Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / Analysis / MemorySSAUpdater.cpp
blob53950be58db2d7828bb9a97e19185d4a3da71239
1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
27 #include <algorithm>
29 #define DEBUG_TYPE "memoryssa"
30 using namespace llvm;
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
42 BasicBlock *BB,
43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
44 // First, do a cache lookup. Without this cache, certain CFG structures
45 // (like a series of if statements) take exponential time to visit.
46 auto Cached = CachedPreviousDef.find(BB);
47 if (Cached != CachedPreviousDef.end()) {
48 return Cached->second;
51 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
52 // Single predecessor case, just recurse, we can only have one definition.
53 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
54 CachedPreviousDef.insert({BB, Result});
55 return Result;
58 if (VisitedBlocks.count(BB)) {
59 // We hit our node again, meaning we had a cycle, we must insert a phi
60 // node to break it so we have an operand. The only case this will
61 // insert useless phis is if we have irreducible control flow.
62 MemoryAccess *Result = MSSA->createMemoryPhi(BB);
63 CachedPreviousDef.insert({BB, Result});
64 return Result;
67 if (VisitedBlocks.insert(BB).second) {
68 // Mark us visited so we can detect a cycle
69 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
71 // Recurse to get the values in our predecessors for placement of a
72 // potential phi node. This will insert phi nodes if we cycle in order to
73 // break the cycle and have an operand.
74 for (auto *Pred : predecessors(BB))
75 PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
77 // Now try to simplify the ops to avoid placing a phi.
78 // This may return null if we never created a phi yet, that's okay
79 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
81 // See if we can avoid the phi by simplifying it.
82 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
83 // If we couldn't simplify, we may have to create a phi
84 if (Result == Phi) {
85 if (!Phi)
86 Phi = MSSA->createMemoryPhi(BB);
88 // See if the existing phi operands match what we need.
89 // Unlike normal SSA, we only allow one phi node per block, so we can't just
90 // create a new one.
91 if (Phi->getNumOperands() != 0) {
92 // FIXME: Figure out whether this is dead code and if so remove it.
93 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
94 // These will have been filled in by the recursive read we did above.
95 llvm::copy(PhiOps, Phi->op_begin());
96 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
98 } else {
99 unsigned i = 0;
100 for (auto *Pred : predecessors(BB))
101 Phi->addIncoming(&*PhiOps[i++], Pred);
102 InsertedPHIs.push_back(Phi);
104 Result = Phi;
107 // Set ourselves up for the next variable by resetting visited state.
108 VisitedBlocks.erase(BB);
109 CachedPreviousDef.insert({BB, Result});
110 return Result;
112 llvm_unreachable("Should have hit one of the three cases above");
115 // This starts at the memory access, and goes backwards in the block to find the
116 // previous definition. If a definition is not found the block of the access,
117 // it continues globally, creating phi nodes to ensure we have a single
118 // definition.
119 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
120 if (auto *LocalResult = getPreviousDefInBlock(MA))
121 return LocalResult;
122 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
123 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
126 // This starts at the memory access, and goes backwards in the block to the find
127 // the previous definition. If the definition is not found in the block of the
128 // access, it returns nullptr.
129 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
130 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
132 // It's possible there are no defs, or we got handed the first def to start.
133 if (Defs) {
134 // If this is a def, we can just use the def iterators.
135 if (!isa<MemoryUse>(MA)) {
136 auto Iter = MA->getReverseDefsIterator();
137 ++Iter;
138 if (Iter != Defs->rend())
139 return &*Iter;
140 } else {
141 // Otherwise, have to walk the all access iterator.
142 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
143 for (auto &U : make_range(++MA->getReverseIterator(), End))
144 if (!isa<MemoryUse>(U))
145 return cast<MemoryAccess>(&U);
146 // Note that if MA comes before Defs->begin(), we won't hit a def.
147 return nullptr;
150 return nullptr;
153 // This starts at the end of block
154 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
155 BasicBlock *BB,
156 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
157 auto *Defs = MSSA->getWritableBlockDefs(BB);
159 if (Defs)
160 return &*Defs->rbegin();
162 return getPreviousDefRecursive(BB, CachedPreviousDef);
164 // Recurse over a set of phi uses to eliminate the trivial ones
165 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
166 if (!Phi)
167 return nullptr;
168 TrackingVH<MemoryAccess> Res(Phi);
169 SmallVector<TrackingVH<Value>, 8> Uses;
170 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
171 for (auto &U : Uses) {
172 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
173 auto OperRange = UsePhi->operands();
174 tryRemoveTrivialPhi(UsePhi, OperRange);
177 return Res;
180 // Eliminate trivial phis
181 // Phis are trivial if they are defined either by themselves, or all the same
182 // argument.
183 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
184 // We recursively try to remove them.
185 template <class RangeType>
186 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
187 RangeType &Operands) {
188 // Bail out on non-opt Phis.
189 if (NonOptPhis.count(Phi))
190 return Phi;
192 // Detect equal or self arguments
193 MemoryAccess *Same = nullptr;
194 for (auto &Op : Operands) {
195 // If the same or self, good so far
196 if (Op == Phi || Op == Same)
197 continue;
198 // not the same, return the phi since it's not eliminatable by us
199 if (Same)
200 return Phi;
201 Same = cast<MemoryAccess>(&*Op);
203 // Never found a non-self reference, the phi is undef
204 if (Same == nullptr)
205 return MSSA->getLiveOnEntryDef();
206 if (Phi) {
207 Phi->replaceAllUsesWith(Same);
208 removeMemoryAccess(Phi);
211 // We should only end up recursing in case we replaced something, in which
212 // case, we may have made other Phis trivial.
213 return recursePhi(Same);
216 void MemorySSAUpdater::insertUse(MemoryUse *MU) {
217 InsertedPHIs.clear();
218 MU->setDefiningAccess(getPreviousDef(MU));
219 // Unlike for defs, there is no extra work to do. Because uses do not create
220 // new may-defs, there are only two cases:
222 // 1. There was a def already below us, and therefore, we should not have
223 // created a phi node because it was already needed for the def.
225 // 2. There is no def below us, and therefore, there is no extra renaming work
226 // to do.
229 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
230 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
231 MemoryAccess *NewDef) {
232 // Replace any operand with us an incoming block with the new defining
233 // access.
234 int i = MP->getBasicBlockIndex(BB);
235 assert(i != -1 && "Should have found the basic block in the phi");
236 // We can't just compare i against getNumOperands since one is signed and the
237 // other not. So use it to index into the block iterator.
238 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
239 ++BBIter) {
240 if (*BBIter != BB)
241 break;
242 MP->setIncomingValue(i, NewDef);
243 ++i;
247 // A brief description of the algorithm:
248 // First, we compute what should define the new def, using the SSA
249 // construction algorithm.
250 // Then, we update the defs below us (and any new phi nodes) in the graph to
251 // point to the correct new defs, to ensure we only have one variable, and no
252 // disconnected stores.
253 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
254 InsertedPHIs.clear();
256 // See if we had a local def, and if not, go hunting.
257 MemoryAccess *DefBefore = getPreviousDef(MD);
258 bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
260 // There is a def before us, which means we can replace any store/phi uses
261 // of that thing with us, since we are in the way of whatever was there
262 // before.
263 // We now define that def's memorydefs and memoryphis
264 if (DefBeforeSameBlock) {
265 for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
266 UI != UE;) {
267 Use &U = *UI++;
268 // Leave the MemoryUses alone.
269 // Also make sure we skip ourselves to avoid self references.
270 if (isa<MemoryUse>(U.getUser()) || U.getUser() == MD)
271 continue;
272 U.set(MD);
276 // and that def is now our defining access.
277 MD->setDefiningAccess(DefBefore);
279 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
280 if (!DefBeforeSameBlock) {
281 // If there was a local def before us, we must have the same effect it
282 // did. Because every may-def is the same, any phis/etc we would create, it
283 // would also have created. If there was no local def before us, we
284 // performed a global update, and have to search all successors and make
285 // sure we update the first def in each of them (following all paths until
286 // we hit the first def along each path). This may also insert phi nodes.
287 // TODO: There are other cases we can skip this work, such as when we have a
288 // single successor, and only used a straight line of single pred blocks
289 // backwards to find the def. To make that work, we'd have to track whether
290 // getDefRecursive only ever used the single predecessor case. These types
291 // of paths also only exist in between CFG simplifications.
292 FixupList.push_back(MD);
295 while (!FixupList.empty()) {
296 unsigned StartingPHISize = InsertedPHIs.size();
297 fixupDefs(FixupList);
298 FixupList.clear();
299 // Put any new phis on the fixup list, and process them
300 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
302 // Now that all fixups are done, rename all uses if we are asked.
303 if (RenameUses) {
304 SmallPtrSet<BasicBlock *, 16> Visited;
305 BasicBlock *StartBlock = MD->getBlock();
306 // We are guaranteed there is a def in the block, because we just got it
307 // handed to us in this function.
308 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
309 // Convert to incoming value if it's a memorydef. A phi *is* already an
310 // incoming value.
311 if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
312 FirstDef = MD->getDefiningAccess();
314 MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
315 // We just inserted a phi into this block, so the incoming value will become
316 // the phi anyway, so it does not matter what we pass.
317 for (auto &MP : InsertedPHIs) {
318 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
319 if (Phi)
320 MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
325 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
326 SmallPtrSet<const BasicBlock *, 8> Seen;
327 SmallVector<const BasicBlock *, 16> Worklist;
328 for (auto &Var : Vars) {
329 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
330 if (!NewDef)
331 continue;
332 // First, see if there is a local def after the operand.
333 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
334 auto DefIter = NewDef->getDefsIterator();
336 // The temporary Phi is being fixed, unmark it for not to optimize.
337 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
338 NonOptPhis.erase(Phi);
340 // If there is a local def after us, we only have to rename that.
341 if (++DefIter != Defs->end()) {
342 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
343 continue;
346 // Otherwise, we need to search down through the CFG.
347 // For each of our successors, handle it directly if their is a phi, or
348 // place on the fixup worklist.
349 for (const auto *S : successors(NewDef->getBlock())) {
350 if (auto *MP = MSSA->getMemoryAccess(S))
351 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
352 else
353 Worklist.push_back(S);
356 while (!Worklist.empty()) {
357 const BasicBlock *FixupBlock = Worklist.back();
358 Worklist.pop_back();
360 // Get the first def in the block that isn't a phi node.
361 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
362 auto *FirstDef = &*Defs->begin();
363 // The loop above and below should have taken care of phi nodes
364 assert(!isa<MemoryPhi>(FirstDef) &&
365 "Should have already handled phi nodes!");
366 // We are now this def's defining access, make sure we actually dominate
367 // it
368 assert(MSSA->dominates(NewDef, FirstDef) &&
369 "Should have dominated the new access");
371 // This may insert new phi nodes, because we are not guaranteed the
372 // block we are processing has a single pred, and depending where the
373 // store was inserted, it may require phi nodes below it.
374 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
375 return;
377 // We didn't find a def, so we must continue.
378 for (const auto *S : successors(FixupBlock)) {
379 // If there is a phi node, handle it.
380 // Otherwise, put the block on the worklist
381 if (auto *MP = MSSA->getMemoryAccess(S))
382 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
383 else {
384 // If we cycle, we should have ended up at a phi node that we already
385 // processed. FIXME: Double check this
386 if (!Seen.insert(S).second)
387 continue;
388 Worklist.push_back(S);
395 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
396 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
397 MPhi->unorderedDeleteIncomingBlock(From);
398 if (MPhi->getNumIncomingValues() == 1)
399 removeMemoryAccess(MPhi);
403 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(BasicBlock *From,
404 BasicBlock *To) {
405 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
406 bool Found = false;
407 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
408 if (From != B)
409 return false;
410 if (Found)
411 return true;
412 Found = true;
413 return false;
415 if (MPhi->getNumIncomingValues() == 1)
416 removeMemoryAccess(MPhi);
420 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
421 const ValueToValueMapTy &VMap,
422 PhiToDefMap &MPhiMap) {
423 auto GetNewDefiningAccess = [&](MemoryAccess *MA) -> MemoryAccess * {
424 MemoryAccess *InsnDefining = MA;
425 if (MemoryUseOrDef *DefMUD = dyn_cast<MemoryUseOrDef>(InsnDefining)) {
426 if (!MSSA->isLiveOnEntryDef(DefMUD)) {
427 Instruction *DefMUDI = DefMUD->getMemoryInst();
428 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
429 if (Instruction *NewDefMUDI =
430 cast_or_null<Instruction>(VMap.lookup(DefMUDI)))
431 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
433 } else {
434 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
435 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
436 InsnDefining = NewDefPhi;
438 assert(InsnDefining && "Defining instruction cannot be nullptr.");
439 return InsnDefining;
442 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
443 if (!Acc)
444 return;
445 for (const MemoryAccess &MA : *Acc) {
446 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
447 Instruction *Insn = MUD->getMemoryInst();
448 // Entry does not exist if the clone of the block did not clone all
449 // instructions. This occurs in LoopRotate when cloning instructions
450 // from the old header to the old preheader. The cloned instruction may
451 // also be a simplified Value, not an Instruction (see LoopRotate).
452 if (Instruction *NewInsn =
453 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
454 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
455 NewInsn, GetNewDefiningAccess(MUD->getDefiningAccess()), MUD);
456 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
462 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
463 ArrayRef<BasicBlock *> ExitBlocks,
464 const ValueToValueMapTy &VMap,
465 bool IgnoreIncomingWithNoClones) {
466 PhiToDefMap MPhiMap;
468 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
469 assert(Phi && NewPhi && "Invalid Phi nodes.");
470 BasicBlock *NewPhiBB = NewPhi->getBlock();
471 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
472 pred_end(NewPhiBB));
473 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
474 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
475 BasicBlock *IncBB = Phi->getIncomingBlock(It);
477 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
478 IncBB = NewIncBB;
479 else if (IgnoreIncomingWithNoClones)
480 continue;
482 // Now we have IncBB, and will need to add incoming from it to NewPhi.
484 // If IncBB is not a predecessor of NewPhiBB, then do not add it.
485 // NewPhiBB was cloned without that edge.
486 if (!NewPhiBBPreds.count(IncBB))
487 continue;
489 // Determine incoming value and add it as incoming from IncBB.
490 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
491 if (!MSSA->isLiveOnEntryDef(IncMUD)) {
492 Instruction *IncI = IncMUD->getMemoryInst();
493 assert(IncI && "Found MemoryUseOrDef with no Instruction.");
494 if (Instruction *NewIncI =
495 cast_or_null<Instruction>(VMap.lookup(IncI))) {
496 IncMUD = MSSA->getMemoryAccess(NewIncI);
497 assert(IncMUD &&
498 "MemoryUseOrDef cannot be null, all preds processed.");
501 NewPhi->addIncoming(IncMUD, IncBB);
502 } else {
503 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
504 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
505 NewPhi->addIncoming(NewDefPhi, IncBB);
506 else
507 NewPhi->addIncoming(IncPhi, IncBB);
512 auto ProcessBlock = [&](BasicBlock *BB) {
513 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
514 if (!NewBlock)
515 return;
517 assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
518 "Cloned block should have no accesses");
520 // Add MemoryPhi.
521 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
522 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
523 MPhiMap[MPhi] = NewPhi;
525 // Update Uses and Defs.
526 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
529 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
530 ProcessBlock(BB);
532 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
533 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
534 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
535 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
538 void MemorySSAUpdater::updateForClonedBlockIntoPred(
539 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
540 // All defs/phis from outside BB that are used in BB, are valid uses in P1.
541 // Since those defs/phis must have dominated BB, and also dominate P1.
542 // Defs from BB being used in BB will be replaced with the cloned defs from
543 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
544 // incoming def into the Phi from P1.
545 PhiToDefMap MPhiMap;
546 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
547 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
548 cloneUsesAndDefs(BB, P1, VM, MPhiMap);
551 template <typename Iter>
552 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
553 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
554 DominatorTree &DT) {
555 SmallVector<CFGUpdate, 4> Updates;
556 // Update/insert phis in all successors of exit blocks.
557 for (auto *Exit : ExitBlocks)
558 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
559 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
560 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
561 Updates.push_back({DT.Insert, NewExit, ExitSucc});
563 applyInsertUpdates(Updates, DT);
566 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
567 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
568 DominatorTree &DT) {
569 const ValueToValueMapTy *const Arr[] = {&VMap};
570 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
571 std::end(Arr), DT);
574 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
575 ArrayRef<BasicBlock *> ExitBlocks,
576 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
577 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
578 return I.get();
580 using MappedIteratorType =
581 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
582 decltype(GetPtr)>;
583 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
584 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
585 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
588 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
589 DominatorTree &DT) {
590 SmallVector<CFGUpdate, 4> RevDeleteUpdates;
591 SmallVector<CFGUpdate, 4> InsertUpdates;
592 for (auto &Update : Updates) {
593 if (Update.getKind() == DT.Insert)
594 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
595 else
596 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
599 if (!RevDeleteUpdates.empty()) {
600 // Update for inserted edges: use newDT and snapshot CFG as if deletes had
601 // not occurred.
602 // FIXME: This creates a new DT, so it's more expensive to do mix
603 // delete/inserts vs just inserts. We can do an incremental update on the DT
604 // to revert deletes, than re-delete the edges. Teaching DT to do this, is
605 // part of a pending cleanup.
606 DominatorTree NewDT(DT, RevDeleteUpdates);
607 GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
608 applyInsertUpdates(InsertUpdates, NewDT, &GD);
609 } else {
610 GraphDiff<BasicBlock *> GD;
611 applyInsertUpdates(InsertUpdates, DT, &GD);
614 // Update for deleted edges
615 for (auto &Update : RevDeleteUpdates)
616 removeEdge(Update.getFrom(), Update.getTo());
619 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
620 DominatorTree &DT) {
621 GraphDiff<BasicBlock *> GD;
622 applyInsertUpdates(Updates, DT, &GD);
625 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
626 DominatorTree &DT,
627 const GraphDiff<BasicBlock *> *GD) {
628 // Get recursive last Def, assuming well formed MSSA and updated DT.
629 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
630 while (true) {
631 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
632 // Return last Def or Phi in BB, if it exists.
633 if (Defs)
634 return &*(--Defs->end());
636 // Check number of predecessors, we only care if there's more than one.
637 unsigned Count = 0;
638 BasicBlock *Pred = nullptr;
639 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
640 Pred = Pair.second;
641 Count++;
642 if (Count == 2)
643 break;
646 // If BB has multiple predecessors, get last definition from IDom.
647 if (Count != 1) {
648 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
649 // DT is invalidated. Return LoE as its last def. This will be added to
650 // MemoryPhi node, and later deleted when the block is deleted.
651 if (!DT.getNode(BB))
652 return MSSA->getLiveOnEntryDef();
653 if (auto *IDom = DT.getNode(BB)->getIDom())
654 if (IDom->getBlock() != BB) {
655 BB = IDom->getBlock();
656 continue;
658 return MSSA->getLiveOnEntryDef();
659 } else {
660 // Single predecessor, BB cannot be dead. GetLastDef of Pred.
661 assert(Count == 1 && Pred && "Single predecessor expected.");
662 BB = Pred;
665 llvm_unreachable("Unable to get last definition.");
668 // Get nearest IDom given a set of blocks.
669 // TODO: this can be optimized by starting the search at the node with the
670 // lowest level (highest in the tree).
671 auto FindNearestCommonDominator =
672 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
673 BasicBlock *PrevIDom = *BBSet.begin();
674 for (auto *BB : BBSet)
675 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
676 return PrevIDom;
679 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
680 // include CurrIDom.
681 auto GetNoLongerDomBlocks =
682 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
683 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
684 if (PrevIDom == CurrIDom)
685 return;
686 BlocksPrevDom.push_back(PrevIDom);
687 BasicBlock *NextIDom = PrevIDom;
688 while (BasicBlock *UpIDom =
689 DT.getNode(NextIDom)->getIDom()->getBlock()) {
690 if (UpIDom == CurrIDom)
691 break;
692 BlocksPrevDom.push_back(UpIDom);
693 NextIDom = UpIDom;
697 // Map a BB to its predecessors: added + previously existing. To get a
698 // deterministic order, store predecessors as SetVectors. The order in each
699 // will be defined by the order in Updates (fixed) and the order given by
700 // children<> (also fixed). Since we further iterate over these ordered sets,
701 // we lose the information of multiple edges possibly existing between two
702 // blocks, so we'll keep and EdgeCount map for that.
703 // An alternate implementation could keep unordered set for the predecessors,
704 // traverse either Updates or children<> each time to get the deterministic
705 // order, and drop the usage of EdgeCount. This alternate approach would still
706 // require querying the maps for each predecessor, and children<> call has
707 // additional computation inside for creating the snapshot-graph predecessors.
708 // As such, we favor using a little additional storage and less compute time.
709 // This decision can be revisited if we find the alternative more favorable.
711 struct PredInfo {
712 SmallSetVector<BasicBlock *, 2> Added;
713 SmallSetVector<BasicBlock *, 2> Prev;
715 SmallDenseMap<BasicBlock *, PredInfo> PredMap;
717 for (auto &Edge : Updates) {
718 BasicBlock *BB = Edge.getTo();
719 auto &AddedBlockSet = PredMap[BB].Added;
720 AddedBlockSet.insert(Edge.getFrom());
723 // Store all existing predecessor for each BB, at least one must exist.
724 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
725 SmallPtrSet<BasicBlock *, 2> NewBlocks;
726 for (auto &BBPredPair : PredMap) {
727 auto *BB = BBPredPair.first;
728 const auto &AddedBlockSet = BBPredPair.second.Added;
729 auto &PrevBlockSet = BBPredPair.second.Prev;
730 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
731 BasicBlock *Pi = Pair.second;
732 if (!AddedBlockSet.count(Pi))
733 PrevBlockSet.insert(Pi);
734 EdgeCountMap[{Pi, BB}]++;
737 if (PrevBlockSet.empty()) {
738 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
739 LLVM_DEBUG(
740 dbgs()
741 << "Adding a predecessor to a block with no predecessors. "
742 "This must be an edge added to a new, likely cloned, block. "
743 "Its memory accesses must be already correct, assuming completed "
744 "via the updateExitBlocksForClonedLoop API. "
745 "Assert a single such edge is added so no phi addition or "
746 "additional processing is required.\n");
747 assert(AddedBlockSet.size() == 1 &&
748 "Can only handle adding one predecessor to a new block.");
749 // Need to remove new blocks from PredMap. Remove below to not invalidate
750 // iterator here.
751 NewBlocks.insert(BB);
754 // Nothing to process for new/cloned blocks.
755 for (auto *BB : NewBlocks)
756 PredMap.erase(BB);
758 SmallVector<BasicBlock *, 8> BlocksToProcess;
759 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
761 // First create MemoryPhis in all blocks that don't have one. Create in the
762 // order found in Updates, not in PredMap, to get deterministic numbering.
763 for (auto &Edge : Updates) {
764 BasicBlock *BB = Edge.getTo();
765 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
766 MSSA->createMemoryPhi(BB);
769 // Now we'll fill in the MemoryPhis with the right incoming values.
770 for (auto &BBPredPair : PredMap) {
771 auto *BB = BBPredPair.first;
772 const auto &PrevBlockSet = BBPredPair.second.Prev;
773 const auto &AddedBlockSet = BBPredPair.second.Added;
774 assert(!PrevBlockSet.empty() &&
775 "At least one previous predecessor must exist.");
777 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
778 // keeping this map before the loop. We can reuse already populated entries
779 // if an edge is added from the same predecessor to two different blocks,
780 // and this does happen in rotate. Note that the map needs to be updated
781 // when deleting non-necessary phis below, if the phi is in the map by
782 // replacing the value with DefP1.
783 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
784 for (auto *AddedPred : AddedBlockSet) {
785 auto *DefPn = GetLastDef(AddedPred);
786 assert(DefPn != nullptr && "Unable to find last definition.");
787 LastDefAddedPred[AddedPred] = DefPn;
790 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
791 // If Phi is not empty, add an incoming edge from each added pred. Must
792 // still compute blocks with defs to replace for this block below.
793 if (NewPhi->getNumOperands()) {
794 for (auto *Pred : AddedBlockSet) {
795 auto *LastDefForPred = LastDefAddedPred[Pred];
796 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
797 NewPhi->addIncoming(LastDefForPred, Pred);
799 } else {
800 // Pick any existing predecessor and get its definition. All other
801 // existing predecessors should have the same one, since no phi existed.
802 auto *P1 = *PrevBlockSet.begin();
803 MemoryAccess *DefP1 = GetLastDef(P1);
805 // Check DefP1 against all Defs in LastDefPredPair. If all the same,
806 // nothing to add.
807 bool InsertPhi = false;
808 for (auto LastDefPredPair : LastDefAddedPred)
809 if (DefP1 != LastDefPredPair.second) {
810 InsertPhi = true;
811 break;
813 if (!InsertPhi) {
814 // Since NewPhi may be used in other newly added Phis, replace all uses
815 // of NewPhi with the definition coming from all predecessors (DefP1),
816 // before deleting it.
817 NewPhi->replaceAllUsesWith(DefP1);
818 removeMemoryAccess(NewPhi);
819 continue;
822 // Update Phi with new values for new predecessors and old value for all
823 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
824 // sets, the order of entries in NewPhi is deterministic.
825 for (auto *Pred : AddedBlockSet) {
826 auto *LastDefForPred = LastDefAddedPred[Pred];
827 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
828 NewPhi->addIncoming(LastDefForPred, Pred);
830 for (auto *Pred : PrevBlockSet)
831 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
832 NewPhi->addIncoming(DefP1, Pred);
834 // Insert BB in the set of blocks that now have definition. We'll use this
835 // to compute IDF and add Phis there next.
836 BlocksToProcess.push_back(BB);
839 // Get all blocks that used to dominate BB and no longer do after adding
840 // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
841 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
842 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
843 assert(PrevIDom && "Previous IDom should exists");
844 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
845 assert(NewIDom && "BB should have a new valid idom");
846 assert(DT.dominates(NewIDom, PrevIDom) &&
847 "New idom should dominate old idom");
848 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
851 // Compute IDF and add Phis in all IDF blocks that do not have one.
852 SmallVector<BasicBlock *, 32> IDFBlocks;
853 if (!BlocksToProcess.empty()) {
854 ForwardIDFCalculator IDFs(DT);
855 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
856 BlocksToProcess.end());
857 IDFs.setDefiningBlocks(DefiningBlocks);
858 IDFs.calculate(IDFBlocks);
859 for (auto *BBIDF : IDFBlocks) {
860 if (auto *IDFPhi = MSSA->getMemoryAccess(BBIDF)) {
861 // Update existing Phi.
862 // FIXME: some updates may be redundant, try to optimize and skip some.
863 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
864 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
865 } else {
866 IDFPhi = MSSA->createMemoryPhi(BBIDF);
867 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
868 BasicBlock *Pi = Pair.second;
869 IDFPhi->addIncoming(GetLastDef(Pi), Pi);
875 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
876 // longer dominate, replace those with the closest dominating def.
877 // This will also update optimized accesses, as they're also uses.
878 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
879 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
880 for (auto &DefToReplaceUses : *DefsList) {
881 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
882 Value::use_iterator UI = DefToReplaceUses.use_begin(),
883 E = DefToReplaceUses.use_end();
884 for (; UI != E;) {
885 Use &U = *UI;
886 ++UI;
887 MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser());
888 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
889 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
890 if (!DT.dominates(DominatingBlock, DominatedBlock))
891 U.set(GetLastDef(DominatedBlock));
892 } else {
893 BasicBlock *DominatedBlock = Usr->getBlock();
894 if (!DT.dominates(DominatingBlock, DominatedBlock)) {
895 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
896 U.set(DomBlPhi);
897 else {
898 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
899 assert(IDom && "Block must have a valid IDom.");
900 U.set(GetLastDef(IDom->getBlock()));
902 cast<MemoryUseOrDef>(Usr)->resetOptimized();
911 // Move What before Where in the MemorySSA IR.
912 template <class WhereType>
913 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
914 WhereType Where) {
915 // Mark MemoryPhi users of What not to be optimized.
916 for (auto *U : What->users())
917 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
918 NonOptPhis.insert(PhiUser);
920 // Replace all our users with our defining access.
921 What->replaceAllUsesWith(What->getDefiningAccess());
923 // Let MemorySSA take care of moving it around in the lists.
924 MSSA->moveTo(What, BB, Where);
926 // Now reinsert it into the IR and do whatever fixups needed.
927 if (auto *MD = dyn_cast<MemoryDef>(What))
928 insertDef(MD);
929 else
930 insertUse(cast<MemoryUse>(What));
932 // Clear dangling pointers. We added all MemoryPhi users, but not all
933 // of them are removed by fixupDefs().
934 NonOptPhis.clear();
937 // Move What before Where in the MemorySSA IR.
938 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
939 moveTo(What, Where->getBlock(), Where->getIterator());
942 // Move What after Where in the MemorySSA IR.
943 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
944 moveTo(What, Where->getBlock(), ++Where->getIterator());
947 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
948 MemorySSA::InsertionPlace Where) {
949 return moveTo(What, BB, Where);
952 // All accesses in To used to be in From. Move to end and update access lists.
953 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
954 Instruction *Start) {
956 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
957 if (!Accs)
958 return;
960 MemoryAccess *FirstInNew = nullptr;
961 for (Instruction &I : make_range(Start->getIterator(), To->end()))
962 if ((FirstInNew = MSSA->getMemoryAccess(&I)))
963 break;
964 if (!FirstInNew)
965 return;
967 auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
968 do {
969 auto NextIt = ++MUD->getIterator();
970 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
971 ? nullptr
972 : cast<MemoryUseOrDef>(&*NextIt);
973 MSSA->moveTo(MUD, To, MemorySSA::End);
974 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
975 // retrieve it again.
976 Accs = MSSA->getWritableBlockAccesses(From);
977 MUD = NextMUD;
978 } while (MUD);
981 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
982 BasicBlock *To,
983 Instruction *Start) {
984 assert(MSSA->getBlockAccesses(To) == nullptr &&
985 "To block is expected to be free of MemoryAccesses.");
986 moveAllAccesses(From, To, Start);
987 for (BasicBlock *Succ : successors(To))
988 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
989 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
992 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
993 Instruction *Start) {
994 assert(From->getSinglePredecessor() == To &&
995 "From block is expected to have a single predecessor (To).");
996 moveAllAccesses(From, To, Start);
997 for (BasicBlock *Succ : successors(From))
998 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
999 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1002 /// If all arguments of a MemoryPHI are defined by the same incoming
1003 /// argument, return that argument.
1004 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1005 MemoryAccess *MA = nullptr;
1007 for (auto &Arg : MP->operands()) {
1008 if (!MA)
1009 MA = cast<MemoryAccess>(Arg);
1010 else if (MA != Arg)
1011 return nullptr;
1013 return MA;
1016 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1017 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1018 bool IdenticalEdgesWereMerged) {
1019 assert(!MSSA->getWritableBlockAccesses(New) &&
1020 "Access list should be null for a new block.");
1021 MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1022 if (!Phi)
1023 return;
1024 if (Old->hasNPredecessors(1)) {
1025 assert(pred_size(New) == Preds.size() &&
1026 "Should have moved all predecessors.");
1027 MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1028 } else {
1029 assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1030 "new immediate predecessor.");
1031 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1032 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1033 // Currently only support the case of removing a single incoming edge when
1034 // identical edges were not merged.
1035 if (!IdenticalEdgesWereMerged)
1036 assert(PredsSet.size() == Preds.size() &&
1037 "If identical edges were not merged, we cannot have duplicate "
1038 "blocks in the predecessors");
1039 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1040 if (PredsSet.count(B)) {
1041 NewPhi->addIncoming(MA, B);
1042 if (!IdenticalEdgesWereMerged)
1043 PredsSet.erase(B);
1044 return true;
1046 return false;
1048 Phi->addIncoming(NewPhi, New);
1049 if (onlySingleValue(NewPhi))
1050 removeMemoryAccess(NewPhi);
1054 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1055 assert(!MSSA->isLiveOnEntryDef(MA) &&
1056 "Trying to remove the live on entry def");
1057 // We can only delete phi nodes if they have no uses, or we can replace all
1058 // uses with a single definition.
1059 MemoryAccess *NewDefTarget = nullptr;
1060 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1061 // Note that it is sufficient to know that all edges of the phi node have
1062 // the same argument. If they do, by the definition of dominance frontiers
1063 // (which we used to place this phi), that argument must dominate this phi,
1064 // and thus, must dominate the phi's uses, and so we will not hit the assert
1065 // below.
1066 NewDefTarget = onlySingleValue(MP);
1067 assert((NewDefTarget || MP->use_empty()) &&
1068 "We can't delete this memory phi");
1069 } else {
1070 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1073 SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1075 // Re-point the uses at our defining access
1076 if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1077 // Reset optimized on users of this store, and reset the uses.
1078 // A few notes:
1079 // 1. This is a slightly modified version of RAUW to avoid walking the
1080 // uses twice here.
1081 // 2. If we wanted to be complete, we would have to reset the optimized
1082 // flags on users of phi nodes if doing the below makes a phi node have all
1083 // the same arguments. Instead, we prefer users to removeMemoryAccess those
1084 // phi nodes, because doing it here would be N^3.
1085 if (MA->hasValueHandle())
1086 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1087 // Note: We assume MemorySSA is not used in metadata since it's not really
1088 // part of the IR.
1090 while (!MA->use_empty()) {
1091 Use &U = *MA->use_begin();
1092 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1093 MUD->resetOptimized();
1094 if (OptimizePhis)
1095 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1096 PhisToCheck.insert(MP);
1097 U.set(NewDefTarget);
1101 // The call below to erase will destroy MA, so we can't change the order we
1102 // are doing things here
1103 MSSA->removeFromLookups(MA);
1104 MSSA->removeFromLists(MA);
1106 // Optionally optimize Phi uses. This will recursively remove trivial phis.
1107 if (!PhisToCheck.empty()) {
1108 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1109 PhisToCheck.end()};
1110 PhisToCheck.clear();
1112 unsigned PhisSize = PhisToOptimize.size();
1113 while (PhisSize-- > 0)
1114 if (MemoryPhi *MP =
1115 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) {
1116 auto OperRange = MP->operands();
1117 tryRemoveTrivialPhi(MP, OperRange);
1122 void MemorySSAUpdater::removeBlocks(
1123 const SmallPtrSetImpl<BasicBlock *> &DeadBlocks) {
1124 // First delete all uses of BB in MemoryPhis.
1125 for (BasicBlock *BB : DeadBlocks) {
1126 Instruction *TI = BB->getTerminator();
1127 assert(TI && "Basic block expected to have a terminator instruction");
1128 for (BasicBlock *Succ : successors(TI))
1129 if (!DeadBlocks.count(Succ))
1130 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1131 MP->unorderedDeleteIncomingBlock(BB);
1132 if (MP->getNumIncomingValues() == 1)
1133 removeMemoryAccess(MP);
1135 // Drop all references of all accesses in BB
1136 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1137 for (MemoryAccess &MA : *Acc)
1138 MA.dropAllReferences();
1141 // Next, delete all memory accesses in each block
1142 for (BasicBlock *BB : DeadBlocks) {
1143 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1144 if (!Acc)
1145 continue;
1146 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1147 MemoryAccess *MA = &*AB;
1148 ++AB;
1149 MSSA->removeFromLookups(MA);
1150 MSSA->removeFromLists(MA);
1155 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1156 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1157 MemorySSA::InsertionPlace Point) {
1158 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1159 MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1160 return NewAccess;
1163 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1164 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1165 assert(I->getParent() == InsertPt->getBlock() &&
1166 "New and old access must be in the same block");
1167 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1168 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1169 InsertPt->getIterator());
1170 return NewAccess;
1173 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1174 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1175 assert(I->getParent() == InsertPt->getBlock() &&
1176 "New and old access must be in the same block");
1177 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1178 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1179 ++InsertPt->getIterator());
1180 return NewAccess;