1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the MemorySSA class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/FormattedStream.h"
49 #include "llvm/Support/raw_ostream.h"
58 #define DEBUG_TYPE "memoryssa"
60 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass
, "memoryssa", "Memory SSA", false,
62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
63 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
64 INITIALIZE_PASS_END(MemorySSAWrapperPass
, "memoryssa", "Memory SSA", false,
67 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass
, "print-memoryssa",
68 "Memory SSA Printer", false, false)
69 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
70 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass
, "print-memoryssa",
71 "Memory SSA Printer", false, false)
73 static cl::opt
<unsigned> MaxCheckLimit(
74 "memssa-check-limit", cl::Hidden
, cl::init(100),
75 cl::desc("The maximum number of stores/phis MemorySSA"
76 "will consider trying to walk past (default = 100)"));
78 // Always verify MemorySSA if expensive checking is enabled.
79 #ifdef EXPENSIVE_CHECKS
80 bool llvm::VerifyMemorySSA
= true;
82 bool llvm::VerifyMemorySSA
= false;
84 static cl::opt
<bool, true>
85 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA
),
86 cl::Hidden
, cl::desc("Enable verification of MemorySSA."));
90 /// An assembly annotator class to print Memory SSA information in
92 class MemorySSAAnnotatedWriter
: public AssemblyAnnotationWriter
{
93 friend class MemorySSA
;
95 const MemorySSA
*MSSA
;
98 MemorySSAAnnotatedWriter(const MemorySSA
*M
) : MSSA(M
) {}
100 void emitBasicBlockStartAnnot(const BasicBlock
*BB
,
101 formatted_raw_ostream
&OS
) override
{
102 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(BB
))
103 OS
<< "; " << *MA
<< "\n";
106 void emitInstructionAnnot(const Instruction
*I
,
107 formatted_raw_ostream
&OS
) override
{
108 if (MemoryAccess
*MA
= MSSA
->getMemoryAccess(I
))
109 OS
<< "; " << *MA
<< "\n";
113 } // end namespace llvm
117 /// Our current alias analysis API differentiates heavily between calls and
118 /// non-calls, and functions called on one usually assert on the other.
119 /// This class encapsulates the distinction to simplify other code that wants
120 /// "Memory affecting instructions and related data" to use as a key.
121 /// For example, this class is used as a densemap key in the use optimizer.
122 class MemoryLocOrCall
{
126 MemoryLocOrCall(MemoryUseOrDef
*MUD
)
127 : MemoryLocOrCall(MUD
->getMemoryInst()) {}
128 MemoryLocOrCall(const MemoryUseOrDef
*MUD
)
129 : MemoryLocOrCall(MUD
->getMemoryInst()) {}
131 MemoryLocOrCall(Instruction
*Inst
) {
132 if (auto *C
= dyn_cast
<CallBase
>(Inst
)) {
137 // There is no such thing as a memorylocation for a fence inst, and it is
138 // unique in that regard.
139 if (!isa
<FenceInst
>(Inst
))
140 Loc
= MemoryLocation::get(Inst
);
144 explicit MemoryLocOrCall(const MemoryLocation
&Loc
) : Loc(Loc
) {}
146 const CallBase
*getCall() const {
151 MemoryLocation
getLoc() const {
156 bool operator==(const MemoryLocOrCall
&Other
) const {
157 if (IsCall
!= Other
.IsCall
)
161 return Loc
== Other
.Loc
;
163 if (Call
->getCalledValue() != Other
.Call
->getCalledValue())
166 return Call
->arg_size() == Other
.Call
->arg_size() &&
167 std::equal(Call
->arg_begin(), Call
->arg_end(),
168 Other
.Call
->arg_begin());
173 const CallBase
*Call
;
178 } // end anonymous namespace
182 template <> struct DenseMapInfo
<MemoryLocOrCall
> {
183 static inline MemoryLocOrCall
getEmptyKey() {
184 return MemoryLocOrCall(DenseMapInfo
<MemoryLocation
>::getEmptyKey());
187 static inline MemoryLocOrCall
getTombstoneKey() {
188 return MemoryLocOrCall(DenseMapInfo
<MemoryLocation
>::getTombstoneKey());
191 static unsigned getHashValue(const MemoryLocOrCall
&MLOC
) {
195 DenseMapInfo
<MemoryLocation
>::getHashValue(MLOC
.getLoc()));
198 hash_combine(MLOC
.IsCall
, DenseMapInfo
<const Value
*>::getHashValue(
199 MLOC
.getCall()->getCalledValue()));
201 for (const Value
*Arg
: MLOC
.getCall()->args())
202 hash
= hash_combine(hash
, DenseMapInfo
<const Value
*>::getHashValue(Arg
));
206 static bool isEqual(const MemoryLocOrCall
&LHS
, const MemoryLocOrCall
&RHS
) {
211 } // end namespace llvm
213 /// This does one-way checks to see if Use could theoretically be hoisted above
214 /// MayClobber. This will not check the other way around.
216 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
217 /// MayClobber, with no potentially clobbering operations in between them.
218 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
219 static bool areLoadsReorderable(const LoadInst
*Use
,
220 const LoadInst
*MayClobber
) {
221 bool VolatileUse
= Use
->isVolatile();
222 bool VolatileClobber
= MayClobber
->isVolatile();
223 // Volatile operations may never be reordered with other volatile operations.
224 if (VolatileUse
&& VolatileClobber
)
226 // Otherwise, volatile doesn't matter here. From the language reference:
227 // 'optimizers may change the order of volatile operations relative to
228 // non-volatile operations.'"
230 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
231 // is weaker, it can be moved above other loads. We just need to be sure that
232 // MayClobber isn't an acquire load, because loads can't be moved above
235 // Note that this explicitly *does* allow the free reordering of monotonic (or
236 // weaker) loads of the same address.
237 bool SeqCstUse
= Use
->getOrdering() == AtomicOrdering::SequentiallyConsistent
;
238 bool MayClobberIsAcquire
= isAtLeastOrStrongerThan(MayClobber
->getOrdering(),
239 AtomicOrdering::Acquire
);
240 return !(SeqCstUse
|| MayClobberIsAcquire
);
245 struct ClobberAlias
{
247 Optional
<AliasResult
> AR
;
250 } // end anonymous namespace
252 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
253 // ignored if IsClobber = false.
254 static ClobberAlias
instructionClobbersQuery(const MemoryDef
*MD
,
255 const MemoryLocation
&UseLoc
,
256 const Instruction
*UseInst
,
258 Instruction
*DefInst
= MD
->getMemoryInst();
259 assert(DefInst
&& "Defining instruction not actually an instruction");
260 const auto *UseCall
= dyn_cast
<CallBase
>(UseInst
);
261 Optional
<AliasResult
> AR
;
263 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(DefInst
)) {
264 // These intrinsics will show up as affecting memory, but they are just
267 // FIXME: We probably don't actually want MemorySSA to model these at all
268 // (including creating MemoryAccesses for them): we just end up inventing
269 // clobbers where they don't really exist at all. Please see D43269 for
271 switch (II
->getIntrinsicID()) {
272 case Intrinsic::lifetime_start
:
274 return {false, NoAlias
};
275 AR
= AA
.alias(MemoryLocation(II
->getArgOperand(1)), UseLoc
);
276 return {AR
!= NoAlias
, AR
};
277 case Intrinsic::lifetime_end
:
278 case Intrinsic::invariant_start
:
279 case Intrinsic::invariant_end
:
280 case Intrinsic::assume
:
281 return {false, NoAlias
};
288 ModRefInfo I
= AA
.getModRefInfo(DefInst
, UseCall
);
289 AR
= isMustSet(I
) ? MustAlias
: MayAlias
;
290 return {isModOrRefSet(I
), AR
};
293 if (auto *DefLoad
= dyn_cast
<LoadInst
>(DefInst
))
294 if (auto *UseLoad
= dyn_cast
<LoadInst
>(UseInst
))
295 return {!areLoadsReorderable(UseLoad
, DefLoad
), MayAlias
};
297 ModRefInfo I
= AA
.getModRefInfo(DefInst
, UseLoc
);
298 AR
= isMustSet(I
) ? MustAlias
: MayAlias
;
299 return {isModSet(I
), AR
};
302 static ClobberAlias
instructionClobbersQuery(MemoryDef
*MD
,
303 const MemoryUseOrDef
*MU
,
304 const MemoryLocOrCall
&UseMLOC
,
306 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
307 // to exist while MemoryLocOrCall is pushed through places.
309 return instructionClobbersQuery(MD
, MemoryLocation(), MU
->getMemoryInst(),
311 return instructionClobbersQuery(MD
, UseMLOC
.getLoc(), MU
->getMemoryInst(),
315 // Return true when MD may alias MU, return false otherwise.
316 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef
*MD
, const MemoryUseOrDef
*MU
,
318 return instructionClobbersQuery(MD
, MU
, MemoryLocOrCall(MU
), AA
).IsClobber
;
323 struct UpwardsMemoryQuery
{
324 // True if our original query started off as a call
326 // The pointer location we started the query with. This will be empty if
328 MemoryLocation StartingLoc
;
329 // This is the instruction we were querying about.
330 const Instruction
*Inst
= nullptr;
331 // The MemoryAccess we actually got called with, used to test local domination
332 const MemoryAccess
*OriginalAccess
= nullptr;
333 Optional
<AliasResult
> AR
= MayAlias
;
334 bool SkipSelfAccess
= false;
336 UpwardsMemoryQuery() = default;
338 UpwardsMemoryQuery(const Instruction
*Inst
, const MemoryAccess
*Access
)
339 : IsCall(isa
<CallBase
>(Inst
)), Inst(Inst
), OriginalAccess(Access
) {
341 StartingLoc
= MemoryLocation::get(Inst
);
345 } // end anonymous namespace
347 static bool lifetimeEndsAt(MemoryDef
*MD
, const MemoryLocation
&Loc
,
349 Instruction
*Inst
= MD
->getMemoryInst();
350 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
351 switch (II
->getIntrinsicID()) {
352 case Intrinsic::lifetime_end
:
353 return AA
.isMustAlias(MemoryLocation(II
->getArgOperand(1)), Loc
);
361 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis
&AA
,
362 const Instruction
*I
) {
363 // If the memory can't be changed, then loads of the memory can't be
365 return isa
<LoadInst
>(I
) && (I
->getMetadata(LLVMContext::MD_invariant_load
) ||
366 AA
.pointsToConstantMemory(cast
<LoadInst
>(I
)->
367 getPointerOperand()));
370 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
371 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
373 /// This is meant to be as simple and self-contained as possible. Because it
374 /// uses no cache, etc., it can be relatively expensive.
376 /// \param Start The MemoryAccess that we want to walk from.
377 /// \param ClobberAt A clobber for Start.
378 /// \param StartLoc The MemoryLocation for Start.
379 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
380 /// \param Query The UpwardsMemoryQuery we used for our search.
381 /// \param AA The AliasAnalysis we used for our search.
382 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
383 LLVM_ATTRIBUTE_UNUSED
static void
384 checkClobberSanity(const MemoryAccess
*Start
, MemoryAccess
*ClobberAt
,
385 const MemoryLocation
&StartLoc
, const MemorySSA
&MSSA
,
386 const UpwardsMemoryQuery
&Query
, AliasAnalysis
&AA
,
387 bool AllowImpreciseClobber
= false) {
388 assert(MSSA
.dominates(ClobberAt
, Start
) && "Clobber doesn't dominate start?");
390 if (MSSA
.isLiveOnEntryDef(Start
)) {
391 assert(MSSA
.isLiveOnEntryDef(ClobberAt
) &&
392 "liveOnEntry must clobber itself");
396 bool FoundClobber
= false;
397 DenseSet
<ConstMemoryAccessPair
> VisitedPhis
;
398 SmallVector
<ConstMemoryAccessPair
, 8> Worklist
;
399 Worklist
.emplace_back(Start
, StartLoc
);
400 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
401 // is found, complain.
402 while (!Worklist
.empty()) {
403 auto MAP
= Worklist
.pop_back_val();
404 // All we care about is that nothing from Start to ClobberAt clobbers Start.
405 // We learn nothing from revisiting nodes.
406 if (!VisitedPhis
.insert(MAP
).second
)
409 for (const auto *MA
: def_chain(MAP
.first
)) {
410 if (MA
== ClobberAt
) {
411 if (const auto *MD
= dyn_cast
<MemoryDef
>(MA
)) {
412 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
413 // since it won't let us short-circuit.
415 // Also, note that this can't be hoisted out of the `Worklist` loop,
416 // since MD may only act as a clobber for 1 of N MemoryLocations.
417 FoundClobber
= FoundClobber
|| MSSA
.isLiveOnEntryDef(MD
);
420 instructionClobbersQuery(MD
, MAP
.second
, Query
.Inst
, AA
);
430 // We should never hit liveOnEntry, unless it's the clobber.
431 assert(!MSSA
.isLiveOnEntryDef(MA
) && "Hit liveOnEntry before clobber?");
433 if (const auto *MD
= dyn_cast
<MemoryDef
>(MA
)) {
434 // If Start is a Def, skip self.
438 assert(!instructionClobbersQuery(MD
, MAP
.second
, Query
.Inst
, AA
)
440 "Found clobber before reaching ClobberAt!");
444 if (const auto *MU
= dyn_cast
<MemoryUse
>(MA
)) {
446 assert (MU
== Start
&&
447 "Can only find use in def chain if Start is a use");
451 assert(isa
<MemoryPhi
>(MA
));
453 upward_defs_begin({const_cast<MemoryAccess
*>(MA
), MAP
.second
}),
458 // If the verify is done following an optimization, it's possible that
459 // ClobberAt was a conservative clobbering, that we can now infer is not a
460 // true clobbering access. Don't fail the verify if that's the case.
461 // We do have accesses that claim they're optimized, but could be optimized
462 // further. Updating all these can be expensive, so allow it for now (FIXME).
463 if (AllowImpreciseClobber
)
466 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
467 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
468 assert((isa
<MemoryPhi
>(ClobberAt
) || FoundClobber
) &&
469 "ClobberAt never acted as a clobber");
474 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
476 class ClobberWalker
{
477 /// Save a few bytes by using unsigned instead of size_t.
478 using ListIndex
= unsigned;
480 /// Represents a span of contiguous MemoryDefs, potentially ending in a
484 // Note that, because we always walk in reverse, Last will always dominate
485 // First. Also note that First and Last are inclusive.
488 Optional
<ListIndex
> Previous
;
490 DefPath(const MemoryLocation
&Loc
, MemoryAccess
*First
, MemoryAccess
*Last
,
491 Optional
<ListIndex
> Previous
)
492 : Loc(Loc
), First(First
), Last(Last
), Previous(Previous
) {}
494 DefPath(const MemoryLocation
&Loc
, MemoryAccess
*Init
,
495 Optional
<ListIndex
> Previous
)
496 : DefPath(Loc
, Init
, Init
, Previous
) {}
499 const MemorySSA
&MSSA
;
502 UpwardsMemoryQuery
*Query
;
504 // Phi optimization bookkeeping
505 SmallVector
<DefPath
, 32> Paths
;
506 DenseSet
<ConstMemoryAccessPair
> VisitedPhis
;
508 /// Find the nearest def or phi that `From` can legally be optimized to.
509 const MemoryAccess
*getWalkTarget(const MemoryPhi
*From
) const {
510 assert(From
->getNumOperands() && "Phi with no operands?");
512 BasicBlock
*BB
= From
->getBlock();
513 MemoryAccess
*Result
= MSSA
.getLiveOnEntryDef();
514 DomTreeNode
*Node
= DT
.getNode(BB
);
515 while ((Node
= Node
->getIDom())) {
516 auto *Defs
= MSSA
.getBlockDefs(Node
->getBlock());
518 return &*Defs
->rbegin();
523 /// Result of calling walkToPhiOrClobber.
524 struct UpwardsWalkResult
{
525 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
526 /// both. Include alias info when clobber found.
527 MemoryAccess
*Result
;
529 Optional
<AliasResult
> AR
;
532 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
533 /// This will update Desc.Last as it walks. It will (optionally) also stop at
536 /// This does not test for whether StopAt is a clobber
538 walkToPhiOrClobber(DefPath
&Desc
, const MemoryAccess
*StopAt
= nullptr,
539 const MemoryAccess
*SkipStopAt
= nullptr) const {
540 assert(!isa
<MemoryUse
>(Desc
.Last
) && "Uses don't exist in my world");
542 for (MemoryAccess
*Current
: def_chain(Desc
.Last
)) {
544 if (Current
== StopAt
|| Current
== SkipStopAt
)
545 return {Current
, false, MayAlias
};
547 if (auto *MD
= dyn_cast
<MemoryDef
>(Current
)) {
548 if (MSSA
.isLiveOnEntryDef(MD
))
549 return {MD
, true, MustAlias
};
551 instructionClobbersQuery(MD
, Desc
.Loc
, Query
->Inst
, AA
);
553 return {MD
, true, CA
.AR
};
557 assert(isa
<MemoryPhi
>(Desc
.Last
) &&
558 "Ended at a non-clobber that's not a phi?");
559 return {Desc
.Last
, false, MayAlias
};
562 void addSearches(MemoryPhi
*Phi
, SmallVectorImpl
<ListIndex
> &PausedSearches
,
563 ListIndex PriorNode
) {
564 auto UpwardDefs
= make_range(upward_defs_begin({Phi
, Paths
[PriorNode
].Loc
}),
566 for (const MemoryAccessPair
&P
: UpwardDefs
) {
567 PausedSearches
.push_back(Paths
.size());
568 Paths
.emplace_back(P
.second
, P
.first
, PriorNode
);
572 /// Represents a search that terminated after finding a clobber. This clobber
573 /// may or may not be present in the path of defs from LastNode..SearchStart,
574 /// since it may have been retrieved from cache.
575 struct TerminatedPath
{
576 MemoryAccess
*Clobber
;
580 /// Get an access that keeps us from optimizing to the given phi.
582 /// PausedSearches is an array of indices into the Paths array. Its incoming
583 /// value is the indices of searches that stopped at the last phi optimization
584 /// target. It's left in an unspecified state.
586 /// If this returns None, NewPaused is a vector of searches that terminated
587 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
588 Optional
<TerminatedPath
>
589 getBlockingAccess(const MemoryAccess
*StopWhere
,
590 SmallVectorImpl
<ListIndex
> &PausedSearches
,
591 SmallVectorImpl
<ListIndex
> &NewPaused
,
592 SmallVectorImpl
<TerminatedPath
> &Terminated
) {
593 assert(!PausedSearches
.empty() && "No searches to continue?");
595 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
596 // PausedSearches as our stack.
597 while (!PausedSearches
.empty()) {
598 ListIndex PathIndex
= PausedSearches
.pop_back_val();
599 DefPath
&Node
= Paths
[PathIndex
];
601 // If we've already visited this path with this MemoryLocation, we don't
602 // need to do so again.
604 // NOTE: That we just drop these paths on the ground makes caching
605 // behavior sporadic. e.g. given a diamond:
610 // ...If we walk D, B, A, C, we'll only cache the result of phi
611 // optimization for A, B, and D; C will be skipped because it dies here.
612 // This arguably isn't the worst thing ever, since:
613 // - We generally query things in a top-down order, so if we got below D
614 // without needing cache entries for {C, MemLoc}, then chances are
615 // that those cache entries would end up ultimately unused.
616 // - We still cache things for A, so C only needs to walk up a bit.
617 // If this behavior becomes problematic, we can fix without a ton of extra
619 if (!VisitedPhis
.insert({Node
.Last
, Node
.Loc
}).second
)
622 const MemoryAccess
*SkipStopWhere
= nullptr;
623 if (Query
->SkipSelfAccess
&& Node
.Loc
== Query
->StartingLoc
) {
624 assert(isa
<MemoryDef
>(Query
->OriginalAccess
));
625 SkipStopWhere
= Query
->OriginalAccess
;
628 UpwardsWalkResult Res
= walkToPhiOrClobber(Node
, /*StopAt=*/StopWhere
,
629 /*SkipStopAt=*/SkipStopWhere
);
630 if (Res
.IsKnownClobber
) {
631 assert(Res
.Result
!= StopWhere
&& Res
.Result
!= SkipStopWhere
);
632 // If this wasn't a cache hit, we hit a clobber when walking. That's a
634 TerminatedPath Term
{Res
.Result
, PathIndex
};
635 if (!MSSA
.dominates(Res
.Result
, StopWhere
))
638 // Otherwise, it's a valid thing to potentially optimize to.
639 Terminated
.push_back(Term
);
643 if (Res
.Result
== StopWhere
|| Res
.Result
== SkipStopWhere
) {
644 // We've hit our target. Save this path off for if we want to continue
645 // walking. If we are in the mode of skipping the OriginalAccess, and
646 // we've reached back to the OriginalAccess, do not save path, we've
647 // just looped back to self.
648 if (Res
.Result
!= SkipStopWhere
)
649 NewPaused
.push_back(PathIndex
);
653 assert(!MSSA
.isLiveOnEntryDef(Res
.Result
) && "liveOnEntry is a clobber");
654 addSearches(cast
<MemoryPhi
>(Res
.Result
), PausedSearches
, PathIndex
);
660 template <typename T
, typename Walker
>
661 struct generic_def_path_iterator
662 : public iterator_facade_base
<generic_def_path_iterator
<T
, Walker
>,
663 std::forward_iterator_tag
, T
*> {
664 generic_def_path_iterator() = default;
665 generic_def_path_iterator(Walker
*W
, ListIndex N
) : W(W
), N(N
) {}
667 T
&operator*() const { return curNode(); }
669 generic_def_path_iterator
&operator++() {
670 N
= curNode().Previous
;
674 bool operator==(const generic_def_path_iterator
&O
) const {
675 if (N
.hasValue() != O
.N
.hasValue())
677 return !N
.hasValue() || *N
== *O
.N
;
681 T
&curNode() const { return W
->Paths
[*N
]; }
684 Optional
<ListIndex
> N
= None
;
687 using def_path_iterator
= generic_def_path_iterator
<DefPath
, ClobberWalker
>;
688 using const_def_path_iterator
=
689 generic_def_path_iterator
<const DefPath
, const ClobberWalker
>;
691 iterator_range
<def_path_iterator
> def_path(ListIndex From
) {
692 return make_range(def_path_iterator(this, From
), def_path_iterator());
695 iterator_range
<const_def_path_iterator
> const_def_path(ListIndex From
) const {
696 return make_range(const_def_path_iterator(this, From
),
697 const_def_path_iterator());
701 /// The path that contains our result.
702 TerminatedPath PrimaryClobber
;
703 /// The paths that we can legally cache back from, but that aren't
704 /// necessarily the result of the Phi optimization.
705 SmallVector
<TerminatedPath
, 4> OtherClobbers
;
708 ListIndex
defPathIndex(const DefPath
&N
) const {
709 // The assert looks nicer if we don't need to do &N
710 const DefPath
*NP
= &N
;
711 assert(!Paths
.empty() && NP
>= &Paths
.front() && NP
<= &Paths
.back() &&
712 "Out of bounds DefPath!");
713 return NP
- &Paths
.front();
716 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
717 /// that act as legal clobbers. Note that this won't return *all* clobbers.
719 /// Phi optimization algorithm tl;dr:
720 /// - Find the earliest def/phi, A, we can optimize to
721 /// - Find if all paths from the starting memory access ultimately reach A
722 /// - If not, optimization isn't possible.
723 /// - Otherwise, walk from A to another clobber or phi, A'.
724 /// - If A' is a def, we're done.
725 /// - If A' is a phi, try to optimize it.
727 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
728 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
729 OptznResult
tryOptimizePhi(MemoryPhi
*Phi
, MemoryAccess
*Start
,
730 const MemoryLocation
&Loc
) {
731 assert(Paths
.empty() && VisitedPhis
.empty() &&
732 "Reset the optimization state.");
734 Paths
.emplace_back(Loc
, Start
, Phi
, None
);
735 // Stores how many "valid" optimization nodes we had prior to calling
736 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
737 auto PriorPathsSize
= Paths
.size();
739 SmallVector
<ListIndex
, 16> PausedSearches
;
740 SmallVector
<ListIndex
, 8> NewPaused
;
741 SmallVector
<TerminatedPath
, 4> TerminatedPaths
;
743 addSearches(Phi
, PausedSearches
, 0);
745 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
747 auto MoveDominatedPathToEnd
= [&](SmallVectorImpl
<TerminatedPath
> &Paths
) {
748 assert(!Paths
.empty() && "Need a path to move");
749 auto Dom
= Paths
.begin();
750 for (auto I
= std::next(Dom
), E
= Paths
.end(); I
!= E
; ++I
)
751 if (!MSSA
.dominates(I
->Clobber
, Dom
->Clobber
))
753 auto Last
= Paths
.end() - 1;
755 std::iter_swap(Last
, Dom
);
758 MemoryPhi
*Current
= Phi
;
760 assert(!MSSA
.isLiveOnEntryDef(Current
) &&
761 "liveOnEntry wasn't treated as a clobber?");
763 const auto *Target
= getWalkTarget(Current
);
764 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
765 // optimization for the prior phi.
766 assert(all_of(TerminatedPaths
, [&](const TerminatedPath
&P
) {
767 return MSSA
.dominates(P
.Clobber
, Target
);
770 // FIXME: This is broken, because the Blocker may be reported to be
771 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
772 // For the moment, this is fine, since we do nothing with blocker info.
773 if (Optional
<TerminatedPath
> Blocker
= getBlockingAccess(
774 Target
, PausedSearches
, NewPaused
, TerminatedPaths
)) {
776 // Find the node we started at. We can't search based on N->Last, since
777 // we may have gone around a loop with a different MemoryLocation.
778 auto Iter
= find_if(def_path(Blocker
->LastNode
), [&](const DefPath
&N
) {
779 return defPathIndex(N
) < PriorPathsSize
;
781 assert(Iter
!= def_path_iterator());
783 DefPath
&CurNode
= *Iter
;
784 assert(CurNode
.Last
== Current
);
787 // A. We can't reliably cache all of NewPaused back. Consider a case
788 // where we have two paths in NewPaused; one of which can't optimize
789 // above this phi, whereas the other can. If we cache the second path
790 // back, we'll end up with suboptimal cache entries. We can handle
791 // cases like this a bit better when we either try to find all
792 // clobbers that block phi optimization, or when our cache starts
793 // supporting unfinished searches.
794 // B. We can't reliably cache TerminatedPaths back here without doing
795 // extra checks; consider a case like:
801 // Where T is our target, C is a node with a clobber on it, D is a
802 // diamond (with a clobber *only* on the left or right node, N), and
803 // S is our start. Say we walk to D, through the node opposite N
804 // (read: ignoring the clobber), and see a cache entry in the top
805 // node of D. That cache entry gets put into TerminatedPaths. We then
806 // walk up to C (N is later in our worklist), find the clobber, and
807 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
808 // the bottom part of D to the cached clobber, ignoring the clobber
809 // in N. Again, this problem goes away if we start tracking all
810 // blockers for a given phi optimization.
811 TerminatedPath Result
{CurNode
.Last
, defPathIndex(CurNode
)};
815 // If there's nothing left to search, then all paths led to valid clobbers
816 // that we got from our cache; pick the nearest to the start, and allow
817 // the rest to be cached back.
818 if (NewPaused
.empty()) {
819 MoveDominatedPathToEnd(TerminatedPaths
);
820 TerminatedPath Result
= TerminatedPaths
.pop_back_val();
821 return {Result
, std::move(TerminatedPaths
)};
824 MemoryAccess
*DefChainEnd
= nullptr;
825 SmallVector
<TerminatedPath
, 4> Clobbers
;
826 for (ListIndex Paused
: NewPaused
) {
827 UpwardsWalkResult WR
= walkToPhiOrClobber(Paths
[Paused
]);
828 if (WR
.IsKnownClobber
)
829 Clobbers
.push_back({WR
.Result
, Paused
});
831 // Micro-opt: If we hit the end of the chain, save it.
832 DefChainEnd
= WR
.Result
;
835 if (!TerminatedPaths
.empty()) {
836 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
839 for (auto *MA
: def_chain(const_cast<MemoryAccess
*>(Target
)))
842 // If any of the terminated paths don't dominate the phi we'll try to
843 // optimize, we need to figure out what they are and quit.
844 const BasicBlock
*ChainBB
= DefChainEnd
->getBlock();
845 for (const TerminatedPath
&TP
: TerminatedPaths
) {
846 // Because we know that DefChainEnd is as "high" as we can go, we
847 // don't need local dominance checks; BB dominance is sufficient.
848 if (DT
.dominates(ChainBB
, TP
.Clobber
->getBlock()))
849 Clobbers
.push_back(TP
);
853 // If we have clobbers in the def chain, find the one closest to Current
855 if (!Clobbers
.empty()) {
856 MoveDominatedPathToEnd(Clobbers
);
857 TerminatedPath Result
= Clobbers
.pop_back_val();
858 return {Result
, std::move(Clobbers
)};
861 assert(all_of(NewPaused
,
862 [&](ListIndex I
) { return Paths
[I
].Last
== DefChainEnd
; }));
864 // Because liveOnEntry is a clobber, this must be a phi.
865 auto *DefChainPhi
= cast
<MemoryPhi
>(DefChainEnd
);
867 PriorPathsSize
= Paths
.size();
868 PausedSearches
.clear();
869 for (ListIndex I
: NewPaused
)
870 addSearches(DefChainPhi
, PausedSearches
, I
);
873 Current
= DefChainPhi
;
877 void verifyOptResult(const OptznResult
&R
) const {
878 assert(all_of(R
.OtherClobbers
, [&](const TerminatedPath
&P
) {
879 return MSSA
.dominates(P
.Clobber
, R
.PrimaryClobber
.Clobber
);
883 void resetPhiOptznState() {
889 ClobberWalker(const MemorySSA
&MSSA
, AliasAnalysis
&AA
, DominatorTree
&DT
)
890 : MSSA(MSSA
), AA(AA
), DT(DT
) {}
892 /// Finds the nearest clobber for the given query, optimizing phis if
894 MemoryAccess
*findClobber(MemoryAccess
*Start
, UpwardsMemoryQuery
&Q
) {
897 MemoryAccess
*Current
= Start
;
898 // This walker pretends uses don't exist. If we're handed one, silently grab
899 // its def. (This has the nice side-effect of ensuring we never cache uses)
900 if (auto *MU
= dyn_cast
<MemoryUse
>(Start
))
901 Current
= MU
->getDefiningAccess();
903 DefPath
FirstDesc(Q
.StartingLoc
, Current
, Current
, None
);
904 // Fast path for the overly-common case (no crazy phi optimization
906 UpwardsWalkResult WalkResult
= walkToPhiOrClobber(FirstDesc
);
907 MemoryAccess
*Result
;
908 if (WalkResult
.IsKnownClobber
) {
909 Result
= WalkResult
.Result
;
910 Q
.AR
= WalkResult
.AR
;
912 OptznResult OptRes
= tryOptimizePhi(cast
<MemoryPhi
>(FirstDesc
.Last
),
913 Current
, Q
.StartingLoc
);
914 verifyOptResult(OptRes
);
915 resetPhiOptznState();
916 Result
= OptRes
.PrimaryClobber
.Clobber
;
919 #ifdef EXPENSIVE_CHECKS
920 if (!Q
.SkipSelfAccess
)
921 checkClobberSanity(Current
, Result
, Q
.StartingLoc
, MSSA
, Q
, AA
);
926 void verify(const MemorySSA
*MSSA
) { assert(MSSA
== &this->MSSA
); }
929 struct RenamePassData
{
931 DomTreeNode::const_iterator ChildIt
;
932 MemoryAccess
*IncomingVal
;
934 RenamePassData(DomTreeNode
*D
, DomTreeNode::const_iterator It
,
936 : DTN(D
), ChildIt(It
), IncomingVal(M
) {}
938 void swap(RenamePassData
&RHS
) {
939 std::swap(DTN
, RHS
.DTN
);
940 std::swap(ChildIt
, RHS
.ChildIt
);
941 std::swap(IncomingVal
, RHS
.IncomingVal
);
945 } // end anonymous namespace
949 class MemorySSA::ClobberWalkerBase
{
950 ClobberWalker Walker
;
954 ClobberWalkerBase(MemorySSA
*M
, AliasAnalysis
*A
, DominatorTree
*D
)
955 : Walker(*M
, *A
, *D
), MSSA(M
) {}
957 MemoryAccess
*getClobberingMemoryAccessBase(MemoryAccess
*,
958 const MemoryLocation
&);
959 // Second argument (bool), defines whether the clobber search should skip the
960 // original queried access. If true, there will be a follow-up query searching
961 // for a clobber access past "self". Note that the Optimized access is not
962 // updated if a new clobber is found by this SkipSelf search. If this
963 // additional query becomes heavily used we may decide to cache the result.
964 // Walker instantiations will decide how to set the SkipSelf bool.
965 MemoryAccess
*getClobberingMemoryAccessBase(MemoryAccess
*, bool);
966 void verify(const MemorySSA
*MSSA
) { Walker
.verify(MSSA
); }
969 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
970 /// longer does caching on its own, but the name has been retained for the
972 class MemorySSA::CachingWalker final
: public MemorySSAWalker
{
973 ClobberWalkerBase
*Walker
;
976 CachingWalker(MemorySSA
*M
, ClobberWalkerBase
*W
)
977 : MemorySSAWalker(M
), Walker(W
) {}
978 ~CachingWalker() override
= default;
980 using MemorySSAWalker::getClobberingMemoryAccess
;
982 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
) override
;
983 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
984 const MemoryLocation
&Loc
) override
;
986 void invalidateInfo(MemoryAccess
*MA
) override
{
987 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
988 MUD
->resetOptimized();
991 void verify(const MemorySSA
*MSSA
) override
{
992 MemorySSAWalker::verify(MSSA
);
993 Walker
->verify(MSSA
);
997 class MemorySSA::SkipSelfWalker final
: public MemorySSAWalker
{
998 ClobberWalkerBase
*Walker
;
1001 SkipSelfWalker(MemorySSA
*M
, ClobberWalkerBase
*W
)
1002 : MemorySSAWalker(M
), Walker(W
) {}
1003 ~SkipSelfWalker() override
= default;
1005 using MemorySSAWalker::getClobberingMemoryAccess
;
1007 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
) override
;
1008 MemoryAccess
*getClobberingMemoryAccess(MemoryAccess
*MA
,
1009 const MemoryLocation
&Loc
) override
;
1011 void invalidateInfo(MemoryAccess
*MA
) override
{
1012 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1013 MUD
->resetOptimized();
1016 void verify(const MemorySSA
*MSSA
) override
{
1017 MemorySSAWalker::verify(MSSA
);
1018 Walker
->verify(MSSA
);
1022 } // end namespace llvm
1024 void MemorySSA::renameSuccessorPhis(BasicBlock
*BB
, MemoryAccess
*IncomingVal
,
1025 bool RenameAllUses
) {
1026 // Pass through values to our successors
1027 for (const BasicBlock
*S
: successors(BB
)) {
1028 auto It
= PerBlockAccesses
.find(S
);
1029 // Rename the phi nodes in our successor block
1030 if (It
== PerBlockAccesses
.end() || !isa
<MemoryPhi
>(It
->second
->front()))
1032 AccessList
*Accesses
= It
->second
.get();
1033 auto *Phi
= cast
<MemoryPhi
>(&Accesses
->front());
1034 if (RenameAllUses
) {
1035 int PhiIndex
= Phi
->getBasicBlockIndex(BB
);
1036 assert(PhiIndex
!= -1 && "Incomplete phi during partial rename");
1037 Phi
->setIncomingValue(PhiIndex
, IncomingVal
);
1039 Phi
->addIncoming(IncomingVal
, BB
);
1043 /// Rename a single basic block into MemorySSA form.
1044 /// Uses the standard SSA renaming algorithm.
1045 /// \returns The new incoming value.
1046 MemoryAccess
*MemorySSA::renameBlock(BasicBlock
*BB
, MemoryAccess
*IncomingVal
,
1047 bool RenameAllUses
) {
1048 auto It
= PerBlockAccesses
.find(BB
);
1049 // Skip most processing if the list is empty.
1050 if (It
!= PerBlockAccesses
.end()) {
1051 AccessList
*Accesses
= It
->second
.get();
1052 for (MemoryAccess
&L
: *Accesses
) {
1053 if (MemoryUseOrDef
*MUD
= dyn_cast
<MemoryUseOrDef
>(&L
)) {
1054 if (MUD
->getDefiningAccess() == nullptr || RenameAllUses
)
1055 MUD
->setDefiningAccess(IncomingVal
);
1056 if (isa
<MemoryDef
>(&L
))
1066 /// This is the standard SSA renaming algorithm.
1068 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1069 /// in phi nodes in our successors.
1070 void MemorySSA::renamePass(DomTreeNode
*Root
, MemoryAccess
*IncomingVal
,
1071 SmallPtrSetImpl
<BasicBlock
*> &Visited
,
1072 bool SkipVisited
, bool RenameAllUses
) {
1073 SmallVector
<RenamePassData
, 32> WorkStack
;
1074 // Skip everything if we already renamed this block and we are skipping.
1075 // Note: You can't sink this into the if, because we need it to occur
1076 // regardless of whether we skip blocks or not.
1077 bool AlreadyVisited
= !Visited
.insert(Root
->getBlock()).second
;
1078 if (SkipVisited
&& AlreadyVisited
)
1081 IncomingVal
= renameBlock(Root
->getBlock(), IncomingVal
, RenameAllUses
);
1082 renameSuccessorPhis(Root
->getBlock(), IncomingVal
, RenameAllUses
);
1083 WorkStack
.push_back({Root
, Root
->begin(), IncomingVal
});
1085 while (!WorkStack
.empty()) {
1086 DomTreeNode
*Node
= WorkStack
.back().DTN
;
1087 DomTreeNode::const_iterator ChildIt
= WorkStack
.back().ChildIt
;
1088 IncomingVal
= WorkStack
.back().IncomingVal
;
1090 if (ChildIt
== Node
->end()) {
1091 WorkStack
.pop_back();
1093 DomTreeNode
*Child
= *ChildIt
;
1094 ++WorkStack
.back().ChildIt
;
1095 BasicBlock
*BB
= Child
->getBlock();
1096 // Note: You can't sink this into the if, because we need it to occur
1097 // regardless of whether we skip blocks or not.
1098 AlreadyVisited
= !Visited
.insert(BB
).second
;
1099 if (SkipVisited
&& AlreadyVisited
) {
1100 // We already visited this during our renaming, which can happen when
1101 // being asked to rename multiple blocks. Figure out the incoming val,
1102 // which is the last def.
1103 // Incoming value can only change if there is a block def, and in that
1104 // case, it's the last block def in the list.
1105 if (auto *BlockDefs
= getWritableBlockDefs(BB
))
1106 IncomingVal
= &*BlockDefs
->rbegin();
1108 IncomingVal
= renameBlock(BB
, IncomingVal
, RenameAllUses
);
1109 renameSuccessorPhis(BB
, IncomingVal
, RenameAllUses
);
1110 WorkStack
.push_back({Child
, Child
->begin(), IncomingVal
});
1115 /// This handles unreachable block accesses by deleting phi nodes in
1116 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1117 /// being uses of the live on entry definition.
1118 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock
*BB
) {
1119 assert(!DT
->isReachableFromEntry(BB
) &&
1120 "Reachable block found while handling unreachable blocks");
1122 // Make sure phi nodes in our reachable successors end up with a
1123 // LiveOnEntryDef for our incoming edge, even though our block is forward
1124 // unreachable. We could just disconnect these blocks from the CFG fully,
1125 // but we do not right now.
1126 for (const BasicBlock
*S
: successors(BB
)) {
1127 if (!DT
->isReachableFromEntry(S
))
1129 auto It
= PerBlockAccesses
.find(S
);
1130 // Rename the phi nodes in our successor block
1131 if (It
== PerBlockAccesses
.end() || !isa
<MemoryPhi
>(It
->second
->front()))
1133 AccessList
*Accesses
= It
->second
.get();
1134 auto *Phi
= cast
<MemoryPhi
>(&Accesses
->front());
1135 Phi
->addIncoming(LiveOnEntryDef
.get(), BB
);
1138 auto It
= PerBlockAccesses
.find(BB
);
1139 if (It
== PerBlockAccesses
.end())
1142 auto &Accesses
= It
->second
;
1143 for (auto AI
= Accesses
->begin(), AE
= Accesses
->end(); AI
!= AE
;) {
1144 auto Next
= std::next(AI
);
1145 // If we have a phi, just remove it. We are going to replace all
1146 // users with live on entry.
1147 if (auto *UseOrDef
= dyn_cast
<MemoryUseOrDef
>(AI
))
1148 UseOrDef
->setDefiningAccess(LiveOnEntryDef
.get());
1150 Accesses
->erase(AI
);
1155 MemorySSA::MemorySSA(Function
&Func
, AliasAnalysis
*AA
, DominatorTree
*DT
)
1156 : AA(AA
), DT(DT
), F(Func
), LiveOnEntryDef(nullptr), Walker(nullptr),
1157 SkipWalker(nullptr), NextID(0) {
1161 MemorySSA::~MemorySSA() {
1162 // Drop all our references
1163 for (const auto &Pair
: PerBlockAccesses
)
1164 for (MemoryAccess
&MA
: *Pair
.second
)
1165 MA
.dropAllReferences();
1168 MemorySSA::AccessList
*MemorySSA::getOrCreateAccessList(const BasicBlock
*BB
) {
1169 auto Res
= PerBlockAccesses
.insert(std::make_pair(BB
, nullptr));
1172 Res
.first
->second
= llvm::make_unique
<AccessList
>();
1173 return Res
.first
->second
.get();
1176 MemorySSA::DefsList
*MemorySSA::getOrCreateDefsList(const BasicBlock
*BB
) {
1177 auto Res
= PerBlockDefs
.insert(std::make_pair(BB
, nullptr));
1180 Res
.first
->second
= llvm::make_unique
<DefsList
>();
1181 return Res
.first
->second
.get();
1186 /// This class is a batch walker of all MemoryUse's in the program, and points
1187 /// their defining access at the thing that actually clobbers them. Because it
1188 /// is a batch walker that touches everything, it does not operate like the
1189 /// other walkers. This walker is basically performing a top-down SSA renaming
1190 /// pass, where the version stack is used as the cache. This enables it to be
1191 /// significantly more time and memory efficient than using the regular walker,
1192 /// which is walking bottom-up.
1193 class MemorySSA::OptimizeUses
{
1195 OptimizeUses(MemorySSA
*MSSA
, MemorySSAWalker
*Walker
, AliasAnalysis
*AA
,
1197 : MSSA(MSSA
), Walker(Walker
), AA(AA
), DT(DT
) {
1198 Walker
= MSSA
->getWalker();
1201 void optimizeUses();
1204 /// This represents where a given memorylocation is in the stack.
1205 struct MemlocStackInfo
{
1206 // This essentially is keeping track of versions of the stack. Whenever
1207 // the stack changes due to pushes or pops, these versions increase.
1208 unsigned long StackEpoch
;
1209 unsigned long PopEpoch
;
1210 // This is the lower bound of places on the stack to check. It is equal to
1211 // the place the last stack walk ended.
1212 // Note: Correctness depends on this being initialized to 0, which densemap
1214 unsigned long LowerBound
;
1215 const BasicBlock
*LowerBoundBlock
;
1216 // This is where the last walk for this memory location ended.
1217 unsigned long LastKill
;
1219 Optional
<AliasResult
> AR
;
1222 void optimizeUsesInBlock(const BasicBlock
*, unsigned long &, unsigned long &,
1223 SmallVectorImpl
<MemoryAccess
*> &,
1224 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> &);
1227 MemorySSAWalker
*Walker
;
1232 } // end namespace llvm
1234 /// Optimize the uses in a given block This is basically the SSA renaming
1235 /// algorithm, with one caveat: We are able to use a single stack for all
1236 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1237 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1238 /// going to be some position in that stack of possible ones.
1240 /// We track the stack positions that each MemoryLocation needs
1241 /// to check, and last ended at. This is because we only want to check the
1242 /// things that changed since last time. The same MemoryLocation should
1243 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1244 /// things like this, and if they start, we can modify MemoryLocOrCall to
1245 /// include relevant data)
1246 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1247 const BasicBlock
*BB
, unsigned long &StackEpoch
, unsigned long &PopEpoch
,
1248 SmallVectorImpl
<MemoryAccess
*> &VersionStack
,
1249 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> &LocStackInfo
) {
1251 /// If no accesses, nothing to do.
1252 MemorySSA::AccessList
*Accesses
= MSSA
->getWritableBlockAccesses(BB
);
1253 if (Accesses
== nullptr)
1256 // Pop everything that doesn't dominate the current block off the stack,
1257 // increment the PopEpoch to account for this.
1260 !VersionStack
.empty() &&
1261 "Version stack should have liveOnEntry sentinel dominating everything");
1262 BasicBlock
*BackBlock
= VersionStack
.back()->getBlock();
1263 if (DT
->dominates(BackBlock
, BB
))
1265 while (VersionStack
.back()->getBlock() == BackBlock
)
1266 VersionStack
.pop_back();
1270 for (MemoryAccess
&MA
: *Accesses
) {
1271 auto *MU
= dyn_cast
<MemoryUse
>(&MA
);
1273 VersionStack
.push_back(&MA
);
1278 if (isUseTriviallyOptimizableToLiveOnEntry(*AA
, MU
->getMemoryInst())) {
1279 MU
->setDefiningAccess(MSSA
->getLiveOnEntryDef(), true, None
);
1283 MemoryLocOrCall
UseMLOC(MU
);
1284 auto &LocInfo
= LocStackInfo
[UseMLOC
];
1285 // If the pop epoch changed, it means we've removed stuff from top of
1286 // stack due to changing blocks. We may have to reset the lower bound or
1288 if (LocInfo
.PopEpoch
!= PopEpoch
) {
1289 LocInfo
.PopEpoch
= PopEpoch
;
1290 LocInfo
.StackEpoch
= StackEpoch
;
1291 // If the lower bound was in something that no longer dominates us, we
1292 // have to reset it.
1293 // We can't simply track stack size, because the stack may have had
1294 // pushes/pops in the meantime.
1295 // XXX: This is non-optimal, but only is slower cases with heavily
1296 // branching dominator trees. To get the optimal number of queries would
1297 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1298 // the top of that stack dominates us. This does not seem worth it ATM.
1299 // A much cheaper optimization would be to always explore the deepest
1300 // branch of the dominator tree first. This will guarantee this resets on
1301 // the smallest set of blocks.
1302 if (LocInfo
.LowerBoundBlock
&& LocInfo
.LowerBoundBlock
!= BB
&&
1303 !DT
->dominates(LocInfo
.LowerBoundBlock
, BB
)) {
1304 // Reset the lower bound of things to check.
1305 // TODO: Some day we should be able to reset to last kill, rather than
1307 LocInfo
.LowerBound
= 0;
1308 LocInfo
.LowerBoundBlock
= VersionStack
[0]->getBlock();
1309 LocInfo
.LastKillValid
= false;
1311 } else if (LocInfo
.StackEpoch
!= StackEpoch
) {
1312 // If all that has changed is the StackEpoch, we only have to check the
1313 // new things on the stack, because we've checked everything before. In
1314 // this case, the lower bound of things to check remains the same.
1315 LocInfo
.PopEpoch
= PopEpoch
;
1316 LocInfo
.StackEpoch
= StackEpoch
;
1318 if (!LocInfo
.LastKillValid
) {
1319 LocInfo
.LastKill
= VersionStack
.size() - 1;
1320 LocInfo
.LastKillValid
= true;
1321 LocInfo
.AR
= MayAlias
;
1324 // At this point, we should have corrected last kill and LowerBound to be
1326 assert(LocInfo
.LowerBound
< VersionStack
.size() &&
1327 "Lower bound out of range");
1328 assert(LocInfo
.LastKill
< VersionStack
.size() &&
1329 "Last kill info out of range");
1330 // In any case, the new upper bound is the top of the stack.
1331 unsigned long UpperBound
= VersionStack
.size() - 1;
1333 if (UpperBound
- LocInfo
.LowerBound
> MaxCheckLimit
) {
1334 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU
<< " ("
1335 << *(MU
->getMemoryInst()) << ")"
1336 << " because there are "
1337 << UpperBound
- LocInfo
.LowerBound
1338 << " stores to disambiguate\n");
1339 // Because we did not walk, LastKill is no longer valid, as this may
1340 // have been a kill.
1341 LocInfo
.LastKillValid
= false;
1344 bool FoundClobberResult
= false;
1345 while (UpperBound
> LocInfo
.LowerBound
) {
1346 if (isa
<MemoryPhi
>(VersionStack
[UpperBound
])) {
1347 // For phis, use the walker, see where we ended up, go there
1348 Instruction
*UseInst
= MU
->getMemoryInst();
1349 MemoryAccess
*Result
= Walker
->getClobberingMemoryAccess(UseInst
);
1350 // We are guaranteed to find it or something is wrong
1351 while (VersionStack
[UpperBound
] != Result
) {
1352 assert(UpperBound
!= 0);
1355 FoundClobberResult
= true;
1359 MemoryDef
*MD
= cast
<MemoryDef
>(VersionStack
[UpperBound
]);
1360 // If the lifetime of the pointer ends at this instruction, it's live on
1362 if (!UseMLOC
.IsCall
&& lifetimeEndsAt(MD
, UseMLOC
.getLoc(), *AA
)) {
1363 // Reset UpperBound to liveOnEntryDef's place in the stack
1365 FoundClobberResult
= true;
1366 LocInfo
.AR
= MustAlias
;
1369 ClobberAlias CA
= instructionClobbersQuery(MD
, MU
, UseMLOC
, *AA
);
1371 FoundClobberResult
= true;
1378 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1380 // At the end of this loop, UpperBound is either a clobber, or lower bound
1381 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1382 if (FoundClobberResult
|| UpperBound
< LocInfo
.LastKill
) {
1383 // We were last killed now by where we got to
1384 if (MSSA
->isLiveOnEntryDef(VersionStack
[UpperBound
]))
1386 MU
->setDefiningAccess(VersionStack
[UpperBound
], true, LocInfo
.AR
);
1387 LocInfo
.LastKill
= UpperBound
;
1389 // Otherwise, we checked all the new ones, and now we know we can get to
1391 MU
->setDefiningAccess(VersionStack
[LocInfo
.LastKill
], true, LocInfo
.AR
);
1393 LocInfo
.LowerBound
= VersionStack
.size() - 1;
1394 LocInfo
.LowerBoundBlock
= BB
;
1398 /// Optimize uses to point to their actual clobbering definitions.
1399 void MemorySSA::OptimizeUses::optimizeUses() {
1400 SmallVector
<MemoryAccess
*, 16> VersionStack
;
1401 DenseMap
<MemoryLocOrCall
, MemlocStackInfo
> LocStackInfo
;
1402 VersionStack
.push_back(MSSA
->getLiveOnEntryDef());
1404 unsigned long StackEpoch
= 1;
1405 unsigned long PopEpoch
= 1;
1406 // We perform a non-recursive top-down dominator tree walk.
1407 for (const auto *DomNode
: depth_first(DT
->getRootNode()))
1408 optimizeUsesInBlock(DomNode
->getBlock(), StackEpoch
, PopEpoch
, VersionStack
,
1412 void MemorySSA::placePHINodes(
1413 const SmallPtrSetImpl
<BasicBlock
*> &DefiningBlocks
) {
1414 // Determine where our MemoryPhi's should go
1415 ForwardIDFCalculator
IDFs(*DT
);
1416 IDFs
.setDefiningBlocks(DefiningBlocks
);
1417 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
1418 IDFs
.calculate(IDFBlocks
);
1420 // Now place MemoryPhi nodes.
1421 for (auto &BB
: IDFBlocks
)
1422 createMemoryPhi(BB
);
1425 void MemorySSA::buildMemorySSA() {
1426 // We create an access to represent "live on entry", for things like
1427 // arguments or users of globals, where the memory they use is defined before
1428 // the beginning of the function. We do not actually insert it into the IR.
1429 // We do not define a live on exit for the immediate uses, and thus our
1430 // semantics do *not* imply that something with no immediate uses can simply
1432 BasicBlock
&StartingPoint
= F
.getEntryBlock();
1433 LiveOnEntryDef
.reset(new MemoryDef(F
.getContext(), nullptr, nullptr,
1434 &StartingPoint
, NextID
++));
1436 // We maintain lists of memory accesses per-block, trading memory for time. We
1437 // could just look up the memory access for every possible instruction in the
1439 SmallPtrSet
<BasicBlock
*, 32> DefiningBlocks
;
1440 // Go through each block, figure out where defs occur, and chain together all
1442 for (BasicBlock
&B
: F
) {
1443 bool InsertIntoDef
= false;
1444 AccessList
*Accesses
= nullptr;
1445 DefsList
*Defs
= nullptr;
1446 for (Instruction
&I
: B
) {
1447 MemoryUseOrDef
*MUD
= createNewAccess(&I
);
1452 Accesses
= getOrCreateAccessList(&B
);
1453 Accesses
->push_back(MUD
);
1454 if (isa
<MemoryDef
>(MUD
)) {
1455 InsertIntoDef
= true;
1457 Defs
= getOrCreateDefsList(&B
);
1458 Defs
->push_back(*MUD
);
1462 DefiningBlocks
.insert(&B
);
1464 placePHINodes(DefiningBlocks
);
1466 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1467 // filled in with all blocks.
1468 SmallPtrSet
<BasicBlock
*, 16> Visited
;
1469 renamePass(DT
->getRootNode(), LiveOnEntryDef
.get(), Visited
);
1471 CachingWalker
*Walker
= getWalkerImpl();
1473 OptimizeUses(this, Walker
, AA
, DT
).optimizeUses();
1475 // Mark the uses in unreachable blocks as live on entry, so that they go
1478 if (!Visited
.count(&BB
))
1479 markUnreachableAsLiveOnEntry(&BB
);
1482 MemorySSAWalker
*MemorySSA::getWalker() { return getWalkerImpl(); }
1484 MemorySSA::CachingWalker
*MemorySSA::getWalkerImpl() {
1486 return Walker
.get();
1489 WalkerBase
= llvm::make_unique
<ClobberWalkerBase
>(this, AA
, DT
);
1491 Walker
= llvm::make_unique
<CachingWalker
>(this, WalkerBase
.get());
1492 return Walker
.get();
1495 MemorySSAWalker
*MemorySSA::getSkipSelfWalker() {
1497 return SkipWalker
.get();
1500 WalkerBase
= llvm::make_unique
<ClobberWalkerBase
>(this, AA
, DT
);
1502 SkipWalker
= llvm::make_unique
<SkipSelfWalker
>(this, WalkerBase
.get());
1503 return SkipWalker
.get();
1507 // This is a helper function used by the creation routines. It places NewAccess
1508 // into the access and defs lists for a given basic block, at the given
1510 void MemorySSA::insertIntoListsForBlock(MemoryAccess
*NewAccess
,
1511 const BasicBlock
*BB
,
1512 InsertionPlace Point
) {
1513 auto *Accesses
= getOrCreateAccessList(BB
);
1514 if (Point
== Beginning
) {
1515 // If it's a phi node, it goes first, otherwise, it goes after any phi
1517 if (isa
<MemoryPhi
>(NewAccess
)) {
1518 Accesses
->push_front(NewAccess
);
1519 auto *Defs
= getOrCreateDefsList(BB
);
1520 Defs
->push_front(*NewAccess
);
1522 auto AI
= find_if_not(
1523 *Accesses
, [](const MemoryAccess
&MA
) { return isa
<MemoryPhi
>(MA
); });
1524 Accesses
->insert(AI
, NewAccess
);
1525 if (!isa
<MemoryUse
>(NewAccess
)) {
1526 auto *Defs
= getOrCreateDefsList(BB
);
1527 auto DI
= find_if_not(
1528 *Defs
, [](const MemoryAccess
&MA
) { return isa
<MemoryPhi
>(MA
); });
1529 Defs
->insert(DI
, *NewAccess
);
1533 Accesses
->push_back(NewAccess
);
1534 if (!isa
<MemoryUse
>(NewAccess
)) {
1535 auto *Defs
= getOrCreateDefsList(BB
);
1536 Defs
->push_back(*NewAccess
);
1539 BlockNumberingValid
.erase(BB
);
1542 void MemorySSA::insertIntoListsBefore(MemoryAccess
*What
, const BasicBlock
*BB
,
1543 AccessList::iterator InsertPt
) {
1544 auto *Accesses
= getWritableBlockAccesses(BB
);
1545 bool WasEnd
= InsertPt
== Accesses
->end();
1546 Accesses
->insert(AccessList::iterator(InsertPt
), What
);
1547 if (!isa
<MemoryUse
>(What
)) {
1548 auto *Defs
= getOrCreateDefsList(BB
);
1549 // If we got asked to insert at the end, we have an easy job, just shove it
1550 // at the end. If we got asked to insert before an existing def, we also get
1551 // an iterator. If we got asked to insert before a use, we have to hunt for
1554 Defs
->push_back(*What
);
1555 } else if (isa
<MemoryDef
>(InsertPt
)) {
1556 Defs
->insert(InsertPt
->getDefsIterator(), *What
);
1558 while (InsertPt
!= Accesses
->end() && !isa
<MemoryDef
>(InsertPt
))
1560 // Either we found a def, or we are inserting at the end
1561 if (InsertPt
== Accesses
->end())
1562 Defs
->push_back(*What
);
1564 Defs
->insert(InsertPt
->getDefsIterator(), *What
);
1567 BlockNumberingValid
.erase(BB
);
1570 void MemorySSA::prepareForMoveTo(MemoryAccess
*What
, BasicBlock
*BB
) {
1571 // Keep it in the lookup tables, remove from the lists
1572 removeFromLists(What
, false);
1574 // Note that moving should implicitly invalidate the optimized state of a
1575 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1577 if (auto *MD
= dyn_cast
<MemoryDef
>(What
))
1578 MD
->resetOptimized();
1582 // Move What before Where in the IR. The end result is that What will belong to
1583 // the right lists and have the right Block set, but will not otherwise be
1584 // correct. It will not have the right defining access, and if it is a def,
1585 // things below it will not properly be updated.
1586 void MemorySSA::moveTo(MemoryUseOrDef
*What
, BasicBlock
*BB
,
1587 AccessList::iterator Where
) {
1588 prepareForMoveTo(What
, BB
);
1589 insertIntoListsBefore(What
, BB
, Where
);
1592 void MemorySSA::moveTo(MemoryAccess
*What
, BasicBlock
*BB
,
1593 InsertionPlace Point
) {
1594 if (isa
<MemoryPhi
>(What
)) {
1595 assert(Point
== Beginning
&&
1596 "Can only move a Phi at the beginning of the block");
1597 // Update lookup table entry
1598 ValueToMemoryAccess
.erase(What
->getBlock());
1599 bool Inserted
= ValueToMemoryAccess
.insert({BB
, What
}).second
;
1601 assert(Inserted
&& "Cannot move a Phi to a block that already has one");
1604 prepareForMoveTo(What
, BB
);
1605 insertIntoListsForBlock(What
, BB
, Point
);
1608 MemoryPhi
*MemorySSA::createMemoryPhi(BasicBlock
*BB
) {
1609 assert(!getMemoryAccess(BB
) && "MemoryPhi already exists for this BB");
1610 MemoryPhi
*Phi
= new MemoryPhi(BB
->getContext(), BB
, NextID
++);
1611 // Phi's always are placed at the front of the block.
1612 insertIntoListsForBlock(Phi
, BB
, Beginning
);
1613 ValueToMemoryAccess
[BB
] = Phi
;
1617 MemoryUseOrDef
*MemorySSA::createDefinedAccess(Instruction
*I
,
1618 MemoryAccess
*Definition
,
1619 const MemoryUseOrDef
*Template
) {
1620 assert(!isa
<PHINode
>(I
) && "Cannot create a defined access for a PHI");
1621 MemoryUseOrDef
*NewAccess
= createNewAccess(I
, Template
);
1623 NewAccess
!= nullptr &&
1624 "Tried to create a memory access for a non-memory touching instruction");
1625 NewAccess
->setDefiningAccess(Definition
);
1629 // Return true if the instruction has ordering constraints.
1630 // Note specifically that this only considers stores and loads
1631 // because others are still considered ModRef by getModRefInfo.
1632 static inline bool isOrdered(const Instruction
*I
) {
1633 if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
1634 if (!SI
->isUnordered())
1636 } else if (auto *LI
= dyn_cast
<LoadInst
>(I
)) {
1637 if (!LI
->isUnordered())
1643 /// Helper function to create new memory accesses
1644 MemoryUseOrDef
*MemorySSA::createNewAccess(Instruction
*I
,
1645 const MemoryUseOrDef
*Template
) {
1646 // The assume intrinsic has a control dependency which we model by claiming
1647 // that it writes arbitrarily. Ignore that fake memory dependency here.
1648 // FIXME: Replace this special casing with a more accurate modelling of
1649 // assume's control dependency.
1650 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
1651 if (II
->getIntrinsicID() == Intrinsic::assume
)
1656 Def
= dyn_cast_or_null
<MemoryDef
>(Template
) != nullptr;
1657 Use
= dyn_cast_or_null
<MemoryUse
>(Template
) != nullptr;
1658 #if !defined(NDEBUG)
1659 ModRefInfo ModRef
= AA
->getModRefInfo(I
, None
);
1660 bool DefCheck
, UseCheck
;
1661 DefCheck
= isModSet(ModRef
) || isOrdered(I
);
1662 UseCheck
= isRefSet(ModRef
);
1663 assert(Def
== DefCheck
&& (Def
|| Use
== UseCheck
) && "Invalid template");
1666 // Find out what affect this instruction has on memory.
1667 ModRefInfo ModRef
= AA
->getModRefInfo(I
, None
);
1668 // The isOrdered check is used to ensure that volatiles end up as defs
1669 // (atomics end up as ModRef right now anyway). Until we separate the
1670 // ordering chain from the memory chain, this enables people to see at least
1671 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1672 // will still give an answer that bypasses other volatile loads. TODO:
1673 // Separate memory aliasing and ordering into two different chains so that
1674 // we can precisely represent both "what memory will this read/write/is
1675 // clobbered by" and "what instructions can I move this past".
1676 Def
= isModSet(ModRef
) || isOrdered(I
);
1677 Use
= isRefSet(ModRef
);
1680 // It's possible for an instruction to not modify memory at all. During
1681 // construction, we ignore them.
1685 MemoryUseOrDef
*MUD
;
1687 MUD
= new MemoryDef(I
->getContext(), nullptr, I
, I
->getParent(), NextID
++);
1689 MUD
= new MemoryUse(I
->getContext(), nullptr, I
, I
->getParent());
1690 ValueToMemoryAccess
[I
] = MUD
;
1694 /// Returns true if \p Replacer dominates \p Replacee .
1695 bool MemorySSA::dominatesUse(const MemoryAccess
*Replacer
,
1696 const MemoryAccess
*Replacee
) const {
1697 if (isa
<MemoryUseOrDef
>(Replacee
))
1698 return DT
->dominates(Replacer
->getBlock(), Replacee
->getBlock());
1699 const auto *MP
= cast
<MemoryPhi
>(Replacee
);
1700 // For a phi node, the use occurs in the predecessor block of the phi node.
1701 // Since we may occur multiple times in the phi node, we have to check each
1702 // operand to ensure Replacer dominates each operand where Replacee occurs.
1703 for (const Use
&Arg
: MP
->operands()) {
1704 if (Arg
.get() != Replacee
&&
1705 !DT
->dominates(Replacer
->getBlock(), MP
->getIncomingBlock(Arg
)))
1711 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1712 void MemorySSA::removeFromLookups(MemoryAccess
*MA
) {
1713 assert(MA
->use_empty() &&
1714 "Trying to remove memory access that still has uses");
1715 BlockNumbering
.erase(MA
);
1716 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1717 MUD
->setDefiningAccess(nullptr);
1718 // Invalidate our walker's cache if necessary
1719 if (!isa
<MemoryUse
>(MA
))
1720 Walker
->invalidateInfo(MA
);
1723 if (const auto *MUD
= dyn_cast
<MemoryUseOrDef
>(MA
))
1724 MemoryInst
= MUD
->getMemoryInst();
1726 MemoryInst
= MA
->getBlock();
1728 auto VMA
= ValueToMemoryAccess
.find(MemoryInst
);
1729 if (VMA
->second
== MA
)
1730 ValueToMemoryAccess
.erase(VMA
);
1733 /// Properly remove \p MA from all of MemorySSA's lists.
1735 /// Because of the way the intrusive list and use lists work, it is important to
1736 /// do removal in the right order.
1737 /// ShouldDelete defaults to true, and will cause the memory access to also be
1738 /// deleted, not just removed.
1739 void MemorySSA::removeFromLists(MemoryAccess
*MA
, bool ShouldDelete
) {
1740 BasicBlock
*BB
= MA
->getBlock();
1741 // The access list owns the reference, so we erase it from the non-owning list
1743 if (!isa
<MemoryUse
>(MA
)) {
1744 auto DefsIt
= PerBlockDefs
.find(BB
);
1745 std::unique_ptr
<DefsList
> &Defs
= DefsIt
->second
;
1748 PerBlockDefs
.erase(DefsIt
);
1751 // The erase call here will delete it. If we don't want it deleted, we call
1753 auto AccessIt
= PerBlockAccesses
.find(BB
);
1754 std::unique_ptr
<AccessList
> &Accesses
= AccessIt
->second
;
1756 Accesses
->erase(MA
);
1758 Accesses
->remove(MA
);
1760 if (Accesses
->empty()) {
1761 PerBlockAccesses
.erase(AccessIt
);
1762 BlockNumberingValid
.erase(BB
);
1766 void MemorySSA::print(raw_ostream
&OS
) const {
1767 MemorySSAAnnotatedWriter
Writer(this);
1768 F
.print(OS
, &Writer
);
1771 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1772 LLVM_DUMP_METHOD
void MemorySSA::dump() const { print(dbgs()); }
1775 void MemorySSA::verifyMemorySSA() const {
1777 verifyDomination(F
);
1779 verifyDominationNumbers(F
);
1780 Walker
->verify(this);
1781 // Previously, the verification used to also verify that the clobberingAccess
1782 // cached by MemorySSA is the same as the clobberingAccess found at a later
1783 // query to AA. This does not hold true in general due to the current fragility
1784 // of BasicAA which has arbitrary caps on the things it analyzes before giving
1785 // up. As a result, transformations that are correct, will lead to BasicAA
1786 // returning different Alias answers before and after that transformation.
1787 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1788 // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1789 // every transformation, which defeats the purpose of using it. For such an
1790 // example, see test4 added in D51960.
1793 /// Verify that all of the blocks we believe to have valid domination numbers
1794 /// actually have valid domination numbers.
1795 void MemorySSA::verifyDominationNumbers(const Function
&F
) const {
1797 if (BlockNumberingValid
.empty())
1800 SmallPtrSet
<const BasicBlock
*, 16> ValidBlocks
= BlockNumberingValid
;
1801 for (const BasicBlock
&BB
: F
) {
1802 if (!ValidBlocks
.count(&BB
))
1805 ValidBlocks
.erase(&BB
);
1807 const AccessList
*Accesses
= getBlockAccesses(&BB
);
1808 // It's correct to say an empty block has valid numbering.
1812 // Block numbering starts at 1.
1813 unsigned long LastNumber
= 0;
1814 for (const MemoryAccess
&MA
: *Accesses
) {
1815 auto ThisNumberIter
= BlockNumbering
.find(&MA
);
1816 assert(ThisNumberIter
!= BlockNumbering
.end() &&
1817 "MemoryAccess has no domination number in a valid block!");
1819 unsigned long ThisNumber
= ThisNumberIter
->second
;
1820 assert(ThisNumber
> LastNumber
&&
1821 "Domination numbers should be strictly increasing!");
1822 LastNumber
= ThisNumber
;
1826 assert(ValidBlocks
.empty() &&
1827 "All valid BasicBlocks should exist in F -- dangling pointers?");
1831 /// Verify that the order and existence of MemoryAccesses matches the
1832 /// order and existence of memory affecting instructions.
1833 void MemorySSA::verifyOrdering(Function
&F
) const {
1835 // Walk all the blocks, comparing what the lookups think and what the access
1836 // lists think, as well as the order in the blocks vs the order in the access
1838 SmallVector
<MemoryAccess
*, 32> ActualAccesses
;
1839 SmallVector
<MemoryAccess
*, 32> ActualDefs
;
1840 for (BasicBlock
&B
: F
) {
1841 const AccessList
*AL
= getBlockAccesses(&B
);
1842 const auto *DL
= getBlockDefs(&B
);
1843 MemoryAccess
*Phi
= getMemoryAccess(&B
);
1845 ActualAccesses
.push_back(Phi
);
1846 ActualDefs
.push_back(Phi
);
1849 for (Instruction
&I
: B
) {
1850 MemoryAccess
*MA
= getMemoryAccess(&I
);
1851 assert((!MA
|| (AL
&& (isa
<MemoryUse
>(MA
) || DL
))) &&
1852 "We have memory affecting instructions "
1853 "in this block but they are not in the "
1854 "access list or defs list");
1856 ActualAccesses
.push_back(MA
);
1857 if (isa
<MemoryDef
>(MA
))
1858 ActualDefs
.push_back(MA
);
1861 // Either we hit the assert, really have no accesses, or we have both
1862 // accesses and an access list.
1866 assert(AL
->size() == ActualAccesses
.size() &&
1867 "We don't have the same number of accesses in the block as on the "
1869 assert((DL
|| ActualDefs
.size() == 0) &&
1870 "Either we should have a defs list, or we should have no defs");
1871 assert((!DL
|| DL
->size() == ActualDefs
.size()) &&
1872 "We don't have the same number of defs in the block as on the "
1874 auto ALI
= AL
->begin();
1875 auto AAI
= ActualAccesses
.begin();
1876 while (ALI
!= AL
->end() && AAI
!= ActualAccesses
.end()) {
1877 assert(&*ALI
== *AAI
&& "Not the same accesses in the same order");
1881 ActualAccesses
.clear();
1883 auto DLI
= DL
->begin();
1884 auto ADI
= ActualDefs
.begin();
1885 while (DLI
!= DL
->end() && ADI
!= ActualDefs
.end()) {
1886 assert(&*DLI
== *ADI
&& "Not the same defs in the same order");
1896 /// Verify the domination properties of MemorySSA by checking that each
1897 /// definition dominates all of its uses.
1898 void MemorySSA::verifyDomination(Function
&F
) const {
1900 for (BasicBlock
&B
: F
) {
1901 // Phi nodes are attached to basic blocks
1902 if (MemoryPhi
*MP
= getMemoryAccess(&B
))
1903 for (const Use
&U
: MP
->uses())
1904 assert(dominates(MP
, U
) && "Memory PHI does not dominate it's uses");
1906 for (Instruction
&I
: B
) {
1907 MemoryAccess
*MD
= dyn_cast_or_null
<MemoryDef
>(getMemoryAccess(&I
));
1911 for (const Use
&U
: MD
->uses())
1912 assert(dominates(MD
, U
) && "Memory Def does not dominate it's uses");
1918 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
1919 /// appears in the use list of \p Def.
1920 void MemorySSA::verifyUseInDefs(MemoryAccess
*Def
, MemoryAccess
*Use
) const {
1922 // The live on entry use may cause us to get a NULL def here
1924 assert(isLiveOnEntryDef(Use
) &&
1925 "Null def but use not point to live on entry def");
1927 assert(is_contained(Def
->users(), Use
) &&
1928 "Did not find use in def's use list");
1932 /// Verify the immediate use information, by walking all the memory
1933 /// accesses and verifying that, for each use, it appears in the
1934 /// appropriate def's use list
1935 void MemorySSA::verifyDefUses(Function
&F
) const {
1937 for (BasicBlock
&B
: F
) {
1938 // Phi nodes are attached to basic blocks
1939 if (MemoryPhi
*Phi
= getMemoryAccess(&B
)) {
1940 assert(Phi
->getNumOperands() == static_cast<unsigned>(std::distance(
1941 pred_begin(&B
), pred_end(&B
))) &&
1942 "Incomplete MemoryPhi Node");
1943 for (unsigned I
= 0, E
= Phi
->getNumIncomingValues(); I
!= E
; ++I
) {
1944 verifyUseInDefs(Phi
->getIncomingValue(I
), Phi
);
1945 assert(find(predecessors(&B
), Phi
->getIncomingBlock(I
)) !=
1947 "Incoming phi block not a block predecessor");
1951 for (Instruction
&I
: B
) {
1952 if (MemoryUseOrDef
*MA
= getMemoryAccess(&I
)) {
1953 verifyUseInDefs(MA
->getDefiningAccess(), MA
);
1960 /// Perform a local numbering on blocks so that instruction ordering can be
1961 /// determined in constant time.
1962 /// TODO: We currently just number in order. If we numbered by N, we could
1963 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1964 /// log2(N) sequences of mixed before and after) without needing to invalidate
1966 void MemorySSA::renumberBlock(const BasicBlock
*B
) const {
1967 // The pre-increment ensures the numbers really start at 1.
1968 unsigned long CurrentNumber
= 0;
1969 const AccessList
*AL
= getBlockAccesses(B
);
1970 assert(AL
!= nullptr && "Asking to renumber an empty block");
1971 for (const auto &I
: *AL
)
1972 BlockNumbering
[&I
] = ++CurrentNumber
;
1973 BlockNumberingValid
.insert(B
);
1976 /// Determine, for two memory accesses in the same block,
1977 /// whether \p Dominator dominates \p Dominatee.
1978 /// \returns True if \p Dominator dominates \p Dominatee.
1979 bool MemorySSA::locallyDominates(const MemoryAccess
*Dominator
,
1980 const MemoryAccess
*Dominatee
) const {
1981 const BasicBlock
*DominatorBlock
= Dominator
->getBlock();
1983 assert((DominatorBlock
== Dominatee
->getBlock()) &&
1984 "Asking for local domination when accesses are in different blocks!");
1985 // A node dominates itself.
1986 if (Dominatee
== Dominator
)
1989 // When Dominatee is defined on function entry, it is not dominated by another
1991 if (isLiveOnEntryDef(Dominatee
))
1994 // When Dominator is defined on function entry, it dominates the other memory
1996 if (isLiveOnEntryDef(Dominator
))
1999 if (!BlockNumberingValid
.count(DominatorBlock
))
2000 renumberBlock(DominatorBlock
);
2002 unsigned long DominatorNum
= BlockNumbering
.lookup(Dominator
);
2003 // All numbers start with 1
2004 assert(DominatorNum
!= 0 && "Block was not numbered properly");
2005 unsigned long DominateeNum
= BlockNumbering
.lookup(Dominatee
);
2006 assert(DominateeNum
!= 0 && "Block was not numbered properly");
2007 return DominatorNum
< DominateeNum
;
2010 bool MemorySSA::dominates(const MemoryAccess
*Dominator
,
2011 const MemoryAccess
*Dominatee
) const {
2012 if (Dominator
== Dominatee
)
2015 if (isLiveOnEntryDef(Dominatee
))
2018 if (Dominator
->getBlock() != Dominatee
->getBlock())
2019 return DT
->dominates(Dominator
->getBlock(), Dominatee
->getBlock());
2020 return locallyDominates(Dominator
, Dominatee
);
2023 bool MemorySSA::dominates(const MemoryAccess
*Dominator
,
2024 const Use
&Dominatee
) const {
2025 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(Dominatee
.getUser())) {
2026 BasicBlock
*UseBB
= MP
->getIncomingBlock(Dominatee
);
2027 // The def must dominate the incoming block of the phi.
2028 if (UseBB
!= Dominator
->getBlock())
2029 return DT
->dominates(Dominator
->getBlock(), UseBB
);
2030 // If the UseBB and the DefBB are the same, compare locally.
2031 return locallyDominates(Dominator
, cast
<MemoryAccess
>(Dominatee
));
2033 // If it's not a PHI node use, the normal dominates can already handle it.
2034 return dominates(Dominator
, cast
<MemoryAccess
>(Dominatee
.getUser()));
2037 const static char LiveOnEntryStr
[] = "liveOnEntry";
2039 void MemoryAccess::print(raw_ostream
&OS
) const {
2040 switch (getValueID()) {
2041 case MemoryPhiVal
: return static_cast<const MemoryPhi
*>(this)->print(OS
);
2042 case MemoryDefVal
: return static_cast<const MemoryDef
*>(this)->print(OS
);
2043 case MemoryUseVal
: return static_cast<const MemoryUse
*>(this)->print(OS
);
2045 llvm_unreachable("invalid value id");
2048 void MemoryDef::print(raw_ostream
&OS
) const {
2049 MemoryAccess
*UO
= getDefiningAccess();
2051 auto printID
= [&OS
](MemoryAccess
*A
) {
2052 if (A
&& A
->getID())
2055 OS
<< LiveOnEntryStr
;
2058 OS
<< getID() << " = MemoryDef(";
2062 if (isOptimized()) {
2064 printID(getOptimized());
2066 if (Optional
<AliasResult
> AR
= getOptimizedAccessType())
2071 void MemoryPhi::print(raw_ostream
&OS
) const {
2073 OS
<< getID() << " = MemoryPhi(";
2074 for (const auto &Op
: operands()) {
2075 BasicBlock
*BB
= getIncomingBlock(Op
);
2076 MemoryAccess
*MA
= cast
<MemoryAccess
>(Op
);
2084 OS
<< BB
->getName();
2086 BB
->printAsOperand(OS
, false);
2088 if (unsigned ID
= MA
->getID())
2091 OS
<< LiveOnEntryStr
;
2097 void MemoryUse::print(raw_ostream
&OS
) const {
2098 MemoryAccess
*UO
= getDefiningAccess();
2100 if (UO
&& UO
->getID())
2103 OS
<< LiveOnEntryStr
;
2106 if (Optional
<AliasResult
> AR
= getOptimizedAccessType())
2110 void MemoryAccess::dump() const {
2111 // Cannot completely remove virtual function even in release mode.
2112 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2118 char MemorySSAPrinterLegacyPass::ID
= 0;
2120 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID
) {
2121 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2124 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2125 AU
.setPreservesAll();
2126 AU
.addRequired
<MemorySSAWrapperPass
>();
2129 bool MemorySSAPrinterLegacyPass::runOnFunction(Function
&F
) {
2130 auto &MSSA
= getAnalysis
<MemorySSAWrapperPass
>().getMSSA();
2132 if (VerifyMemorySSA
)
2133 MSSA
.verifyMemorySSA();
2137 AnalysisKey
MemorySSAAnalysis::Key
;
2139 MemorySSAAnalysis::Result
MemorySSAAnalysis::run(Function
&F
,
2140 FunctionAnalysisManager
&AM
) {
2141 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
2142 auto &AA
= AM
.getResult
<AAManager
>(F
);
2143 return MemorySSAAnalysis::Result(llvm::make_unique
<MemorySSA
>(F
, &AA
, &DT
));
2146 PreservedAnalyses
MemorySSAPrinterPass::run(Function
&F
,
2147 FunctionAnalysisManager
&AM
) {
2148 OS
<< "MemorySSA for function: " << F
.getName() << "\n";
2149 AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA().print(OS
);
2151 return PreservedAnalyses::all();
2154 PreservedAnalyses
MemorySSAVerifierPass::run(Function
&F
,
2155 FunctionAnalysisManager
&AM
) {
2156 AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA().verifyMemorySSA();
2158 return PreservedAnalyses::all();
2161 char MemorySSAWrapperPass::ID
= 0;
2163 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID
) {
2164 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2167 void MemorySSAWrapperPass::releaseMemory() { MSSA
.reset(); }
2169 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2170 AU
.setPreservesAll();
2171 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
2172 AU
.addRequiredTransitive
<AAResultsWrapperPass
>();
2175 bool MemorySSAWrapperPass::runOnFunction(Function
&F
) {
2176 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
2177 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
2178 MSSA
.reset(new MemorySSA(F
, &AA
, &DT
));
2182 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA
->verifyMemorySSA(); }
2184 void MemorySSAWrapperPass::print(raw_ostream
&OS
, const Module
*M
) const {
2188 MemorySSAWalker::MemorySSAWalker(MemorySSA
*M
) : MSSA(M
) {}
2190 /// Walk the use-def chains starting at \p StartingAccess and find
2191 /// the MemoryAccess that actually clobbers Loc.
2193 /// \returns our clobbering memory access
2194 MemoryAccess
*MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2195 MemoryAccess
*StartingAccess
, const MemoryLocation
&Loc
) {
2196 if (isa
<MemoryPhi
>(StartingAccess
))
2197 return StartingAccess
;
2199 auto *StartingUseOrDef
= cast
<MemoryUseOrDef
>(StartingAccess
);
2200 if (MSSA
->isLiveOnEntryDef(StartingUseOrDef
))
2201 return StartingUseOrDef
;
2203 Instruction
*I
= StartingUseOrDef
->getMemoryInst();
2205 // Conservatively, fences are always clobbers, so don't perform the walk if we
2207 if (!isa
<CallBase
>(I
) && I
->isFenceLike())
2208 return StartingUseOrDef
;
2210 UpwardsMemoryQuery Q
;
2211 Q
.OriginalAccess
= StartingUseOrDef
;
2212 Q
.StartingLoc
= Loc
;
2216 // Unlike the other function, do not walk to the def of a def, because we are
2217 // handed something we already believe is the clobbering access.
2218 // We never set SkipSelf to true in Q in this method.
2219 MemoryAccess
*DefiningAccess
= isa
<MemoryUse
>(StartingUseOrDef
)
2220 ? StartingUseOrDef
->getDefiningAccess()
2223 MemoryAccess
*Clobber
= Walker
.findClobber(DefiningAccess
, Q
);
2224 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I
<< " is ");
2225 LLVM_DEBUG(dbgs() << *StartingUseOrDef
<< "\n");
2226 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I
<< " is ");
2227 LLVM_DEBUG(dbgs() << *Clobber
<< "\n");
2232 MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(MemoryAccess
*MA
,
2234 auto *StartingAccess
= dyn_cast
<MemoryUseOrDef
>(MA
);
2235 // If this is a MemoryPhi, we can't do anything.
2236 if (!StartingAccess
)
2239 bool IsOptimized
= false;
2241 // If this is an already optimized use or def, return the optimized result.
2242 // Note: Currently, we store the optimized def result in a separate field,
2243 // since we can't use the defining access.
2244 if (StartingAccess
->isOptimized()) {
2245 if (!SkipSelf
|| !isa
<MemoryDef
>(StartingAccess
))
2246 return StartingAccess
->getOptimized();
2250 const Instruction
*I
= StartingAccess
->getMemoryInst();
2251 // We can't sanely do anything with a fence, since they conservatively clobber
2252 // all memory, and have no locations to get pointers from to try to
2254 if (!isa
<CallBase
>(I
) && I
->isFenceLike())
2255 return StartingAccess
;
2257 UpwardsMemoryQuery
Q(I
, StartingAccess
);
2259 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA
->AA
, I
)) {
2260 MemoryAccess
*LiveOnEntry
= MSSA
->getLiveOnEntryDef();
2261 StartingAccess
->setOptimized(LiveOnEntry
);
2262 StartingAccess
->setOptimizedAccessType(None
);
2266 MemoryAccess
*OptimizedAccess
;
2268 // Start with the thing we already think clobbers this location
2269 MemoryAccess
*DefiningAccess
= StartingAccess
->getDefiningAccess();
2271 // At this point, DefiningAccess may be the live on entry def.
2272 // If it is, we will not get a better result.
2273 if (MSSA
->isLiveOnEntryDef(DefiningAccess
)) {
2274 StartingAccess
->setOptimized(DefiningAccess
);
2275 StartingAccess
->setOptimizedAccessType(None
);
2276 return DefiningAccess
;
2279 OptimizedAccess
= Walker
.findClobber(DefiningAccess
, Q
);
2280 StartingAccess
->setOptimized(OptimizedAccess
);
2281 if (MSSA
->isLiveOnEntryDef(OptimizedAccess
))
2282 StartingAccess
->setOptimizedAccessType(None
);
2283 else if (Q
.AR
== MustAlias
)
2284 StartingAccess
->setOptimizedAccessType(MustAlias
);
2286 OptimizedAccess
= StartingAccess
->getOptimized();
2288 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I
<< " is ");
2289 LLVM_DEBUG(dbgs() << *StartingAccess
<< "\n");
2290 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I
<< " is ");
2291 LLVM_DEBUG(dbgs() << *OptimizedAccess
<< "\n");
2293 MemoryAccess
*Result
;
2294 if (SkipSelf
&& isa
<MemoryPhi
>(OptimizedAccess
) &&
2295 isa
<MemoryDef
>(StartingAccess
)) {
2296 assert(isa
<MemoryDef
>(Q
.OriginalAccess
));
2297 Q
.SkipSelfAccess
= true;
2298 Result
= Walker
.findClobber(OptimizedAccess
, Q
);
2300 Result
= OptimizedAccess
;
2302 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf
);
2303 LLVM_DEBUG(dbgs() << "] for " << *I
<< " is " << *Result
<< "\n");
2309 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess
*MA
) {
2310 return Walker
->getClobberingMemoryAccessBase(MA
, false);
2314 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess
*MA
,
2315 const MemoryLocation
&Loc
) {
2316 return Walker
->getClobberingMemoryAccessBase(MA
, Loc
);
2320 MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess
*MA
) {
2321 return Walker
->getClobberingMemoryAccessBase(MA
, true);
2325 MemorySSA::SkipSelfWalker::getClobberingMemoryAccess(MemoryAccess
*MA
,
2326 const MemoryLocation
&Loc
) {
2327 return Walker
->getClobberingMemoryAccessBase(MA
, Loc
);
2331 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess
*MA
) {
2332 if (auto *Use
= dyn_cast
<MemoryUseOrDef
>(MA
))
2333 return Use
->getDefiningAccess();
2337 MemoryAccess
*DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2338 MemoryAccess
*StartingAccess
, const MemoryLocation
&) {
2339 if (auto *Use
= dyn_cast
<MemoryUseOrDef
>(StartingAccess
))
2340 return Use
->getDefiningAccess();
2341 return StartingAccess
;
2344 void MemoryPhi::deleteMe(DerivedUser
*Self
) {
2345 delete static_cast<MemoryPhi
*>(Self
);
2348 void MemoryDef::deleteMe(DerivedUser
*Self
) {
2349 delete static_cast<MemoryDef
*>(Self
);
2352 void MemoryUse::deleteMe(DerivedUser
*Self
) {
2353 delete static_cast<MemoryUse
*>(Self
);