Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Analysis / MemoryBuiltins.cpp
blob56332bb5fe8ddc37266021c7184d9a5905cf94da
1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
48 using namespace llvm;
50 #define DEBUG_TYPE "memory-builtins"
52 enum AllocType : uint8_t {
53 OpNewLike = 1<<0, // allocates; never returns null
54 MallocLike = 1<<1 | OpNewLike, // allocates; may return null
55 CallocLike = 1<<2, // allocates + bzero
56 ReallocLike = 1<<3, // reallocates
57 StrDupLike = 1<<4,
58 MallocOrCallocLike = MallocLike | CallocLike,
59 AllocLike = MallocLike | CallocLike | StrDupLike,
60 AnyAlloc = AllocLike | ReallocLike
63 struct AllocFnsTy {
64 AllocType AllocTy;
65 unsigned NumParams;
66 // First and Second size parameters (or -1 if unused)
67 int FstParam, SndParam;
70 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
71 // know which functions are nounwind, noalias, nocapture parameters, etc.
72 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
73 {LibFunc_malloc, {MallocLike, 1, 0, -1}},
74 {LibFunc_valloc, {MallocLike, 1, 0, -1}},
75 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
76 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
77 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t)
78 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
79 {MallocLike, 3, 0, -1}},
80 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long)
81 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow)
82 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t)
83 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
84 {MallocLike, 3, 0, -1}},
85 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
86 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
87 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t)
88 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
89 {MallocLike, 3, 0, -1}},
90 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long)
91 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow)
92 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t)
93 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
94 {MallocLike, 3, 0, -1}},
95 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
96 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
97 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long)
98 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow)
99 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
100 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
101 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long)
102 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow)
103 {LibFunc_calloc, {CallocLike, 2, 0, 1}},
104 {LibFunc_realloc, {ReallocLike, 2, 1, -1}},
105 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}},
106 {LibFunc_strdup, {StrDupLike, 1, -1, -1}},
107 {LibFunc_strndup, {StrDupLike, 2, 1, -1}}
108 // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
111 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
112 bool &IsNoBuiltin) {
113 // Don't care about intrinsics in this case.
114 if (isa<IntrinsicInst>(V))
115 return nullptr;
117 if (LookThroughBitCast)
118 V = V->stripPointerCasts();
120 ImmutableCallSite CS(V);
121 if (!CS.getInstruction())
122 return nullptr;
124 IsNoBuiltin = CS.isNoBuiltin();
126 if (const Function *Callee = CS.getCalledFunction())
127 return Callee;
128 return nullptr;
131 /// Returns the allocation data for the given value if it's either a call to a
132 /// known allocation function, or a call to a function with the allocsize
133 /// attribute.
134 static Optional<AllocFnsTy>
135 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
136 const TargetLibraryInfo *TLI) {
137 // Make sure that the function is available.
138 StringRef FnName = Callee->getName();
139 LibFunc TLIFn;
140 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
141 return None;
143 const auto *Iter = find_if(
144 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
145 return P.first == TLIFn;
148 if (Iter == std::end(AllocationFnData))
149 return None;
151 const AllocFnsTy *FnData = &Iter->second;
152 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
153 return None;
155 // Check function prototype.
156 int FstParam = FnData->FstParam;
157 int SndParam = FnData->SndParam;
158 FunctionType *FTy = Callee->getFunctionType();
160 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
161 FTy->getNumParams() == FnData->NumParams &&
162 (FstParam < 0 ||
163 (FTy->getParamType(FstParam)->isIntegerTy(32) ||
164 FTy->getParamType(FstParam)->isIntegerTy(64))) &&
165 (SndParam < 0 ||
166 FTy->getParamType(SndParam)->isIntegerTy(32) ||
167 FTy->getParamType(SndParam)->isIntegerTy(64)))
168 return *FnData;
169 return None;
172 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
173 const TargetLibraryInfo *TLI,
174 bool LookThroughBitCast = false) {
175 bool IsNoBuiltinCall;
176 if (const Function *Callee =
177 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
178 if (!IsNoBuiltinCall)
179 return getAllocationDataForFunction(Callee, AllocTy, TLI);
180 return None;
183 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
184 const TargetLibraryInfo *TLI) {
185 bool IsNoBuiltinCall;
186 const Function *Callee =
187 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
188 if (!Callee)
189 return None;
191 // Prefer to use existing information over allocsize. This will give us an
192 // accurate AllocTy.
193 if (!IsNoBuiltinCall)
194 if (Optional<AllocFnsTy> Data =
195 getAllocationDataForFunction(Callee, AnyAlloc, TLI))
196 return Data;
198 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
199 if (Attr == Attribute())
200 return None;
202 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
204 AllocFnsTy Result;
205 // Because allocsize only tells us how many bytes are allocated, we're not
206 // really allowed to assume anything, so we use MallocLike.
207 Result.AllocTy = MallocLike;
208 Result.NumParams = Callee->getNumOperands();
209 Result.FstParam = Args.first;
210 Result.SndParam = Args.second.getValueOr(-1);
211 return Result;
214 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
215 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
216 return CS && CS.hasRetAttr(Attribute::NoAlias);
219 /// Tests if a value is a call or invoke to a library function that
220 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
221 /// like).
222 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
223 bool LookThroughBitCast) {
224 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
227 /// Tests if a value is a call or invoke to a function that returns a
228 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
229 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
230 bool LookThroughBitCast) {
231 // it's safe to consider realloc as noalias since accessing the original
232 // pointer is undefined behavior
233 return isAllocationFn(V, TLI, LookThroughBitCast) ||
234 hasNoAliasAttr(V, LookThroughBitCast);
237 /// Tests if a value is a call or invoke to a library function that
238 /// allocates uninitialized memory (such as malloc).
239 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
240 bool LookThroughBitCast) {
241 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
244 /// Tests if a value is a call or invoke to a library function that
245 /// allocates zero-filled memory (such as calloc).
246 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
247 bool LookThroughBitCast) {
248 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
251 /// Tests if a value is a call or invoke to a library function that
252 /// allocates memory similar to malloc or calloc.
253 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
254 bool LookThroughBitCast) {
255 return getAllocationData(V, MallocOrCallocLike, TLI,
256 LookThroughBitCast).hasValue();
259 /// Tests if a value is a call or invoke to a library function that
260 /// allocates memory (either malloc, calloc, or strdup like).
261 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
262 bool LookThroughBitCast) {
263 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
266 /// extractMallocCall - Returns the corresponding CallInst if the instruction
267 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
268 /// ignore InvokeInst here.
269 const CallInst *llvm::extractMallocCall(const Value *I,
270 const TargetLibraryInfo *TLI) {
271 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
274 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
275 const TargetLibraryInfo *TLI,
276 bool LookThroughSExt = false) {
277 if (!CI)
278 return nullptr;
280 // The size of the malloc's result type must be known to determine array size.
281 Type *T = getMallocAllocatedType(CI, TLI);
282 if (!T || !T->isSized())
283 return nullptr;
285 unsigned ElementSize = DL.getTypeAllocSize(T);
286 if (StructType *ST = dyn_cast<StructType>(T))
287 ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
289 // If malloc call's arg can be determined to be a multiple of ElementSize,
290 // return the multiple. Otherwise, return NULL.
291 Value *MallocArg = CI->getArgOperand(0);
292 Value *Multiple = nullptr;
293 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
294 return Multiple;
296 return nullptr;
299 /// getMallocType - Returns the PointerType resulting from the malloc call.
300 /// The PointerType depends on the number of bitcast uses of the malloc call:
301 /// 0: PointerType is the calls' return type.
302 /// 1: PointerType is the bitcast's result type.
303 /// >1: Unique PointerType cannot be determined, return NULL.
304 PointerType *llvm::getMallocType(const CallInst *CI,
305 const TargetLibraryInfo *TLI) {
306 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
308 PointerType *MallocType = nullptr;
309 unsigned NumOfBitCastUses = 0;
311 // Determine if CallInst has a bitcast use.
312 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
313 UI != E;)
314 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
315 MallocType = cast<PointerType>(BCI->getDestTy());
316 NumOfBitCastUses++;
319 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
320 if (NumOfBitCastUses == 1)
321 return MallocType;
323 // Malloc call was not bitcast, so type is the malloc function's return type.
324 if (NumOfBitCastUses == 0)
325 return cast<PointerType>(CI->getType());
327 // Type could not be determined.
328 return nullptr;
331 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
332 /// The Type depends on the number of bitcast uses of the malloc call:
333 /// 0: PointerType is the malloc calls' return type.
334 /// 1: PointerType is the bitcast's result type.
335 /// >1: Unique PointerType cannot be determined, return NULL.
336 Type *llvm::getMallocAllocatedType(const CallInst *CI,
337 const TargetLibraryInfo *TLI) {
338 PointerType *PT = getMallocType(CI, TLI);
339 return PT ? PT->getElementType() : nullptr;
342 /// getMallocArraySize - Returns the array size of a malloc call. If the
343 /// argument passed to malloc is a multiple of the size of the malloced type,
344 /// then return that multiple. For non-array mallocs, the multiple is
345 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
346 /// determined.
347 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
348 const TargetLibraryInfo *TLI,
349 bool LookThroughSExt) {
350 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
351 return computeArraySize(CI, DL, TLI, LookThroughSExt);
354 /// extractCallocCall - Returns the corresponding CallInst if the instruction
355 /// is a calloc call.
356 const CallInst *llvm::extractCallocCall(const Value *I,
357 const TargetLibraryInfo *TLI) {
358 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
361 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
362 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
363 bool IsNoBuiltinCall;
364 const Function *Callee =
365 getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
366 if (Callee == nullptr || IsNoBuiltinCall)
367 return nullptr;
369 StringRef FnName = Callee->getName();
370 LibFunc TLIFn;
371 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
372 return nullptr;
374 unsigned ExpectedNumParams;
375 if (TLIFn == LibFunc_free ||
376 TLIFn == LibFunc_ZdlPv || // operator delete(void*)
377 TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
378 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
379 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
380 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
381 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*)
382 ExpectedNumParams = 1;
383 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint)
384 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong)
385 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
386 TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
387 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint)
388 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong)
389 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
390 TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
391 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint)
392 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
393 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
394 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
395 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint)
396 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
397 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
398 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow)
399 ExpectedNumParams = 2;
400 else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
401 TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow)
402 ExpectedNumParams = 3;
403 else
404 return nullptr;
406 // Check free prototype.
407 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
408 // attribute will exist.
409 FunctionType *FTy = Callee->getFunctionType();
410 if (!FTy->getReturnType()->isVoidTy())
411 return nullptr;
412 if (FTy->getNumParams() != ExpectedNumParams)
413 return nullptr;
414 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
415 return nullptr;
417 return dyn_cast<CallInst>(I);
420 //===----------------------------------------------------------------------===//
421 // Utility functions to compute size of objects.
423 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
424 if (Data.second.isNegative() || Data.first.ult(Data.second))
425 return APInt(Data.first.getBitWidth(), 0);
426 return Data.first - Data.second;
429 /// Compute the size of the object pointed by Ptr. Returns true and the
430 /// object size in Size if successful, and false otherwise.
431 /// If RoundToAlign is true, then Size is rounded up to the alignment of
432 /// allocas, byval arguments, and global variables.
433 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
434 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
435 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
436 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
437 if (!Visitor.bothKnown(Data))
438 return false;
440 Size = getSizeWithOverflow(Data).getZExtValue();
441 return true;
444 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
445 const DataLayout &DL,
446 const TargetLibraryInfo *TLI,
447 bool MustSucceed) {
448 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
449 "ObjectSize must be a call to llvm.objectsize!");
451 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
452 ObjectSizeOpts EvalOptions;
453 // Unless we have to fold this to something, try to be as accurate as
454 // possible.
455 if (MustSucceed)
456 EvalOptions.EvalMode =
457 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
458 else
459 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
461 EvalOptions.NullIsUnknownSize =
462 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
464 auto *ResultType = cast<IntegerType>(ObjectSize->getType());
465 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
466 if (StaticOnly) {
467 // FIXME: Does it make sense to just return a failure value if the size won't
468 // fit in the output and `!MustSucceed`?
469 uint64_t Size;
470 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
471 isUIntN(ResultType->getBitWidth(), Size))
472 return ConstantInt::get(ResultType, Size);
473 } else {
474 LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
475 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
476 SizeOffsetEvalType SizeOffsetPair =
477 Eval.compute(ObjectSize->getArgOperand(0));
479 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
480 IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
481 Builder.SetInsertPoint(ObjectSize);
483 // If we've outside the end of the object, then we can always access
484 // exactly 0 bytes.
485 Value *ResultSize =
486 Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
487 Value *UseZero =
488 Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
489 return Builder.CreateSelect(UseZero, ConstantInt::get(ResultType, 0),
490 ResultSize);
494 if (!MustSucceed)
495 return nullptr;
497 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
500 STATISTIC(ObjectVisitorArgument,
501 "Number of arguments with unsolved size and offset");
502 STATISTIC(ObjectVisitorLoad,
503 "Number of load instructions with unsolved size and offset");
505 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
506 if (Options.RoundToAlign && Align)
507 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align));
508 return Size;
511 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
512 const TargetLibraryInfo *TLI,
513 LLVMContext &Context,
514 ObjectSizeOpts Options)
515 : DL(DL), TLI(TLI), Options(Options) {
516 // Pointer size must be rechecked for each object visited since it could have
517 // a different address space.
520 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
521 IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
522 Zero = APInt::getNullValue(IntTyBits);
524 V = V->stripPointerCasts();
525 if (Instruction *I = dyn_cast<Instruction>(V)) {
526 // If we have already seen this instruction, bail out. Cycles can happen in
527 // unreachable code after constant propagation.
528 if (!SeenInsts.insert(I).second)
529 return unknown();
531 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
532 return visitGEPOperator(*GEP);
533 return visit(*I);
535 if (Argument *A = dyn_cast<Argument>(V))
536 return visitArgument(*A);
537 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
538 return visitConstantPointerNull(*P);
539 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
540 return visitGlobalAlias(*GA);
541 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
542 return visitGlobalVariable(*GV);
543 if (UndefValue *UV = dyn_cast<UndefValue>(V))
544 return visitUndefValue(*UV);
545 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
546 if (CE->getOpcode() == Instruction::IntToPtr)
547 return unknown(); // clueless
548 if (CE->getOpcode() == Instruction::GetElementPtr)
549 return visitGEPOperator(cast<GEPOperator>(*CE));
552 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
553 << *V << '\n');
554 return unknown();
557 /// When we're compiling N-bit code, and the user uses parameters that are
558 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
559 /// trouble with APInt size issues. This function handles resizing + overflow
560 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
561 /// I's value.
562 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
563 // More bits than we can handle. Checking the bit width isn't necessary, but
564 // it's faster than checking active bits, and should give `false` in the
565 // vast majority of cases.
566 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
567 return false;
568 if (I.getBitWidth() != IntTyBits)
569 I = I.zextOrTrunc(IntTyBits);
570 return true;
573 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
574 if (!I.getAllocatedType()->isSized())
575 return unknown();
577 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
578 if (!I.isArrayAllocation())
579 return std::make_pair(align(Size, I.getAlignment()), Zero);
581 Value *ArraySize = I.getArraySize();
582 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
583 APInt NumElems = C->getValue();
584 if (!CheckedZextOrTrunc(NumElems))
585 return unknown();
587 bool Overflow;
588 Size = Size.umul_ov(NumElems, Overflow);
589 return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
590 Zero);
592 return unknown();
595 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
596 // No interprocedural analysis is done at the moment.
597 if (!A.hasByValOrInAllocaAttr()) {
598 ++ObjectVisitorArgument;
599 return unknown();
601 PointerType *PT = cast<PointerType>(A.getType());
602 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
603 return std::make_pair(align(Size, A.getParamAlignment()), Zero);
606 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
607 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
608 if (!FnData)
609 return unknown();
611 // Handle strdup-like functions separately.
612 if (FnData->AllocTy == StrDupLike) {
613 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
614 if (!Size)
615 return unknown();
617 // Strndup limits strlen.
618 if (FnData->FstParam > 0) {
619 ConstantInt *Arg =
620 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
621 if (!Arg)
622 return unknown();
624 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
625 if (Size.ugt(MaxSize))
626 Size = MaxSize + 1;
628 return std::make_pair(Size, Zero);
631 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
632 if (!Arg)
633 return unknown();
635 APInt Size = Arg->getValue();
636 if (!CheckedZextOrTrunc(Size))
637 return unknown();
639 // Size is determined by just 1 parameter.
640 if (FnData->SndParam < 0)
641 return std::make_pair(Size, Zero);
643 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
644 if (!Arg)
645 return unknown();
647 APInt NumElems = Arg->getValue();
648 if (!CheckedZextOrTrunc(NumElems))
649 return unknown();
651 bool Overflow;
652 Size = Size.umul_ov(NumElems, Overflow);
653 return Overflow ? unknown() : std::make_pair(Size, Zero);
655 // TODO: handle more standard functions (+ wchar cousins):
656 // - strdup / strndup
657 // - strcpy / strncpy
658 // - strcat / strncat
659 // - memcpy / memmove
660 // - strcat / strncat
661 // - memset
664 SizeOffsetType
665 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
666 // If null is unknown, there's nothing we can do. Additionally, non-zero
667 // address spaces can make use of null, so we don't presume to know anything
668 // about that.
670 // TODO: How should this work with address space casts? We currently just drop
671 // them on the floor, but it's unclear what we should do when a NULL from
672 // addrspace(1) gets casted to addrspace(0) (or vice-versa).
673 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
674 return unknown();
675 return std::make_pair(Zero, Zero);
678 SizeOffsetType
679 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
680 return unknown();
683 SizeOffsetType
684 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
685 // Easy cases were already folded by previous passes.
686 return unknown();
689 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
690 SizeOffsetType PtrData = compute(GEP.getPointerOperand());
691 APInt Offset(IntTyBits, 0);
692 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
693 return unknown();
695 return std::make_pair(PtrData.first, PtrData.second + Offset);
698 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
699 if (GA.isInterposable())
700 return unknown();
701 return compute(GA.getAliasee());
704 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
705 if (!GV.hasDefinitiveInitializer())
706 return unknown();
708 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
709 return std::make_pair(align(Size, GV.getAlignment()), Zero);
712 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
713 // clueless
714 return unknown();
717 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
718 ++ObjectVisitorLoad;
719 return unknown();
722 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
723 // too complex to analyze statically.
724 return unknown();
727 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
728 SizeOffsetType TrueSide = compute(I.getTrueValue());
729 SizeOffsetType FalseSide = compute(I.getFalseValue());
730 if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
731 if (TrueSide == FalseSide) {
732 return TrueSide;
735 APInt TrueResult = getSizeWithOverflow(TrueSide);
736 APInt FalseResult = getSizeWithOverflow(FalseSide);
738 if (TrueResult == FalseResult) {
739 return TrueSide;
741 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
742 if (TrueResult.slt(FalseResult))
743 return TrueSide;
744 return FalseSide;
746 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
747 if (TrueResult.sgt(FalseResult))
748 return TrueSide;
749 return FalseSide;
752 return unknown();
755 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
756 return std::make_pair(Zero, Zero);
759 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
760 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
761 << '\n');
762 return unknown();
765 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
766 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
767 ObjectSizeOpts EvalOpts)
768 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
769 EvalOpts(EvalOpts) {
770 // IntTy and Zero must be set for each compute() since the address space may
771 // be different for later objects.
774 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
775 // XXX - Are vectors of pointers possible here?
776 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
777 Zero = ConstantInt::get(IntTy, 0);
779 SizeOffsetEvalType Result = compute_(V);
781 if (!bothKnown(Result)) {
782 // Erase everything that was computed in this iteration from the cache, so
783 // that no dangling references are left behind. We could be a bit smarter if
784 // we kept a dependency graph. It's probably not worth the complexity.
785 for (const Value *SeenVal : SeenVals) {
786 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
787 // non-computable results can be safely cached
788 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
789 CacheMap.erase(CacheIt);
793 SeenVals.clear();
794 return Result;
797 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
798 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
799 SizeOffsetType Const = Visitor.compute(V);
800 if (Visitor.bothKnown(Const))
801 return std::make_pair(ConstantInt::get(Context, Const.first),
802 ConstantInt::get(Context, Const.second));
804 V = V->stripPointerCasts();
806 // Check cache.
807 CacheMapTy::iterator CacheIt = CacheMap.find(V);
808 if (CacheIt != CacheMap.end())
809 return CacheIt->second;
811 // Always generate code immediately before the instruction being
812 // processed, so that the generated code dominates the same BBs.
813 BuilderTy::InsertPointGuard Guard(Builder);
814 if (Instruction *I = dyn_cast<Instruction>(V))
815 Builder.SetInsertPoint(I);
817 // Now compute the size and offset.
818 SizeOffsetEvalType Result;
820 // Record the pointers that were handled in this run, so that they can be
821 // cleaned later if something fails. We also use this set to break cycles that
822 // can occur in dead code.
823 if (!SeenVals.insert(V).second) {
824 Result = unknown();
825 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
826 Result = visitGEPOperator(*GEP);
827 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
828 Result = visit(*I);
829 } else if (isa<Argument>(V) ||
830 (isa<ConstantExpr>(V) &&
831 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
832 isa<GlobalAlias>(V) ||
833 isa<GlobalVariable>(V)) {
834 // Ignore values where we cannot do more than ObjectSizeVisitor.
835 Result = unknown();
836 } else {
837 LLVM_DEBUG(
838 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
839 << '\n');
840 Result = unknown();
843 // Don't reuse CacheIt since it may be invalid at this point.
844 CacheMap[V] = Result;
845 return Result;
848 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
849 if (!I.getAllocatedType()->isSized())
850 return unknown();
852 // must be a VLA
853 assert(I.isArrayAllocation());
854 Value *ArraySize = I.getArraySize();
855 Value *Size = ConstantInt::get(ArraySize->getType(),
856 DL.getTypeAllocSize(I.getAllocatedType()));
857 Size = Builder.CreateMul(Size, ArraySize);
858 return std::make_pair(Size, Zero);
861 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
862 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
863 if (!FnData)
864 return unknown();
866 // Handle strdup-like functions separately.
867 if (FnData->AllocTy == StrDupLike) {
868 // TODO
869 return unknown();
872 Value *FirstArg = CS.getArgument(FnData->FstParam);
873 FirstArg = Builder.CreateZExt(FirstArg, IntTy);
874 if (FnData->SndParam < 0)
875 return std::make_pair(FirstArg, Zero);
877 Value *SecondArg = CS.getArgument(FnData->SndParam);
878 SecondArg = Builder.CreateZExt(SecondArg, IntTy);
879 Value *Size = Builder.CreateMul(FirstArg, SecondArg);
880 return std::make_pair(Size, Zero);
882 // TODO: handle more standard functions (+ wchar cousins):
883 // - strdup / strndup
884 // - strcpy / strncpy
885 // - strcat / strncat
886 // - memcpy / memmove
887 // - strcat / strncat
888 // - memset
891 SizeOffsetEvalType
892 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
893 return unknown();
896 SizeOffsetEvalType
897 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
898 return unknown();
901 SizeOffsetEvalType
902 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
903 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
904 if (!bothKnown(PtrData))
905 return unknown();
907 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
908 Offset = Builder.CreateAdd(PtrData.second, Offset);
909 return std::make_pair(PtrData.first, Offset);
912 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
913 // clueless
914 return unknown();
917 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
918 return unknown();
921 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
922 // Create 2 PHIs: one for size and another for offset.
923 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
924 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
926 // Insert right away in the cache to handle recursive PHIs.
927 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
929 // Compute offset/size for each PHI incoming pointer.
930 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
931 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
932 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
934 if (!bothKnown(EdgeData)) {
935 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
936 OffsetPHI->eraseFromParent();
937 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
938 SizePHI->eraseFromParent();
939 return unknown();
941 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
942 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
945 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
946 if ((Tmp = SizePHI->hasConstantValue())) {
947 Size = Tmp;
948 SizePHI->replaceAllUsesWith(Size);
949 SizePHI->eraseFromParent();
951 if ((Tmp = OffsetPHI->hasConstantValue())) {
952 Offset = Tmp;
953 OffsetPHI->replaceAllUsesWith(Offset);
954 OffsetPHI->eraseFromParent();
956 return std::make_pair(Size, Offset);
959 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
960 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
961 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
963 if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
964 return unknown();
965 if (TrueSide == FalseSide)
966 return TrueSide;
968 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
969 FalseSide.first);
970 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
971 FalseSide.second);
972 return std::make_pair(Size, Offset);
975 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
976 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
977 << '\n');
978 return unknown();