load i32* %t1
167 /// \endcode
169 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
170 // Test if the values are trivially equivalent.
171 if (A == B)
172 return true;
174 // Test if the values come from identical arithmetic instructions.
175 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
176 // this function is only used when one address use dominates the
177 // other, which means that they'll always either have the same
178 // value or one of them will have an undefined value.
179 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
180 isa<GetElementPtrInst>(A))
181 if (const Instruction *BI = dyn_cast<Instruction>(B))
182 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
183 return true;
185 // Otherwise they may not be equivalent.
186 return false;
189 /// Check if executing a load of this pointer value cannot trap.
191 /// If DT and ScanFrom are specified this method performs context-sensitive
192 /// analysis and returns true if it is safe to load immediately before ScanFrom.
194 /// If it is not obviously safe to load from the specified pointer, we do
195 /// a quick local scan of the basic block containing \c ScanFrom, to determine
196 /// if the address is already accessed.
198 /// This uses the pointee type to determine how many bytes need to be safe to
199 /// load from the pointer.
200 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align,
201 const DataLayout &DL,
202 Instruction *ScanFrom,
203 const DominatorTree *DT) {
204 // Zero alignment means that the load has the ABI alignment for the target
205 if (Align == 0)
206 Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
207 assert(isPowerOf2_32(Align));
209 // If DT is not specified we can't make context-sensitive query
210 const Instruction* CtxI = DT ? ScanFrom : nullptr;
211 if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT))
212 return true;
214 int64_t ByteOffset = 0;
215 Value *Base = V;
216 Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
218 if (ByteOffset < 0) // out of bounds
219 return false;
221 Type *BaseType = nullptr;
222 unsigned BaseAlign = 0;
223 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
224 // An alloca is safe to load from as load as it is suitably aligned.
225 BaseType = AI->getAllocatedType();
226 BaseAlign = AI->getAlignment();
227 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
228 // Global variables are not necessarily safe to load from if they are
229 // interposed arbitrarily. Their size may change or they may be weak and
230 // require a test to determine if they were in fact provided.
231 if (!GV->isInterposable()) {
232 BaseType = GV->getType()->getElementType();
233 BaseAlign = GV->getAlignment();
237 PointerType *AddrTy = cast<PointerType>(V->getType());
238 uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
240 // If we found a base allocated type from either an alloca or global variable,
241 // try to see if we are definitively within the allocated region. We need to
242 // know the size of the base type and the loaded type to do anything in this
243 // case.
244 if (BaseType && BaseType->isSized()) {
245 if (BaseAlign == 0)
246 BaseAlign = DL.getPrefTypeAlignment(BaseType);
248 if (Align <= BaseAlign) {
249 // Check if the load is within the bounds of the underlying object.
250 if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
251 ((ByteOffset % Align) == 0))
252 return true;
256 if (!ScanFrom)
257 return false;
259 // Otherwise, be a little bit aggressive by scanning the local block where we
260 // want to check to see if the pointer is already being loaded or stored
261 // from/to. If so, the previous load or store would have already trapped,
262 // so there is no harm doing an extra load (also, CSE will later eliminate
263 // the load entirely).
264 BasicBlock::iterator BBI = ScanFrom->getIterator(),
265 E = ScanFrom->getParent()->begin();
267 // We can at least always strip pointer casts even though we can't use the
268 // base here.
269 V = V->stripPointerCasts();
271 while (BBI != E) {
272 --BBI;
274 // If we see a free or a call which may write to memory (i.e. which might do
275 // a free) the pointer could be marked invalid.
276 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
277 !isa<DbgInfoIntrinsic>(BBI))
278 return false;
280 Value *AccessedPtr;
281 unsigned AccessedAlign;
282 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
283 // Ignore volatile loads. The execution of a volatile load cannot
284 // be used to prove an address is backed by regular memory; it can,
285 // for example, point to an MMIO register.
286 if (LI->isVolatile())
287 continue;
288 AccessedPtr = LI->getPointerOperand();
289 AccessedAlign = LI->getAlignment();
290 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
291 // Ignore volatile stores (see comment for loads).
292 if (SI->isVolatile())
293 continue;
294 AccessedPtr = SI->getPointerOperand();
295 AccessedAlign = SI->getAlignment();
296 } else
297 continue;
299 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
300 if (AccessedAlign == 0)
301 AccessedAlign = DL.getABITypeAlignment(AccessedTy);
302 if (AccessedAlign < Align)
303 continue;
305 // Handle trivial cases.
306 if (AccessedPtr == V)
307 return true;
309 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
310 LoadSize <= DL.getTypeStoreSize(AccessedTy))
311 return true;
313 return false;
316 /// DefMaxInstsToScan - the default number of maximum instructions
317 /// to scan in the block, used by FindAvailableLoadedValue().
318 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
319 /// threading in part by eliminating partially redundant loads.
320 /// At that point, the value of MaxInstsToScan was already set to '6'
321 /// without documented explanation.
322 cl::opt<unsigned>
323 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
324 cl::desc("Use this to specify the default maximum number of instructions "
325 "to scan backward from a given instruction, when searching for "
326 "available loaded value"));
328 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
329 BasicBlock *ScanBB,
330 BasicBlock::iterator &ScanFrom,
331 unsigned MaxInstsToScan,
332 AliasAnalysis *AA, bool *IsLoad,
333 unsigned *NumScanedInst) {
334 // Don't CSE load that is volatile or anything stronger than unordered.
335 if (!Load->isUnordered())
336 return nullptr;
338 return FindAvailablePtrLoadStore(
339 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
340 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
343 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
344 bool AtLeastAtomic, BasicBlock *ScanBB,
345 BasicBlock::iterator &ScanFrom,
346 unsigned MaxInstsToScan,
347 AliasAnalysis *AA, bool *IsLoadCSE,
348 unsigned *NumScanedInst) {
349 if (MaxInstsToScan == 0)
350 MaxInstsToScan = ~0U;
352 const DataLayout &DL = ScanBB->getModule()->getDataLayout();
354 // Try to get the store size for the type.
355 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
357 Value *StrippedPtr = Ptr->stripPointerCasts();
359 while (ScanFrom != ScanBB->begin()) {
360 // We must ignore debug info directives when counting (otherwise they
361 // would affect codegen).
362 Instruction *Inst = &*--ScanFrom;
363 if (isa<DbgInfoIntrinsic>(Inst))
364 continue;
366 // Restore ScanFrom to expected value in case next test succeeds
367 ScanFrom++;
369 if (NumScanedInst)
370 ++(*NumScanedInst);
372 // Don't scan huge blocks.
373 if (MaxInstsToScan-- == 0)
374 return nullptr;
376 --ScanFrom;
377 // If this is a load of Ptr, the loaded value is available.
378 // (This is true even if the load is volatile or atomic, although
379 // those cases are unlikely.)
380 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
381 if (AreEquivalentAddressValues(
382 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
383 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
385 // We can value forward from an atomic to a non-atomic, but not the
386 // other way around.
387 if (LI->isAtomic() < AtLeastAtomic)
388 return nullptr;
390 if (IsLoadCSE)
391 *IsLoadCSE = true;
392 return LI;
395 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
396 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
397 // If this is a store through Ptr, the value is available!
398 // (This is true even if the store is volatile or atomic, although
399 // those cases are unlikely.)
400 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
401 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
402 AccessTy, DL)) {
404 // We can value forward from an atomic to a non-atomic, but not the
405 // other way around.
406 if (SI->isAtomic() < AtLeastAtomic)
407 return nullptr;
409 if (IsLoadCSE)
410 *IsLoadCSE = false;
411 return SI->getOperand(0);
414 // If both StrippedPtr and StorePtr reach all the way to an alloca or
415 // global and they are different, ignore the store. This is a trivial form
416 // of alias analysis that is important for reg2mem'd code.
417 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
418 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
419 StrippedPtr != StorePtr)
420 continue;
422 // If we have alias analysis and it says the store won't modify the loaded
423 // value, ignore the store.
424 if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
425 continue;
427 // Otherwise the store that may or may not alias the pointer, bail out.
428 ++ScanFrom;
429 return nullptr;
432 // If this is some other instruction that may clobber Ptr, bail out.
433 if (Inst->mayWriteToMemory()) {
434 // If alias analysis claims that it really won't modify the load,
435 // ignore it.
436 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
437 continue;
439 // May modify the pointer, bail out.
440 ++ScanFrom;
441 return nullptr;
445 // Got to the start of the block, we didn't find it, but are done for this
446 // block.
447 return nullptr;