1 //===- Loads.cpp - Local load analysis ------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines simple local analyses for load instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/GlobalAlias.h"
18 #include "llvm/IR/GlobalVariable.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/Operator.h"
23 #include "llvm/IR/Statepoint.h"
27 static bool isAligned(const Value
*Base
, const APInt
&Offset
, unsigned Align
,
28 const DataLayout
&DL
) {
29 APInt
BaseAlign(Offset
.getBitWidth(), Base
->getPointerAlignment(DL
));
32 Type
*Ty
= Base
->getType()->getPointerElementType();
35 BaseAlign
= DL
.getABITypeAlignment(Ty
);
38 APInt
Alignment(Offset
.getBitWidth(), Align
);
40 assert(Alignment
.isPowerOf2() && "must be a power of 2!");
41 return BaseAlign
.uge(Alignment
) && !(Offset
& (Alignment
-1));
44 static bool isAligned(const Value
*Base
, unsigned Align
, const DataLayout
&DL
) {
45 Type
*Ty
= Base
->getType();
46 assert(Ty
->isSized() && "must be sized");
47 APInt
Offset(DL
.getTypeStoreSizeInBits(Ty
), 0);
48 return isAligned(Base
, Offset
, Align
, DL
);
51 /// Test if V is always a pointer to allocated and suitably aligned memory for
52 /// a simple load or store.
53 static bool isDereferenceableAndAlignedPointer(
54 const Value
*V
, unsigned Align
, const APInt
&Size
, const DataLayout
&DL
,
55 const Instruction
*CtxI
, const DominatorTree
*DT
,
56 SmallPtrSetImpl
<const Value
*> &Visited
) {
57 // Already visited? Bail out, we've likely hit unreachable code.
58 if (!Visited
.insert(V
).second
)
61 // Note that it is not safe to speculate into a malloc'd region because
62 // malloc may return null.
64 // bitcast instructions are no-ops as far as dereferenceability is concerned.
65 if (const BitCastOperator
*BC
= dyn_cast
<BitCastOperator
>(V
))
66 return isDereferenceableAndAlignedPointer(BC
->getOperand(0), Align
, Size
,
67 DL
, CtxI
, DT
, Visited
);
69 bool CheckForNonNull
= false;
70 APInt
KnownDerefBytes(Size
.getBitWidth(),
71 V
->getPointerDereferenceableBytes(DL
, CheckForNonNull
));
72 if (KnownDerefBytes
.getBoolValue()) {
73 if (KnownDerefBytes
.uge(Size
))
74 if (!CheckForNonNull
|| isKnownNonZero(V
, DL
, 0, nullptr, CtxI
, DT
))
75 return isAligned(V
, Align
, DL
);
78 // For GEPs, determine if the indexing lands within the allocated object.
79 if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
80 const Value
*Base
= GEP
->getPointerOperand();
82 APInt
Offset(DL
.getIndexTypeSizeInBits(GEP
->getType()), 0);
83 if (!GEP
->accumulateConstantOffset(DL
, Offset
) || Offset
.isNegative() ||
84 !Offset
.urem(APInt(Offset
.getBitWidth(), Align
)).isMinValue())
87 // If the base pointer is dereferenceable for Offset+Size bytes, then the
88 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
89 // pointer is aligned to Align bytes, and the Offset is divisible by Align
90 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
91 // aligned to Align bytes.
93 // Offset and Size may have different bit widths if we have visited an
94 // addrspacecast, so we can't do arithmetic directly on the APInt values.
95 return isDereferenceableAndAlignedPointer(
96 Base
, Align
, Offset
+ Size
.sextOrTrunc(Offset
.getBitWidth()),
97 DL
, CtxI
, DT
, Visited
);
100 // For gc.relocate, look through relocations
101 if (const GCRelocateInst
*RelocateInst
= dyn_cast
<GCRelocateInst
>(V
))
102 return isDereferenceableAndAlignedPointer(
103 RelocateInst
->getDerivedPtr(), Align
, Size
, DL
, CtxI
, DT
, Visited
);
105 if (const AddrSpaceCastInst
*ASC
= dyn_cast
<AddrSpaceCastInst
>(V
))
106 return isDereferenceableAndAlignedPointer(ASC
->getOperand(0), Align
, Size
,
107 DL
, CtxI
, DT
, Visited
);
109 if (const auto *Call
= dyn_cast
<CallBase
>(V
))
110 if (auto *RP
= getArgumentAliasingToReturnedPointer(Call
))
111 return isDereferenceableAndAlignedPointer(RP
, Align
, Size
, DL
, CtxI
, DT
,
114 // If we don't know, assume the worst.
118 bool llvm::isDereferenceableAndAlignedPointer(const Value
*V
, unsigned Align
,
120 const DataLayout
&DL
,
121 const Instruction
*CtxI
,
122 const DominatorTree
*DT
) {
123 SmallPtrSet
<const Value
*, 32> Visited
;
124 return ::isDereferenceableAndAlignedPointer(V
, Align
, Size
, DL
, CtxI
, DT
,
128 bool llvm::isDereferenceableAndAlignedPointer(const Value
*V
, unsigned Align
,
129 const DataLayout
&DL
,
130 const Instruction
*CtxI
,
131 const DominatorTree
*DT
) {
132 // When dereferenceability information is provided by a dereferenceable
133 // attribute, we know exactly how many bytes are dereferenceable. If we can
134 // determine the exact offset to the attributed variable, we can use that
136 Type
*VTy
= V
->getType();
137 Type
*Ty
= VTy
->getPointerElementType();
139 // Require ABI alignment for loads without alignment specification
141 Align
= DL
.getABITypeAlignment(Ty
);
146 SmallPtrSet
<const Value
*, 32> Visited
;
147 return ::isDereferenceableAndAlignedPointer(
148 V
, Align
, APInt(DL
.getIndexTypeSizeInBits(VTy
), DL
.getTypeStoreSize(Ty
)), DL
,
152 bool llvm::isDereferenceablePointer(const Value
*V
, const DataLayout
&DL
,
153 const Instruction
*CtxI
,
154 const DominatorTree
*DT
) {
155 return isDereferenceableAndAlignedPointer(V
, 1, DL
, CtxI
, DT
);
158 /// Test if A and B will obviously have the same value.
160 /// This includes recognizing that %t0 and %t1 will have the same
161 /// value in code like this:
163 /// %t0 = getelementptr \@a, 0, 3
164 /// store i32 0, i32* %t0
165 /// %t1 = getelementptr \@a, 0, 3
166 /// %t2 = load i32* %t1
169 static bool AreEquivalentAddressValues(const Value
*A
, const Value
*B
) {
170 // Test if the values are trivially equivalent.
174 // Test if the values come from identical arithmetic instructions.
175 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
176 // this function is only used when one address use dominates the
177 // other, which means that they'll always either have the same
178 // value or one of them will have an undefined value.
179 if (isa
<BinaryOperator
>(A
) || isa
<CastInst
>(A
) || isa
<PHINode
>(A
) ||
180 isa
<GetElementPtrInst
>(A
))
181 if (const Instruction
*BI
= dyn_cast
<Instruction
>(B
))
182 if (cast
<Instruction
>(A
)->isIdenticalToWhenDefined(BI
))
185 // Otherwise they may not be equivalent.
189 /// Check if executing a load of this pointer value cannot trap.
191 /// If DT and ScanFrom are specified this method performs context-sensitive
192 /// analysis and returns true if it is safe to load immediately before ScanFrom.
194 /// If it is not obviously safe to load from the specified pointer, we do
195 /// a quick local scan of the basic block containing \c ScanFrom, to determine
196 /// if the address is already accessed.
198 /// This uses the pointee type to determine how many bytes need to be safe to
199 /// load from the pointer.
200 bool llvm::isSafeToLoadUnconditionally(Value
*V
, unsigned Align
,
201 const DataLayout
&DL
,
202 Instruction
*ScanFrom
,
203 const DominatorTree
*DT
) {
204 // Zero alignment means that the load has the ABI alignment for the target
206 Align
= DL
.getABITypeAlignment(V
->getType()->getPointerElementType());
207 assert(isPowerOf2_32(Align
));
209 // If DT is not specified we can't make context-sensitive query
210 const Instruction
* CtxI
= DT
? ScanFrom
: nullptr;
211 if (isDereferenceableAndAlignedPointer(V
, Align
, DL
, CtxI
, DT
))
214 int64_t ByteOffset
= 0;
216 Base
= GetPointerBaseWithConstantOffset(V
, ByteOffset
, DL
);
218 if (ByteOffset
< 0) // out of bounds
221 Type
*BaseType
= nullptr;
222 unsigned BaseAlign
= 0;
223 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Base
)) {
224 // An alloca is safe to load from as load as it is suitably aligned.
225 BaseType
= AI
->getAllocatedType();
226 BaseAlign
= AI
->getAlignment();
227 } else if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Base
)) {
228 // Global variables are not necessarily safe to load from if they are
229 // interposed arbitrarily. Their size may change or they may be weak and
230 // require a test to determine if they were in fact provided.
231 if (!GV
->isInterposable()) {
232 BaseType
= GV
->getType()->getElementType();
233 BaseAlign
= GV
->getAlignment();
237 PointerType
*AddrTy
= cast
<PointerType
>(V
->getType());
238 uint64_t LoadSize
= DL
.getTypeStoreSize(AddrTy
->getElementType());
240 // If we found a base allocated type from either an alloca or global variable,
241 // try to see if we are definitively within the allocated region. We need to
242 // know the size of the base type and the loaded type to do anything in this
244 if (BaseType
&& BaseType
->isSized()) {
246 BaseAlign
= DL
.getPrefTypeAlignment(BaseType
);
248 if (Align
<= BaseAlign
) {
249 // Check if the load is within the bounds of the underlying object.
250 if (ByteOffset
+ LoadSize
<= DL
.getTypeAllocSize(BaseType
) &&
251 ((ByteOffset
% Align
) == 0))
259 // Otherwise, be a little bit aggressive by scanning the local block where we
260 // want to check to see if the pointer is already being loaded or stored
261 // from/to. If so, the previous load or store would have already trapped,
262 // so there is no harm doing an extra load (also, CSE will later eliminate
263 // the load entirely).
264 BasicBlock::iterator BBI
= ScanFrom
->getIterator(),
265 E
= ScanFrom
->getParent()->begin();
267 // We can at least always strip pointer casts even though we can't use the
269 V
= V
->stripPointerCasts();
274 // If we see a free or a call which may write to memory (i.e. which might do
275 // a free) the pointer could be marked invalid.
276 if (isa
<CallInst
>(BBI
) && BBI
->mayWriteToMemory() &&
277 !isa
<DbgInfoIntrinsic
>(BBI
))
281 unsigned AccessedAlign
;
282 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
)) {
283 // Ignore volatile loads. The execution of a volatile load cannot
284 // be used to prove an address is backed by regular memory; it can,
285 // for example, point to an MMIO register.
286 if (LI
->isVolatile())
288 AccessedPtr
= LI
->getPointerOperand();
289 AccessedAlign
= LI
->getAlignment();
290 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
)) {
291 // Ignore volatile stores (see comment for loads).
292 if (SI
->isVolatile())
294 AccessedPtr
= SI
->getPointerOperand();
295 AccessedAlign
= SI
->getAlignment();
299 Type
*AccessedTy
= AccessedPtr
->getType()->getPointerElementType();
300 if (AccessedAlign
== 0)
301 AccessedAlign
= DL
.getABITypeAlignment(AccessedTy
);
302 if (AccessedAlign
< Align
)
305 // Handle trivial cases.
306 if (AccessedPtr
== V
)
309 if (AreEquivalentAddressValues(AccessedPtr
->stripPointerCasts(), V
) &&
310 LoadSize
<= DL
.getTypeStoreSize(AccessedTy
))
316 /// DefMaxInstsToScan - the default number of maximum instructions
317 /// to scan in the block, used by FindAvailableLoadedValue().
318 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
319 /// threading in part by eliminating partially redundant loads.
320 /// At that point, the value of MaxInstsToScan was already set to '6'
321 /// without documented explanation.
323 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden
,
324 cl::desc("Use this to specify the default maximum number of instructions "
325 "to scan backward from a given instruction, when searching for "
326 "available loaded value"));
328 Value
*llvm::FindAvailableLoadedValue(LoadInst
*Load
,
330 BasicBlock::iterator
&ScanFrom
,
331 unsigned MaxInstsToScan
,
332 AliasAnalysis
*AA
, bool *IsLoad
,
333 unsigned *NumScanedInst
) {
334 // Don't CSE load that is volatile or anything stronger than unordered.
335 if (!Load
->isUnordered())
338 return FindAvailablePtrLoadStore(
339 Load
->getPointerOperand(), Load
->getType(), Load
->isAtomic(), ScanBB
,
340 ScanFrom
, MaxInstsToScan
, AA
, IsLoad
, NumScanedInst
);
343 Value
*llvm::FindAvailablePtrLoadStore(Value
*Ptr
, Type
*AccessTy
,
344 bool AtLeastAtomic
, BasicBlock
*ScanBB
,
345 BasicBlock::iterator
&ScanFrom
,
346 unsigned MaxInstsToScan
,
347 AliasAnalysis
*AA
, bool *IsLoadCSE
,
348 unsigned *NumScanedInst
) {
349 if (MaxInstsToScan
== 0)
350 MaxInstsToScan
= ~0U;
352 const DataLayout
&DL
= ScanBB
->getModule()->getDataLayout();
354 // Try to get the store size for the type.
355 auto AccessSize
= LocationSize::precise(DL
.getTypeStoreSize(AccessTy
));
357 Value
*StrippedPtr
= Ptr
->stripPointerCasts();
359 while (ScanFrom
!= ScanBB
->begin()) {
360 // We must ignore debug info directives when counting (otherwise they
361 // would affect codegen).
362 Instruction
*Inst
= &*--ScanFrom
;
363 if (isa
<DbgInfoIntrinsic
>(Inst
))
366 // Restore ScanFrom to expected value in case next test succeeds
372 // Don't scan huge blocks.
373 if (MaxInstsToScan
-- == 0)
377 // If this is a load of Ptr, the loaded value is available.
378 // (This is true even if the load is volatile or atomic, although
379 // those cases are unlikely.)
380 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
))
381 if (AreEquivalentAddressValues(
382 LI
->getPointerOperand()->stripPointerCasts(), StrippedPtr
) &&
383 CastInst::isBitOrNoopPointerCastable(LI
->getType(), AccessTy
, DL
)) {
385 // We can value forward from an atomic to a non-atomic, but not the
387 if (LI
->isAtomic() < AtLeastAtomic
)
395 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
396 Value
*StorePtr
= SI
->getPointerOperand()->stripPointerCasts();
397 // If this is a store through Ptr, the value is available!
398 // (This is true even if the store is volatile or atomic, although
399 // those cases are unlikely.)
400 if (AreEquivalentAddressValues(StorePtr
, StrippedPtr
) &&
401 CastInst::isBitOrNoopPointerCastable(SI
->getValueOperand()->getType(),
404 // We can value forward from an atomic to a non-atomic, but not the
406 if (SI
->isAtomic() < AtLeastAtomic
)
411 return SI
->getOperand(0);
414 // If both StrippedPtr and StorePtr reach all the way to an alloca or
415 // global and they are different, ignore the store. This is a trivial form
416 // of alias analysis that is important for reg2mem'd code.
417 if ((isa
<AllocaInst
>(StrippedPtr
) || isa
<GlobalVariable
>(StrippedPtr
)) &&
418 (isa
<AllocaInst
>(StorePtr
) || isa
<GlobalVariable
>(StorePtr
)) &&
419 StrippedPtr
!= StorePtr
)
422 // If we have alias analysis and it says the store won't modify the loaded
423 // value, ignore the store.
424 if (AA
&& !isModSet(AA
->getModRefInfo(SI
, StrippedPtr
, AccessSize
)))
427 // Otherwise the store that may or may not alias the pointer, bail out.
432 // If this is some other instruction that may clobber Ptr, bail out.
433 if (Inst
->mayWriteToMemory()) {
434 // If alias analysis claims that it really won't modify the load,
436 if (AA
&& !isModSet(AA
->getModRefInfo(Inst
, StrippedPtr
, AccessSize
)))
439 // May modify the pointer, bail out.
445 // Got to the start of the block, we didn't find it, but are done for this