1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/MustExecute.h"
10 #include "llvm/Analysis/InstructionSimplify.h"
11 #include "llvm/Analysis/LoopInfo.h"
12 #include "llvm/Analysis/Passes.h"
13 #include "llvm/Analysis/ValueTracking.h"
14 #include "llvm/IR/AssemblyAnnotationWriter.h"
15 #include "llvm/IR/DataLayout.h"
16 #include "llvm/IR/InstIterator.h"
17 #include "llvm/IR/LLVMContext.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/FormattedStream.h"
21 #include "llvm/Support/raw_ostream.h"
24 const DenseMap
<BasicBlock
*, ColorVector
> &
25 LoopSafetyInfo::getBlockColors() const {
29 void LoopSafetyInfo::copyColors(BasicBlock
*New
, BasicBlock
*Old
) {
30 ColorVector
&ColorsForNewBlock
= BlockColors
[New
];
31 ColorVector
&ColorsForOldBlock
= BlockColors
[Old
];
32 ColorsForNewBlock
= ColorsForOldBlock
;
35 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock
*BB
) const {
37 return anyBlockMayThrow();
40 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
44 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop
*CurLoop
) {
45 assert(CurLoop
!= nullptr && "CurLoop can't be null");
46 BasicBlock
*Header
= CurLoop
->getHeader();
47 // Iterate over header and compute safety info.
48 HeaderMayThrow
= !isGuaranteedToTransferExecutionToSuccessor(Header
);
49 MayThrow
= HeaderMayThrow
;
50 // Iterate over loop instructions and compute safety info.
51 // Skip header as it has been computed and stored in HeaderMayThrow.
52 // The first block in loopinfo.Blocks is guaranteed to be the header.
53 assert(Header
== *CurLoop
->getBlocks().begin() &&
54 "First block must be header");
55 for (Loop::block_iterator BB
= std::next(CurLoop
->block_begin()),
56 BBE
= CurLoop
->block_end();
57 (BB
!= BBE
) && !MayThrow
; ++BB
)
58 MayThrow
|= !isGuaranteedToTransferExecutionToSuccessor(*BB
);
60 computeBlockColors(CurLoop
);
63 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock
*BB
) const {
64 return ICF
.hasICF(BB
);
67 bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
71 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop
*CurLoop
) {
72 assert(CurLoop
!= nullptr && "CurLoop can't be null");
76 // Figure out the fact that at least one block may throw.
77 for (auto &BB
: CurLoop
->blocks())
78 if (ICF
.hasICF(&*BB
)) {
82 computeBlockColors(CurLoop
);
85 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction
*Inst
,
86 const BasicBlock
*BB
) {
87 ICF
.insertInstructionTo(Inst
, BB
);
88 MW
.insertInstructionTo(Inst
, BB
);
91 void ICFLoopSafetyInfo::removeInstruction(const Instruction
*Inst
) {
92 ICF
.removeInstruction(Inst
);
93 MW
.removeInstruction(Inst
);
96 void LoopSafetyInfo::computeBlockColors(const Loop
*CurLoop
) {
97 // Compute funclet colors if we might sink/hoist in a function with a funclet
98 // personality routine.
99 Function
*Fn
= CurLoop
->getHeader()->getParent();
100 if (Fn
->hasPersonalityFn())
101 if (Constant
*PersonalityFn
= Fn
->getPersonalityFn())
102 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn
)))
103 BlockColors
= colorEHFunclets(*Fn
);
106 /// Return true if we can prove that the given ExitBlock is not reached on the
107 /// first iteration of the given loop. That is, the backedge of the loop must
108 /// be executed before the ExitBlock is executed in any dynamic execution trace.
109 static bool CanProveNotTakenFirstIteration(const BasicBlock
*ExitBlock
,
110 const DominatorTree
*DT
,
111 const Loop
*CurLoop
) {
112 auto *CondExitBlock
= ExitBlock
->getSinglePredecessor();
114 // expect unique exits
116 assert(CurLoop
->contains(CondExitBlock
) && "meaning of exit block");
117 auto *BI
= dyn_cast
<BranchInst
>(CondExitBlock
->getTerminator());
118 if (!BI
|| !BI
->isConditional())
120 // If condition is constant and false leads to ExitBlock then we always
121 // execute the true branch.
122 if (auto *Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition()))
123 return BI
->getSuccessor(Cond
->getZExtValue() ? 1 : 0) == ExitBlock
;
124 auto *Cond
= dyn_cast
<CmpInst
>(BI
->getCondition());
127 // todo: this would be a lot more powerful if we used scev, but all the
128 // plumbing is currently missing to pass a pointer in from the pass
129 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
130 auto *LHS
= dyn_cast
<PHINode
>(Cond
->getOperand(0));
131 auto *RHS
= Cond
->getOperand(1);
132 if (!LHS
|| LHS
->getParent() != CurLoop
->getHeader())
134 auto DL
= ExitBlock
->getModule()->getDataLayout();
135 auto *IVStart
= LHS
->getIncomingValueForBlock(CurLoop
->getLoopPreheader());
136 auto *SimpleValOrNull
= SimplifyCmpInst(Cond
->getPredicate(),
138 {DL
, /*TLI*/ nullptr,
139 DT
, /*AC*/ nullptr, BI
});
140 auto *SimpleCst
= dyn_cast_or_null
<Constant
>(SimpleValOrNull
);
143 if (ExitBlock
== BI
->getSuccessor(0))
144 return SimpleCst
->isZeroValue();
145 assert(ExitBlock
== BI
->getSuccessor(1) && "implied by above");
146 return SimpleCst
->isAllOnesValue();
149 /// Collect all blocks from \p CurLoop which lie on all possible paths from
150 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
151 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
152 static void collectTransitivePredecessors(
153 const Loop
*CurLoop
, const BasicBlock
*BB
,
154 SmallPtrSetImpl
<const BasicBlock
*> &Predecessors
) {
155 assert(Predecessors
.empty() && "Garbage in predecessors set?");
156 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
157 if (BB
== CurLoop
->getHeader())
159 SmallVector
<const BasicBlock
*, 4> WorkList
;
160 for (auto *Pred
: predecessors(BB
)) {
161 Predecessors
.insert(Pred
);
162 WorkList
.push_back(Pred
);
164 while (!WorkList
.empty()) {
165 auto *Pred
= WorkList
.pop_back_val();
166 assert(CurLoop
->contains(Pred
) && "Should only reach loop blocks!");
167 // We are not interested in backedges and we don't want to leave loop.
168 if (Pred
== CurLoop
->getHeader())
170 // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
171 // blocks of this inner loop, even those that are always executed AFTER the
172 // BB. It may make our analysis more conservative than it could be, see test
173 // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
174 // We can ignore backedge of all loops containing BB to get a sligtly more
175 // optimistic result.
176 for (auto *PredPred
: predecessors(Pred
))
177 if (Predecessors
.insert(PredPred
).second
)
178 WorkList
.push_back(PredPred
);
182 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop
*CurLoop
,
183 const BasicBlock
*BB
,
184 const DominatorTree
*DT
) const {
185 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
187 // Fast path: header is always reached once the loop is entered.
188 if (BB
== CurLoop
->getHeader())
191 // Collect all transitive predecessors of BB in the same loop. This set will
192 // be a subset of the blocks within the loop.
193 SmallPtrSet
<const BasicBlock
*, 4> Predecessors
;
194 collectTransitivePredecessors(CurLoop
, BB
, Predecessors
);
196 // Make sure that all successors of all predecessors of BB are either:
198 // 2) Also predecessors of BB,
199 // 3) Exit blocks which are not taken on 1st iteration.
200 // Memoize blocks we've already checked.
201 SmallPtrSet
<const BasicBlock
*, 4> CheckedSuccessors
;
202 for (auto *Pred
: Predecessors
) {
203 // Predecessor block may throw, so it has a side exit.
204 if (blockMayThrow(Pred
))
206 for (auto *Succ
: successors(Pred
))
207 if (CheckedSuccessors
.insert(Succ
).second
&&
208 Succ
!= BB
&& !Predecessors
.count(Succ
))
209 // By discharging conditions that are not executed on the 1st iteration,
210 // we guarantee that *at least* on the first iteration all paths from
211 // header that *may* execute will lead us to the block of interest. So
212 // that if we had virtually peeled one iteration away, in this peeled
213 // iteration the set of predecessors would contain only paths from
214 // header to BB without any exiting edges that may execute.
216 // TODO: We only do it for exiting edges currently. We could use the
217 // same function to skip some of the edges within the loop if we know
218 // that they will not be taken on the 1st iteration.
220 // TODO: If we somehow know the number of iterations in loop, the same
221 // check may be done for any arbitrary N-th iteration as long as N is
222 // not greater than minimum number of iterations in this loop.
223 if (CurLoop
->contains(Succ
) ||
224 !CanProveNotTakenFirstIteration(Succ
, DT
, CurLoop
))
228 // All predecessors can only lead us to BB.
232 /// Returns true if the instruction in a loop is guaranteed to execute at least
234 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction
&Inst
,
235 const DominatorTree
*DT
,
236 const Loop
*CurLoop
) const {
237 // If the instruction is in the header block for the loop (which is very
238 // common), it is always guaranteed to dominate the exit blocks. Since this
239 // is a common case, and can save some work, check it now.
240 if (Inst
.getParent() == CurLoop
->getHeader())
241 // If there's a throw in the header block, we can't guarantee we'll reach
242 // Inst unless we can prove that Inst comes before the potential implicit
243 // exit. At the moment, we use a (cheap) hack for the common case where
244 // the instruction of interest is the first one in the block.
245 return !HeaderMayThrow
||
246 Inst
.getParent()->getFirstNonPHIOrDbg() == &Inst
;
248 // If there is a path from header to exit or latch that doesn't lead to our
249 // instruction's block, return false.
250 return allLoopPathsLeadToBlock(CurLoop
, Inst
.getParent(), DT
);
253 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction
&Inst
,
254 const DominatorTree
*DT
,
255 const Loop
*CurLoop
) const {
256 return !ICF
.isDominatedByICFIFromSameBlock(&Inst
) &&
257 allLoopPathsLeadToBlock(CurLoop
, Inst
.getParent(), DT
);
260 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock
*BB
,
261 const Loop
*CurLoop
) const {
262 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
264 // Fast path: there are no instructions before header.
265 if (BB
== CurLoop
->getHeader())
268 // Collect all transitive predecessors of BB in the same loop. This set will
269 // be a subset of the blocks within the loop.
270 SmallPtrSet
<const BasicBlock
*, 4> Predecessors
;
271 collectTransitivePredecessors(CurLoop
, BB
, Predecessors
);
272 // Find if there any instruction in either predecessor that could write
274 for (auto *Pred
: Predecessors
)
275 if (MW
.mayWriteToMemory(Pred
))
280 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction
&I
,
281 const Loop
*CurLoop
) const {
282 auto *BB
= I
.getParent();
283 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
284 return !MW
.isDominatedByMemoryWriteFromSameBlock(&I
) &&
285 doesNotWriteMemoryBefore(BB
, CurLoop
);
289 struct MustExecutePrinter
: public FunctionPass
{
291 static char ID
; // Pass identification, replacement for typeid
292 MustExecutePrinter() : FunctionPass(ID
) {
293 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
295 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
296 AU
.setPreservesAll();
297 AU
.addRequired
<DominatorTreeWrapperPass
>();
298 AU
.addRequired
<LoopInfoWrapperPass
>();
300 bool runOnFunction(Function
&F
) override
;
304 char MustExecutePrinter::ID
= 0;
305 INITIALIZE_PASS_BEGIN(MustExecutePrinter
, "print-mustexecute",
306 "Instructions which execute on loop entry", false, true)
307 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
308 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
309 INITIALIZE_PASS_END(MustExecutePrinter
, "print-mustexecute",
310 "Instructions which execute on loop entry", false, true)
312 FunctionPass
*llvm::createMustExecutePrinter() {
313 return new MustExecutePrinter();
316 static bool isMustExecuteIn(const Instruction
&I
, Loop
*L
, DominatorTree
*DT
) {
317 // TODO: merge these two routines. For the moment, we display the best
318 // result obtained by *either* implementation. This is a bit unfair since no
319 // caller actually gets the full power at the moment.
320 SimpleLoopSafetyInfo LSI
;
321 LSI
.computeLoopSafetyInfo(L
);
322 return LSI
.isGuaranteedToExecute(I
, DT
, L
) ||
323 isGuaranteedToExecuteForEveryIteration(&I
, L
);
327 /// An assembly annotator class to print must execute information in
329 class MustExecuteAnnotatedWriter
: public AssemblyAnnotationWriter
{
330 DenseMap
<const Value
*, SmallVector
<Loop
*, 4> > MustExec
;
333 MustExecuteAnnotatedWriter(const Function
&F
,
334 DominatorTree
&DT
, LoopInfo
&LI
) {
335 for (auto &I
: instructions(F
)) {
336 Loop
*L
= LI
.getLoopFor(I
.getParent());
338 if (isMustExecuteIn(I
, L
, &DT
)) {
339 MustExec
[&I
].push_back(L
);
341 L
= L
->getParentLoop();
345 MustExecuteAnnotatedWriter(const Module
&M
,
346 DominatorTree
&DT
, LoopInfo
&LI
) {
348 for (auto &I
: instructions(F
)) {
349 Loop
*L
= LI
.getLoopFor(I
.getParent());
351 if (isMustExecuteIn(I
, L
, &DT
)) {
352 MustExec
[&I
].push_back(L
);
354 L
= L
->getParentLoop();
360 void printInfoComment(const Value
&V
, formatted_raw_ostream
&OS
) override
{
361 if (!MustExec
.count(&V
))
364 const auto &Loops
= MustExec
.lookup(&V
);
365 const auto NumLoops
= Loops
.size();
367 OS
<< " ; (mustexec in " << NumLoops
<< " loops: ";
369 OS
<< " ; (mustexec in: ";
372 for (const Loop
*L
: Loops
) {
376 OS
<< L
->getHeader()->getName();
383 bool MustExecutePrinter::runOnFunction(Function
&F
) {
384 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
385 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
387 MustExecuteAnnotatedWriter
Writer(F
, DT
, LI
);
388 F
.print(dbgs(), &Writer
);