1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/TargetTransformInfoImpl.h"
11 #include "llvm/IR/CallSite.h"
12 #include "llvm/IR/DataLayout.h"
13 #include "llvm/IR/Instruction.h"
14 #include "llvm/IR/Instructions.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/Module.h"
17 #include "llvm/IR/Operator.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/ErrorHandling.h"
24 using namespace PatternMatch
;
26 #define DEBUG_TYPE "tti"
28 static cl::opt
<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
30 cl::desc("Recognize reduction patterns."));
33 /// No-op implementation of the TTI interface using the utility base
36 /// This is used when no target specific information is available.
37 struct NoTTIImpl
: TargetTransformInfoImplCRTPBase
<NoTTIImpl
> {
38 explicit NoTTIImpl(const DataLayout
&DL
)
39 : TargetTransformInfoImplCRTPBase
<NoTTIImpl
>(DL
) {}
43 TargetTransformInfo::TargetTransformInfo(const DataLayout
&DL
)
44 : TTIImpl(new Model
<NoTTIImpl
>(NoTTIImpl(DL
))) {}
46 TargetTransformInfo::~TargetTransformInfo() {}
48 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo
&&Arg
)
49 : TTIImpl(std::move(Arg
.TTIImpl
)) {}
51 TargetTransformInfo
&TargetTransformInfo::operator=(TargetTransformInfo
&&RHS
) {
52 TTIImpl
= std::move(RHS
.TTIImpl
);
56 int TargetTransformInfo::getOperationCost(unsigned Opcode
, Type
*Ty
,
58 int Cost
= TTIImpl
->getOperationCost(Opcode
, Ty
, OpTy
);
59 assert(Cost
>= 0 && "TTI should not produce negative costs!");
63 int TargetTransformInfo::getCallCost(FunctionType
*FTy
, int NumArgs
) const {
64 int Cost
= TTIImpl
->getCallCost(FTy
, NumArgs
);
65 assert(Cost
>= 0 && "TTI should not produce negative costs!");
69 int TargetTransformInfo::getCallCost(const Function
*F
,
70 ArrayRef
<const Value
*> Arguments
) const {
71 int Cost
= TTIImpl
->getCallCost(F
, Arguments
);
72 assert(Cost
>= 0 && "TTI should not produce negative costs!");
76 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
77 return TTIImpl
->getInliningThresholdMultiplier();
80 int TargetTransformInfo::getGEPCost(Type
*PointeeType
, const Value
*Ptr
,
81 ArrayRef
<const Value
*> Operands
) const {
82 return TTIImpl
->getGEPCost(PointeeType
, Ptr
, Operands
);
85 int TargetTransformInfo::getExtCost(const Instruction
*I
,
86 const Value
*Src
) const {
87 return TTIImpl
->getExtCost(I
, Src
);
90 int TargetTransformInfo::getIntrinsicCost(
91 Intrinsic::ID IID
, Type
*RetTy
, ArrayRef
<const Value
*> Arguments
) const {
92 int Cost
= TTIImpl
->getIntrinsicCost(IID
, RetTy
, Arguments
);
93 assert(Cost
>= 0 && "TTI should not produce negative costs!");
98 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst
&SI
,
99 unsigned &JTSize
) const {
100 return TTIImpl
->getEstimatedNumberOfCaseClusters(SI
, JTSize
);
103 int TargetTransformInfo::getUserCost(const User
*U
,
104 ArrayRef
<const Value
*> Operands
) const {
105 int Cost
= TTIImpl
->getUserCost(U
, Operands
);
106 assert(Cost
>= 0 && "TTI should not produce negative costs!");
110 bool TargetTransformInfo::hasBranchDivergence() const {
111 return TTIImpl
->hasBranchDivergence();
114 bool TargetTransformInfo::isSourceOfDivergence(const Value
*V
) const {
115 return TTIImpl
->isSourceOfDivergence(V
);
118 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value
*V
) const {
119 return TTIImpl
->isAlwaysUniform(V
);
122 unsigned TargetTransformInfo::getFlatAddressSpace() const {
123 return TTIImpl
->getFlatAddressSpace();
126 bool TargetTransformInfo::isLoweredToCall(const Function
*F
) const {
127 return TTIImpl
->isLoweredToCall(F
);
130 void TargetTransformInfo::getUnrollingPreferences(
131 Loop
*L
, ScalarEvolution
&SE
, UnrollingPreferences
&UP
) const {
132 return TTIImpl
->getUnrollingPreferences(L
, SE
, UP
);
135 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm
) const {
136 return TTIImpl
->isLegalAddImmediate(Imm
);
139 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm
) const {
140 return TTIImpl
->isLegalICmpImmediate(Imm
);
143 bool TargetTransformInfo::isLegalAddressingMode(Type
*Ty
, GlobalValue
*BaseGV
,
148 Instruction
*I
) const {
149 return TTIImpl
->isLegalAddressingMode(Ty
, BaseGV
, BaseOffset
, HasBaseReg
,
150 Scale
, AddrSpace
, I
);
153 bool TargetTransformInfo::isLSRCostLess(LSRCost
&C1
, LSRCost
&C2
) const {
154 return TTIImpl
->isLSRCostLess(C1
, C2
);
157 bool TargetTransformInfo::canMacroFuseCmp() const {
158 return TTIImpl
->canMacroFuseCmp();
161 bool TargetTransformInfo::shouldFavorPostInc() const {
162 return TTIImpl
->shouldFavorPostInc();
165 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop
*L
) const {
166 return TTIImpl
->shouldFavorBackedgeIndex(L
);
169 bool TargetTransformInfo::isLegalMaskedStore(Type
*DataType
) const {
170 return TTIImpl
->isLegalMaskedStore(DataType
);
173 bool TargetTransformInfo::isLegalMaskedLoad(Type
*DataType
) const {
174 return TTIImpl
->isLegalMaskedLoad(DataType
);
177 bool TargetTransformInfo::isLegalMaskedGather(Type
*DataType
) const {
178 return TTIImpl
->isLegalMaskedGather(DataType
);
181 bool TargetTransformInfo::isLegalMaskedScatter(Type
*DataType
) const {
182 return TTIImpl
->isLegalMaskedScatter(DataType
);
185 bool TargetTransformInfo::hasDivRemOp(Type
*DataType
, bool IsSigned
) const {
186 return TTIImpl
->hasDivRemOp(DataType
, IsSigned
);
189 bool TargetTransformInfo::hasVolatileVariant(Instruction
*I
,
190 unsigned AddrSpace
) const {
191 return TTIImpl
->hasVolatileVariant(I
, AddrSpace
);
194 bool TargetTransformInfo::prefersVectorizedAddressing() const {
195 return TTIImpl
->prefersVectorizedAddressing();
198 int TargetTransformInfo::getScalingFactorCost(Type
*Ty
, GlobalValue
*BaseGV
,
202 unsigned AddrSpace
) const {
203 int Cost
= TTIImpl
->getScalingFactorCost(Ty
, BaseGV
, BaseOffset
, HasBaseReg
,
205 assert(Cost
>= 0 && "TTI should not produce negative costs!");
209 bool TargetTransformInfo::LSRWithInstrQueries() const {
210 return TTIImpl
->LSRWithInstrQueries();
213 bool TargetTransformInfo::isTruncateFree(Type
*Ty1
, Type
*Ty2
) const {
214 return TTIImpl
->isTruncateFree(Ty1
, Ty2
);
217 bool TargetTransformInfo::isProfitableToHoist(Instruction
*I
) const {
218 return TTIImpl
->isProfitableToHoist(I
);
221 bool TargetTransformInfo::useAA() const { return TTIImpl
->useAA(); }
223 bool TargetTransformInfo::isTypeLegal(Type
*Ty
) const {
224 return TTIImpl
->isTypeLegal(Ty
);
227 unsigned TargetTransformInfo::getJumpBufAlignment() const {
228 return TTIImpl
->getJumpBufAlignment();
231 unsigned TargetTransformInfo::getJumpBufSize() const {
232 return TTIImpl
->getJumpBufSize();
235 bool TargetTransformInfo::shouldBuildLookupTables() const {
236 return TTIImpl
->shouldBuildLookupTables();
238 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant
*C
) const {
239 return TTIImpl
->shouldBuildLookupTablesForConstant(C
);
242 bool TargetTransformInfo::useColdCCForColdCall(Function
&F
) const {
243 return TTIImpl
->useColdCCForColdCall(F
);
246 unsigned TargetTransformInfo::
247 getScalarizationOverhead(Type
*Ty
, bool Insert
, bool Extract
) const {
248 return TTIImpl
->getScalarizationOverhead(Ty
, Insert
, Extract
);
251 unsigned TargetTransformInfo::
252 getOperandsScalarizationOverhead(ArrayRef
<const Value
*> Args
,
254 return TTIImpl
->getOperandsScalarizationOverhead(Args
, VF
);
257 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
258 return TTIImpl
->supportsEfficientVectorElementLoadStore();
261 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions
) const {
262 return TTIImpl
->enableAggressiveInterleaving(LoopHasReductions
);
265 const TargetTransformInfo::MemCmpExpansionOptions
*
266 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp
) const {
267 return TTIImpl
->enableMemCmpExpansion(IsZeroCmp
);
270 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
271 return TTIImpl
->enableInterleavedAccessVectorization();
274 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
275 return TTIImpl
->enableMaskedInterleavedAccessVectorization();
278 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
279 return TTIImpl
->isFPVectorizationPotentiallyUnsafe();
282 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext
&Context
,
284 unsigned AddressSpace
,
287 return TTIImpl
->allowsMisalignedMemoryAccesses(Context
, BitWidth
, AddressSpace
,
291 TargetTransformInfo::PopcntSupportKind
292 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit
) const {
293 return TTIImpl
->getPopcntSupport(IntTyWidthInBit
);
296 bool TargetTransformInfo::haveFastSqrt(Type
*Ty
) const {
297 return TTIImpl
->haveFastSqrt(Ty
);
300 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type
*Ty
) const {
301 return TTIImpl
->isFCmpOrdCheaperThanFCmpZero(Ty
);
304 int TargetTransformInfo::getFPOpCost(Type
*Ty
) const {
305 int Cost
= TTIImpl
->getFPOpCost(Ty
);
306 assert(Cost
>= 0 && "TTI should not produce negative costs!");
310 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode
, unsigned Idx
,
313 int Cost
= TTIImpl
->getIntImmCodeSizeCost(Opcode
, Idx
, Imm
, Ty
);
314 assert(Cost
>= 0 && "TTI should not produce negative costs!");
318 int TargetTransformInfo::getIntImmCost(const APInt
&Imm
, Type
*Ty
) const {
319 int Cost
= TTIImpl
->getIntImmCost(Imm
, Ty
);
320 assert(Cost
>= 0 && "TTI should not produce negative costs!");
324 int TargetTransformInfo::getIntImmCost(unsigned Opcode
, unsigned Idx
,
325 const APInt
&Imm
, Type
*Ty
) const {
326 int Cost
= TTIImpl
->getIntImmCost(Opcode
, Idx
, Imm
, Ty
);
327 assert(Cost
>= 0 && "TTI should not produce negative costs!");
331 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID
, unsigned Idx
,
332 const APInt
&Imm
, Type
*Ty
) const {
333 int Cost
= TTIImpl
->getIntImmCost(IID
, Idx
, Imm
, Ty
);
334 assert(Cost
>= 0 && "TTI should not produce negative costs!");
338 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector
) const {
339 return TTIImpl
->getNumberOfRegisters(Vector
);
342 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector
) const {
343 return TTIImpl
->getRegisterBitWidth(Vector
);
346 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
347 return TTIImpl
->getMinVectorRegisterBitWidth();
350 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize
) const {
351 return TTIImpl
->shouldMaximizeVectorBandwidth(OptSize
);
354 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth
) const {
355 return TTIImpl
->getMinimumVF(ElemWidth
);
358 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
359 const Instruction
&I
, bool &AllowPromotionWithoutCommonHeader
) const {
360 return TTIImpl
->shouldConsiderAddressTypePromotion(
361 I
, AllowPromotionWithoutCommonHeader
);
364 unsigned TargetTransformInfo::getCacheLineSize() const {
365 return TTIImpl
->getCacheLineSize();
368 llvm::Optional
<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level
)
370 return TTIImpl
->getCacheSize(Level
);
373 llvm::Optional
<unsigned> TargetTransformInfo::getCacheAssociativity(
374 CacheLevel Level
) const {
375 return TTIImpl
->getCacheAssociativity(Level
);
378 unsigned TargetTransformInfo::getPrefetchDistance() const {
379 return TTIImpl
->getPrefetchDistance();
382 unsigned TargetTransformInfo::getMinPrefetchStride() const {
383 return TTIImpl
->getMinPrefetchStride();
386 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
387 return TTIImpl
->getMaxPrefetchIterationsAhead();
390 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF
) const {
391 return TTIImpl
->getMaxInterleaveFactor(VF
);
394 TargetTransformInfo::OperandValueKind
395 TargetTransformInfo::getOperandInfo(Value
*V
, OperandValueProperties
&OpProps
) {
396 OperandValueKind OpInfo
= OK_AnyValue
;
399 if (auto *CI
= dyn_cast
<ConstantInt
>(V
)) {
400 if (CI
->getValue().isPowerOf2())
401 OpProps
= OP_PowerOf2
;
402 return OK_UniformConstantValue
;
405 // A broadcast shuffle creates a uniform value.
406 // TODO: Add support for non-zero index broadcasts.
407 // TODO: Add support for different source vector width.
408 if (auto *ShuffleInst
= dyn_cast
<ShuffleVectorInst
>(V
))
409 if (ShuffleInst
->isZeroEltSplat())
410 OpInfo
= OK_UniformValue
;
412 const Value
*Splat
= getSplatValue(V
);
414 // Check for a splat of a constant or for a non uniform vector of constants
415 // and check if the constant(s) are all powers of two.
416 if (isa
<ConstantVector
>(V
) || isa
<ConstantDataVector
>(V
)) {
417 OpInfo
= OK_NonUniformConstantValue
;
419 OpInfo
= OK_UniformConstantValue
;
420 if (auto *CI
= dyn_cast
<ConstantInt
>(Splat
))
421 if (CI
->getValue().isPowerOf2())
422 OpProps
= OP_PowerOf2
;
423 } else if (auto *CDS
= dyn_cast
<ConstantDataSequential
>(V
)) {
424 OpProps
= OP_PowerOf2
;
425 for (unsigned I
= 0, E
= CDS
->getNumElements(); I
!= E
; ++I
) {
426 if (auto *CI
= dyn_cast
<ConstantInt
>(CDS
->getElementAsConstant(I
)))
427 if (CI
->getValue().isPowerOf2())
435 // Check for a splat of a uniform value. This is not loop aware, so return
436 // true only for the obviously uniform cases (argument, globalvalue)
437 if (Splat
&& (isa
<Argument
>(Splat
) || isa
<GlobalValue
>(Splat
)))
438 OpInfo
= OK_UniformValue
;
443 int TargetTransformInfo::getArithmeticInstrCost(
444 unsigned Opcode
, Type
*Ty
, OperandValueKind Opd1Info
,
445 OperandValueKind Opd2Info
, OperandValueProperties Opd1PropInfo
,
446 OperandValueProperties Opd2PropInfo
,
447 ArrayRef
<const Value
*> Args
) const {
448 int Cost
= TTIImpl
->getArithmeticInstrCost(Opcode
, Ty
, Opd1Info
, Opd2Info
,
449 Opd1PropInfo
, Opd2PropInfo
, Args
);
450 assert(Cost
>= 0 && "TTI should not produce negative costs!");
454 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind
, Type
*Ty
, int Index
,
456 int Cost
= TTIImpl
->getShuffleCost(Kind
, Ty
, Index
, SubTp
);
457 assert(Cost
>= 0 && "TTI should not produce negative costs!");
461 int TargetTransformInfo::getCastInstrCost(unsigned Opcode
, Type
*Dst
,
462 Type
*Src
, const Instruction
*I
) const {
463 assert ((I
== nullptr || I
->getOpcode() == Opcode
) &&
464 "Opcode should reflect passed instruction.");
465 int Cost
= TTIImpl
->getCastInstrCost(Opcode
, Dst
, Src
, I
);
466 assert(Cost
>= 0 && "TTI should not produce negative costs!");
470 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode
, Type
*Dst
,
472 unsigned Index
) const {
473 int Cost
= TTIImpl
->getExtractWithExtendCost(Opcode
, Dst
, VecTy
, Index
);
474 assert(Cost
>= 0 && "TTI should not produce negative costs!");
478 int TargetTransformInfo::getCFInstrCost(unsigned Opcode
) const {
479 int Cost
= TTIImpl
->getCFInstrCost(Opcode
);
480 assert(Cost
>= 0 && "TTI should not produce negative costs!");
484 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
,
485 Type
*CondTy
, const Instruction
*I
) const {
486 assert ((I
== nullptr || I
->getOpcode() == Opcode
) &&
487 "Opcode should reflect passed instruction.");
488 int Cost
= TTIImpl
->getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, I
);
489 assert(Cost
>= 0 && "TTI should not produce negative costs!");
493 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode
, Type
*Val
,
494 unsigned Index
) const {
495 int Cost
= TTIImpl
->getVectorInstrCost(Opcode
, Val
, Index
);
496 assert(Cost
>= 0 && "TTI should not produce negative costs!");
500 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode
, Type
*Src
,
502 unsigned AddressSpace
,
503 const Instruction
*I
) const {
504 assert ((I
== nullptr || I
->getOpcode() == Opcode
) &&
505 "Opcode should reflect passed instruction.");
506 int Cost
= TTIImpl
->getMemoryOpCost(Opcode
, Src
, Alignment
, AddressSpace
, I
);
507 assert(Cost
>= 0 && "TTI should not produce negative costs!");
511 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode
, Type
*Src
,
513 unsigned AddressSpace
) const {
515 TTIImpl
->getMaskedMemoryOpCost(Opcode
, Src
, Alignment
, AddressSpace
);
516 assert(Cost
>= 0 && "TTI should not produce negative costs!");
520 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode
, Type
*DataTy
,
521 Value
*Ptr
, bool VariableMask
,
522 unsigned Alignment
) const {
523 int Cost
= TTIImpl
->getGatherScatterOpCost(Opcode
, DataTy
, Ptr
, VariableMask
,
525 assert(Cost
>= 0 && "TTI should not produce negative costs!");
529 int TargetTransformInfo::getInterleavedMemoryOpCost(
530 unsigned Opcode
, Type
*VecTy
, unsigned Factor
, ArrayRef
<unsigned> Indices
,
531 unsigned Alignment
, unsigned AddressSpace
, bool UseMaskForCond
,
532 bool UseMaskForGaps
) const {
533 int Cost
= TTIImpl
->getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
534 Alignment
, AddressSpace
,
537 assert(Cost
>= 0 && "TTI should not produce negative costs!");
541 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID
, Type
*RetTy
,
542 ArrayRef
<Type
*> Tys
, FastMathFlags FMF
,
543 unsigned ScalarizationCostPassed
) const {
544 int Cost
= TTIImpl
->getIntrinsicInstrCost(ID
, RetTy
, Tys
, FMF
,
545 ScalarizationCostPassed
);
546 assert(Cost
>= 0 && "TTI should not produce negative costs!");
550 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID
, Type
*RetTy
,
551 ArrayRef
<Value
*> Args
, FastMathFlags FMF
, unsigned VF
) const {
552 int Cost
= TTIImpl
->getIntrinsicInstrCost(ID
, RetTy
, Args
, FMF
, VF
);
553 assert(Cost
>= 0 && "TTI should not produce negative costs!");
557 int TargetTransformInfo::getCallInstrCost(Function
*F
, Type
*RetTy
,
558 ArrayRef
<Type
*> Tys
) const {
559 int Cost
= TTIImpl
->getCallInstrCost(F
, RetTy
, Tys
);
560 assert(Cost
>= 0 && "TTI should not produce negative costs!");
564 unsigned TargetTransformInfo::getNumberOfParts(Type
*Tp
) const {
565 return TTIImpl
->getNumberOfParts(Tp
);
568 int TargetTransformInfo::getAddressComputationCost(Type
*Tp
,
570 const SCEV
*Ptr
) const {
571 int Cost
= TTIImpl
->getAddressComputationCost(Tp
, SE
, Ptr
);
572 assert(Cost
>= 0 && "TTI should not produce negative costs!");
576 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode
, Type
*Ty
,
577 bool IsPairwiseForm
) const {
578 int Cost
= TTIImpl
->getArithmeticReductionCost(Opcode
, Ty
, IsPairwiseForm
);
579 assert(Cost
>= 0 && "TTI should not produce negative costs!");
583 int TargetTransformInfo::getMinMaxReductionCost(Type
*Ty
, Type
*CondTy
,
585 bool IsUnsigned
) const {
587 TTIImpl
->getMinMaxReductionCost(Ty
, CondTy
, IsPairwiseForm
, IsUnsigned
);
588 assert(Cost
>= 0 && "TTI should not produce negative costs!");
593 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef
<Type
*> Tys
) const {
594 return TTIImpl
->getCostOfKeepingLiveOverCall(Tys
);
597 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst
*Inst
,
598 MemIntrinsicInfo
&Info
) const {
599 return TTIImpl
->getTgtMemIntrinsic(Inst
, Info
);
602 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
603 return TTIImpl
->getAtomicMemIntrinsicMaxElementSize();
606 Value
*TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
607 IntrinsicInst
*Inst
, Type
*ExpectedType
) const {
608 return TTIImpl
->getOrCreateResultFromMemIntrinsic(Inst
, ExpectedType
);
611 Type
*TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext
&Context
,
614 unsigned DestAlign
) const {
615 return TTIImpl
->getMemcpyLoopLoweringType(Context
, Length
, SrcAlign
,
619 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
620 SmallVectorImpl
<Type
*> &OpsOut
, LLVMContext
&Context
,
621 unsigned RemainingBytes
, unsigned SrcAlign
, unsigned DestAlign
) const {
622 TTIImpl
->getMemcpyLoopResidualLoweringType(OpsOut
, Context
, RemainingBytes
,
623 SrcAlign
, DestAlign
);
626 bool TargetTransformInfo::areInlineCompatible(const Function
*Caller
,
627 const Function
*Callee
) const {
628 return TTIImpl
->areInlineCompatible(Caller
, Callee
);
631 bool TargetTransformInfo::areFunctionArgsABICompatible(
632 const Function
*Caller
, const Function
*Callee
,
633 SmallPtrSetImpl
<Argument
*> &Args
) const {
634 return TTIImpl
->areFunctionArgsABICompatible(Caller
, Callee
, Args
);
637 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode
,
639 return TTIImpl
->isIndexedLoadLegal(Mode
, Ty
);
642 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode
,
644 return TTIImpl
->isIndexedStoreLegal(Mode
, Ty
);
647 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS
) const {
648 return TTIImpl
->getLoadStoreVecRegBitWidth(AS
);
651 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst
*LI
) const {
652 return TTIImpl
->isLegalToVectorizeLoad(LI
);
655 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst
*SI
) const {
656 return TTIImpl
->isLegalToVectorizeStore(SI
);
659 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
660 unsigned ChainSizeInBytes
, unsigned Alignment
, unsigned AddrSpace
) const {
661 return TTIImpl
->isLegalToVectorizeLoadChain(ChainSizeInBytes
, Alignment
,
665 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
666 unsigned ChainSizeInBytes
, unsigned Alignment
, unsigned AddrSpace
) const {
667 return TTIImpl
->isLegalToVectorizeStoreChain(ChainSizeInBytes
, Alignment
,
671 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF
,
673 unsigned ChainSizeInBytes
,
674 VectorType
*VecTy
) const {
675 return TTIImpl
->getLoadVectorFactor(VF
, LoadSize
, ChainSizeInBytes
, VecTy
);
678 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF
,
680 unsigned ChainSizeInBytes
,
681 VectorType
*VecTy
) const {
682 return TTIImpl
->getStoreVectorFactor(VF
, StoreSize
, ChainSizeInBytes
, VecTy
);
685 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode
,
686 Type
*Ty
, ReductionFlags Flags
) const {
687 return TTIImpl
->useReductionIntrinsic(Opcode
, Ty
, Flags
);
690 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst
*II
) const {
691 return TTIImpl
->shouldExpandReduction(II
);
694 int TargetTransformInfo::getInstructionLatency(const Instruction
*I
) const {
695 return TTIImpl
->getInstructionLatency(I
);
698 static bool matchPairwiseShuffleMask(ShuffleVectorInst
*SI
, bool IsLeft
,
700 // We don't need a shuffle if we just want to have element 0 in position 0 of
702 if (!SI
&& Level
== 0 && IsLeft
)
707 SmallVector
<int, 32> Mask(SI
->getType()->getVectorNumElements(), -1);
709 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
710 // we look at the left or right side.
711 for (unsigned i
= 0, e
= (1 << Level
), val
= !IsLeft
; i
!= e
; ++i
, val
+= 2)
714 SmallVector
<int, 16> ActualMask
= SI
->getShuffleMask();
715 return Mask
== ActualMask
;
719 /// Kind of the reduction data.
721 RK_None
, /// Not a reduction.
722 RK_Arithmetic
, /// Binary reduction data.
723 RK_MinMax
, /// Min/max reduction data.
724 RK_UnsignedMinMax
, /// Unsigned min/max reduction data.
726 /// Contains opcode + LHS/RHS parts of the reduction operations.
727 struct ReductionData
{
728 ReductionData() = delete;
729 ReductionData(ReductionKind Kind
, unsigned Opcode
, Value
*LHS
, Value
*RHS
)
730 : Opcode(Opcode
), LHS(LHS
), RHS(RHS
), Kind(Kind
) {
731 assert(Kind
!= RK_None
&& "expected binary or min/max reduction only.");
734 Value
*LHS
= nullptr;
735 Value
*RHS
= nullptr;
736 ReductionKind Kind
= RK_None
;
737 bool hasSameData(ReductionData
&RD
) const {
738 return Kind
== RD
.Kind
&& Opcode
== RD
.Opcode
;
743 static Optional
<ReductionData
> getReductionData(Instruction
*I
) {
745 if (m_BinOp(m_Value(L
), m_Value(R
)).match(I
))
746 return ReductionData(RK_Arithmetic
, I
->getOpcode(), L
, R
);
747 if (auto *SI
= dyn_cast
<SelectInst
>(I
)) {
748 if (m_SMin(m_Value(L
), m_Value(R
)).match(SI
) ||
749 m_SMax(m_Value(L
), m_Value(R
)).match(SI
) ||
750 m_OrdFMin(m_Value(L
), m_Value(R
)).match(SI
) ||
751 m_OrdFMax(m_Value(L
), m_Value(R
)).match(SI
) ||
752 m_UnordFMin(m_Value(L
), m_Value(R
)).match(SI
) ||
753 m_UnordFMax(m_Value(L
), m_Value(R
)).match(SI
)) {
754 auto *CI
= cast
<CmpInst
>(SI
->getCondition());
755 return ReductionData(RK_MinMax
, CI
->getOpcode(), L
, R
);
757 if (m_UMin(m_Value(L
), m_Value(R
)).match(SI
) ||
758 m_UMax(m_Value(L
), m_Value(R
)).match(SI
)) {
759 auto *CI
= cast
<CmpInst
>(SI
->getCondition());
760 return ReductionData(RK_UnsignedMinMax
, CI
->getOpcode(), L
, R
);
766 static ReductionKind
matchPairwiseReductionAtLevel(Instruction
*I
,
768 unsigned NumLevels
) {
769 // Match one level of pairwise operations.
770 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
771 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
772 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
773 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
774 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
778 assert(I
->getType()->isVectorTy() && "Expecting a vector type");
780 Optional
<ReductionData
> RD
= getReductionData(I
);
784 ShuffleVectorInst
*LS
= dyn_cast
<ShuffleVectorInst
>(RD
->LHS
);
787 ShuffleVectorInst
*RS
= dyn_cast
<ShuffleVectorInst
>(RD
->RHS
);
791 // On level 0 we can omit one shufflevector instruction.
792 if (!Level
&& !RS
&& !LS
)
795 // Shuffle inputs must match.
796 Value
*NextLevelOpL
= LS
? LS
->getOperand(0) : nullptr;
797 Value
*NextLevelOpR
= RS
? RS
->getOperand(0) : nullptr;
798 Value
*NextLevelOp
= nullptr;
799 if (NextLevelOpR
&& NextLevelOpL
) {
800 // If we have two shuffles their operands must match.
801 if (NextLevelOpL
!= NextLevelOpR
)
804 NextLevelOp
= NextLevelOpL
;
805 } else if (Level
== 0 && (NextLevelOpR
|| NextLevelOpL
)) {
806 // On the first level we can omit the shufflevector <0, undef,...>. So the
807 // input to the other shufflevector <1, undef> must match with one of the
808 // inputs to the current binary operation.
810 // %NextLevelOpL = shufflevector %R, <1, undef ...>
811 // %BinOp = fadd %NextLevelOpL, %R
812 if (NextLevelOpL
&& NextLevelOpL
!= RD
->RHS
)
814 else if (NextLevelOpR
&& NextLevelOpR
!= RD
->LHS
)
817 NextLevelOp
= NextLevelOpL
? RD
->RHS
: RD
->LHS
;
821 // Check that the next levels binary operation exists and matches with the
823 if (Level
+ 1 != NumLevels
) {
824 Optional
<ReductionData
> NextLevelRD
=
825 getReductionData(cast
<Instruction
>(NextLevelOp
));
826 if (!NextLevelRD
|| !RD
->hasSameData(*NextLevelRD
))
830 // Shuffle mask for pairwise operation must match.
831 if (matchPairwiseShuffleMask(LS
, /*IsLeft=*/true, Level
)) {
832 if (!matchPairwiseShuffleMask(RS
, /*IsLeft=*/false, Level
))
834 } else if (matchPairwiseShuffleMask(RS
, /*IsLeft=*/true, Level
)) {
835 if (!matchPairwiseShuffleMask(LS
, /*IsLeft=*/false, Level
))
841 if (++Level
== NumLevels
)
845 return matchPairwiseReductionAtLevel(cast
<Instruction
>(NextLevelOp
), Level
,
849 static ReductionKind
matchPairwiseReduction(const ExtractElementInst
*ReduxRoot
,
850 unsigned &Opcode
, Type
*&Ty
) {
851 if (!EnableReduxCost
)
854 // Need to extract the first element.
855 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ReduxRoot
->getOperand(1));
858 Idx
= CI
->getZExtValue();
862 auto *RdxStart
= dyn_cast
<Instruction
>(ReduxRoot
->getOperand(0));
865 Optional
<ReductionData
> RD
= getReductionData(RdxStart
);
869 Type
*VecTy
= RdxStart
->getType();
870 unsigned NumVecElems
= VecTy
->getVectorNumElements();
871 if (!isPowerOf2_32(NumVecElems
))
874 // We look for a sequence of shuffle,shuffle,add triples like the following
875 // that builds a pairwise reduction tree.
878 // (X0 + X1, X2 + X3, undef, undef)
879 // ((X0 + X1) + (X2 + X3), undef, undef, undef)
881 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
882 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
883 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
884 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
885 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
886 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
887 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
888 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
889 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
890 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
891 // %r = extractelement <4 x float> %bin.rdx8, i32 0
892 if (matchPairwiseReductionAtLevel(RdxStart
, 0, Log2_32(NumVecElems
)) ==
902 static std::pair
<Value
*, ShuffleVectorInst
*>
903 getShuffleAndOtherOprd(Value
*L
, Value
*R
) {
904 ShuffleVectorInst
*S
= nullptr;
906 if ((S
= dyn_cast
<ShuffleVectorInst
>(L
)))
907 return std::make_pair(R
, S
);
909 S
= dyn_cast
<ShuffleVectorInst
>(R
);
910 return std::make_pair(L
, S
);
914 matchVectorSplittingReduction(const ExtractElementInst
*ReduxRoot
,
915 unsigned &Opcode
, Type
*&Ty
) {
916 if (!EnableReduxCost
)
919 // Need to extract the first element.
920 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ReduxRoot
->getOperand(1));
923 Idx
= CI
->getZExtValue();
927 auto *RdxStart
= dyn_cast
<Instruction
>(ReduxRoot
->getOperand(0));
930 Optional
<ReductionData
> RD
= getReductionData(RdxStart
);
934 Type
*VecTy
= ReduxRoot
->getOperand(0)->getType();
935 unsigned NumVecElems
= VecTy
->getVectorNumElements();
936 if (!isPowerOf2_32(NumVecElems
))
939 // We look for a sequence of shuffles and adds like the following matching one
940 // fadd, shuffle vector pair at a time.
942 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
943 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
944 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
945 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
946 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
947 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
948 // %r = extractelement <4 x float> %bin.rdx8, i32 0
950 unsigned MaskStart
= 1;
951 Instruction
*RdxOp
= RdxStart
;
952 SmallVector
<int, 32> ShuffleMask(NumVecElems
, 0);
953 unsigned NumVecElemsRemain
= NumVecElems
;
954 while (NumVecElemsRemain
- 1) {
955 // Check for the right reduction operation.
958 Optional
<ReductionData
> RDLevel
= getReductionData(RdxOp
);
959 if (!RDLevel
|| !RDLevel
->hasSameData(*RD
))
963 ShuffleVectorInst
*Shuffle
;
964 std::tie(NextRdxOp
, Shuffle
) =
965 getShuffleAndOtherOprd(RDLevel
->LHS
, RDLevel
->RHS
);
967 // Check the current reduction operation and the shuffle use the same value.
968 if (Shuffle
== nullptr)
970 if (Shuffle
->getOperand(0) != NextRdxOp
)
973 // Check that shuffle masks matches.
974 for (unsigned j
= 0; j
!= MaskStart
; ++j
)
975 ShuffleMask
[j
] = MaskStart
+ j
;
976 // Fill the rest of the mask with -1 for undef.
977 std::fill(&ShuffleMask
[MaskStart
], ShuffleMask
.end(), -1);
979 SmallVector
<int, 16> Mask
= Shuffle
->getShuffleMask();
980 if (ShuffleMask
!= Mask
)
983 RdxOp
= dyn_cast
<Instruction
>(NextRdxOp
);
984 NumVecElemsRemain
/= 2;
993 int TargetTransformInfo::getInstructionThroughput(const Instruction
*I
) const {
994 switch (I
->getOpcode()) {
995 case Instruction::GetElementPtr
:
996 return getUserCost(I
);
998 case Instruction::Ret
:
999 case Instruction::PHI
:
1000 case Instruction::Br
: {
1001 return getCFInstrCost(I
->getOpcode());
1003 case Instruction::Add
:
1004 case Instruction::FAdd
:
1005 case Instruction::Sub
:
1006 case Instruction::FSub
:
1007 case Instruction::Mul
:
1008 case Instruction::FMul
:
1009 case Instruction::UDiv
:
1010 case Instruction::SDiv
:
1011 case Instruction::FDiv
:
1012 case Instruction::URem
:
1013 case Instruction::SRem
:
1014 case Instruction::FRem
:
1015 case Instruction::Shl
:
1016 case Instruction::LShr
:
1017 case Instruction::AShr
:
1018 case Instruction::And
:
1019 case Instruction::Or
:
1020 case Instruction::Xor
: {
1021 TargetTransformInfo::OperandValueKind Op1VK
, Op2VK
;
1022 TargetTransformInfo::OperandValueProperties Op1VP
, Op2VP
;
1023 Op1VK
= getOperandInfo(I
->getOperand(0), Op1VP
);
1024 Op2VK
= getOperandInfo(I
->getOperand(1), Op2VP
);
1025 SmallVector
<const Value
*, 2> Operands(I
->operand_values());
1026 return getArithmeticInstrCost(I
->getOpcode(), I
->getType(), Op1VK
, Op2VK
,
1027 Op1VP
, Op2VP
, Operands
);
1029 case Instruction::Select
: {
1030 const SelectInst
*SI
= cast
<SelectInst
>(I
);
1031 Type
*CondTy
= SI
->getCondition()->getType();
1032 return getCmpSelInstrCost(I
->getOpcode(), I
->getType(), CondTy
, I
);
1034 case Instruction::ICmp
:
1035 case Instruction::FCmp
: {
1036 Type
*ValTy
= I
->getOperand(0)->getType();
1037 return getCmpSelInstrCost(I
->getOpcode(), ValTy
, I
->getType(), I
);
1039 case Instruction::Store
: {
1040 const StoreInst
*SI
= cast
<StoreInst
>(I
);
1041 Type
*ValTy
= SI
->getValueOperand()->getType();
1042 return getMemoryOpCost(I
->getOpcode(), ValTy
,
1044 SI
->getPointerAddressSpace(), I
);
1046 case Instruction::Load
: {
1047 const LoadInst
*LI
= cast
<LoadInst
>(I
);
1048 return getMemoryOpCost(I
->getOpcode(), I
->getType(),
1050 LI
->getPointerAddressSpace(), I
);
1052 case Instruction::ZExt
:
1053 case Instruction::SExt
:
1054 case Instruction::FPToUI
:
1055 case Instruction::FPToSI
:
1056 case Instruction::FPExt
:
1057 case Instruction::PtrToInt
:
1058 case Instruction::IntToPtr
:
1059 case Instruction::SIToFP
:
1060 case Instruction::UIToFP
:
1061 case Instruction::Trunc
:
1062 case Instruction::FPTrunc
:
1063 case Instruction::BitCast
:
1064 case Instruction::AddrSpaceCast
: {
1065 Type
*SrcTy
= I
->getOperand(0)->getType();
1066 return getCastInstrCost(I
->getOpcode(), I
->getType(), SrcTy
, I
);
1068 case Instruction::ExtractElement
: {
1069 const ExtractElementInst
* EEI
= cast
<ExtractElementInst
>(I
);
1070 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
1073 Idx
= CI
->getZExtValue();
1075 // Try to match a reduction sequence (series of shufflevector and vector
1076 // adds followed by a extractelement).
1077 unsigned ReduxOpCode
;
1080 switch (matchVectorSplittingReduction(EEI
, ReduxOpCode
, ReduxType
)) {
1082 return getArithmeticReductionCost(ReduxOpCode
, ReduxType
,
1083 /*IsPairwiseForm=*/false);
1085 return getMinMaxReductionCost(
1086 ReduxType
, CmpInst::makeCmpResultType(ReduxType
),
1087 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1088 case RK_UnsignedMinMax
:
1089 return getMinMaxReductionCost(
1090 ReduxType
, CmpInst::makeCmpResultType(ReduxType
),
1091 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1096 switch (matchPairwiseReduction(EEI
, ReduxOpCode
, ReduxType
)) {
1098 return getArithmeticReductionCost(ReduxOpCode
, ReduxType
,
1099 /*IsPairwiseForm=*/true);
1101 return getMinMaxReductionCost(
1102 ReduxType
, CmpInst::makeCmpResultType(ReduxType
),
1103 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1104 case RK_UnsignedMinMax
:
1105 return getMinMaxReductionCost(
1106 ReduxType
, CmpInst::makeCmpResultType(ReduxType
),
1107 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1112 return getVectorInstrCost(I
->getOpcode(),
1113 EEI
->getOperand(0)->getType(), Idx
);
1115 case Instruction::InsertElement
: {
1116 const InsertElementInst
* IE
= cast
<InsertElementInst
>(I
);
1117 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(IE
->getOperand(2));
1120 Idx
= CI
->getZExtValue();
1121 return getVectorInstrCost(I
->getOpcode(),
1122 IE
->getType(), Idx
);
1124 case Instruction::ShuffleVector
: {
1125 const ShuffleVectorInst
*Shuffle
= cast
<ShuffleVectorInst
>(I
);
1126 Type
*Ty
= Shuffle
->getType();
1127 Type
*SrcTy
= Shuffle
->getOperand(0)->getType();
1129 // TODO: Identify and add costs for insert subvector, etc.
1131 if (Shuffle
->isExtractSubvectorMask(SubIndex
))
1132 return TTIImpl
->getShuffleCost(SK_ExtractSubvector
, SrcTy
, SubIndex
, Ty
);
1134 if (Shuffle
->changesLength())
1137 if (Shuffle
->isIdentity())
1140 if (Shuffle
->isReverse())
1141 return TTIImpl
->getShuffleCost(SK_Reverse
, Ty
, 0, nullptr);
1143 if (Shuffle
->isSelect())
1144 return TTIImpl
->getShuffleCost(SK_Select
, Ty
, 0, nullptr);
1146 if (Shuffle
->isTranspose())
1147 return TTIImpl
->getShuffleCost(SK_Transpose
, Ty
, 0, nullptr);
1149 if (Shuffle
->isZeroEltSplat())
1150 return TTIImpl
->getShuffleCost(SK_Broadcast
, Ty
, 0, nullptr);
1152 if (Shuffle
->isSingleSource())
1153 return TTIImpl
->getShuffleCost(SK_PermuteSingleSrc
, Ty
, 0, nullptr);
1155 return TTIImpl
->getShuffleCost(SK_PermuteTwoSrc
, Ty
, 0, nullptr);
1157 case Instruction::Call
:
1158 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
1159 SmallVector
<Value
*, 4> Args(II
->arg_operands());
1162 if (auto *FPMO
= dyn_cast
<FPMathOperator
>(II
))
1163 FMF
= FPMO
->getFastMathFlags();
1165 return getIntrinsicInstrCost(II
->getIntrinsicID(), II
->getType(),
1170 // We don't have any information on this instruction.
1175 TargetTransformInfo::Concept::~Concept() {}
1177 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI
) {}
1179 TargetIRAnalysis::TargetIRAnalysis(
1180 std::function
<Result(const Function
&)> TTICallback
)
1181 : TTICallback(std::move(TTICallback
)) {}
1183 TargetIRAnalysis::Result
TargetIRAnalysis::run(const Function
&F
,
1184 FunctionAnalysisManager
&) {
1185 return TTICallback(F
);
1188 AnalysisKey
TargetIRAnalysis::Key
;
1190 TargetIRAnalysis::Result
TargetIRAnalysis::getDefaultTTI(const Function
&F
) {
1191 return Result(F
.getParent()->getDataLayout());
1194 // Register the basic pass.
1195 INITIALIZE_PASS(TargetTransformInfoWrapperPass
, "tti",
1196 "Target Transform Information", false, true)
1197 char TargetTransformInfoWrapperPass::ID
= 0;
1199 void TargetTransformInfoWrapperPass::anchor() {}
1201 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1202 : ImmutablePass(ID
) {
1203 initializeTargetTransformInfoWrapperPassPass(
1204 *PassRegistry::getPassRegistry());
1207 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1208 TargetIRAnalysis TIRA
)
1209 : ImmutablePass(ID
), TIRA(std::move(TIRA
)) {
1210 initializeTargetTransformInfoWrapperPassPass(
1211 *PassRegistry::getPassRegistry());
1214 TargetTransformInfo
&TargetTransformInfoWrapperPass::getTTI(const Function
&F
) {
1215 FunctionAnalysisManager DummyFAM
;
1216 TTI
= TIRA
.run(F
, DummyFAM
);
1221 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA
) {
1222 return new TargetTransformInfoWrapperPass(std::move(TIRA
));