Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Analysis / MemorySSA.cpp
bloba2309d8179c8646b7f15cf647d890d850e67c7af
1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/FormattedStream.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <iterator>
53 #include <memory>
54 #include <utility>
56 using namespace llvm;
58 #define DEBUG_TYPE "memoryssa"
60 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
61 true)
62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
63 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
64 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
65 true)
67 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
68 "Memory SSA Printer", false, false)
69 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
70 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
71 "Memory SSA Printer", false, false)
73 static cl::opt<unsigned> MaxCheckLimit(
74 "memssa-check-limit", cl::Hidden, cl::init(100),
75 cl::desc("The maximum number of stores/phis MemorySSA"
76 "will consider trying to walk past (default = 100)"));
78 // Always verify MemorySSA if expensive checking is enabled.
79 #ifdef EXPENSIVE_CHECKS
80 bool llvm::VerifyMemorySSA = true;
81 #else
82 bool llvm::VerifyMemorySSA = false;
83 #endif
84 static cl::opt<bool, true>
85 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
86 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
88 namespace llvm {
90 /// An assembly annotator class to print Memory SSA information in
91 /// comments.
92 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
93 friend class MemorySSA;
95 const MemorySSA *MSSA;
97 public:
98 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
100 void emitBasicBlockStartAnnot(const BasicBlock *BB,
101 formatted_raw_ostream &OS) override {
102 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
103 OS << "; " << *MA << "\n";
106 void emitInstructionAnnot(const Instruction *I,
107 formatted_raw_ostream &OS) override {
108 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
109 OS << "; " << *MA << "\n";
113 } // end namespace llvm
115 namespace {
117 /// Our current alias analysis API differentiates heavily between calls and
118 /// non-calls, and functions called on one usually assert on the other.
119 /// This class encapsulates the distinction to simplify other code that wants
120 /// "Memory affecting instructions and related data" to use as a key.
121 /// For example, this class is used as a densemap key in the use optimizer.
122 class MemoryLocOrCall {
123 public:
124 bool IsCall = false;
126 MemoryLocOrCall(MemoryUseOrDef *MUD)
127 : MemoryLocOrCall(MUD->getMemoryInst()) {}
128 MemoryLocOrCall(const MemoryUseOrDef *MUD)
129 : MemoryLocOrCall(MUD->getMemoryInst()) {}
131 MemoryLocOrCall(Instruction *Inst) {
132 if (auto *C = dyn_cast<CallBase>(Inst)) {
133 IsCall = true;
134 Call = C;
135 } else {
136 IsCall = false;
137 // There is no such thing as a memorylocation for a fence inst, and it is
138 // unique in that regard.
139 if (!isa<FenceInst>(Inst))
140 Loc = MemoryLocation::get(Inst);
144 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
146 const CallBase *getCall() const {
147 assert(IsCall);
148 return Call;
151 MemoryLocation getLoc() const {
152 assert(!IsCall);
153 return Loc;
156 bool operator==(const MemoryLocOrCall &Other) const {
157 if (IsCall != Other.IsCall)
158 return false;
160 if (!IsCall)
161 return Loc == Other.Loc;
163 if (Call->getCalledValue() != Other.Call->getCalledValue())
164 return false;
166 return Call->arg_size() == Other.Call->arg_size() &&
167 std::equal(Call->arg_begin(), Call->arg_end(),
168 Other.Call->arg_begin());
171 private:
172 union {
173 const CallBase *Call;
174 MemoryLocation Loc;
178 } // end anonymous namespace
180 namespace llvm {
182 template <> struct DenseMapInfo<MemoryLocOrCall> {
183 static inline MemoryLocOrCall getEmptyKey() {
184 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
187 static inline MemoryLocOrCall getTombstoneKey() {
188 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
191 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
192 if (!MLOC.IsCall)
193 return hash_combine(
194 MLOC.IsCall,
195 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
197 hash_code hash =
198 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
199 MLOC.getCall()->getCalledValue()));
201 for (const Value *Arg : MLOC.getCall()->args())
202 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
203 return hash;
206 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
207 return LHS == RHS;
211 } // end namespace llvm
213 /// This does one-way checks to see if Use could theoretically be hoisted above
214 /// MayClobber. This will not check the other way around.
216 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
217 /// MayClobber, with no potentially clobbering operations in between them.
218 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
219 static bool areLoadsReorderable(const LoadInst *Use,
220 const LoadInst *MayClobber) {
221 bool VolatileUse = Use->isVolatile();
222 bool VolatileClobber = MayClobber->isVolatile();
223 // Volatile operations may never be reordered with other volatile operations.
224 if (VolatileUse && VolatileClobber)
225 return false;
226 // Otherwise, volatile doesn't matter here. From the language reference:
227 // 'optimizers may change the order of volatile operations relative to
228 // non-volatile operations.'"
230 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
231 // is weaker, it can be moved above other loads. We just need to be sure that
232 // MayClobber isn't an acquire load, because loads can't be moved above
233 // acquire loads.
235 // Note that this explicitly *does* allow the free reordering of monotonic (or
236 // weaker) loads of the same address.
237 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
238 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
239 AtomicOrdering::Acquire);
240 return !(SeqCstUse || MayClobberIsAcquire);
243 namespace {
245 struct ClobberAlias {
246 bool IsClobber;
247 Optional<AliasResult> AR;
250 } // end anonymous namespace
252 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
253 // ignored if IsClobber = false.
254 static ClobberAlias instructionClobbersQuery(const MemoryDef *MD,
255 const MemoryLocation &UseLoc,
256 const Instruction *UseInst,
257 AliasAnalysis &AA) {
258 Instruction *DefInst = MD->getMemoryInst();
259 assert(DefInst && "Defining instruction not actually an instruction");
260 const auto *UseCall = dyn_cast<CallBase>(UseInst);
261 Optional<AliasResult> AR;
263 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
264 // These intrinsics will show up as affecting memory, but they are just
265 // markers, mostly.
267 // FIXME: We probably don't actually want MemorySSA to model these at all
268 // (including creating MemoryAccesses for them): we just end up inventing
269 // clobbers where they don't really exist at all. Please see D43269 for
270 // context.
271 switch (II->getIntrinsicID()) {
272 case Intrinsic::lifetime_start:
273 if (UseCall)
274 return {false, NoAlias};
275 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
276 return {AR != NoAlias, AR};
277 case Intrinsic::lifetime_end:
278 case Intrinsic::invariant_start:
279 case Intrinsic::invariant_end:
280 case Intrinsic::assume:
281 return {false, NoAlias};
282 default:
283 break;
287 if (UseCall) {
288 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
289 AR = isMustSet(I) ? MustAlias : MayAlias;
290 return {isModOrRefSet(I), AR};
293 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
294 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
295 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
297 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
298 AR = isMustSet(I) ? MustAlias : MayAlias;
299 return {isModSet(I), AR};
302 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
303 const MemoryUseOrDef *MU,
304 const MemoryLocOrCall &UseMLOC,
305 AliasAnalysis &AA) {
306 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
307 // to exist while MemoryLocOrCall is pushed through places.
308 if (UseMLOC.IsCall)
309 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
310 AA);
311 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
312 AA);
315 // Return true when MD may alias MU, return false otherwise.
316 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
317 AliasAnalysis &AA) {
318 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
321 namespace {
323 struct UpwardsMemoryQuery {
324 // True if our original query started off as a call
325 bool IsCall = false;
326 // The pointer location we started the query with. This will be empty if
327 // IsCall is true.
328 MemoryLocation StartingLoc;
329 // This is the instruction we were querying about.
330 const Instruction *Inst = nullptr;
331 // The MemoryAccess we actually got called with, used to test local domination
332 const MemoryAccess *OriginalAccess = nullptr;
333 Optional<AliasResult> AR = MayAlias;
334 bool SkipSelfAccess = false;
336 UpwardsMemoryQuery() = default;
338 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
339 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
340 if (!IsCall)
341 StartingLoc = MemoryLocation::get(Inst);
345 } // end anonymous namespace
347 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
348 AliasAnalysis &AA) {
349 Instruction *Inst = MD->getMemoryInst();
350 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
351 switch (II->getIntrinsicID()) {
352 case Intrinsic::lifetime_end:
353 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
354 default:
355 return false;
358 return false;
361 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
362 const Instruction *I) {
363 // If the memory can't be changed, then loads of the memory can't be
364 // clobbered.
365 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
366 AA.pointsToConstantMemory(cast<LoadInst>(I)->
367 getPointerOperand()));
370 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
371 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
373 /// This is meant to be as simple and self-contained as possible. Because it
374 /// uses no cache, etc., it can be relatively expensive.
376 /// \param Start The MemoryAccess that we want to walk from.
377 /// \param ClobberAt A clobber for Start.
378 /// \param StartLoc The MemoryLocation for Start.
379 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
380 /// \param Query The UpwardsMemoryQuery we used for our search.
381 /// \param AA The AliasAnalysis we used for our search.
382 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
383 LLVM_ATTRIBUTE_UNUSED static void
384 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
385 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
386 const UpwardsMemoryQuery &Query, AliasAnalysis &AA,
387 bool AllowImpreciseClobber = false) {
388 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
390 if (MSSA.isLiveOnEntryDef(Start)) {
391 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
392 "liveOnEntry must clobber itself");
393 return;
396 bool FoundClobber = false;
397 DenseSet<ConstMemoryAccessPair> VisitedPhis;
398 SmallVector<ConstMemoryAccessPair, 8> Worklist;
399 Worklist.emplace_back(Start, StartLoc);
400 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
401 // is found, complain.
402 while (!Worklist.empty()) {
403 auto MAP = Worklist.pop_back_val();
404 // All we care about is that nothing from Start to ClobberAt clobbers Start.
405 // We learn nothing from revisiting nodes.
406 if (!VisitedPhis.insert(MAP).second)
407 continue;
409 for (const auto *MA : def_chain(MAP.first)) {
410 if (MA == ClobberAt) {
411 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
412 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
413 // since it won't let us short-circuit.
415 // Also, note that this can't be hoisted out of the `Worklist` loop,
416 // since MD may only act as a clobber for 1 of N MemoryLocations.
417 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
418 if (!FoundClobber) {
419 ClobberAlias CA =
420 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
421 if (CA.IsClobber) {
422 FoundClobber = true;
423 // Not used: CA.AR;
427 break;
430 // We should never hit liveOnEntry, unless it's the clobber.
431 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
433 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
434 // If Start is a Def, skip self.
435 if (MD == Start)
436 continue;
438 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
439 .IsClobber &&
440 "Found clobber before reaching ClobberAt!");
441 continue;
444 if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
445 (void)MU;
446 assert (MU == Start &&
447 "Can only find use in def chain if Start is a use");
448 continue;
451 assert(isa<MemoryPhi>(MA));
452 Worklist.append(
453 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
454 upward_defs_end());
458 // If the verify is done following an optimization, it's possible that
459 // ClobberAt was a conservative clobbering, that we can now infer is not a
460 // true clobbering access. Don't fail the verify if that's the case.
461 // We do have accesses that claim they're optimized, but could be optimized
462 // further. Updating all these can be expensive, so allow it for now (FIXME).
463 if (AllowImpreciseClobber)
464 return;
466 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
467 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
468 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
469 "ClobberAt never acted as a clobber");
472 namespace {
474 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
475 /// in one class.
476 class ClobberWalker {
477 /// Save a few bytes by using unsigned instead of size_t.
478 using ListIndex = unsigned;
480 /// Represents a span of contiguous MemoryDefs, potentially ending in a
481 /// MemoryPhi.
482 struct DefPath {
483 MemoryLocation Loc;
484 // Note that, because we always walk in reverse, Last will always dominate
485 // First. Also note that First and Last are inclusive.
486 MemoryAccess *First;
487 MemoryAccess *Last;
488 Optional<ListIndex> Previous;
490 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
491 Optional<ListIndex> Previous)
492 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
494 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
495 Optional<ListIndex> Previous)
496 : DefPath(Loc, Init, Init, Previous) {}
499 const MemorySSA &MSSA;
500 AliasAnalysis &AA;
501 DominatorTree &DT;
502 UpwardsMemoryQuery *Query;
504 // Phi optimization bookkeeping
505 SmallVector<DefPath, 32> Paths;
506 DenseSet<ConstMemoryAccessPair> VisitedPhis;
508 /// Find the nearest def or phi that `From` can legally be optimized to.
509 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
510 assert(From->getNumOperands() && "Phi with no operands?");
512 BasicBlock *BB = From->getBlock();
513 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
514 DomTreeNode *Node = DT.getNode(BB);
515 while ((Node = Node->getIDom())) {
516 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
517 if (Defs)
518 return &*Defs->rbegin();
520 return Result;
523 /// Result of calling walkToPhiOrClobber.
524 struct UpwardsWalkResult {
525 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
526 /// both. Include alias info when clobber found.
527 MemoryAccess *Result;
528 bool IsKnownClobber;
529 Optional<AliasResult> AR;
532 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
533 /// This will update Desc.Last as it walks. It will (optionally) also stop at
534 /// StopAt.
536 /// This does not test for whether StopAt is a clobber
537 UpwardsWalkResult
538 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
539 const MemoryAccess *SkipStopAt = nullptr) const {
540 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
542 for (MemoryAccess *Current : def_chain(Desc.Last)) {
543 Desc.Last = Current;
544 if (Current == StopAt || Current == SkipStopAt)
545 return {Current, false, MayAlias};
547 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
548 if (MSSA.isLiveOnEntryDef(MD))
549 return {MD, true, MustAlias};
550 ClobberAlias CA =
551 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
552 if (CA.IsClobber)
553 return {MD, true, CA.AR};
557 assert(isa<MemoryPhi>(Desc.Last) &&
558 "Ended at a non-clobber that's not a phi?");
559 return {Desc.Last, false, MayAlias};
562 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
563 ListIndex PriorNode) {
564 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
565 upward_defs_end());
566 for (const MemoryAccessPair &P : UpwardDefs) {
567 PausedSearches.push_back(Paths.size());
568 Paths.emplace_back(P.second, P.first, PriorNode);
572 /// Represents a search that terminated after finding a clobber. This clobber
573 /// may or may not be present in the path of defs from LastNode..SearchStart,
574 /// since it may have been retrieved from cache.
575 struct TerminatedPath {
576 MemoryAccess *Clobber;
577 ListIndex LastNode;
580 /// Get an access that keeps us from optimizing to the given phi.
582 /// PausedSearches is an array of indices into the Paths array. Its incoming
583 /// value is the indices of searches that stopped at the last phi optimization
584 /// target. It's left in an unspecified state.
586 /// If this returns None, NewPaused is a vector of searches that terminated
587 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
588 Optional<TerminatedPath>
589 getBlockingAccess(const MemoryAccess *StopWhere,
590 SmallVectorImpl<ListIndex> &PausedSearches,
591 SmallVectorImpl<ListIndex> &NewPaused,
592 SmallVectorImpl<TerminatedPath> &Terminated) {
593 assert(!PausedSearches.empty() && "No searches to continue?");
595 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
596 // PausedSearches as our stack.
597 while (!PausedSearches.empty()) {
598 ListIndex PathIndex = PausedSearches.pop_back_val();
599 DefPath &Node = Paths[PathIndex];
601 // If we've already visited this path with this MemoryLocation, we don't
602 // need to do so again.
604 // NOTE: That we just drop these paths on the ground makes caching
605 // behavior sporadic. e.g. given a diamond:
606 // A
607 // B C
608 // D
610 // ...If we walk D, B, A, C, we'll only cache the result of phi
611 // optimization for A, B, and D; C will be skipped because it dies here.
612 // This arguably isn't the worst thing ever, since:
613 // - We generally query things in a top-down order, so if we got below D
614 // without needing cache entries for {C, MemLoc}, then chances are
615 // that those cache entries would end up ultimately unused.
616 // - We still cache things for A, so C only needs to walk up a bit.
617 // If this behavior becomes problematic, we can fix without a ton of extra
618 // work.
619 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
620 continue;
622 const MemoryAccess *SkipStopWhere = nullptr;
623 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
624 assert(isa<MemoryDef>(Query->OriginalAccess));
625 SkipStopWhere = Query->OriginalAccess;
628 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere,
629 /*SkipStopAt=*/SkipStopWhere);
630 if (Res.IsKnownClobber) {
631 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
632 // If this wasn't a cache hit, we hit a clobber when walking. That's a
633 // failure.
634 TerminatedPath Term{Res.Result, PathIndex};
635 if (!MSSA.dominates(Res.Result, StopWhere))
636 return Term;
638 // Otherwise, it's a valid thing to potentially optimize to.
639 Terminated.push_back(Term);
640 continue;
643 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
644 // We've hit our target. Save this path off for if we want to continue
645 // walking. If we are in the mode of skipping the OriginalAccess, and
646 // we've reached back to the OriginalAccess, do not save path, we've
647 // just looped back to self.
648 if (Res.Result != SkipStopWhere)
649 NewPaused.push_back(PathIndex);
650 continue;
653 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
654 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
657 return None;
660 template <typename T, typename Walker>
661 struct generic_def_path_iterator
662 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
663 std::forward_iterator_tag, T *> {
664 generic_def_path_iterator() = default;
665 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
667 T &operator*() const { return curNode(); }
669 generic_def_path_iterator &operator++() {
670 N = curNode().Previous;
671 return *this;
674 bool operator==(const generic_def_path_iterator &O) const {
675 if (N.hasValue() != O.N.hasValue())
676 return false;
677 return !N.hasValue() || *N == *O.N;
680 private:
681 T &curNode() const { return W->Paths[*N]; }
683 Walker *W = nullptr;
684 Optional<ListIndex> N = None;
687 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
688 using const_def_path_iterator =
689 generic_def_path_iterator<const DefPath, const ClobberWalker>;
691 iterator_range<def_path_iterator> def_path(ListIndex From) {
692 return make_range(def_path_iterator(this, From), def_path_iterator());
695 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
696 return make_range(const_def_path_iterator(this, From),
697 const_def_path_iterator());
700 struct OptznResult {
701 /// The path that contains our result.
702 TerminatedPath PrimaryClobber;
703 /// The paths that we can legally cache back from, but that aren't
704 /// necessarily the result of the Phi optimization.
705 SmallVector<TerminatedPath, 4> OtherClobbers;
708 ListIndex defPathIndex(const DefPath &N) const {
709 // The assert looks nicer if we don't need to do &N
710 const DefPath *NP = &N;
711 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
712 "Out of bounds DefPath!");
713 return NP - &Paths.front();
716 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
717 /// that act as legal clobbers. Note that this won't return *all* clobbers.
719 /// Phi optimization algorithm tl;dr:
720 /// - Find the earliest def/phi, A, we can optimize to
721 /// - Find if all paths from the starting memory access ultimately reach A
722 /// - If not, optimization isn't possible.
723 /// - Otherwise, walk from A to another clobber or phi, A'.
724 /// - If A' is a def, we're done.
725 /// - If A' is a phi, try to optimize it.
727 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
728 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
729 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
730 const MemoryLocation &Loc) {
731 assert(Paths.empty() && VisitedPhis.empty() &&
732 "Reset the optimization state.");
734 Paths.emplace_back(Loc, Start, Phi, None);
735 // Stores how many "valid" optimization nodes we had prior to calling
736 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
737 auto PriorPathsSize = Paths.size();
739 SmallVector<ListIndex, 16> PausedSearches;
740 SmallVector<ListIndex, 8> NewPaused;
741 SmallVector<TerminatedPath, 4> TerminatedPaths;
743 addSearches(Phi, PausedSearches, 0);
745 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
746 // Paths.
747 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
748 assert(!Paths.empty() && "Need a path to move");
749 auto Dom = Paths.begin();
750 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
751 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
752 Dom = I;
753 auto Last = Paths.end() - 1;
754 if (Last != Dom)
755 std::iter_swap(Last, Dom);
758 MemoryPhi *Current = Phi;
759 while (true) {
760 assert(!MSSA.isLiveOnEntryDef(Current) &&
761 "liveOnEntry wasn't treated as a clobber?");
763 const auto *Target = getWalkTarget(Current);
764 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
765 // optimization for the prior phi.
766 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
767 return MSSA.dominates(P.Clobber, Target);
768 }));
770 // FIXME: This is broken, because the Blocker may be reported to be
771 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
772 // For the moment, this is fine, since we do nothing with blocker info.
773 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
774 Target, PausedSearches, NewPaused, TerminatedPaths)) {
776 // Find the node we started at. We can't search based on N->Last, since
777 // we may have gone around a loop with a different MemoryLocation.
778 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
779 return defPathIndex(N) < PriorPathsSize;
781 assert(Iter != def_path_iterator());
783 DefPath &CurNode = *Iter;
784 assert(CurNode.Last == Current);
786 // Two things:
787 // A. We can't reliably cache all of NewPaused back. Consider a case
788 // where we have two paths in NewPaused; one of which can't optimize
789 // above this phi, whereas the other can. If we cache the second path
790 // back, we'll end up with suboptimal cache entries. We can handle
791 // cases like this a bit better when we either try to find all
792 // clobbers that block phi optimization, or when our cache starts
793 // supporting unfinished searches.
794 // B. We can't reliably cache TerminatedPaths back here without doing
795 // extra checks; consider a case like:
796 // T
797 // / \
798 // D C
799 // \ /
800 // S
801 // Where T is our target, C is a node with a clobber on it, D is a
802 // diamond (with a clobber *only* on the left or right node, N), and
803 // S is our start. Say we walk to D, through the node opposite N
804 // (read: ignoring the clobber), and see a cache entry in the top
805 // node of D. That cache entry gets put into TerminatedPaths. We then
806 // walk up to C (N is later in our worklist), find the clobber, and
807 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
808 // the bottom part of D to the cached clobber, ignoring the clobber
809 // in N. Again, this problem goes away if we start tracking all
810 // blockers for a given phi optimization.
811 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
812 return {Result, {}};
815 // If there's nothing left to search, then all paths led to valid clobbers
816 // that we got from our cache; pick the nearest to the start, and allow
817 // the rest to be cached back.
818 if (NewPaused.empty()) {
819 MoveDominatedPathToEnd(TerminatedPaths);
820 TerminatedPath Result = TerminatedPaths.pop_back_val();
821 return {Result, std::move(TerminatedPaths)};
824 MemoryAccess *DefChainEnd = nullptr;
825 SmallVector<TerminatedPath, 4> Clobbers;
826 for (ListIndex Paused : NewPaused) {
827 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
828 if (WR.IsKnownClobber)
829 Clobbers.push_back({WR.Result, Paused});
830 else
831 // Micro-opt: If we hit the end of the chain, save it.
832 DefChainEnd = WR.Result;
835 if (!TerminatedPaths.empty()) {
836 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
837 // do it now.
838 if (!DefChainEnd)
839 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
840 DefChainEnd = MA;
842 // If any of the terminated paths don't dominate the phi we'll try to
843 // optimize, we need to figure out what they are and quit.
844 const BasicBlock *ChainBB = DefChainEnd->getBlock();
845 for (const TerminatedPath &TP : TerminatedPaths) {
846 // Because we know that DefChainEnd is as "high" as we can go, we
847 // don't need local dominance checks; BB dominance is sufficient.
848 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
849 Clobbers.push_back(TP);
853 // If we have clobbers in the def chain, find the one closest to Current
854 // and quit.
855 if (!Clobbers.empty()) {
856 MoveDominatedPathToEnd(Clobbers);
857 TerminatedPath Result = Clobbers.pop_back_val();
858 return {Result, std::move(Clobbers)};
861 assert(all_of(NewPaused,
862 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
864 // Because liveOnEntry is a clobber, this must be a phi.
865 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
867 PriorPathsSize = Paths.size();
868 PausedSearches.clear();
869 for (ListIndex I : NewPaused)
870 addSearches(DefChainPhi, PausedSearches, I);
871 NewPaused.clear();
873 Current = DefChainPhi;
877 void verifyOptResult(const OptznResult &R) const {
878 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
879 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
880 }));
883 void resetPhiOptznState() {
884 Paths.clear();
885 VisitedPhis.clear();
888 public:
889 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
890 : MSSA(MSSA), AA(AA), DT(DT) {}
892 /// Finds the nearest clobber for the given query, optimizing phis if
893 /// possible.
894 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
895 Query = &Q;
897 MemoryAccess *Current = Start;
898 // This walker pretends uses don't exist. If we're handed one, silently grab
899 // its def. (This has the nice side-effect of ensuring we never cache uses)
900 if (auto *MU = dyn_cast<MemoryUse>(Start))
901 Current = MU->getDefiningAccess();
903 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
904 // Fast path for the overly-common case (no crazy phi optimization
905 // necessary)
906 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
907 MemoryAccess *Result;
908 if (WalkResult.IsKnownClobber) {
909 Result = WalkResult.Result;
910 Q.AR = WalkResult.AR;
911 } else {
912 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
913 Current, Q.StartingLoc);
914 verifyOptResult(OptRes);
915 resetPhiOptznState();
916 Result = OptRes.PrimaryClobber.Clobber;
919 #ifdef EXPENSIVE_CHECKS
920 if (!Q.SkipSelfAccess)
921 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
922 #endif
923 return Result;
926 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
929 struct RenamePassData {
930 DomTreeNode *DTN;
931 DomTreeNode::const_iterator ChildIt;
932 MemoryAccess *IncomingVal;
934 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
935 MemoryAccess *M)
936 : DTN(D), ChildIt(It), IncomingVal(M) {}
938 void swap(RenamePassData &RHS) {
939 std::swap(DTN, RHS.DTN);
940 std::swap(ChildIt, RHS.ChildIt);
941 std::swap(IncomingVal, RHS.IncomingVal);
945 } // end anonymous namespace
947 namespace llvm {
949 class MemorySSA::ClobberWalkerBase {
950 ClobberWalker Walker;
951 MemorySSA *MSSA;
953 public:
954 ClobberWalkerBase(MemorySSA *M, AliasAnalysis *A, DominatorTree *D)
955 : Walker(*M, *A, *D), MSSA(M) {}
957 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
958 const MemoryLocation &);
959 // Second argument (bool), defines whether the clobber search should skip the
960 // original queried access. If true, there will be a follow-up query searching
961 // for a clobber access past "self". Note that the Optimized access is not
962 // updated if a new clobber is found by this SkipSelf search. If this
963 // additional query becomes heavily used we may decide to cache the result.
964 // Walker instantiations will decide how to set the SkipSelf bool.
965 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, bool);
966 void verify(const MemorySSA *MSSA) { Walker.verify(MSSA); }
969 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
970 /// longer does caching on its own, but the name has been retained for the
971 /// moment.
972 class MemorySSA::CachingWalker final : public MemorySSAWalker {
973 ClobberWalkerBase *Walker;
975 public:
976 CachingWalker(MemorySSA *M, ClobberWalkerBase *W)
977 : MemorySSAWalker(M), Walker(W) {}
978 ~CachingWalker() override = default;
980 using MemorySSAWalker::getClobberingMemoryAccess;
982 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override;
983 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
984 const MemoryLocation &Loc) override;
986 void invalidateInfo(MemoryAccess *MA) override {
987 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
988 MUD->resetOptimized();
991 void verify(const MemorySSA *MSSA) override {
992 MemorySSAWalker::verify(MSSA);
993 Walker->verify(MSSA);
997 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
998 ClobberWalkerBase *Walker;
1000 public:
1001 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W)
1002 : MemorySSAWalker(M), Walker(W) {}
1003 ~SkipSelfWalker() override = default;
1005 using MemorySSAWalker::getClobberingMemoryAccess;
1007 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override;
1008 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1009 const MemoryLocation &Loc) override;
1011 void invalidateInfo(MemoryAccess *MA) override {
1012 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1013 MUD->resetOptimized();
1016 void verify(const MemorySSA *MSSA) override {
1017 MemorySSAWalker::verify(MSSA);
1018 Walker->verify(MSSA);
1022 } // end namespace llvm
1024 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1025 bool RenameAllUses) {
1026 // Pass through values to our successors
1027 for (const BasicBlock *S : successors(BB)) {
1028 auto It = PerBlockAccesses.find(S);
1029 // Rename the phi nodes in our successor block
1030 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1031 continue;
1032 AccessList *Accesses = It->second.get();
1033 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1034 if (RenameAllUses) {
1035 int PhiIndex = Phi->getBasicBlockIndex(BB);
1036 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
1037 Phi->setIncomingValue(PhiIndex, IncomingVal);
1038 } else
1039 Phi->addIncoming(IncomingVal, BB);
1043 /// Rename a single basic block into MemorySSA form.
1044 /// Uses the standard SSA renaming algorithm.
1045 /// \returns The new incoming value.
1046 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1047 bool RenameAllUses) {
1048 auto It = PerBlockAccesses.find(BB);
1049 // Skip most processing if the list is empty.
1050 if (It != PerBlockAccesses.end()) {
1051 AccessList *Accesses = It->second.get();
1052 for (MemoryAccess &L : *Accesses) {
1053 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1054 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1055 MUD->setDefiningAccess(IncomingVal);
1056 if (isa<MemoryDef>(&L))
1057 IncomingVal = &L;
1058 } else {
1059 IncomingVal = &L;
1063 return IncomingVal;
1066 /// This is the standard SSA renaming algorithm.
1068 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1069 /// in phi nodes in our successors.
1070 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1071 SmallPtrSetImpl<BasicBlock *> &Visited,
1072 bool SkipVisited, bool RenameAllUses) {
1073 SmallVector<RenamePassData, 32> WorkStack;
1074 // Skip everything if we already renamed this block and we are skipping.
1075 // Note: You can't sink this into the if, because we need it to occur
1076 // regardless of whether we skip blocks or not.
1077 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1078 if (SkipVisited && AlreadyVisited)
1079 return;
1081 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1082 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1083 WorkStack.push_back({Root, Root->begin(), IncomingVal});
1085 while (!WorkStack.empty()) {
1086 DomTreeNode *Node = WorkStack.back().DTN;
1087 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1088 IncomingVal = WorkStack.back().IncomingVal;
1090 if (ChildIt == Node->end()) {
1091 WorkStack.pop_back();
1092 } else {
1093 DomTreeNode *Child = *ChildIt;
1094 ++WorkStack.back().ChildIt;
1095 BasicBlock *BB = Child->getBlock();
1096 // Note: You can't sink this into the if, because we need it to occur
1097 // regardless of whether we skip blocks or not.
1098 AlreadyVisited = !Visited.insert(BB).second;
1099 if (SkipVisited && AlreadyVisited) {
1100 // We already visited this during our renaming, which can happen when
1101 // being asked to rename multiple blocks. Figure out the incoming val,
1102 // which is the last def.
1103 // Incoming value can only change if there is a block def, and in that
1104 // case, it's the last block def in the list.
1105 if (auto *BlockDefs = getWritableBlockDefs(BB))
1106 IncomingVal = &*BlockDefs->rbegin();
1107 } else
1108 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1109 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1110 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1115 /// This handles unreachable block accesses by deleting phi nodes in
1116 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1117 /// being uses of the live on entry definition.
1118 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1119 assert(!DT->isReachableFromEntry(BB) &&
1120 "Reachable block found while handling unreachable blocks");
1122 // Make sure phi nodes in our reachable successors end up with a
1123 // LiveOnEntryDef for our incoming edge, even though our block is forward
1124 // unreachable. We could just disconnect these blocks from the CFG fully,
1125 // but we do not right now.
1126 for (const BasicBlock *S : successors(BB)) {
1127 if (!DT->isReachableFromEntry(S))
1128 continue;
1129 auto It = PerBlockAccesses.find(S);
1130 // Rename the phi nodes in our successor block
1131 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1132 continue;
1133 AccessList *Accesses = It->second.get();
1134 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1135 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1138 auto It = PerBlockAccesses.find(BB);
1139 if (It == PerBlockAccesses.end())
1140 return;
1142 auto &Accesses = It->second;
1143 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1144 auto Next = std::next(AI);
1145 // If we have a phi, just remove it. We are going to replace all
1146 // users with live on entry.
1147 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1148 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1149 else
1150 Accesses->erase(AI);
1151 AI = Next;
1155 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1156 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1157 SkipWalker(nullptr), NextID(0) {
1158 buildMemorySSA();
1161 MemorySSA::~MemorySSA() {
1162 // Drop all our references
1163 for (const auto &Pair : PerBlockAccesses)
1164 for (MemoryAccess &MA : *Pair.second)
1165 MA.dropAllReferences();
1168 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1169 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1171 if (Res.second)
1172 Res.first->second = llvm::make_unique<AccessList>();
1173 return Res.first->second.get();
1176 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1177 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1179 if (Res.second)
1180 Res.first->second = llvm::make_unique<DefsList>();
1181 return Res.first->second.get();
1184 namespace llvm {
1186 /// This class is a batch walker of all MemoryUse's in the program, and points
1187 /// their defining access at the thing that actually clobbers them. Because it
1188 /// is a batch walker that touches everything, it does not operate like the
1189 /// other walkers. This walker is basically performing a top-down SSA renaming
1190 /// pass, where the version stack is used as the cache. This enables it to be
1191 /// significantly more time and memory efficient than using the regular walker,
1192 /// which is walking bottom-up.
1193 class MemorySSA::OptimizeUses {
1194 public:
1195 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1196 DominatorTree *DT)
1197 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1198 Walker = MSSA->getWalker();
1201 void optimizeUses();
1203 private:
1204 /// This represents where a given memorylocation is in the stack.
1205 struct MemlocStackInfo {
1206 // This essentially is keeping track of versions of the stack. Whenever
1207 // the stack changes due to pushes or pops, these versions increase.
1208 unsigned long StackEpoch;
1209 unsigned long PopEpoch;
1210 // This is the lower bound of places on the stack to check. It is equal to
1211 // the place the last stack walk ended.
1212 // Note: Correctness depends on this being initialized to 0, which densemap
1213 // does
1214 unsigned long LowerBound;
1215 const BasicBlock *LowerBoundBlock;
1216 // This is where the last walk for this memory location ended.
1217 unsigned long LastKill;
1218 bool LastKillValid;
1219 Optional<AliasResult> AR;
1222 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1223 SmallVectorImpl<MemoryAccess *> &,
1224 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1226 MemorySSA *MSSA;
1227 MemorySSAWalker *Walker;
1228 AliasAnalysis *AA;
1229 DominatorTree *DT;
1232 } // end namespace llvm
1234 /// Optimize the uses in a given block This is basically the SSA renaming
1235 /// algorithm, with one caveat: We are able to use a single stack for all
1236 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1237 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1238 /// going to be some position in that stack of possible ones.
1240 /// We track the stack positions that each MemoryLocation needs
1241 /// to check, and last ended at. This is because we only want to check the
1242 /// things that changed since last time. The same MemoryLocation should
1243 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1244 /// things like this, and if they start, we can modify MemoryLocOrCall to
1245 /// include relevant data)
1246 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1247 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1248 SmallVectorImpl<MemoryAccess *> &VersionStack,
1249 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1251 /// If no accesses, nothing to do.
1252 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1253 if (Accesses == nullptr)
1254 return;
1256 // Pop everything that doesn't dominate the current block off the stack,
1257 // increment the PopEpoch to account for this.
1258 while (true) {
1259 assert(
1260 !VersionStack.empty() &&
1261 "Version stack should have liveOnEntry sentinel dominating everything");
1262 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1263 if (DT->dominates(BackBlock, BB))
1264 break;
1265 while (VersionStack.back()->getBlock() == BackBlock)
1266 VersionStack.pop_back();
1267 ++PopEpoch;
1270 for (MemoryAccess &MA : *Accesses) {
1271 auto *MU = dyn_cast<MemoryUse>(&MA);
1272 if (!MU) {
1273 VersionStack.push_back(&MA);
1274 ++StackEpoch;
1275 continue;
1278 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1279 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1280 continue;
1283 MemoryLocOrCall UseMLOC(MU);
1284 auto &LocInfo = LocStackInfo[UseMLOC];
1285 // If the pop epoch changed, it means we've removed stuff from top of
1286 // stack due to changing blocks. We may have to reset the lower bound or
1287 // last kill info.
1288 if (LocInfo.PopEpoch != PopEpoch) {
1289 LocInfo.PopEpoch = PopEpoch;
1290 LocInfo.StackEpoch = StackEpoch;
1291 // If the lower bound was in something that no longer dominates us, we
1292 // have to reset it.
1293 // We can't simply track stack size, because the stack may have had
1294 // pushes/pops in the meantime.
1295 // XXX: This is non-optimal, but only is slower cases with heavily
1296 // branching dominator trees. To get the optimal number of queries would
1297 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1298 // the top of that stack dominates us. This does not seem worth it ATM.
1299 // A much cheaper optimization would be to always explore the deepest
1300 // branch of the dominator tree first. This will guarantee this resets on
1301 // the smallest set of blocks.
1302 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1303 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1304 // Reset the lower bound of things to check.
1305 // TODO: Some day we should be able to reset to last kill, rather than
1306 // 0.
1307 LocInfo.LowerBound = 0;
1308 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1309 LocInfo.LastKillValid = false;
1311 } else if (LocInfo.StackEpoch != StackEpoch) {
1312 // If all that has changed is the StackEpoch, we only have to check the
1313 // new things on the stack, because we've checked everything before. In
1314 // this case, the lower bound of things to check remains the same.
1315 LocInfo.PopEpoch = PopEpoch;
1316 LocInfo.StackEpoch = StackEpoch;
1318 if (!LocInfo.LastKillValid) {
1319 LocInfo.LastKill = VersionStack.size() - 1;
1320 LocInfo.LastKillValid = true;
1321 LocInfo.AR = MayAlias;
1324 // At this point, we should have corrected last kill and LowerBound to be
1325 // in bounds.
1326 assert(LocInfo.LowerBound < VersionStack.size() &&
1327 "Lower bound out of range");
1328 assert(LocInfo.LastKill < VersionStack.size() &&
1329 "Last kill info out of range");
1330 // In any case, the new upper bound is the top of the stack.
1331 unsigned long UpperBound = VersionStack.size() - 1;
1333 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1334 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1335 << *(MU->getMemoryInst()) << ")"
1336 << " because there are "
1337 << UpperBound - LocInfo.LowerBound
1338 << " stores to disambiguate\n");
1339 // Because we did not walk, LastKill is no longer valid, as this may
1340 // have been a kill.
1341 LocInfo.LastKillValid = false;
1342 continue;
1344 bool FoundClobberResult = false;
1345 while (UpperBound > LocInfo.LowerBound) {
1346 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1347 // For phis, use the walker, see where we ended up, go there
1348 Instruction *UseInst = MU->getMemoryInst();
1349 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1350 // We are guaranteed to find it or something is wrong
1351 while (VersionStack[UpperBound] != Result) {
1352 assert(UpperBound != 0);
1353 --UpperBound;
1355 FoundClobberResult = true;
1356 break;
1359 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1360 // If the lifetime of the pointer ends at this instruction, it's live on
1361 // entry.
1362 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1363 // Reset UpperBound to liveOnEntryDef's place in the stack
1364 UpperBound = 0;
1365 FoundClobberResult = true;
1366 LocInfo.AR = MustAlias;
1367 break;
1369 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1370 if (CA.IsClobber) {
1371 FoundClobberResult = true;
1372 LocInfo.AR = CA.AR;
1373 break;
1375 --UpperBound;
1378 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1380 // At the end of this loop, UpperBound is either a clobber, or lower bound
1381 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1382 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1383 // We were last killed now by where we got to
1384 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1385 LocInfo.AR = None;
1386 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1387 LocInfo.LastKill = UpperBound;
1388 } else {
1389 // Otherwise, we checked all the new ones, and now we know we can get to
1390 // LastKill.
1391 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1393 LocInfo.LowerBound = VersionStack.size() - 1;
1394 LocInfo.LowerBoundBlock = BB;
1398 /// Optimize uses to point to their actual clobbering definitions.
1399 void MemorySSA::OptimizeUses::optimizeUses() {
1400 SmallVector<MemoryAccess *, 16> VersionStack;
1401 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1402 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1404 unsigned long StackEpoch = 1;
1405 unsigned long PopEpoch = 1;
1406 // We perform a non-recursive top-down dominator tree walk.
1407 for (const auto *DomNode : depth_first(DT->getRootNode()))
1408 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1409 LocStackInfo);
1412 void MemorySSA::placePHINodes(
1413 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1414 // Determine where our MemoryPhi's should go
1415 ForwardIDFCalculator IDFs(*DT);
1416 IDFs.setDefiningBlocks(DefiningBlocks);
1417 SmallVector<BasicBlock *, 32> IDFBlocks;
1418 IDFs.calculate(IDFBlocks);
1420 // Now place MemoryPhi nodes.
1421 for (auto &BB : IDFBlocks)
1422 createMemoryPhi(BB);
1425 void MemorySSA::buildMemorySSA() {
1426 // We create an access to represent "live on entry", for things like
1427 // arguments or users of globals, where the memory they use is defined before
1428 // the beginning of the function. We do not actually insert it into the IR.
1429 // We do not define a live on exit for the immediate uses, and thus our
1430 // semantics do *not* imply that something with no immediate uses can simply
1431 // be removed.
1432 BasicBlock &StartingPoint = F.getEntryBlock();
1433 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1434 &StartingPoint, NextID++));
1436 // We maintain lists of memory accesses per-block, trading memory for time. We
1437 // could just look up the memory access for every possible instruction in the
1438 // stream.
1439 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1440 // Go through each block, figure out where defs occur, and chain together all
1441 // the accesses.
1442 for (BasicBlock &B : F) {
1443 bool InsertIntoDef = false;
1444 AccessList *Accesses = nullptr;
1445 DefsList *Defs = nullptr;
1446 for (Instruction &I : B) {
1447 MemoryUseOrDef *MUD = createNewAccess(&I);
1448 if (!MUD)
1449 continue;
1451 if (!Accesses)
1452 Accesses = getOrCreateAccessList(&B);
1453 Accesses->push_back(MUD);
1454 if (isa<MemoryDef>(MUD)) {
1455 InsertIntoDef = true;
1456 if (!Defs)
1457 Defs = getOrCreateDefsList(&B);
1458 Defs->push_back(*MUD);
1461 if (InsertIntoDef)
1462 DefiningBlocks.insert(&B);
1464 placePHINodes(DefiningBlocks);
1466 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1467 // filled in with all blocks.
1468 SmallPtrSet<BasicBlock *, 16> Visited;
1469 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1471 CachingWalker *Walker = getWalkerImpl();
1473 OptimizeUses(this, Walker, AA, DT).optimizeUses();
1475 // Mark the uses in unreachable blocks as live on entry, so that they go
1476 // somewhere.
1477 for (auto &BB : F)
1478 if (!Visited.count(&BB))
1479 markUnreachableAsLiveOnEntry(&BB);
1482 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1484 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1485 if (Walker)
1486 return Walker.get();
1488 if (!WalkerBase)
1489 WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT);
1491 Walker = llvm::make_unique<CachingWalker>(this, WalkerBase.get());
1492 return Walker.get();
1495 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1496 if (SkipWalker)
1497 return SkipWalker.get();
1499 if (!WalkerBase)
1500 WalkerBase = llvm::make_unique<ClobberWalkerBase>(this, AA, DT);
1502 SkipWalker = llvm::make_unique<SkipSelfWalker>(this, WalkerBase.get());
1503 return SkipWalker.get();
1507 // This is a helper function used by the creation routines. It places NewAccess
1508 // into the access and defs lists for a given basic block, at the given
1509 // insertion point.
1510 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1511 const BasicBlock *BB,
1512 InsertionPlace Point) {
1513 auto *Accesses = getOrCreateAccessList(BB);
1514 if (Point == Beginning) {
1515 // If it's a phi node, it goes first, otherwise, it goes after any phi
1516 // nodes.
1517 if (isa<MemoryPhi>(NewAccess)) {
1518 Accesses->push_front(NewAccess);
1519 auto *Defs = getOrCreateDefsList(BB);
1520 Defs->push_front(*NewAccess);
1521 } else {
1522 auto AI = find_if_not(
1523 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1524 Accesses->insert(AI, NewAccess);
1525 if (!isa<MemoryUse>(NewAccess)) {
1526 auto *Defs = getOrCreateDefsList(BB);
1527 auto DI = find_if_not(
1528 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1529 Defs->insert(DI, *NewAccess);
1532 } else {
1533 Accesses->push_back(NewAccess);
1534 if (!isa<MemoryUse>(NewAccess)) {
1535 auto *Defs = getOrCreateDefsList(BB);
1536 Defs->push_back(*NewAccess);
1539 BlockNumberingValid.erase(BB);
1542 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1543 AccessList::iterator InsertPt) {
1544 auto *Accesses = getWritableBlockAccesses(BB);
1545 bool WasEnd = InsertPt == Accesses->end();
1546 Accesses->insert(AccessList::iterator(InsertPt), What);
1547 if (!isa<MemoryUse>(What)) {
1548 auto *Defs = getOrCreateDefsList(BB);
1549 // If we got asked to insert at the end, we have an easy job, just shove it
1550 // at the end. If we got asked to insert before an existing def, we also get
1551 // an iterator. If we got asked to insert before a use, we have to hunt for
1552 // the next def.
1553 if (WasEnd) {
1554 Defs->push_back(*What);
1555 } else if (isa<MemoryDef>(InsertPt)) {
1556 Defs->insert(InsertPt->getDefsIterator(), *What);
1557 } else {
1558 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1559 ++InsertPt;
1560 // Either we found a def, or we are inserting at the end
1561 if (InsertPt == Accesses->end())
1562 Defs->push_back(*What);
1563 else
1564 Defs->insert(InsertPt->getDefsIterator(), *What);
1567 BlockNumberingValid.erase(BB);
1570 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1571 // Keep it in the lookup tables, remove from the lists
1572 removeFromLists(What, false);
1574 // Note that moving should implicitly invalidate the optimized state of a
1575 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1576 // MemoryDef.
1577 if (auto *MD = dyn_cast<MemoryDef>(What))
1578 MD->resetOptimized();
1579 What->setBlock(BB);
1582 // Move What before Where in the IR. The end result is that What will belong to
1583 // the right lists and have the right Block set, but will not otherwise be
1584 // correct. It will not have the right defining access, and if it is a def,
1585 // things below it will not properly be updated.
1586 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1587 AccessList::iterator Where) {
1588 prepareForMoveTo(What, BB);
1589 insertIntoListsBefore(What, BB, Where);
1592 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1593 InsertionPlace Point) {
1594 if (isa<MemoryPhi>(What)) {
1595 assert(Point == Beginning &&
1596 "Can only move a Phi at the beginning of the block");
1597 // Update lookup table entry
1598 ValueToMemoryAccess.erase(What->getBlock());
1599 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1600 (void)Inserted;
1601 assert(Inserted && "Cannot move a Phi to a block that already has one");
1604 prepareForMoveTo(What, BB);
1605 insertIntoListsForBlock(What, BB, Point);
1608 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1609 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1610 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1611 // Phi's always are placed at the front of the block.
1612 insertIntoListsForBlock(Phi, BB, Beginning);
1613 ValueToMemoryAccess[BB] = Phi;
1614 return Phi;
1617 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1618 MemoryAccess *Definition,
1619 const MemoryUseOrDef *Template) {
1620 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1621 MemoryUseOrDef *NewAccess = createNewAccess(I, Template);
1622 assert(
1623 NewAccess != nullptr &&
1624 "Tried to create a memory access for a non-memory touching instruction");
1625 NewAccess->setDefiningAccess(Definition);
1626 return NewAccess;
1629 // Return true if the instruction has ordering constraints.
1630 // Note specifically that this only considers stores and loads
1631 // because others are still considered ModRef by getModRefInfo.
1632 static inline bool isOrdered(const Instruction *I) {
1633 if (auto *SI = dyn_cast<StoreInst>(I)) {
1634 if (!SI->isUnordered())
1635 return true;
1636 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1637 if (!LI->isUnordered())
1638 return true;
1640 return false;
1643 /// Helper function to create new memory accesses
1644 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1645 const MemoryUseOrDef *Template) {
1646 // The assume intrinsic has a control dependency which we model by claiming
1647 // that it writes arbitrarily. Ignore that fake memory dependency here.
1648 // FIXME: Replace this special casing with a more accurate modelling of
1649 // assume's control dependency.
1650 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1651 if (II->getIntrinsicID() == Intrinsic::assume)
1652 return nullptr;
1654 bool Def, Use;
1655 if (Template) {
1656 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1657 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1658 #if !defined(NDEBUG)
1659 ModRefInfo ModRef = AA->getModRefInfo(I, None);
1660 bool DefCheck, UseCheck;
1661 DefCheck = isModSet(ModRef) || isOrdered(I);
1662 UseCheck = isRefSet(ModRef);
1663 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1664 #endif
1665 } else {
1666 // Find out what affect this instruction has on memory.
1667 ModRefInfo ModRef = AA->getModRefInfo(I, None);
1668 // The isOrdered check is used to ensure that volatiles end up as defs
1669 // (atomics end up as ModRef right now anyway). Until we separate the
1670 // ordering chain from the memory chain, this enables people to see at least
1671 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1672 // will still give an answer that bypasses other volatile loads. TODO:
1673 // Separate memory aliasing and ordering into two different chains so that
1674 // we can precisely represent both "what memory will this read/write/is
1675 // clobbered by" and "what instructions can I move this past".
1676 Def = isModSet(ModRef) || isOrdered(I);
1677 Use = isRefSet(ModRef);
1680 // It's possible for an instruction to not modify memory at all. During
1681 // construction, we ignore them.
1682 if (!Def && !Use)
1683 return nullptr;
1685 MemoryUseOrDef *MUD;
1686 if (Def)
1687 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1688 else
1689 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1690 ValueToMemoryAccess[I] = MUD;
1691 return MUD;
1694 /// Returns true if \p Replacer dominates \p Replacee .
1695 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1696 const MemoryAccess *Replacee) const {
1697 if (isa<MemoryUseOrDef>(Replacee))
1698 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1699 const auto *MP = cast<MemoryPhi>(Replacee);
1700 // For a phi node, the use occurs in the predecessor block of the phi node.
1701 // Since we may occur multiple times in the phi node, we have to check each
1702 // operand to ensure Replacer dominates each operand where Replacee occurs.
1703 for (const Use &Arg : MP->operands()) {
1704 if (Arg.get() != Replacee &&
1705 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1706 return false;
1708 return true;
1711 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1712 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1713 assert(MA->use_empty() &&
1714 "Trying to remove memory access that still has uses");
1715 BlockNumbering.erase(MA);
1716 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1717 MUD->setDefiningAccess(nullptr);
1718 // Invalidate our walker's cache if necessary
1719 if (!isa<MemoryUse>(MA))
1720 Walker->invalidateInfo(MA);
1722 Value *MemoryInst;
1723 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1724 MemoryInst = MUD->getMemoryInst();
1725 else
1726 MemoryInst = MA->getBlock();
1728 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1729 if (VMA->second == MA)
1730 ValueToMemoryAccess.erase(VMA);
1733 /// Properly remove \p MA from all of MemorySSA's lists.
1735 /// Because of the way the intrusive list and use lists work, it is important to
1736 /// do removal in the right order.
1737 /// ShouldDelete defaults to true, and will cause the memory access to also be
1738 /// deleted, not just removed.
1739 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1740 BasicBlock *BB = MA->getBlock();
1741 // The access list owns the reference, so we erase it from the non-owning list
1742 // first.
1743 if (!isa<MemoryUse>(MA)) {
1744 auto DefsIt = PerBlockDefs.find(BB);
1745 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1746 Defs->remove(*MA);
1747 if (Defs->empty())
1748 PerBlockDefs.erase(DefsIt);
1751 // The erase call here will delete it. If we don't want it deleted, we call
1752 // remove instead.
1753 auto AccessIt = PerBlockAccesses.find(BB);
1754 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1755 if (ShouldDelete)
1756 Accesses->erase(MA);
1757 else
1758 Accesses->remove(MA);
1760 if (Accesses->empty()) {
1761 PerBlockAccesses.erase(AccessIt);
1762 BlockNumberingValid.erase(BB);
1766 void MemorySSA::print(raw_ostream &OS) const {
1767 MemorySSAAnnotatedWriter Writer(this);
1768 F.print(OS, &Writer);
1771 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1772 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1773 #endif
1775 void MemorySSA::verifyMemorySSA() const {
1776 verifyDefUses(F);
1777 verifyDomination(F);
1778 verifyOrdering(F);
1779 verifyDominationNumbers(F);
1780 Walker->verify(this);
1781 // Previously, the verification used to also verify that the clobberingAccess
1782 // cached by MemorySSA is the same as the clobberingAccess found at a later
1783 // query to AA. This does not hold true in general due to the current fragility
1784 // of BasicAA which has arbitrary caps on the things it analyzes before giving
1785 // up. As a result, transformations that are correct, will lead to BasicAA
1786 // returning different Alias answers before and after that transformation.
1787 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1788 // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1789 // every transformation, which defeats the purpose of using it. For such an
1790 // example, see test4 added in D51960.
1793 /// Verify that all of the blocks we believe to have valid domination numbers
1794 /// actually have valid domination numbers.
1795 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1796 #ifndef NDEBUG
1797 if (BlockNumberingValid.empty())
1798 return;
1800 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1801 for (const BasicBlock &BB : F) {
1802 if (!ValidBlocks.count(&BB))
1803 continue;
1805 ValidBlocks.erase(&BB);
1807 const AccessList *Accesses = getBlockAccesses(&BB);
1808 // It's correct to say an empty block has valid numbering.
1809 if (!Accesses)
1810 continue;
1812 // Block numbering starts at 1.
1813 unsigned long LastNumber = 0;
1814 for (const MemoryAccess &MA : *Accesses) {
1815 auto ThisNumberIter = BlockNumbering.find(&MA);
1816 assert(ThisNumberIter != BlockNumbering.end() &&
1817 "MemoryAccess has no domination number in a valid block!");
1819 unsigned long ThisNumber = ThisNumberIter->second;
1820 assert(ThisNumber > LastNumber &&
1821 "Domination numbers should be strictly increasing!");
1822 LastNumber = ThisNumber;
1826 assert(ValidBlocks.empty() &&
1827 "All valid BasicBlocks should exist in F -- dangling pointers?");
1828 #endif
1831 /// Verify that the order and existence of MemoryAccesses matches the
1832 /// order and existence of memory affecting instructions.
1833 void MemorySSA::verifyOrdering(Function &F) const {
1834 #ifndef NDEBUG
1835 // Walk all the blocks, comparing what the lookups think and what the access
1836 // lists think, as well as the order in the blocks vs the order in the access
1837 // lists.
1838 SmallVector<MemoryAccess *, 32> ActualAccesses;
1839 SmallVector<MemoryAccess *, 32> ActualDefs;
1840 for (BasicBlock &B : F) {
1841 const AccessList *AL = getBlockAccesses(&B);
1842 const auto *DL = getBlockDefs(&B);
1843 MemoryAccess *Phi = getMemoryAccess(&B);
1844 if (Phi) {
1845 ActualAccesses.push_back(Phi);
1846 ActualDefs.push_back(Phi);
1849 for (Instruction &I : B) {
1850 MemoryAccess *MA = getMemoryAccess(&I);
1851 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1852 "We have memory affecting instructions "
1853 "in this block but they are not in the "
1854 "access list or defs list");
1855 if (MA) {
1856 ActualAccesses.push_back(MA);
1857 if (isa<MemoryDef>(MA))
1858 ActualDefs.push_back(MA);
1861 // Either we hit the assert, really have no accesses, or we have both
1862 // accesses and an access list.
1863 // Same with defs.
1864 if (!AL && !DL)
1865 continue;
1866 assert(AL->size() == ActualAccesses.size() &&
1867 "We don't have the same number of accesses in the block as on the "
1868 "access list");
1869 assert((DL || ActualDefs.size() == 0) &&
1870 "Either we should have a defs list, or we should have no defs");
1871 assert((!DL || DL->size() == ActualDefs.size()) &&
1872 "We don't have the same number of defs in the block as on the "
1873 "def list");
1874 auto ALI = AL->begin();
1875 auto AAI = ActualAccesses.begin();
1876 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1877 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1878 ++ALI;
1879 ++AAI;
1881 ActualAccesses.clear();
1882 if (DL) {
1883 auto DLI = DL->begin();
1884 auto ADI = ActualDefs.begin();
1885 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1886 assert(&*DLI == *ADI && "Not the same defs in the same order");
1887 ++DLI;
1888 ++ADI;
1891 ActualDefs.clear();
1893 #endif
1896 /// Verify the domination properties of MemorySSA by checking that each
1897 /// definition dominates all of its uses.
1898 void MemorySSA::verifyDomination(Function &F) const {
1899 #ifndef NDEBUG
1900 for (BasicBlock &B : F) {
1901 // Phi nodes are attached to basic blocks
1902 if (MemoryPhi *MP = getMemoryAccess(&B))
1903 for (const Use &U : MP->uses())
1904 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
1906 for (Instruction &I : B) {
1907 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1908 if (!MD)
1909 continue;
1911 for (const Use &U : MD->uses())
1912 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
1915 #endif
1918 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
1919 /// appears in the use list of \p Def.
1920 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
1921 #ifndef NDEBUG
1922 // The live on entry use may cause us to get a NULL def here
1923 if (!Def)
1924 assert(isLiveOnEntryDef(Use) &&
1925 "Null def but use not point to live on entry def");
1926 else
1927 assert(is_contained(Def->users(), Use) &&
1928 "Did not find use in def's use list");
1929 #endif
1932 /// Verify the immediate use information, by walking all the memory
1933 /// accesses and verifying that, for each use, it appears in the
1934 /// appropriate def's use list
1935 void MemorySSA::verifyDefUses(Function &F) const {
1936 #ifndef NDEBUG
1937 for (BasicBlock &B : F) {
1938 // Phi nodes are attached to basic blocks
1939 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
1940 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1941 pred_begin(&B), pred_end(&B))) &&
1942 "Incomplete MemoryPhi Node");
1943 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1944 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1945 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1946 pred_end(&B) &&
1947 "Incoming phi block not a block predecessor");
1951 for (Instruction &I : B) {
1952 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1953 verifyUseInDefs(MA->getDefiningAccess(), MA);
1957 #endif
1960 /// Perform a local numbering on blocks so that instruction ordering can be
1961 /// determined in constant time.
1962 /// TODO: We currently just number in order. If we numbered by N, we could
1963 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1964 /// log2(N) sequences of mixed before and after) without needing to invalidate
1965 /// the numbering.
1966 void MemorySSA::renumberBlock(const BasicBlock *B) const {
1967 // The pre-increment ensures the numbers really start at 1.
1968 unsigned long CurrentNumber = 0;
1969 const AccessList *AL = getBlockAccesses(B);
1970 assert(AL != nullptr && "Asking to renumber an empty block");
1971 for (const auto &I : *AL)
1972 BlockNumbering[&I] = ++CurrentNumber;
1973 BlockNumberingValid.insert(B);
1976 /// Determine, for two memory accesses in the same block,
1977 /// whether \p Dominator dominates \p Dominatee.
1978 /// \returns True if \p Dominator dominates \p Dominatee.
1979 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1980 const MemoryAccess *Dominatee) const {
1981 const BasicBlock *DominatorBlock = Dominator->getBlock();
1983 assert((DominatorBlock == Dominatee->getBlock()) &&
1984 "Asking for local domination when accesses are in different blocks!");
1985 // A node dominates itself.
1986 if (Dominatee == Dominator)
1987 return true;
1989 // When Dominatee is defined on function entry, it is not dominated by another
1990 // memory access.
1991 if (isLiveOnEntryDef(Dominatee))
1992 return false;
1994 // When Dominator is defined on function entry, it dominates the other memory
1995 // access.
1996 if (isLiveOnEntryDef(Dominator))
1997 return true;
1999 if (!BlockNumberingValid.count(DominatorBlock))
2000 renumberBlock(DominatorBlock);
2002 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2003 // All numbers start with 1
2004 assert(DominatorNum != 0 && "Block was not numbered properly");
2005 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2006 assert(DominateeNum != 0 && "Block was not numbered properly");
2007 return DominatorNum < DominateeNum;
2010 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2011 const MemoryAccess *Dominatee) const {
2012 if (Dominator == Dominatee)
2013 return true;
2015 if (isLiveOnEntryDef(Dominatee))
2016 return false;
2018 if (Dominator->getBlock() != Dominatee->getBlock())
2019 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2020 return locallyDominates(Dominator, Dominatee);
2023 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2024 const Use &Dominatee) const {
2025 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2026 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2027 // The def must dominate the incoming block of the phi.
2028 if (UseBB != Dominator->getBlock())
2029 return DT->dominates(Dominator->getBlock(), UseBB);
2030 // If the UseBB and the DefBB are the same, compare locally.
2031 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2033 // If it's not a PHI node use, the normal dominates can already handle it.
2034 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2037 const static char LiveOnEntryStr[] = "liveOnEntry";
2039 void MemoryAccess::print(raw_ostream &OS) const {
2040 switch (getValueID()) {
2041 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2042 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2043 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2045 llvm_unreachable("invalid value id");
2048 void MemoryDef::print(raw_ostream &OS) const {
2049 MemoryAccess *UO = getDefiningAccess();
2051 auto printID = [&OS](MemoryAccess *A) {
2052 if (A && A->getID())
2053 OS << A->getID();
2054 else
2055 OS << LiveOnEntryStr;
2058 OS << getID() << " = MemoryDef(";
2059 printID(UO);
2060 OS << ")";
2062 if (isOptimized()) {
2063 OS << "->";
2064 printID(getOptimized());
2066 if (Optional<AliasResult> AR = getOptimizedAccessType())
2067 OS << " " << *AR;
2071 void MemoryPhi::print(raw_ostream &OS) const {
2072 bool First = true;
2073 OS << getID() << " = MemoryPhi(";
2074 for (const auto &Op : operands()) {
2075 BasicBlock *BB = getIncomingBlock(Op);
2076 MemoryAccess *MA = cast<MemoryAccess>(Op);
2077 if (!First)
2078 OS << ',';
2079 else
2080 First = false;
2082 OS << '{';
2083 if (BB->hasName())
2084 OS << BB->getName();
2085 else
2086 BB->printAsOperand(OS, false);
2087 OS << ',';
2088 if (unsigned ID = MA->getID())
2089 OS << ID;
2090 else
2091 OS << LiveOnEntryStr;
2092 OS << '}';
2094 OS << ')';
2097 void MemoryUse::print(raw_ostream &OS) const {
2098 MemoryAccess *UO = getDefiningAccess();
2099 OS << "MemoryUse(";
2100 if (UO && UO->getID())
2101 OS << UO->getID();
2102 else
2103 OS << LiveOnEntryStr;
2104 OS << ')';
2106 if (Optional<AliasResult> AR = getOptimizedAccessType())
2107 OS << " " << *AR;
2110 void MemoryAccess::dump() const {
2111 // Cannot completely remove virtual function even in release mode.
2112 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2113 print(dbgs());
2114 dbgs() << "\n";
2115 #endif
2118 char MemorySSAPrinterLegacyPass::ID = 0;
2120 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2121 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2124 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2125 AU.setPreservesAll();
2126 AU.addRequired<MemorySSAWrapperPass>();
2129 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2130 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2131 MSSA.print(dbgs());
2132 if (VerifyMemorySSA)
2133 MSSA.verifyMemorySSA();
2134 return false;
2137 AnalysisKey MemorySSAAnalysis::Key;
2139 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2140 FunctionAnalysisManager &AM) {
2141 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2142 auto &AA = AM.getResult<AAManager>(F);
2143 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
2146 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2147 FunctionAnalysisManager &AM) {
2148 OS << "MemorySSA for function: " << F.getName() << "\n";
2149 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2151 return PreservedAnalyses::all();
2154 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2155 FunctionAnalysisManager &AM) {
2156 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2158 return PreservedAnalyses::all();
2161 char MemorySSAWrapperPass::ID = 0;
2163 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2164 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2167 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2169 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2170 AU.setPreservesAll();
2171 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2172 AU.addRequiredTransitive<AAResultsWrapperPass>();
2175 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2176 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2177 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2178 MSSA.reset(new MemorySSA(F, &AA, &DT));
2179 return false;
2182 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
2184 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2185 MSSA->print(OS);
2188 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2190 /// Walk the use-def chains starting at \p StartingAccess and find
2191 /// the MemoryAccess that actually clobbers Loc.
2193 /// \returns our clobbering memory access
2194 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2195 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
2196 if (isa<MemoryPhi>(StartingAccess))
2197 return StartingAccess;
2199 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2200 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2201 return StartingUseOrDef;
2203 Instruction *I = StartingUseOrDef->getMemoryInst();
2205 // Conservatively, fences are always clobbers, so don't perform the walk if we
2206 // hit a fence.
2207 if (!isa<CallBase>(I) && I->isFenceLike())
2208 return StartingUseOrDef;
2210 UpwardsMemoryQuery Q;
2211 Q.OriginalAccess = StartingUseOrDef;
2212 Q.StartingLoc = Loc;
2213 Q.Inst = I;
2214 Q.IsCall = false;
2216 // Unlike the other function, do not walk to the def of a def, because we are
2217 // handed something we already believe is the clobbering access.
2218 // We never set SkipSelf to true in Q in this method.
2219 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2220 ? StartingUseOrDef->getDefiningAccess()
2221 : StartingUseOrDef;
2223 MemoryAccess *Clobber = Walker.findClobber(DefiningAccess, Q);
2224 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2225 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2226 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2227 LLVM_DEBUG(dbgs() << *Clobber << "\n");
2228 return Clobber;
2231 MemoryAccess *
2232 MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(MemoryAccess *MA,
2233 bool SkipSelf) {
2234 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2235 // If this is a MemoryPhi, we can't do anything.
2236 if (!StartingAccess)
2237 return MA;
2239 bool IsOptimized = false;
2241 // If this is an already optimized use or def, return the optimized result.
2242 // Note: Currently, we store the optimized def result in a separate field,
2243 // since we can't use the defining access.
2244 if (StartingAccess->isOptimized()) {
2245 if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2246 return StartingAccess->getOptimized();
2247 IsOptimized = true;
2250 const Instruction *I = StartingAccess->getMemoryInst();
2251 // We can't sanely do anything with a fence, since they conservatively clobber
2252 // all memory, and have no locations to get pointers from to try to
2253 // disambiguate.
2254 if (!isa<CallBase>(I) && I->isFenceLike())
2255 return StartingAccess;
2257 UpwardsMemoryQuery Q(I, StartingAccess);
2259 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2260 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2261 StartingAccess->setOptimized(LiveOnEntry);
2262 StartingAccess->setOptimizedAccessType(None);
2263 return LiveOnEntry;
2266 MemoryAccess *OptimizedAccess;
2267 if (!IsOptimized) {
2268 // Start with the thing we already think clobbers this location
2269 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2271 // At this point, DefiningAccess may be the live on entry def.
2272 // If it is, we will not get a better result.
2273 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2274 StartingAccess->setOptimized(DefiningAccess);
2275 StartingAccess->setOptimizedAccessType(None);
2276 return DefiningAccess;
2279 OptimizedAccess = Walker.findClobber(DefiningAccess, Q);
2280 StartingAccess->setOptimized(OptimizedAccess);
2281 if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2282 StartingAccess->setOptimizedAccessType(None);
2283 else if (Q.AR == MustAlias)
2284 StartingAccess->setOptimizedAccessType(MustAlias);
2285 } else
2286 OptimizedAccess = StartingAccess->getOptimized();
2288 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2289 LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2290 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2291 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2293 MemoryAccess *Result;
2294 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2295 isa<MemoryDef>(StartingAccess)) {
2296 assert(isa<MemoryDef>(Q.OriginalAccess));
2297 Q.SkipSelfAccess = true;
2298 Result = Walker.findClobber(OptimizedAccess, Q);
2299 } else
2300 Result = OptimizedAccess;
2302 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2303 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2305 return Result;
2308 MemoryAccess *
2309 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2310 return Walker->getClobberingMemoryAccessBase(MA, false);
2313 MemoryAccess *
2314 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA,
2315 const MemoryLocation &Loc) {
2316 return Walker->getClobberingMemoryAccessBase(MA, Loc);
2319 MemoryAccess *
2320 MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2321 return Walker->getClobberingMemoryAccessBase(MA, true);
2324 MemoryAccess *
2325 MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess *MA,
2326 const MemoryLocation &Loc) {
2327 return Walker->getClobberingMemoryAccessBase(MA, Loc);
2330 MemoryAccess *
2331 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2332 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2333 return Use->getDefiningAccess();
2334 return MA;
2337 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2338 MemoryAccess *StartingAccess, const MemoryLocation &) {
2339 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2340 return Use->getDefiningAccess();
2341 return StartingAccess;
2344 void MemoryPhi::deleteMe(DerivedUser *Self) {
2345 delete static_cast<MemoryPhi *>(Self);
2348 void MemoryDef::deleteMe(DerivedUser *Self) {
2349 delete static_cast<MemoryDef *>(Self);
2352 void MemoryUse::deleteMe(DerivedUser *Self) {
2353 delete static_cast<MemoryUse *>(Self);