1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This family of functions identifies calls to builtin functions that allocate
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
50 #define DEBUG_TYPE "memory-builtins"
52 enum AllocType
: uint8_t {
53 OpNewLike
= 1<<0, // allocates; never returns null
54 MallocLike
= 1<<1 | OpNewLike
, // allocates; may return null
55 CallocLike
= 1<<2, // allocates + bzero
56 ReallocLike
= 1<<3, // reallocates
58 MallocOrCallocLike
= MallocLike
| CallocLike
,
59 AllocLike
= MallocLike
| CallocLike
| StrDupLike
,
60 AnyAlloc
= AllocLike
| ReallocLike
66 // First and Second size parameters (or -1 if unused)
67 int FstParam
, SndParam
;
70 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
71 // know which functions are nounwind, noalias, nocapture parameters, etc.
72 static const std::pair
<LibFunc
, AllocFnsTy
> AllocationFnData
[] = {
73 {LibFunc_malloc
, {MallocLike
, 1, 0, -1}},
74 {LibFunc_valloc
, {MallocLike
, 1, 0, -1}},
75 {LibFunc_Znwj
, {OpNewLike
, 1, 0, -1}}, // new(unsigned int)
76 {LibFunc_ZnwjRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new(unsigned int, nothrow)
77 {LibFunc_ZnwjSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new(unsigned int, align_val_t)
78 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t
, // new(unsigned int, align_val_t, nothrow)
79 {MallocLike
, 3, 0, -1}},
80 {LibFunc_Znwm
, {OpNewLike
, 1, 0, -1}}, // new(unsigned long)
81 {LibFunc_ZnwmRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new(unsigned long, nothrow)
82 {LibFunc_ZnwmSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new(unsigned long, align_val_t)
83 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t
, // new(unsigned long, align_val_t, nothrow)
84 {MallocLike
, 3, 0, -1}},
85 {LibFunc_Znaj
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned int)
86 {LibFunc_ZnajRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new[](unsigned int, nothrow)
87 {LibFunc_ZnajSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new[](unsigned int, align_val_t)
88 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t
, // new[](unsigned int, align_val_t, nothrow)
89 {MallocLike
, 3, 0, -1}},
90 {LibFunc_Znam
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned long)
91 {LibFunc_ZnamRKSt9nothrow_t
, {MallocLike
, 2, 0, -1}}, // new[](unsigned long, nothrow)
92 {LibFunc_ZnamSt11align_val_t
, {OpNewLike
, 2, 0, -1}}, // new[](unsigned long, align_val_t)
93 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t
, // new[](unsigned long, align_val_t, nothrow)
94 {MallocLike
, 3, 0, -1}},
95 {LibFunc_msvc_new_int
, {OpNewLike
, 1, 0, -1}}, // new(unsigned int)
96 {LibFunc_msvc_new_int_nothrow
, {MallocLike
, 2, 0, -1}}, // new(unsigned int, nothrow)
97 {LibFunc_msvc_new_longlong
, {OpNewLike
, 1, 0, -1}}, // new(unsigned long long)
98 {LibFunc_msvc_new_longlong_nothrow
, {MallocLike
, 2, 0, -1}}, // new(unsigned long long, nothrow)
99 {LibFunc_msvc_new_array_int
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned int)
100 {LibFunc_msvc_new_array_int_nothrow
, {MallocLike
, 2, 0, -1}}, // new[](unsigned int, nothrow)
101 {LibFunc_msvc_new_array_longlong
, {OpNewLike
, 1, 0, -1}}, // new[](unsigned long long)
102 {LibFunc_msvc_new_array_longlong_nothrow
, {MallocLike
, 2, 0, -1}}, // new[](unsigned long long, nothrow)
103 {LibFunc_calloc
, {CallocLike
, 2, 0, 1}},
104 {LibFunc_realloc
, {ReallocLike
, 2, 1, -1}},
105 {LibFunc_reallocf
, {ReallocLike
, 2, 1, -1}},
106 {LibFunc_strdup
, {StrDupLike
, 1, -1, -1}},
107 {LibFunc_strndup
, {StrDupLike
, 2, 1, -1}}
108 // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
111 static const Function
*getCalledFunction(const Value
*V
, bool LookThroughBitCast
,
113 // Don't care about intrinsics in this case.
114 if (isa
<IntrinsicInst
>(V
))
117 if (LookThroughBitCast
)
118 V
= V
->stripPointerCasts();
120 ImmutableCallSite
CS(V
);
121 if (!CS
.getInstruction())
124 IsNoBuiltin
= CS
.isNoBuiltin();
126 if (const Function
*Callee
= CS
.getCalledFunction())
131 /// Returns the allocation data for the given value if it's either a call to a
132 /// known allocation function, or a call to a function with the allocsize
134 static Optional
<AllocFnsTy
>
135 getAllocationDataForFunction(const Function
*Callee
, AllocType AllocTy
,
136 const TargetLibraryInfo
*TLI
) {
137 // Make sure that the function is available.
138 StringRef FnName
= Callee
->getName();
140 if (!TLI
|| !TLI
->getLibFunc(FnName
, TLIFn
) || !TLI
->has(TLIFn
))
143 const auto *Iter
= find_if(
144 AllocationFnData
, [TLIFn
](const std::pair
<LibFunc
, AllocFnsTy
> &P
) {
145 return P
.first
== TLIFn
;
148 if (Iter
== std::end(AllocationFnData
))
151 const AllocFnsTy
*FnData
= &Iter
->second
;
152 if ((FnData
->AllocTy
& AllocTy
) != FnData
->AllocTy
)
155 // Check function prototype.
156 int FstParam
= FnData
->FstParam
;
157 int SndParam
= FnData
->SndParam
;
158 FunctionType
*FTy
= Callee
->getFunctionType();
160 if (FTy
->getReturnType() == Type::getInt8PtrTy(FTy
->getContext()) &&
161 FTy
->getNumParams() == FnData
->NumParams
&&
163 (FTy
->getParamType(FstParam
)->isIntegerTy(32) ||
164 FTy
->getParamType(FstParam
)->isIntegerTy(64))) &&
166 FTy
->getParamType(SndParam
)->isIntegerTy(32) ||
167 FTy
->getParamType(SndParam
)->isIntegerTy(64)))
172 static Optional
<AllocFnsTy
> getAllocationData(const Value
*V
, AllocType AllocTy
,
173 const TargetLibraryInfo
*TLI
,
174 bool LookThroughBitCast
= false) {
175 bool IsNoBuiltinCall
;
176 if (const Function
*Callee
=
177 getCalledFunction(V
, LookThroughBitCast
, IsNoBuiltinCall
))
178 if (!IsNoBuiltinCall
)
179 return getAllocationDataForFunction(Callee
, AllocTy
, TLI
);
183 static Optional
<AllocFnsTy
> getAllocationSize(const Value
*V
,
184 const TargetLibraryInfo
*TLI
) {
185 bool IsNoBuiltinCall
;
186 const Function
*Callee
=
187 getCalledFunction(V
, /*LookThroughBitCast=*/false, IsNoBuiltinCall
);
191 // Prefer to use existing information over allocsize. This will give us an
193 if (!IsNoBuiltinCall
)
194 if (Optional
<AllocFnsTy
> Data
=
195 getAllocationDataForFunction(Callee
, AnyAlloc
, TLI
))
198 Attribute Attr
= Callee
->getFnAttribute(Attribute::AllocSize
);
199 if (Attr
== Attribute())
202 std::pair
<unsigned, Optional
<unsigned>> Args
= Attr
.getAllocSizeArgs();
205 // Because allocsize only tells us how many bytes are allocated, we're not
206 // really allowed to assume anything, so we use MallocLike.
207 Result
.AllocTy
= MallocLike
;
208 Result
.NumParams
= Callee
->getNumOperands();
209 Result
.FstParam
= Args
.first
;
210 Result
.SndParam
= Args
.second
.getValueOr(-1);
214 static bool hasNoAliasAttr(const Value
*V
, bool LookThroughBitCast
) {
215 ImmutableCallSite
CS(LookThroughBitCast
? V
->stripPointerCasts() : V
);
216 return CS
&& CS
.hasRetAttr(Attribute::NoAlias
);
219 /// Tests if a value is a call or invoke to a library function that
220 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
222 bool llvm::isAllocationFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
223 bool LookThroughBitCast
) {
224 return getAllocationData(V
, AnyAlloc
, TLI
, LookThroughBitCast
).hasValue();
227 /// Tests if a value is a call or invoke to a function that returns a
228 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
229 bool llvm::isNoAliasFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
230 bool LookThroughBitCast
) {
231 // it's safe to consider realloc as noalias since accessing the original
232 // pointer is undefined behavior
233 return isAllocationFn(V
, TLI
, LookThroughBitCast
) ||
234 hasNoAliasAttr(V
, LookThroughBitCast
);
237 /// Tests if a value is a call or invoke to a library function that
238 /// allocates uninitialized memory (such as malloc).
239 bool llvm::isMallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
240 bool LookThroughBitCast
) {
241 return getAllocationData(V
, MallocLike
, TLI
, LookThroughBitCast
).hasValue();
244 /// Tests if a value is a call or invoke to a library function that
245 /// allocates zero-filled memory (such as calloc).
246 bool llvm::isCallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
247 bool LookThroughBitCast
) {
248 return getAllocationData(V
, CallocLike
, TLI
, LookThroughBitCast
).hasValue();
251 /// Tests if a value is a call or invoke to a library function that
252 /// allocates memory similar to malloc or calloc.
253 bool llvm::isMallocOrCallocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
254 bool LookThroughBitCast
) {
255 return getAllocationData(V
, MallocOrCallocLike
, TLI
,
256 LookThroughBitCast
).hasValue();
259 /// Tests if a value is a call or invoke to a library function that
260 /// allocates memory (either malloc, calloc, or strdup like).
261 bool llvm::isAllocLikeFn(const Value
*V
, const TargetLibraryInfo
*TLI
,
262 bool LookThroughBitCast
) {
263 return getAllocationData(V
, AllocLike
, TLI
, LookThroughBitCast
).hasValue();
266 /// extractMallocCall - Returns the corresponding CallInst if the instruction
267 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
268 /// ignore InvokeInst here.
269 const CallInst
*llvm::extractMallocCall(const Value
*I
,
270 const TargetLibraryInfo
*TLI
) {
271 return isMallocLikeFn(I
, TLI
) ? dyn_cast
<CallInst
>(I
) : nullptr;
274 static Value
*computeArraySize(const CallInst
*CI
, const DataLayout
&DL
,
275 const TargetLibraryInfo
*TLI
,
276 bool LookThroughSExt
= false) {
280 // The size of the malloc's result type must be known to determine array size.
281 Type
*T
= getMallocAllocatedType(CI
, TLI
);
282 if (!T
|| !T
->isSized())
285 unsigned ElementSize
= DL
.getTypeAllocSize(T
);
286 if (StructType
*ST
= dyn_cast
<StructType
>(T
))
287 ElementSize
= DL
.getStructLayout(ST
)->getSizeInBytes();
289 // If malloc call's arg can be determined to be a multiple of ElementSize,
290 // return the multiple. Otherwise, return NULL.
291 Value
*MallocArg
= CI
->getArgOperand(0);
292 Value
*Multiple
= nullptr;
293 if (ComputeMultiple(MallocArg
, ElementSize
, Multiple
, LookThroughSExt
))
299 /// getMallocType - Returns the PointerType resulting from the malloc call.
300 /// The PointerType depends on the number of bitcast uses of the malloc call:
301 /// 0: PointerType is the calls' return type.
302 /// 1: PointerType is the bitcast's result type.
303 /// >1: Unique PointerType cannot be determined, return NULL.
304 PointerType
*llvm::getMallocType(const CallInst
*CI
,
305 const TargetLibraryInfo
*TLI
) {
306 assert(isMallocLikeFn(CI
, TLI
) && "getMallocType and not malloc call");
308 PointerType
*MallocType
= nullptr;
309 unsigned NumOfBitCastUses
= 0;
311 // Determine if CallInst has a bitcast use.
312 for (Value::const_user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
314 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(*UI
++)) {
315 MallocType
= cast
<PointerType
>(BCI
->getDestTy());
319 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
320 if (NumOfBitCastUses
== 1)
323 // Malloc call was not bitcast, so type is the malloc function's return type.
324 if (NumOfBitCastUses
== 0)
325 return cast
<PointerType
>(CI
->getType());
327 // Type could not be determined.
331 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
332 /// The Type depends on the number of bitcast uses of the malloc call:
333 /// 0: PointerType is the malloc calls' return type.
334 /// 1: PointerType is the bitcast's result type.
335 /// >1: Unique PointerType cannot be determined, return NULL.
336 Type
*llvm::getMallocAllocatedType(const CallInst
*CI
,
337 const TargetLibraryInfo
*TLI
) {
338 PointerType
*PT
= getMallocType(CI
, TLI
);
339 return PT
? PT
->getElementType() : nullptr;
342 /// getMallocArraySize - Returns the array size of a malloc call. If the
343 /// argument passed to malloc is a multiple of the size of the malloced type,
344 /// then return that multiple. For non-array mallocs, the multiple is
345 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
347 Value
*llvm::getMallocArraySize(CallInst
*CI
, const DataLayout
&DL
,
348 const TargetLibraryInfo
*TLI
,
349 bool LookThroughSExt
) {
350 assert(isMallocLikeFn(CI
, TLI
) && "getMallocArraySize and not malloc call");
351 return computeArraySize(CI
, DL
, TLI
, LookThroughSExt
);
354 /// extractCallocCall - Returns the corresponding CallInst if the instruction
355 /// is a calloc call.
356 const CallInst
*llvm::extractCallocCall(const Value
*I
,
357 const TargetLibraryInfo
*TLI
) {
358 return isCallocLikeFn(I
, TLI
) ? cast
<CallInst
>(I
) : nullptr;
361 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
362 const CallInst
*llvm::isFreeCall(const Value
*I
, const TargetLibraryInfo
*TLI
) {
363 bool IsNoBuiltinCall
;
364 const Function
*Callee
=
365 getCalledFunction(I
, /*LookThroughBitCast=*/false, IsNoBuiltinCall
);
366 if (Callee
== nullptr || IsNoBuiltinCall
)
369 StringRef FnName
= Callee
->getName();
371 if (!TLI
|| !TLI
->getLibFunc(FnName
, TLIFn
) || !TLI
->has(TLIFn
))
374 unsigned ExpectedNumParams
;
375 if (TLIFn
== LibFunc_free
||
376 TLIFn
== LibFunc_ZdlPv
|| // operator delete(void*)
377 TLIFn
== LibFunc_ZdaPv
|| // operator delete[](void*)
378 TLIFn
== LibFunc_msvc_delete_ptr32
|| // operator delete(void*)
379 TLIFn
== LibFunc_msvc_delete_ptr64
|| // operator delete(void*)
380 TLIFn
== LibFunc_msvc_delete_array_ptr32
|| // operator delete[](void*)
381 TLIFn
== LibFunc_msvc_delete_array_ptr64
) // operator delete[](void*)
382 ExpectedNumParams
= 1;
383 else if (TLIFn
== LibFunc_ZdlPvj
|| // delete(void*, uint)
384 TLIFn
== LibFunc_ZdlPvm
|| // delete(void*, ulong)
385 TLIFn
== LibFunc_ZdlPvRKSt9nothrow_t
|| // delete(void*, nothrow)
386 TLIFn
== LibFunc_ZdlPvSt11align_val_t
|| // delete(void*, align_val_t)
387 TLIFn
== LibFunc_ZdaPvj
|| // delete[](void*, uint)
388 TLIFn
== LibFunc_ZdaPvm
|| // delete[](void*, ulong)
389 TLIFn
== LibFunc_ZdaPvRKSt9nothrow_t
|| // delete[](void*, nothrow)
390 TLIFn
== LibFunc_ZdaPvSt11align_val_t
|| // delete[](void*, align_val_t)
391 TLIFn
== LibFunc_msvc_delete_ptr32_int
|| // delete(void*, uint)
392 TLIFn
== LibFunc_msvc_delete_ptr64_longlong
|| // delete(void*, ulonglong)
393 TLIFn
== LibFunc_msvc_delete_ptr32_nothrow
|| // delete(void*, nothrow)
394 TLIFn
== LibFunc_msvc_delete_ptr64_nothrow
|| // delete(void*, nothrow)
395 TLIFn
== LibFunc_msvc_delete_array_ptr32_int
|| // delete[](void*, uint)
396 TLIFn
== LibFunc_msvc_delete_array_ptr64_longlong
|| // delete[](void*, ulonglong)
397 TLIFn
== LibFunc_msvc_delete_array_ptr32_nothrow
|| // delete[](void*, nothrow)
398 TLIFn
== LibFunc_msvc_delete_array_ptr64_nothrow
) // delete[](void*, nothrow)
399 ExpectedNumParams
= 2;
400 else if (TLIFn
== LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t
|| // delete(void*, align_val_t, nothrow)
401 TLIFn
== LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t
) // delete[](void*, align_val_t, nothrow)
402 ExpectedNumParams
= 3;
406 // Check free prototype.
407 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
408 // attribute will exist.
409 FunctionType
*FTy
= Callee
->getFunctionType();
410 if (!FTy
->getReturnType()->isVoidTy())
412 if (FTy
->getNumParams() != ExpectedNumParams
)
414 if (FTy
->getParamType(0) != Type::getInt8PtrTy(Callee
->getContext()))
417 return dyn_cast
<CallInst
>(I
);
420 //===----------------------------------------------------------------------===//
421 // Utility functions to compute size of objects.
423 static APInt
getSizeWithOverflow(const SizeOffsetType
&Data
) {
424 if (Data
.second
.isNegative() || Data
.first
.ult(Data
.second
))
425 return APInt(Data
.first
.getBitWidth(), 0);
426 return Data
.first
- Data
.second
;
429 /// Compute the size of the object pointed by Ptr. Returns true and the
430 /// object size in Size if successful, and false otherwise.
431 /// If RoundToAlign is true, then Size is rounded up to the alignment of
432 /// allocas, byval arguments, and global variables.
433 bool llvm::getObjectSize(const Value
*Ptr
, uint64_t &Size
, const DataLayout
&DL
,
434 const TargetLibraryInfo
*TLI
, ObjectSizeOpts Opts
) {
435 ObjectSizeOffsetVisitor
Visitor(DL
, TLI
, Ptr
->getContext(), Opts
);
436 SizeOffsetType Data
= Visitor
.compute(const_cast<Value
*>(Ptr
));
437 if (!Visitor
.bothKnown(Data
))
440 Size
= getSizeWithOverflow(Data
).getZExtValue();
444 Value
*llvm::lowerObjectSizeCall(IntrinsicInst
*ObjectSize
,
445 const DataLayout
&DL
,
446 const TargetLibraryInfo
*TLI
,
448 assert(ObjectSize
->getIntrinsicID() == Intrinsic::objectsize
&&
449 "ObjectSize must be a call to llvm.objectsize!");
451 bool MaxVal
= cast
<ConstantInt
>(ObjectSize
->getArgOperand(1))->isZero();
452 ObjectSizeOpts EvalOptions
;
453 // Unless we have to fold this to something, try to be as accurate as
456 EvalOptions
.EvalMode
=
457 MaxVal
? ObjectSizeOpts::Mode::Max
: ObjectSizeOpts::Mode::Min
;
459 EvalOptions
.EvalMode
= ObjectSizeOpts::Mode::Exact
;
461 EvalOptions
.NullIsUnknownSize
=
462 cast
<ConstantInt
>(ObjectSize
->getArgOperand(2))->isOne();
464 auto *ResultType
= cast
<IntegerType
>(ObjectSize
->getType());
465 bool StaticOnly
= cast
<ConstantInt
>(ObjectSize
->getArgOperand(3))->isZero();
467 // FIXME: Does it make sense to just return a failure value if the size won't
468 // fit in the output and `!MustSucceed`?
470 if (getObjectSize(ObjectSize
->getArgOperand(0), Size
, DL
, TLI
, EvalOptions
) &&
471 isUIntN(ResultType
->getBitWidth(), Size
))
472 return ConstantInt::get(ResultType
, Size
);
474 LLVMContext
&Ctx
= ObjectSize
->getFunction()->getContext();
475 ObjectSizeOffsetEvaluator
Eval(DL
, TLI
, Ctx
, EvalOptions
);
476 SizeOffsetEvalType SizeOffsetPair
=
477 Eval
.compute(ObjectSize
->getArgOperand(0));
479 if (SizeOffsetPair
!= ObjectSizeOffsetEvaluator::unknown()) {
480 IRBuilder
<TargetFolder
> Builder(Ctx
, TargetFolder(DL
));
481 Builder
.SetInsertPoint(ObjectSize
);
483 // If we've outside the end of the object, then we can always access
486 Builder
.CreateSub(SizeOffsetPair
.first
, SizeOffsetPair
.second
);
488 Builder
.CreateICmpULT(SizeOffsetPair
.first
, SizeOffsetPair
.second
);
489 return Builder
.CreateSelect(UseZero
, ConstantInt::get(ResultType
, 0),
497 return ConstantInt::get(ResultType
, MaxVal
? -1ULL : 0);
500 STATISTIC(ObjectVisitorArgument
,
501 "Number of arguments with unsolved size and offset");
502 STATISTIC(ObjectVisitorLoad
,
503 "Number of load instructions with unsolved size and offset");
505 APInt
ObjectSizeOffsetVisitor::align(APInt Size
, uint64_t Align
) {
506 if (Options
.RoundToAlign
&& Align
)
507 return APInt(IntTyBits
, alignTo(Size
.getZExtValue(), Align
));
511 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout
&DL
,
512 const TargetLibraryInfo
*TLI
,
513 LLVMContext
&Context
,
514 ObjectSizeOpts Options
)
515 : DL(DL
), TLI(TLI
), Options(Options
) {
516 // Pointer size must be rechecked for each object visited since it could have
517 // a different address space.
520 SizeOffsetType
ObjectSizeOffsetVisitor::compute(Value
*V
) {
521 IntTyBits
= DL
.getPointerTypeSizeInBits(V
->getType());
522 Zero
= APInt::getNullValue(IntTyBits
);
524 V
= V
->stripPointerCasts();
525 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
526 // If we have already seen this instruction, bail out. Cycles can happen in
527 // unreachable code after constant propagation.
528 if (!SeenInsts
.insert(I
).second
)
531 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
))
532 return visitGEPOperator(*GEP
);
535 if (Argument
*A
= dyn_cast
<Argument
>(V
))
536 return visitArgument(*A
);
537 if (ConstantPointerNull
*P
= dyn_cast
<ConstantPointerNull
>(V
))
538 return visitConstantPointerNull(*P
);
539 if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
540 return visitGlobalAlias(*GA
);
541 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
542 return visitGlobalVariable(*GV
);
543 if (UndefValue
*UV
= dyn_cast
<UndefValue
>(V
))
544 return visitUndefValue(*UV
);
545 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
546 if (CE
->getOpcode() == Instruction::IntToPtr
)
547 return unknown(); // clueless
548 if (CE
->getOpcode() == Instruction::GetElementPtr
)
549 return visitGEPOperator(cast
<GEPOperator
>(*CE
));
552 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
557 /// When we're compiling N-bit code, and the user uses parameters that are
558 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
559 /// trouble with APInt size issues. This function handles resizing + overflow
560 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
562 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt
&I
) {
563 // More bits than we can handle. Checking the bit width isn't necessary, but
564 // it's faster than checking active bits, and should give `false` in the
565 // vast majority of cases.
566 if (I
.getBitWidth() > IntTyBits
&& I
.getActiveBits() > IntTyBits
)
568 if (I
.getBitWidth() != IntTyBits
)
569 I
= I
.zextOrTrunc(IntTyBits
);
573 SizeOffsetType
ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst
&I
) {
574 if (!I
.getAllocatedType()->isSized())
577 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(I
.getAllocatedType()));
578 if (!I
.isArrayAllocation())
579 return std::make_pair(align(Size
, I
.getAlignment()), Zero
);
581 Value
*ArraySize
= I
.getArraySize();
582 if (const ConstantInt
*C
= dyn_cast
<ConstantInt
>(ArraySize
)) {
583 APInt NumElems
= C
->getValue();
584 if (!CheckedZextOrTrunc(NumElems
))
588 Size
= Size
.umul_ov(NumElems
, Overflow
);
589 return Overflow
? unknown() : std::make_pair(align(Size
, I
.getAlignment()),
595 SizeOffsetType
ObjectSizeOffsetVisitor::visitArgument(Argument
&A
) {
596 // No interprocedural analysis is done at the moment.
597 if (!A
.hasByValOrInAllocaAttr()) {
598 ++ObjectVisitorArgument
;
601 PointerType
*PT
= cast
<PointerType
>(A
.getType());
602 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(PT
->getElementType()));
603 return std::make_pair(align(Size
, A
.getParamAlignment()), Zero
);
606 SizeOffsetType
ObjectSizeOffsetVisitor::visitCallSite(CallSite CS
) {
607 Optional
<AllocFnsTy
> FnData
= getAllocationSize(CS
.getInstruction(), TLI
);
611 // Handle strdup-like functions separately.
612 if (FnData
->AllocTy
== StrDupLike
) {
613 APInt
Size(IntTyBits
, GetStringLength(CS
.getArgument(0)));
617 // Strndup limits strlen.
618 if (FnData
->FstParam
> 0) {
620 dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->FstParam
));
624 APInt MaxSize
= Arg
->getValue().zextOrSelf(IntTyBits
);
625 if (Size
.ugt(MaxSize
))
628 return std::make_pair(Size
, Zero
);
631 ConstantInt
*Arg
= dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->FstParam
));
635 APInt Size
= Arg
->getValue();
636 if (!CheckedZextOrTrunc(Size
))
639 // Size is determined by just 1 parameter.
640 if (FnData
->SndParam
< 0)
641 return std::make_pair(Size
, Zero
);
643 Arg
= dyn_cast
<ConstantInt
>(CS
.getArgument(FnData
->SndParam
));
647 APInt NumElems
= Arg
->getValue();
648 if (!CheckedZextOrTrunc(NumElems
))
652 Size
= Size
.umul_ov(NumElems
, Overflow
);
653 return Overflow
? unknown() : std::make_pair(Size
, Zero
);
655 // TODO: handle more standard functions (+ wchar cousins):
656 // - strdup / strndup
657 // - strcpy / strncpy
658 // - strcat / strncat
659 // - memcpy / memmove
660 // - strcat / strncat
665 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull
& CPN
) {
666 // If null is unknown, there's nothing we can do. Additionally, non-zero
667 // address spaces can make use of null, so we don't presume to know anything
670 // TODO: How should this work with address space casts? We currently just drop
671 // them on the floor, but it's unclear what we should do when a NULL from
672 // addrspace(1) gets casted to addrspace(0) (or vice-versa).
673 if (Options
.NullIsUnknownSize
|| CPN
.getType()->getAddressSpace())
675 return std::make_pair(Zero
, Zero
);
679 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst
&) {
684 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst
&) {
685 // Easy cases were already folded by previous passes.
689 SizeOffsetType
ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator
&GEP
) {
690 SizeOffsetType PtrData
= compute(GEP
.getPointerOperand());
691 APInt
Offset(IntTyBits
, 0);
692 if (!bothKnown(PtrData
) || !GEP
.accumulateConstantOffset(DL
, Offset
))
695 return std::make_pair(PtrData
.first
, PtrData
.second
+ Offset
);
698 SizeOffsetType
ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias
&GA
) {
699 if (GA
.isInterposable())
701 return compute(GA
.getAliasee());
704 SizeOffsetType
ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable
&GV
){
705 if (!GV
.hasDefinitiveInitializer())
708 APInt
Size(IntTyBits
, DL
.getTypeAllocSize(GV
.getType()->getElementType()));
709 return std::make_pair(align(Size
, GV
.getAlignment()), Zero
);
712 SizeOffsetType
ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst
&) {
717 SizeOffsetType
ObjectSizeOffsetVisitor::visitLoadInst(LoadInst
&) {
722 SizeOffsetType
ObjectSizeOffsetVisitor::visitPHINode(PHINode
&) {
723 // too complex to analyze statically.
727 SizeOffsetType
ObjectSizeOffsetVisitor::visitSelectInst(SelectInst
&I
) {
728 SizeOffsetType TrueSide
= compute(I
.getTrueValue());
729 SizeOffsetType FalseSide
= compute(I
.getFalseValue());
730 if (bothKnown(TrueSide
) && bothKnown(FalseSide
)) {
731 if (TrueSide
== FalseSide
) {
735 APInt TrueResult
= getSizeWithOverflow(TrueSide
);
736 APInt FalseResult
= getSizeWithOverflow(FalseSide
);
738 if (TrueResult
== FalseResult
) {
741 if (Options
.EvalMode
== ObjectSizeOpts::Mode::Min
) {
742 if (TrueResult
.slt(FalseResult
))
746 if (Options
.EvalMode
== ObjectSizeOpts::Mode::Max
) {
747 if (TrueResult
.sgt(FalseResult
))
755 SizeOffsetType
ObjectSizeOffsetVisitor::visitUndefValue(UndefValue
&) {
756 return std::make_pair(Zero
, Zero
);
759 SizeOffsetType
ObjectSizeOffsetVisitor::visitInstruction(Instruction
&I
) {
760 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
765 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
766 const DataLayout
&DL
, const TargetLibraryInfo
*TLI
, LLVMContext
&Context
,
767 ObjectSizeOpts EvalOpts
)
768 : DL(DL
), TLI(TLI
), Context(Context
), Builder(Context
, TargetFolder(DL
)),
770 // IntTy and Zero must be set for each compute() since the address space may
771 // be different for later objects.
774 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::compute(Value
*V
) {
775 // XXX - Are vectors of pointers possible here?
776 IntTy
= cast
<IntegerType
>(DL
.getIntPtrType(V
->getType()));
777 Zero
= ConstantInt::get(IntTy
, 0);
779 SizeOffsetEvalType Result
= compute_(V
);
781 if (!bothKnown(Result
)) {
782 // Erase everything that was computed in this iteration from the cache, so
783 // that no dangling references are left behind. We could be a bit smarter if
784 // we kept a dependency graph. It's probably not worth the complexity.
785 for (const Value
*SeenVal
: SeenVals
) {
786 CacheMapTy::iterator CacheIt
= CacheMap
.find(SeenVal
);
787 // non-computable results can be safely cached
788 if (CacheIt
!= CacheMap
.end() && anyKnown(CacheIt
->second
))
789 CacheMap
.erase(CacheIt
);
797 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::compute_(Value
*V
) {
798 ObjectSizeOffsetVisitor
Visitor(DL
, TLI
, Context
, EvalOpts
);
799 SizeOffsetType Const
= Visitor
.compute(V
);
800 if (Visitor
.bothKnown(Const
))
801 return std::make_pair(ConstantInt::get(Context
, Const
.first
),
802 ConstantInt::get(Context
, Const
.second
));
804 V
= V
->stripPointerCasts();
807 CacheMapTy::iterator CacheIt
= CacheMap
.find(V
);
808 if (CacheIt
!= CacheMap
.end())
809 return CacheIt
->second
;
811 // Always generate code immediately before the instruction being
812 // processed, so that the generated code dominates the same BBs.
813 BuilderTy::InsertPointGuard
Guard(Builder
);
814 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
815 Builder
.SetInsertPoint(I
);
817 // Now compute the size and offset.
818 SizeOffsetEvalType Result
;
820 // Record the pointers that were handled in this run, so that they can be
821 // cleaned later if something fails. We also use this set to break cycles that
822 // can occur in dead code.
823 if (!SeenVals
.insert(V
).second
) {
825 } else if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
826 Result
= visitGEPOperator(*GEP
);
827 } else if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
829 } else if (isa
<Argument
>(V
) ||
830 (isa
<ConstantExpr
>(V
) &&
831 cast
<ConstantExpr
>(V
)->getOpcode() == Instruction::IntToPtr
) ||
832 isa
<GlobalAlias
>(V
) ||
833 isa
<GlobalVariable
>(V
)) {
834 // Ignore values where we cannot do more than ObjectSizeVisitor.
838 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
843 // Don't reuse CacheIt since it may be invalid at this point.
844 CacheMap
[V
] = Result
;
848 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst
&I
) {
849 if (!I
.getAllocatedType()->isSized())
853 assert(I
.isArrayAllocation());
854 Value
*ArraySize
= I
.getArraySize();
855 Value
*Size
= ConstantInt::get(ArraySize
->getType(),
856 DL
.getTypeAllocSize(I
.getAllocatedType()));
857 Size
= Builder
.CreateMul(Size
, ArraySize
);
858 return std::make_pair(Size
, Zero
);
861 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS
) {
862 Optional
<AllocFnsTy
> FnData
= getAllocationSize(CS
.getInstruction(), TLI
);
866 // Handle strdup-like functions separately.
867 if (FnData
->AllocTy
== StrDupLike
) {
872 Value
*FirstArg
= CS
.getArgument(FnData
->FstParam
);
873 FirstArg
= Builder
.CreateZExt(FirstArg
, IntTy
);
874 if (FnData
->SndParam
< 0)
875 return std::make_pair(FirstArg
, Zero
);
877 Value
*SecondArg
= CS
.getArgument(FnData
->SndParam
);
878 SecondArg
= Builder
.CreateZExt(SecondArg
, IntTy
);
879 Value
*Size
= Builder
.CreateMul(FirstArg
, SecondArg
);
880 return std::make_pair(Size
, Zero
);
882 // TODO: handle more standard functions (+ wchar cousins):
883 // - strdup / strndup
884 // - strcpy / strncpy
885 // - strcat / strncat
886 // - memcpy / memmove
887 // - strcat / strncat
892 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst
&) {
897 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst
&) {
902 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator
&GEP
) {
903 SizeOffsetEvalType PtrData
= compute_(GEP
.getPointerOperand());
904 if (!bothKnown(PtrData
))
907 Value
*Offset
= EmitGEPOffset(&Builder
, DL
, &GEP
, /*NoAssumptions=*/true);
908 Offset
= Builder
.CreateAdd(PtrData
.second
, Offset
);
909 return std::make_pair(PtrData
.first
, Offset
);
912 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst
&) {
917 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst
&) {
921 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitPHINode(PHINode
&PHI
) {
922 // Create 2 PHIs: one for size and another for offset.
923 PHINode
*SizePHI
= Builder
.CreatePHI(IntTy
, PHI
.getNumIncomingValues());
924 PHINode
*OffsetPHI
= Builder
.CreatePHI(IntTy
, PHI
.getNumIncomingValues());
926 // Insert right away in the cache to handle recursive PHIs.
927 CacheMap
[&PHI
] = std::make_pair(SizePHI
, OffsetPHI
);
929 // Compute offset/size for each PHI incoming pointer.
930 for (unsigned i
= 0, e
= PHI
.getNumIncomingValues(); i
!= e
; ++i
) {
931 Builder
.SetInsertPoint(&*PHI
.getIncomingBlock(i
)->getFirstInsertionPt());
932 SizeOffsetEvalType EdgeData
= compute_(PHI
.getIncomingValue(i
));
934 if (!bothKnown(EdgeData
)) {
935 OffsetPHI
->replaceAllUsesWith(UndefValue::get(IntTy
));
936 OffsetPHI
->eraseFromParent();
937 SizePHI
->replaceAllUsesWith(UndefValue::get(IntTy
));
938 SizePHI
->eraseFromParent();
941 SizePHI
->addIncoming(EdgeData
.first
, PHI
.getIncomingBlock(i
));
942 OffsetPHI
->addIncoming(EdgeData
.second
, PHI
.getIncomingBlock(i
));
945 Value
*Size
= SizePHI
, *Offset
= OffsetPHI
, *Tmp
;
946 if ((Tmp
= SizePHI
->hasConstantValue())) {
948 SizePHI
->replaceAllUsesWith(Size
);
949 SizePHI
->eraseFromParent();
951 if ((Tmp
= OffsetPHI
->hasConstantValue())) {
953 OffsetPHI
->replaceAllUsesWith(Offset
);
954 OffsetPHI
->eraseFromParent();
956 return std::make_pair(Size
, Offset
);
959 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst
&I
) {
960 SizeOffsetEvalType TrueSide
= compute_(I
.getTrueValue());
961 SizeOffsetEvalType FalseSide
= compute_(I
.getFalseValue());
963 if (!bothKnown(TrueSide
) || !bothKnown(FalseSide
))
965 if (TrueSide
== FalseSide
)
968 Value
*Size
= Builder
.CreateSelect(I
.getCondition(), TrueSide
.first
,
970 Value
*Offset
= Builder
.CreateSelect(I
.getCondition(), TrueSide
.second
,
972 return std::make_pair(Size
, Offset
);
975 SizeOffsetEvalType
ObjectSizeOffsetEvaluator::visitInstruction(Instruction
&I
) {
976 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I