Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Analysis / MemoryDependenceAnalysis.cpp
blob98c3ae40d471fe5371a4a62626e12f34231bb9cb
1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on. It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/OrderedBasicBlock.h"
27 #include "llvm/Analysis/PHITransAddr.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Use.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
63 using namespace llvm;
65 #define DEBUG_TYPE "memdep"
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
71 STATISTIC(NumCacheNonLocalPtr,
72 "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74 "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77 "Number of block queries that were completely cached");
79 // Limit for the number of instructions to scan in a block.
81 static cl::opt<unsigned> BlockScanLimit(
82 "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83 cl::desc("The number of instructions to scan in a block in memory "
84 "dependency analysis (default = 100)"));
86 static cl::opt<unsigned>
87 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88 cl::desc("The number of blocks to scan during memory "
89 "dependency analysis (default = 1000)"));
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100 Instruction *Inst, KeyTy Val) {
101 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102 ReverseMap.find(Inst);
103 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104 bool Found = InstIt->second.erase(Val);
105 assert(Found && "Invalid reverse map!");
106 (void)Found;
107 if (InstIt->second.empty())
108 ReverseMap.erase(InstIt);
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117 const TargetLibraryInfo &TLI) {
118 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119 if (LI->isUnordered()) {
120 Loc = MemoryLocation::get(LI);
121 return ModRefInfo::Ref;
123 if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124 Loc = MemoryLocation::get(LI);
125 return ModRefInfo::ModRef;
127 Loc = MemoryLocation();
128 return ModRefInfo::ModRef;
131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132 if (SI->isUnordered()) {
133 Loc = MemoryLocation::get(SI);
134 return ModRefInfo::Mod;
136 if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137 Loc = MemoryLocation::get(SI);
138 return ModRefInfo::ModRef;
140 Loc = MemoryLocation();
141 return ModRefInfo::ModRef;
144 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145 Loc = MemoryLocation::get(V);
146 return ModRefInfo::ModRef;
149 if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150 // calls to free() deallocate the entire structure
151 Loc = MemoryLocation(CI->getArgOperand(0));
152 return ModRefInfo::Mod;
155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156 switch (II->getIntrinsicID()) {
157 case Intrinsic::lifetime_start:
158 case Intrinsic::lifetime_end:
159 case Intrinsic::invariant_start:
160 Loc = MemoryLocation::getForArgument(II, 1, TLI);
161 // These intrinsics don't really modify the memory, but returning Mod
162 // will allow them to be handled conservatively.
163 return ModRefInfo::Mod;
164 case Intrinsic::invariant_end:
165 Loc = MemoryLocation::getForArgument(II, 2, TLI);
166 // These intrinsics don't really modify the memory, but returning Mod
167 // will allow them to be handled conservatively.
168 return ModRefInfo::Mod;
169 default:
170 break;
174 // Otherwise, just do the coarse-grained thing that always works.
175 if (Inst->mayWriteToMemory())
176 return ModRefInfo::ModRef;
177 if (Inst->mayReadFromMemory())
178 return ModRefInfo::Ref;
179 return ModRefInfo::NoModRef;
182 /// Private helper for finding the local dependencies of a call site.
183 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
184 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
185 BasicBlock *BB) {
186 unsigned Limit = BlockScanLimit;
188 // Walk backwards through the block, looking for dependencies.
189 while (ScanIt != BB->begin()) {
190 Instruction *Inst = &*--ScanIt;
191 // Debug intrinsics don't cause dependences and should not affect Limit
192 if (isa<DbgInfoIntrinsic>(Inst))
193 continue;
195 // Limit the amount of scanning we do so we don't end up with quadratic
196 // running time on extreme testcases.
197 --Limit;
198 if (!Limit)
199 return MemDepResult::getUnknown();
201 // If this inst is a memory op, get the pointer it accessed
202 MemoryLocation Loc;
203 ModRefInfo MR = GetLocation(Inst, Loc, TLI);
204 if (Loc.Ptr) {
205 // A simple instruction.
206 if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
207 return MemDepResult::getClobber(Inst);
208 continue;
211 if (auto *CallB = dyn_cast<CallBase>(Inst)) {
212 // If these two calls do not interfere, look past it.
213 if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
214 // If the two calls are the same, return Inst as a Def, so that
215 // Call can be found redundant and eliminated.
216 if (isReadOnlyCall && !isModSet(MR) &&
217 Call->isIdenticalToWhenDefined(CallB))
218 return MemDepResult::getDef(Inst);
220 // Otherwise if the two calls don't interact (e.g. CallB is readnone)
221 // keep scanning.
222 continue;
223 } else
224 return MemDepResult::getClobber(Inst);
227 // If we could not obtain a pointer for the instruction and the instruction
228 // touches memory then assume that this is a dependency.
229 if (isModOrRefSet(MR))
230 return MemDepResult::getClobber(Inst);
233 // No dependence found. If this is the entry block of the function, it is
234 // unknown, otherwise it is non-local.
235 if (BB != &BB->getParent()->getEntryBlock())
236 return MemDepResult::getNonLocal();
237 return MemDepResult::getNonFuncLocal();
240 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
241 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
242 const LoadInst *LI) {
243 // We can only extend simple integer loads.
244 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
245 return 0;
247 // Load widening is hostile to ThreadSanitizer: it may cause false positives
248 // or make the reports more cryptic (access sizes are wrong).
249 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
250 return 0;
252 const DataLayout &DL = LI->getModule()->getDataLayout();
254 // Get the base of this load.
255 int64_t LIOffs = 0;
256 const Value *LIBase =
257 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
259 // If the two pointers are not based on the same pointer, we can't tell that
260 // they are related.
261 if (LIBase != MemLocBase)
262 return 0;
264 // Okay, the two values are based on the same pointer, but returned as
265 // no-alias. This happens when we have things like two byte loads at "P+1"
266 // and "P+3". Check to see if increasing the size of the "LI" load up to its
267 // alignment (or the largest native integer type) will allow us to load all
268 // the bits required by MemLoc.
270 // If MemLoc is before LI, then no widening of LI will help us out.
271 if (MemLocOffs < LIOffs)
272 return 0;
274 // Get the alignment of the load in bytes. We assume that it is safe to load
275 // any legal integer up to this size without a problem. For example, if we're
276 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
277 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
278 // to i16.
279 unsigned LoadAlign = LI->getAlignment();
281 int64_t MemLocEnd = MemLocOffs + MemLocSize;
283 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
284 if (LIOffs + LoadAlign < MemLocEnd)
285 return 0;
287 // This is the size of the load to try. Start with the next larger power of
288 // two.
289 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
290 NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
292 while (true) {
293 // If this load size is bigger than our known alignment or would not fit
294 // into a native integer register, then we fail.
295 if (NewLoadByteSize > LoadAlign ||
296 !DL.fitsInLegalInteger(NewLoadByteSize * 8))
297 return 0;
299 if (LIOffs + NewLoadByteSize > MemLocEnd &&
300 (LI->getParent()->getParent()->hasFnAttribute(
301 Attribute::SanitizeAddress) ||
302 LI->getParent()->getParent()->hasFnAttribute(
303 Attribute::SanitizeHWAddress)))
304 // We will be reading past the location accessed by the original program.
305 // While this is safe in a regular build, Address Safety analysis tools
306 // may start reporting false warnings. So, don't do widening.
307 return 0;
309 // If a load of this width would include all of MemLoc, then we succeed.
310 if (LIOffs + NewLoadByteSize >= MemLocEnd)
311 return NewLoadByteSize;
313 NewLoadByteSize <<= 1;
317 static bool isVolatile(Instruction *Inst) {
318 if (auto *LI = dyn_cast<LoadInst>(Inst))
319 return LI->isVolatile();
320 if (auto *SI = dyn_cast<StoreInst>(Inst))
321 return SI->isVolatile();
322 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
323 return AI->isVolatile();
324 return false;
327 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
328 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
329 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
330 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
331 if (QueryInst != nullptr) {
332 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
333 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
335 if (InvariantGroupDependency.isDef())
336 return InvariantGroupDependency;
339 MemDepResult SimpleDep = getSimplePointerDependencyFrom(
340 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
341 if (SimpleDep.isDef())
342 return SimpleDep;
343 // Non-local invariant group dependency indicates there is non local Def
344 // (it only returns nonLocal if it finds nonLocal def), which is better than
345 // local clobber and everything else.
346 if (InvariantGroupDependency.isNonLocal())
347 return InvariantGroupDependency;
349 assert(InvariantGroupDependency.isUnknown() &&
350 "InvariantGroupDependency should be only unknown at this point");
351 return SimpleDep;
354 MemDepResult
355 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
356 BasicBlock *BB) {
358 if (!LI->getMetadata(LLVMContext::MD_invariant_group))
359 return MemDepResult::getUnknown();
361 // Take the ptr operand after all casts and geps 0. This way we can search
362 // cast graph down only.
363 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
365 // It's is not safe to walk the use list of global value, because function
366 // passes aren't allowed to look outside their functions.
367 // FIXME: this could be fixed by filtering instructions from outside
368 // of current function.
369 if (isa<GlobalValue>(LoadOperand))
370 return MemDepResult::getUnknown();
372 // Queue to process all pointers that are equivalent to load operand.
373 SmallVector<const Value *, 8> LoadOperandsQueue;
374 LoadOperandsQueue.push_back(LoadOperand);
376 Instruction *ClosestDependency = nullptr;
377 // Order of instructions in uses list is unpredictible. In order to always
378 // get the same result, we will look for the closest dominance.
379 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
380 assert(Other && "Must call it with not null instruction");
381 if (Best == nullptr || DT.dominates(Best, Other))
382 return Other;
383 return Best;
386 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
387 // we will see all the instructions. This should be fixed in MSSA.
388 while (!LoadOperandsQueue.empty()) {
389 const Value *Ptr = LoadOperandsQueue.pop_back_val();
390 assert(Ptr && !isa<GlobalValue>(Ptr) &&
391 "Null or GlobalValue should not be inserted");
393 for (const Use &Us : Ptr->uses()) {
394 auto *U = dyn_cast<Instruction>(Us.getUser());
395 if (!U || U == LI || !DT.dominates(U, LI))
396 continue;
398 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
399 // users. U = bitcast Ptr
400 if (isa<BitCastInst>(U)) {
401 LoadOperandsQueue.push_back(U);
402 continue;
404 // Gep with zeros is equivalent to bitcast.
405 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
406 // or gep 0 to bitcast because of SROA, so there are 2 forms. When
407 // typeless pointers will be ready then both cases will be gone
408 // (and this BFS also won't be needed).
409 if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
410 if (GEP->hasAllZeroIndices()) {
411 LoadOperandsQueue.push_back(U);
412 continue;
415 // If we hit load/store with the same invariant.group metadata (and the
416 // same pointer operand) we can assume that value pointed by pointer
417 // operand didn't change.
418 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
419 U->getMetadata(LLVMContext::MD_invariant_group) != nullptr)
420 ClosestDependency = GetClosestDependency(ClosestDependency, U);
424 if (!ClosestDependency)
425 return MemDepResult::getUnknown();
426 if (ClosestDependency->getParent() == BB)
427 return MemDepResult::getDef(ClosestDependency);
428 // Def(U) can't be returned here because it is non-local. If local
429 // dependency won't be found then return nonLocal counting that the
430 // user will call getNonLocalPointerDependency, which will return cached
431 // result.
432 NonLocalDefsCache.try_emplace(
433 LI, NonLocalDepResult(ClosestDependency->getParent(),
434 MemDepResult::getDef(ClosestDependency), nullptr));
435 ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
436 return MemDepResult::getNonLocal();
439 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
440 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
441 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
442 bool isInvariantLoad = false;
444 if (!Limit) {
445 unsigned DefaultLimit = BlockScanLimit;
446 return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst,
447 &DefaultLimit);
450 // We must be careful with atomic accesses, as they may allow another thread
451 // to touch this location, clobbering it. We are conservative: if the
452 // QueryInst is not a simple (non-atomic) memory access, we automatically
453 // return getClobber.
454 // If it is simple, we know based on the results of
455 // "Compiler testing via a theory of sound optimisations in the C11/C++11
456 // memory model" in PLDI 2013, that a non-atomic location can only be
457 // clobbered between a pair of a release and an acquire action, with no
458 // access to the location in between.
459 // Here is an example for giving the general intuition behind this rule.
460 // In the following code:
461 // store x 0;
462 // release action; [1]
463 // acquire action; [4]
464 // %val = load x;
465 // It is unsafe to replace %val by 0 because another thread may be running:
466 // acquire action; [2]
467 // store x 42;
468 // release action; [3]
469 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
470 // being 42. A key property of this program however is that if either
471 // 1 or 4 were missing, there would be a race between the store of 42
472 // either the store of 0 or the load (making the whole program racy).
473 // The paper mentioned above shows that the same property is respected
474 // by every program that can detect any optimization of that kind: either
475 // it is racy (undefined) or there is a release followed by an acquire
476 // between the pair of accesses under consideration.
478 // If the load is invariant, we "know" that it doesn't alias *any* write. We
479 // do want to respect mustalias results since defs are useful for value
480 // forwarding, but any mayalias write can be assumed to be noalias.
481 // Arguably, this logic should be pushed inside AliasAnalysis itself.
482 if (isLoad && QueryInst) {
483 LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
484 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
485 isInvariantLoad = true;
488 const DataLayout &DL = BB->getModule()->getDataLayout();
490 // Create a numbered basic block to lazily compute and cache instruction
491 // positions inside a BB. This is used to provide fast queries for relative
492 // position between two instructions in a BB and can be used by
493 // AliasAnalysis::callCapturesBefore.
494 OrderedBasicBlock OBB(BB);
496 // Return "true" if and only if the instruction I is either a non-simple
497 // load or a non-simple store.
498 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
499 if (auto *LI = dyn_cast<LoadInst>(I))
500 return !LI->isSimple();
501 if (auto *SI = dyn_cast<StoreInst>(I))
502 return !SI->isSimple();
503 return false;
506 // Return "true" if I is not a load and not a store, but it does access
507 // memory.
508 auto isOtherMemAccess = [](Instruction *I) -> bool {
509 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
512 // Walk backwards through the basic block, looking for dependencies.
513 while (ScanIt != BB->begin()) {
514 Instruction *Inst = &*--ScanIt;
516 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
517 // Debug intrinsics don't (and can't) cause dependencies.
518 if (isa<DbgInfoIntrinsic>(II))
519 continue;
521 // Limit the amount of scanning we do so we don't end up with quadratic
522 // running time on extreme testcases.
523 --*Limit;
524 if (!*Limit)
525 return MemDepResult::getUnknown();
527 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
528 // If we reach a lifetime begin or end marker, then the query ends here
529 // because the value is undefined.
530 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
531 // FIXME: This only considers queries directly on the invariant-tagged
532 // pointer, not on query pointers that are indexed off of them. It'd
533 // be nice to handle that at some point (the right approach is to use
534 // GetPointerBaseWithConstantOffset).
535 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
536 return MemDepResult::getDef(II);
537 continue;
541 // Values depend on loads if the pointers are must aliased. This means
542 // that a load depends on another must aliased load from the same value.
543 // One exception is atomic loads: a value can depend on an atomic load that
544 // it does not alias with when this atomic load indicates that another
545 // thread may be accessing the location.
546 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
547 // While volatile access cannot be eliminated, they do not have to clobber
548 // non-aliasing locations, as normal accesses, for example, can be safely
549 // reordered with volatile accesses.
550 if (LI->isVolatile()) {
551 if (!QueryInst)
552 // Original QueryInst *may* be volatile
553 return MemDepResult::getClobber(LI);
554 if (isVolatile(QueryInst))
555 // Ordering required if QueryInst is itself volatile
556 return MemDepResult::getClobber(LI);
557 // Otherwise, volatile doesn't imply any special ordering
560 // Atomic loads have complications involved.
561 // A Monotonic (or higher) load is OK if the query inst is itself not
562 // atomic.
563 // FIXME: This is overly conservative.
564 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
565 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
566 isOtherMemAccess(QueryInst))
567 return MemDepResult::getClobber(LI);
568 if (LI->getOrdering() != AtomicOrdering::Monotonic)
569 return MemDepResult::getClobber(LI);
572 MemoryLocation LoadLoc = MemoryLocation::get(LI);
574 // If we found a pointer, check if it could be the same as our pointer.
575 AliasResult R = AA.alias(LoadLoc, MemLoc);
577 if (isLoad) {
578 if (R == NoAlias)
579 continue;
581 // Must aliased loads are defs of each other.
582 if (R == MustAlias)
583 return MemDepResult::getDef(Inst);
585 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
586 // in terms of clobbering loads, but since it does this by looking
587 // at the clobbering load directly, it doesn't know about any
588 // phi translation that may have happened along the way.
590 // If we have a partial alias, then return this as a clobber for the
591 // client to handle.
592 if (R == PartialAlias)
593 return MemDepResult::getClobber(Inst);
594 #endif
596 // Random may-alias loads don't depend on each other without a
597 // dependence.
598 continue;
601 // Stores don't depend on other no-aliased accesses.
602 if (R == NoAlias)
603 continue;
605 // Stores don't alias loads from read-only memory.
606 if (AA.pointsToConstantMemory(LoadLoc))
607 continue;
609 // Stores depend on may/must aliased loads.
610 return MemDepResult::getDef(Inst);
613 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
614 // Atomic stores have complications involved.
615 // A Monotonic store is OK if the query inst is itself not atomic.
616 // FIXME: This is overly conservative.
617 if (!SI->isUnordered() && SI->isAtomic()) {
618 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
619 isOtherMemAccess(QueryInst))
620 return MemDepResult::getClobber(SI);
621 if (SI->getOrdering() != AtomicOrdering::Monotonic)
622 return MemDepResult::getClobber(SI);
625 // FIXME: this is overly conservative.
626 // While volatile access cannot be eliminated, they do not have to clobber
627 // non-aliasing locations, as normal accesses can for example be reordered
628 // with volatile accesses.
629 if (SI->isVolatile())
630 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
631 isOtherMemAccess(QueryInst))
632 return MemDepResult::getClobber(SI);
634 // If alias analysis can tell that this store is guaranteed to not modify
635 // the query pointer, ignore it. Use getModRefInfo to handle cases where
636 // the query pointer points to constant memory etc.
637 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
638 continue;
640 // Ok, this store might clobber the query pointer. Check to see if it is
641 // a must alias: in this case, we want to return this as a def.
642 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
643 MemoryLocation StoreLoc = MemoryLocation::get(SI);
645 // If we found a pointer, check if it could be the same as our pointer.
646 AliasResult R = AA.alias(StoreLoc, MemLoc);
648 if (R == NoAlias)
649 continue;
650 if (R == MustAlias)
651 return MemDepResult::getDef(Inst);
652 if (isInvariantLoad)
653 continue;
654 return MemDepResult::getClobber(Inst);
657 // If this is an allocation, and if we know that the accessed pointer is to
658 // the allocation, return Def. This means that there is no dependence and
659 // the access can be optimized based on that. For example, a load could
660 // turn into undef. Note that we can bypass the allocation itself when
661 // looking for a clobber in many cases; that's an alias property and is
662 // handled by BasicAA.
663 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
664 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
665 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
666 return MemDepResult::getDef(Inst);
669 if (isInvariantLoad)
670 continue;
672 // A release fence requires that all stores complete before it, but does
673 // not prevent the reordering of following loads or stores 'before' the
674 // fence. As a result, we look past it when finding a dependency for
675 // loads. DSE uses this to find preceeding stores to delete and thus we
676 // can't bypass the fence if the query instruction is a store.
677 if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
678 if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
679 continue;
681 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
682 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
683 // If necessary, perform additional analysis.
684 if (isModAndRefSet(MR))
685 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB);
686 switch (clearMust(MR)) {
687 case ModRefInfo::NoModRef:
688 // If the call has no effect on the queried pointer, just ignore it.
689 continue;
690 case ModRefInfo::Mod:
691 return MemDepResult::getClobber(Inst);
692 case ModRefInfo::Ref:
693 // If the call is known to never store to the pointer, and if this is a
694 // load query, we can safely ignore it (scan past it).
695 if (isLoad)
696 continue;
697 LLVM_FALLTHROUGH;
698 default:
699 // Otherwise, there is a potential dependence. Return a clobber.
700 return MemDepResult::getClobber(Inst);
704 // No dependence found. If this is the entry block of the function, it is
705 // unknown, otherwise it is non-local.
706 if (BB != &BB->getParent()->getEntryBlock())
707 return MemDepResult::getNonLocal();
708 return MemDepResult::getNonFuncLocal();
711 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
712 Instruction *ScanPos = QueryInst;
714 // Check for a cached result
715 MemDepResult &LocalCache = LocalDeps[QueryInst];
717 // If the cached entry is non-dirty, just return it. Note that this depends
718 // on MemDepResult's default constructing to 'dirty'.
719 if (!LocalCache.isDirty())
720 return LocalCache;
722 // Otherwise, if we have a dirty entry, we know we can start the scan at that
723 // instruction, which may save us some work.
724 if (Instruction *Inst = LocalCache.getInst()) {
725 ScanPos = Inst;
727 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
730 BasicBlock *QueryParent = QueryInst->getParent();
732 // Do the scan.
733 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
734 // No dependence found. If this is the entry block of the function, it is
735 // unknown, otherwise it is non-local.
736 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
737 LocalCache = MemDepResult::getNonLocal();
738 else
739 LocalCache = MemDepResult::getNonFuncLocal();
740 } else {
741 MemoryLocation MemLoc;
742 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
743 if (MemLoc.Ptr) {
744 // If we can do a pointer scan, make it happen.
745 bool isLoad = !isModSet(MR);
746 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
747 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
749 LocalCache = getPointerDependencyFrom(
750 MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst);
751 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
752 bool isReadOnly = AA.onlyReadsMemory(QueryCall);
753 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
754 ScanPos->getIterator(), QueryParent);
755 } else
756 // Non-memory instruction.
757 LocalCache = MemDepResult::getUnknown();
760 // Remember the result!
761 if (Instruction *I = LocalCache.getInst())
762 ReverseLocalDeps[I].insert(QueryInst);
764 return LocalCache;
767 #ifndef NDEBUG
768 /// This method is used when -debug is specified to verify that cache arrays
769 /// are properly kept sorted.
770 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
771 int Count = -1) {
772 if (Count == -1)
773 Count = Cache.size();
774 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
775 "Cache isn't sorted!");
777 #endif
779 const MemoryDependenceResults::NonLocalDepInfo &
780 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
781 assert(getDependency(QueryCall).isNonLocal() &&
782 "getNonLocalCallDependency should only be used on calls with "
783 "non-local deps!");
784 PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
785 NonLocalDepInfo &Cache = CacheP.first;
787 // This is the set of blocks that need to be recomputed. In the cached case,
788 // this can happen due to instructions being deleted etc. In the uncached
789 // case, this starts out as the set of predecessors we care about.
790 SmallVector<BasicBlock *, 32> DirtyBlocks;
792 if (!Cache.empty()) {
793 // Okay, we have a cache entry. If we know it is not dirty, just return it
794 // with no computation.
795 if (!CacheP.second) {
796 ++NumCacheNonLocal;
797 return Cache;
800 // If we already have a partially computed set of results, scan them to
801 // determine what is dirty, seeding our initial DirtyBlocks worklist.
802 for (auto &Entry : Cache)
803 if (Entry.getResult().isDirty())
804 DirtyBlocks.push_back(Entry.getBB());
806 // Sort the cache so that we can do fast binary search lookups below.
807 llvm::sort(Cache);
809 ++NumCacheDirtyNonLocal;
810 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
811 // << Cache.size() << " cached: " << *QueryInst;
812 } else {
813 // Seed DirtyBlocks with each of the preds of QueryInst's block.
814 BasicBlock *QueryBB = QueryCall->getParent();
815 for (BasicBlock *Pred : PredCache.get(QueryBB))
816 DirtyBlocks.push_back(Pred);
817 ++NumUncacheNonLocal;
820 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
821 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
823 SmallPtrSet<BasicBlock *, 32> Visited;
825 unsigned NumSortedEntries = Cache.size();
826 LLVM_DEBUG(AssertSorted(Cache));
828 // Iterate while we still have blocks to update.
829 while (!DirtyBlocks.empty()) {
830 BasicBlock *DirtyBB = DirtyBlocks.back();
831 DirtyBlocks.pop_back();
833 // Already processed this block?
834 if (!Visited.insert(DirtyBB).second)
835 continue;
837 // Do a binary search to see if we already have an entry for this block in
838 // the cache set. If so, find it.
839 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
840 NonLocalDepInfo::iterator Entry =
841 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
842 NonLocalDepEntry(DirtyBB));
843 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
844 --Entry;
846 NonLocalDepEntry *ExistingResult = nullptr;
847 if (Entry != Cache.begin() + NumSortedEntries &&
848 Entry->getBB() == DirtyBB) {
849 // If we already have an entry, and if it isn't already dirty, the block
850 // is done.
851 if (!Entry->getResult().isDirty())
852 continue;
854 // Otherwise, remember this slot so we can update the value.
855 ExistingResult = &*Entry;
858 // If the dirty entry has a pointer, start scanning from it so we don't have
859 // to rescan the entire block.
860 BasicBlock::iterator ScanPos = DirtyBB->end();
861 if (ExistingResult) {
862 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
863 ScanPos = Inst->getIterator();
864 // We're removing QueryInst's use of Inst.
865 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
866 QueryCall);
870 // Find out if this block has a local dependency for QueryInst.
871 MemDepResult Dep;
873 if (ScanPos != DirtyBB->begin()) {
874 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
875 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
876 // No dependence found. If this is the entry block of the function, it is
877 // a clobber, otherwise it is unknown.
878 Dep = MemDepResult::getNonLocal();
879 } else {
880 Dep = MemDepResult::getNonFuncLocal();
883 // If we had a dirty entry for the block, update it. Otherwise, just add
884 // a new entry.
885 if (ExistingResult)
886 ExistingResult->setResult(Dep);
887 else
888 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
890 // If the block has a dependency (i.e. it isn't completely transparent to
891 // the value), remember the association!
892 if (!Dep.isNonLocal()) {
893 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
894 // update this when we remove instructions.
895 if (Instruction *Inst = Dep.getInst())
896 ReverseNonLocalDeps[Inst].insert(QueryCall);
897 } else {
899 // If the block *is* completely transparent to the load, we need to check
900 // the predecessors of this block. Add them to our worklist.
901 for (BasicBlock *Pred : PredCache.get(DirtyBB))
902 DirtyBlocks.push_back(Pred);
906 return Cache;
909 void MemoryDependenceResults::getNonLocalPointerDependency(
910 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
911 const MemoryLocation Loc = MemoryLocation::get(QueryInst);
912 bool isLoad = isa<LoadInst>(QueryInst);
913 BasicBlock *FromBB = QueryInst->getParent();
914 assert(FromBB);
916 assert(Loc.Ptr->getType()->isPointerTy() &&
917 "Can't get pointer deps of a non-pointer!");
918 Result.clear();
920 // Check if there is cached Def with invariant.group.
921 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
922 if (NonLocalDefIt != NonLocalDefsCache.end()) {
923 Result.push_back(NonLocalDefIt->second);
924 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
925 .erase(QueryInst);
926 NonLocalDefsCache.erase(NonLocalDefIt);
927 return;
930 // This routine does not expect to deal with volatile instructions.
931 // Doing so would require piping through the QueryInst all the way through.
932 // TODO: volatiles can't be elided, but they can be reordered with other
933 // non-volatile accesses.
935 // We currently give up on any instruction which is ordered, but we do handle
936 // atomic instructions which are unordered.
937 // TODO: Handle ordered instructions
938 auto isOrdered = [](Instruction *Inst) {
939 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
940 return !LI->isUnordered();
941 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
942 return !SI->isUnordered();
944 return false;
946 if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
947 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
948 const_cast<Value *>(Loc.Ptr)));
949 return;
951 const DataLayout &DL = FromBB->getModule()->getDataLayout();
952 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
954 // This is the set of blocks we've inspected, and the pointer we consider in
955 // each block. Because of critical edges, we currently bail out if querying
956 // a block with multiple different pointers. This can happen during PHI
957 // translation.
958 DenseMap<BasicBlock *, Value *> Visited;
959 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
960 Result, Visited, true))
961 return;
962 Result.clear();
963 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
964 const_cast<Value *>(Loc.Ptr)));
967 /// Compute the memdep value for BB with Pointer/PointeeSize using either
968 /// cached information in Cache or by doing a lookup (which may use dirty cache
969 /// info if available).
971 /// If we do a lookup, add the result to the cache.
972 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
973 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
974 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
976 // Do a binary search to see if we already have an entry for this block in
977 // the cache set. If so, find it.
978 NonLocalDepInfo::iterator Entry = std::upper_bound(
979 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
980 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
981 --Entry;
983 NonLocalDepEntry *ExistingResult = nullptr;
984 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
985 ExistingResult = &*Entry;
987 // If we have a cached entry, and it is non-dirty, use it as the value for
988 // this dependency.
989 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
990 ++NumCacheNonLocalPtr;
991 return ExistingResult->getResult();
994 // Otherwise, we have to scan for the value. If we have a dirty cache
995 // entry, start scanning from its position, otherwise we scan from the end
996 // of the block.
997 BasicBlock::iterator ScanPos = BB->end();
998 if (ExistingResult && ExistingResult->getResult().getInst()) {
999 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
1000 "Instruction invalidated?");
1001 ++NumCacheDirtyNonLocalPtr;
1002 ScanPos = ExistingResult->getResult().getInst()->getIterator();
1004 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1005 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1006 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
1007 } else {
1008 ++NumUncacheNonLocalPtr;
1011 // Scan the block for the dependency.
1012 MemDepResult Dep =
1013 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
1015 // If we had a dirty entry for the block, update it. Otherwise, just add
1016 // a new entry.
1017 if (ExistingResult)
1018 ExistingResult->setResult(Dep);
1019 else
1020 Cache->push_back(NonLocalDepEntry(BB, Dep));
1022 // If the block has a dependency (i.e. it isn't completely transparent to
1023 // the value), remember the reverse association because we just added it
1024 // to Cache!
1025 if (!Dep.isDef() && !Dep.isClobber())
1026 return Dep;
1028 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
1029 // update MemDep when we remove instructions.
1030 Instruction *Inst = Dep.getInst();
1031 assert(Inst && "Didn't depend on anything?");
1032 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1033 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1034 return Dep;
1037 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
1038 /// array that are already properly ordered.
1040 /// This is optimized for the case when only a few entries are added.
1041 static void
1042 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
1043 unsigned NumSortedEntries) {
1044 switch (Cache.size() - NumSortedEntries) {
1045 case 0:
1046 // done, no new entries.
1047 break;
1048 case 2: {
1049 // Two new entries, insert the last one into place.
1050 NonLocalDepEntry Val = Cache.back();
1051 Cache.pop_back();
1052 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1053 std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1054 Cache.insert(Entry, Val);
1055 LLVM_FALLTHROUGH;
1057 case 1:
1058 // One new entry, Just insert the new value at the appropriate position.
1059 if (Cache.size() != 1) {
1060 NonLocalDepEntry Val = Cache.back();
1061 Cache.pop_back();
1062 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1063 std::upper_bound(Cache.begin(), Cache.end(), Val);
1064 Cache.insert(Entry, Val);
1066 break;
1067 default:
1068 // Added many values, do a full scale sort.
1069 llvm::sort(Cache);
1070 break;
1074 /// Perform a dependency query based on pointer/pointeesize starting at the end
1075 /// of StartBB.
1077 /// Add any clobber/def results to the results vector and keep track of which
1078 /// blocks are visited in 'Visited'.
1080 /// This has special behavior for the first block queries (when SkipFirstBlock
1081 /// is true). In this special case, it ignores the contents of the specified
1082 /// block and starts returning dependence info for its predecessors.
1084 /// This function returns true on success, or false to indicate that it could
1085 /// not compute dependence information for some reason. This should be treated
1086 /// as a clobber dependence on the first instruction in the predecessor block.
1087 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1088 Instruction *QueryInst, const PHITransAddr &Pointer,
1089 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1090 SmallVectorImpl<NonLocalDepResult> &Result,
1091 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) {
1092 // Look up the cached info for Pointer.
1093 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1095 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1096 // CacheKey, this value will be inserted as the associated value. Otherwise,
1097 // it'll be ignored, and we'll have to check to see if the cached size and
1098 // aa tags are consistent with the current query.
1099 NonLocalPointerInfo InitialNLPI;
1100 InitialNLPI.Size = Loc.Size;
1101 InitialNLPI.AATags = Loc.AATags;
1103 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1104 // already have one.
1105 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1106 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1107 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1109 // If we already have a cache entry for this CacheKey, we may need to do some
1110 // work to reconcile the cache entry and the current query.
1111 if (!Pair.second) {
1112 if (CacheInfo->Size != Loc.Size) {
1113 bool ThrowOutEverything;
1114 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1115 // FIXME: We may be able to do better in the face of results with mixed
1116 // precision. We don't appear to get them in practice, though, so just
1117 // be conservative.
1118 ThrowOutEverything =
1119 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1120 CacheInfo->Size.getValue() < Loc.Size.getValue();
1121 } else {
1122 // For our purposes, unknown size > all others.
1123 ThrowOutEverything = !Loc.Size.hasValue();
1126 if (ThrowOutEverything) {
1127 // The query's Size is greater than the cached one. Throw out the
1128 // cached data and proceed with the query at the greater size.
1129 CacheInfo->Pair = BBSkipFirstBlockPair();
1130 CacheInfo->Size = Loc.Size;
1131 for (auto &Entry : CacheInfo->NonLocalDeps)
1132 if (Instruction *Inst = Entry.getResult().getInst())
1133 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1134 CacheInfo->NonLocalDeps.clear();
1135 } else {
1136 // This query's Size is less than the cached one. Conservatively restart
1137 // the query using the greater size.
1138 return getNonLocalPointerDepFromBB(
1139 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1140 StartBB, Result, Visited, SkipFirstBlock);
1144 // If the query's AATags are inconsistent with the cached one,
1145 // conservatively throw out the cached data and restart the query with
1146 // no tag if needed.
1147 if (CacheInfo->AATags != Loc.AATags) {
1148 if (CacheInfo->AATags) {
1149 CacheInfo->Pair = BBSkipFirstBlockPair();
1150 CacheInfo->AATags = AAMDNodes();
1151 for (auto &Entry : CacheInfo->NonLocalDeps)
1152 if (Instruction *Inst = Entry.getResult().getInst())
1153 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1154 CacheInfo->NonLocalDeps.clear();
1156 if (Loc.AATags)
1157 return getNonLocalPointerDepFromBB(
1158 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1159 Visited, SkipFirstBlock);
1163 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1165 // If we have valid cached information for exactly the block we are
1166 // investigating, just return it with no recomputation.
1167 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1168 // We have a fully cached result for this query then we can just return the
1169 // cached results and populate the visited set. However, we have to verify
1170 // that we don't already have conflicting results for these blocks. Check
1171 // to ensure that if a block in the results set is in the visited set that
1172 // it was for the same pointer query.
1173 if (!Visited.empty()) {
1174 for (auto &Entry : *Cache) {
1175 DenseMap<BasicBlock *, Value *>::iterator VI =
1176 Visited.find(Entry.getBB());
1177 if (VI == Visited.end() || VI->second == Pointer.getAddr())
1178 continue;
1180 // We have a pointer mismatch in a block. Just return false, saying
1181 // that something was clobbered in this result. We could also do a
1182 // non-fully cached query, but there is little point in doing this.
1183 return false;
1187 Value *Addr = Pointer.getAddr();
1188 for (auto &Entry : *Cache) {
1189 Visited.insert(std::make_pair(Entry.getBB(), Addr));
1190 if (Entry.getResult().isNonLocal()) {
1191 continue;
1194 if (DT.isReachableFromEntry(Entry.getBB())) {
1195 Result.push_back(
1196 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1199 ++NumCacheCompleteNonLocalPtr;
1200 return true;
1203 // Otherwise, either this is a new block, a block with an invalid cache
1204 // pointer or one that we're about to invalidate by putting more info into it
1205 // than its valid cache info. If empty, the result will be valid cache info,
1206 // otherwise it isn't.
1207 if (Cache->empty())
1208 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1209 else
1210 CacheInfo->Pair = BBSkipFirstBlockPair();
1212 SmallVector<BasicBlock *, 32> Worklist;
1213 Worklist.push_back(StartBB);
1215 // PredList used inside loop.
1216 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1218 // Keep track of the entries that we know are sorted. Previously cached
1219 // entries will all be sorted. The entries we add we only sort on demand (we
1220 // don't insert every element into its sorted position). We know that we
1221 // won't get any reuse from currently inserted values, because we don't
1222 // revisit blocks after we insert info for them.
1223 unsigned NumSortedEntries = Cache->size();
1224 unsigned WorklistEntries = BlockNumberLimit;
1225 bool GotWorklistLimit = false;
1226 LLVM_DEBUG(AssertSorted(*Cache));
1228 while (!Worklist.empty()) {
1229 BasicBlock *BB = Worklist.pop_back_val();
1231 // If we do process a large number of blocks it becomes very expensive and
1232 // likely it isn't worth worrying about
1233 if (Result.size() > NumResultsLimit) {
1234 Worklist.clear();
1235 // Sort it now (if needed) so that recursive invocations of
1236 // getNonLocalPointerDepFromBB and other routines that could reuse the
1237 // cache value will only see properly sorted cache arrays.
1238 if (Cache && NumSortedEntries != Cache->size()) {
1239 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1241 // Since we bail out, the "Cache" set won't contain all of the
1242 // results for the query. This is ok (we can still use it to accelerate
1243 // specific block queries) but we can't do the fastpath "return all
1244 // results from the set". Clear out the indicator for this.
1245 CacheInfo->Pair = BBSkipFirstBlockPair();
1246 return false;
1249 // Skip the first block if we have it.
1250 if (!SkipFirstBlock) {
1251 // Analyze the dependency of *Pointer in FromBB. See if we already have
1252 // been here.
1253 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1255 // Get the dependency info for Pointer in BB. If we have cached
1256 // information, we will use it, otherwise we compute it.
1257 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1258 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1259 Cache, NumSortedEntries);
1261 // If we got a Def or Clobber, add this to the list of results.
1262 if (!Dep.isNonLocal()) {
1263 if (DT.isReachableFromEntry(BB)) {
1264 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1265 continue;
1270 // If 'Pointer' is an instruction defined in this block, then we need to do
1271 // phi translation to change it into a value live in the predecessor block.
1272 // If not, we just add the predecessors to the worklist and scan them with
1273 // the same Pointer.
1274 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1275 SkipFirstBlock = false;
1276 SmallVector<BasicBlock *, 16> NewBlocks;
1277 for (BasicBlock *Pred : PredCache.get(BB)) {
1278 // Verify that we haven't looked at this block yet.
1279 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1280 Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1281 if (InsertRes.second) {
1282 // First time we've looked at *PI.
1283 NewBlocks.push_back(Pred);
1284 continue;
1287 // If we have seen this block before, but it was with a different
1288 // pointer then we have a phi translation failure and we have to treat
1289 // this as a clobber.
1290 if (InsertRes.first->second != Pointer.getAddr()) {
1291 // Make sure to clean up the Visited map before continuing on to
1292 // PredTranslationFailure.
1293 for (unsigned i = 0; i < NewBlocks.size(); i++)
1294 Visited.erase(NewBlocks[i]);
1295 goto PredTranslationFailure;
1298 if (NewBlocks.size() > WorklistEntries) {
1299 // Make sure to clean up the Visited map before continuing on to
1300 // PredTranslationFailure.
1301 for (unsigned i = 0; i < NewBlocks.size(); i++)
1302 Visited.erase(NewBlocks[i]);
1303 GotWorklistLimit = true;
1304 goto PredTranslationFailure;
1306 WorklistEntries -= NewBlocks.size();
1307 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1308 continue;
1311 // We do need to do phi translation, if we know ahead of time we can't phi
1312 // translate this value, don't even try.
1313 if (!Pointer.IsPotentiallyPHITranslatable())
1314 goto PredTranslationFailure;
1316 // We may have added values to the cache list before this PHI translation.
1317 // If so, we haven't done anything to ensure that the cache remains sorted.
1318 // Sort it now (if needed) so that recursive invocations of
1319 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1320 // value will only see properly sorted cache arrays.
1321 if (Cache && NumSortedEntries != Cache->size()) {
1322 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1323 NumSortedEntries = Cache->size();
1325 Cache = nullptr;
1327 PredList.clear();
1328 for (BasicBlock *Pred : PredCache.get(BB)) {
1329 PredList.push_back(std::make_pair(Pred, Pointer));
1331 // Get the PHI translated pointer in this predecessor. This can fail if
1332 // not translatable, in which case the getAddr() returns null.
1333 PHITransAddr &PredPointer = PredList.back().second;
1334 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1335 Value *PredPtrVal = PredPointer.getAddr();
1337 // Check to see if we have already visited this pred block with another
1338 // pointer. If so, we can't do this lookup. This failure can occur
1339 // with PHI translation when a critical edge exists and the PHI node in
1340 // the successor translates to a pointer value different than the
1341 // pointer the block was first analyzed with.
1342 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1343 Visited.insert(std::make_pair(Pred, PredPtrVal));
1345 if (!InsertRes.second) {
1346 // We found the pred; take it off the list of preds to visit.
1347 PredList.pop_back();
1349 // If the predecessor was visited with PredPtr, then we already did
1350 // the analysis and can ignore it.
1351 if (InsertRes.first->second == PredPtrVal)
1352 continue;
1354 // Otherwise, the block was previously analyzed with a different
1355 // pointer. We can't represent the result of this case, so we just
1356 // treat this as a phi translation failure.
1358 // Make sure to clean up the Visited map before continuing on to
1359 // PredTranslationFailure.
1360 for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1361 Visited.erase(PredList[i].first);
1363 goto PredTranslationFailure;
1367 // Actually process results here; this need to be a separate loop to avoid
1368 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1369 // any results for. (getNonLocalPointerDepFromBB will modify our
1370 // datastructures in ways the code after the PredTranslationFailure label
1371 // doesn't expect.)
1372 for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1373 BasicBlock *Pred = PredList[i].first;
1374 PHITransAddr &PredPointer = PredList[i].second;
1375 Value *PredPtrVal = PredPointer.getAddr();
1377 bool CanTranslate = true;
1378 // If PHI translation was unable to find an available pointer in this
1379 // predecessor, then we have to assume that the pointer is clobbered in
1380 // that predecessor. We can still do PRE of the load, which would insert
1381 // a computation of the pointer in this predecessor.
1382 if (!PredPtrVal)
1383 CanTranslate = false;
1385 // FIXME: it is entirely possible that PHI translating will end up with
1386 // the same value. Consider PHI translating something like:
1387 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1388 // to recurse here, pedantically speaking.
1390 // If getNonLocalPointerDepFromBB fails here, that means the cached
1391 // result conflicted with the Visited list; we have to conservatively
1392 // assume it is unknown, but this also does not block PRE of the load.
1393 if (!CanTranslate ||
1394 !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1395 Loc.getWithNewPtr(PredPtrVal), isLoad,
1396 Pred, Result, Visited)) {
1397 // Add the entry to the Result list.
1398 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1399 Result.push_back(Entry);
1401 // Since we had a phi translation failure, the cache for CacheKey won't
1402 // include all of the entries that we need to immediately satisfy future
1403 // queries. Mark this in NonLocalPointerDeps by setting the
1404 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1405 // cached value to do more work but not miss the phi trans failure.
1406 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1407 NLPI.Pair = BBSkipFirstBlockPair();
1408 continue;
1412 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1413 CacheInfo = &NonLocalPointerDeps[CacheKey];
1414 Cache = &CacheInfo->NonLocalDeps;
1415 NumSortedEntries = Cache->size();
1417 // Since we did phi translation, the "Cache" set won't contain all of the
1418 // results for the query. This is ok (we can still use it to accelerate
1419 // specific block queries) but we can't do the fastpath "return all
1420 // results from the set" Clear out the indicator for this.
1421 CacheInfo->Pair = BBSkipFirstBlockPair();
1422 SkipFirstBlock = false;
1423 continue;
1425 PredTranslationFailure:
1426 // The following code is "failure"; we can't produce a sane translation
1427 // for the given block. It assumes that we haven't modified any of
1428 // our datastructures while processing the current block.
1430 if (!Cache) {
1431 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1432 CacheInfo = &NonLocalPointerDeps[CacheKey];
1433 Cache = &CacheInfo->NonLocalDeps;
1434 NumSortedEntries = Cache->size();
1437 // Since we failed phi translation, the "Cache" set won't contain all of the
1438 // results for the query. This is ok (we can still use it to accelerate
1439 // specific block queries) but we can't do the fastpath "return all
1440 // results from the set". Clear out the indicator for this.
1441 CacheInfo->Pair = BBSkipFirstBlockPair();
1443 // If *nothing* works, mark the pointer as unknown.
1445 // If this is the magic first block, return this as a clobber of the whole
1446 // incoming value. Since we can't phi translate to one of the predecessors,
1447 // we have to bail out.
1448 if (SkipFirstBlock)
1449 return false;
1451 bool foundBlock = false;
1452 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1453 if (I.getBB() != BB)
1454 continue;
1456 assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1457 !DT.isReachableFromEntry(BB)) &&
1458 "Should only be here with transparent block");
1459 foundBlock = true;
1460 I.setResult(MemDepResult::getUnknown());
1461 Result.push_back(
1462 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr()));
1463 break;
1465 (void)foundBlock; (void)GotWorklistLimit;
1466 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?");
1469 // Okay, we're done now. If we added new values to the cache, re-sort it.
1470 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1471 LLVM_DEBUG(AssertSorted(*Cache));
1472 return true;
1475 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1476 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1477 ValueIsLoadPair P) {
1479 // Most of the time this cache is empty.
1480 if (!NonLocalDefsCache.empty()) {
1481 auto it = NonLocalDefsCache.find(P.getPointer());
1482 if (it != NonLocalDefsCache.end()) {
1483 RemoveFromReverseMap(ReverseNonLocalDefsCache,
1484 it->second.getResult().getInst(), P.getPointer());
1485 NonLocalDefsCache.erase(it);
1488 if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1489 auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1490 if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1491 for (const auto &entry : toRemoveIt->second)
1492 NonLocalDefsCache.erase(entry);
1493 ReverseNonLocalDefsCache.erase(toRemoveIt);
1498 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1499 if (It == NonLocalPointerDeps.end())
1500 return;
1502 // Remove all of the entries in the BB->val map. This involves removing
1503 // instructions from the reverse map.
1504 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1506 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1507 Instruction *Target = PInfo[i].getResult().getInst();
1508 if (!Target)
1509 continue; // Ignore non-local dep results.
1510 assert(Target->getParent() == PInfo[i].getBB());
1512 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1513 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1516 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1517 NonLocalPointerDeps.erase(It);
1520 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1521 // If Ptr isn't really a pointer, just ignore it.
1522 if (!Ptr->getType()->isPointerTy())
1523 return;
1524 // Flush store info for the pointer.
1525 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1526 // Flush load info for the pointer.
1527 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1528 // Invalidate phis that use the pointer.
1529 PV.invalidateValue(Ptr);
1532 void MemoryDependenceResults::invalidateCachedPredecessors() {
1533 PredCache.clear();
1536 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1537 // Walk through the Non-local dependencies, removing this one as the value
1538 // for any cached queries.
1539 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1540 if (NLDI != NonLocalDeps.end()) {
1541 NonLocalDepInfo &BlockMap = NLDI->second.first;
1542 for (auto &Entry : BlockMap)
1543 if (Instruction *Inst = Entry.getResult().getInst())
1544 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1545 NonLocalDeps.erase(NLDI);
1548 // If we have a cached local dependence query for this instruction, remove it.
1549 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1550 if (LocalDepEntry != LocalDeps.end()) {
1551 // Remove us from DepInst's reverse set now that the local dep info is gone.
1552 if (Instruction *Inst = LocalDepEntry->second.getInst())
1553 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1555 // Remove this local dependency info.
1556 LocalDeps.erase(LocalDepEntry);
1559 // If we have any cached pointer dependencies on this instruction, remove
1560 // them. If the instruction has non-pointer type, then it can't be a pointer
1561 // base.
1563 // Remove it from both the load info and the store info. The instruction
1564 // can't be in either of these maps if it is non-pointer.
1565 if (RemInst->getType()->isPointerTy()) {
1566 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1567 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1570 // Loop over all of the things that depend on the instruction we're removing.
1571 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1573 // If we find RemInst as a clobber or Def in any of the maps for other values,
1574 // we need to replace its entry with a dirty version of the instruction after
1575 // it. If RemInst is a terminator, we use a null dirty value.
1577 // Using a dirty version of the instruction after RemInst saves having to scan
1578 // the entire block to get to this point.
1579 MemDepResult NewDirtyVal;
1580 if (!RemInst->isTerminator())
1581 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1583 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1584 if (ReverseDepIt != ReverseLocalDeps.end()) {
1585 // RemInst can't be the terminator if it has local stuff depending on it.
1586 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1587 "Nothing can locally depend on a terminator");
1589 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1590 assert(InstDependingOnRemInst != RemInst &&
1591 "Already removed our local dep info");
1593 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1595 // Make sure to remember that new things depend on NewDepInst.
1596 assert(NewDirtyVal.getInst() &&
1597 "There is no way something else can have "
1598 "a local dep on this if it is a terminator!");
1599 ReverseDepsToAdd.push_back(
1600 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1603 ReverseLocalDeps.erase(ReverseDepIt);
1605 // Add new reverse deps after scanning the set, to avoid invalidating the
1606 // 'ReverseDeps' reference.
1607 while (!ReverseDepsToAdd.empty()) {
1608 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1609 ReverseDepsToAdd.back().second);
1610 ReverseDepsToAdd.pop_back();
1614 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1615 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1616 for (Instruction *I : ReverseDepIt->second) {
1617 assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1619 PerInstNLInfo &INLD = NonLocalDeps[I];
1620 // The information is now dirty!
1621 INLD.second = true;
1623 for (auto &Entry : INLD.first) {
1624 if (Entry.getResult().getInst() != RemInst)
1625 continue;
1627 // Convert to a dirty entry for the subsequent instruction.
1628 Entry.setResult(NewDirtyVal);
1630 if (Instruction *NextI = NewDirtyVal.getInst())
1631 ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1635 ReverseNonLocalDeps.erase(ReverseDepIt);
1637 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1638 while (!ReverseDepsToAdd.empty()) {
1639 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1640 ReverseDepsToAdd.back().second);
1641 ReverseDepsToAdd.pop_back();
1645 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1646 // value in the NonLocalPointerDeps info.
1647 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1648 ReverseNonLocalPtrDeps.find(RemInst);
1649 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1650 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1651 ReversePtrDepsToAdd;
1653 for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1654 assert(P.getPointer() != RemInst &&
1655 "Already removed NonLocalPointerDeps info for RemInst");
1657 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1659 // The cache is not valid for any specific block anymore.
1660 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1662 // Update any entries for RemInst to use the instruction after it.
1663 for (auto &Entry : NLPDI) {
1664 if (Entry.getResult().getInst() != RemInst)
1665 continue;
1667 // Convert to a dirty entry for the subsequent instruction.
1668 Entry.setResult(NewDirtyVal);
1670 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1671 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1674 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1675 // subsequent value may invalidate the sortedness.
1676 llvm::sort(NLPDI);
1679 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1681 while (!ReversePtrDepsToAdd.empty()) {
1682 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1683 ReversePtrDepsToAdd.back().second);
1684 ReversePtrDepsToAdd.pop_back();
1688 // Invalidate phis that use the removed instruction.
1689 PV.invalidateValue(RemInst);
1691 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1692 LLVM_DEBUG(verifyRemoved(RemInst));
1695 /// Verify that the specified instruction does not occur in our internal data
1696 /// structures.
1698 /// This function verifies by asserting in debug builds.
1699 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1700 #ifndef NDEBUG
1701 for (const auto &DepKV : LocalDeps) {
1702 assert(DepKV.first != D && "Inst occurs in data structures");
1703 assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1706 for (const auto &DepKV : NonLocalPointerDeps) {
1707 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1708 for (const auto &Entry : DepKV.second.NonLocalDeps)
1709 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1712 for (const auto &DepKV : NonLocalDeps) {
1713 assert(DepKV.first != D && "Inst occurs in data structures");
1714 const PerInstNLInfo &INLD = DepKV.second;
1715 for (const auto &Entry : INLD.first)
1716 assert(Entry.getResult().getInst() != D &&
1717 "Inst occurs in data structures");
1720 for (const auto &DepKV : ReverseLocalDeps) {
1721 assert(DepKV.first != D && "Inst occurs in data structures");
1722 for (Instruction *Inst : DepKV.second)
1723 assert(Inst != D && "Inst occurs in data structures");
1726 for (const auto &DepKV : ReverseNonLocalDeps) {
1727 assert(DepKV.first != D && "Inst occurs in data structures");
1728 for (Instruction *Inst : DepKV.second)
1729 assert(Inst != D && "Inst occurs in data structures");
1732 for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1733 assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1735 for (ValueIsLoadPair P : DepKV.second)
1736 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1737 "Inst occurs in ReverseNonLocalPtrDeps map");
1739 #endif
1742 AnalysisKey MemoryDependenceAnalysis::Key;
1744 MemoryDependenceResults
1745 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1746 auto &AA = AM.getResult<AAManager>(F);
1747 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1748 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1749 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1750 auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1751 return MemoryDependenceResults(AA, AC, TLI, DT, PV);
1754 char MemoryDependenceWrapperPass::ID = 0;
1756 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1757 "Memory Dependence Analysis", false, true)
1758 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1759 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1760 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1761 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1762 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1763 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1764 "Memory Dependence Analysis", false, true)
1766 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1767 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1770 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1772 void MemoryDependenceWrapperPass::releaseMemory() {
1773 MemDep.reset();
1776 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1777 AU.setPreservesAll();
1778 AU.addRequired<AssumptionCacheTracker>();
1779 AU.addRequired<DominatorTreeWrapperPass>();
1780 AU.addRequired<PhiValuesWrapperPass>();
1781 AU.addRequiredTransitive<AAResultsWrapperPass>();
1782 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1785 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1786 FunctionAnalysisManager::Invalidator &Inv) {
1787 // Check whether our analysis is preserved.
1788 auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1789 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1790 // If not, give up now.
1791 return true;
1793 // Check whether the analyses we depend on became invalid for any reason.
1794 if (Inv.invalidate<AAManager>(F, PA) ||
1795 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1796 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1797 Inv.invalidate<PhiValuesAnalysis>(F, PA))
1798 return true;
1800 // Otherwise this analysis result remains valid.
1801 return false;
1804 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1805 return BlockScanLimit;
1808 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1809 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1810 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1811 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1812 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1813 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1814 MemDep.emplace(AA, AC, TLI, DT, PV);
1815 return false;