1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines vectorizer utilities.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
28 #define DEBUG_TYPE "vectorutils"
31 using namespace llvm::PatternMatch
;
33 /// Maximum factor for an interleaved memory access.
34 static cl::opt
<unsigned> MaxInterleaveGroupFactor(
35 "max-interleave-group-factor", cl::Hidden
,
36 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
39 /// Return true if all of the intrinsic's arguments and return type are scalars
40 /// for the scalar form of the intrinsic and vectors for the vector form of the
42 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID
) {
44 case Intrinsic::bswap
: // Begin integer bit-manipulation.
45 case Intrinsic::bitreverse
:
46 case Intrinsic::ctpop
:
51 case Intrinsic::sadd_sat
:
52 case Intrinsic::ssub_sat
:
53 case Intrinsic::uadd_sat
:
54 case Intrinsic::usub_sat
:
55 case Intrinsic::sqrt
: // Begin floating-point.
61 case Intrinsic::log10
:
64 case Intrinsic::minnum
:
65 case Intrinsic::maxnum
:
66 case Intrinsic::minimum
:
67 case Intrinsic::maximum
:
68 case Intrinsic::copysign
:
69 case Intrinsic::floor
:
71 case Intrinsic::trunc
:
73 case Intrinsic::nearbyint
:
74 case Intrinsic::round
:
77 case Intrinsic::fmuladd
:
79 case Intrinsic::canonicalize
:
86 /// Identifies if the intrinsic has a scalar operand. It check for
87 /// ctlz,cttz and powi special intrinsics whose argument is scalar.
88 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID
,
89 unsigned ScalarOpdIdx
) {
94 return (ScalarOpdIdx
== 1);
100 /// Returns intrinsic ID for call.
101 /// For the input call instruction it finds mapping intrinsic and returns
102 /// its ID, in case it does not found it return not_intrinsic.
103 Intrinsic::ID
llvm::getVectorIntrinsicIDForCall(const CallInst
*CI
,
104 const TargetLibraryInfo
*TLI
) {
105 Intrinsic::ID ID
= getIntrinsicForCallSite(CI
, TLI
);
106 if (ID
== Intrinsic::not_intrinsic
)
107 return Intrinsic::not_intrinsic
;
109 if (isTriviallyVectorizable(ID
) || ID
== Intrinsic::lifetime_start
||
110 ID
== Intrinsic::lifetime_end
|| ID
== Intrinsic::assume
||
111 ID
== Intrinsic::sideeffect
)
113 return Intrinsic::not_intrinsic
;
116 /// Find the operand of the GEP that should be checked for consecutive
117 /// stores. This ignores trailing indices that have no effect on the final
119 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst
*Gep
) {
120 const DataLayout
&DL
= Gep
->getModule()->getDataLayout();
121 unsigned LastOperand
= Gep
->getNumOperands() - 1;
122 unsigned GEPAllocSize
= DL
.getTypeAllocSize(Gep
->getResultElementType());
124 // Walk backwards and try to peel off zeros.
125 while (LastOperand
> 1 && match(Gep
->getOperand(LastOperand
), m_Zero())) {
126 // Find the type we're currently indexing into.
127 gep_type_iterator GEPTI
= gep_type_begin(Gep
);
128 std::advance(GEPTI
, LastOperand
- 2);
130 // If it's a type with the same allocation size as the result of the GEP we
131 // can peel off the zero index.
132 if (DL
.getTypeAllocSize(GEPTI
.getIndexedType()) != GEPAllocSize
)
140 /// If the argument is a GEP, then returns the operand identified by
141 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
142 /// operand, it returns that instead.
143 Value
*llvm::stripGetElementPtr(Value
*Ptr
, ScalarEvolution
*SE
, Loop
*Lp
) {
144 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
148 unsigned InductionOperand
= getGEPInductionOperand(GEP
);
150 // Check that all of the gep indices are uniform except for our induction
152 for (unsigned i
= 0, e
= GEP
->getNumOperands(); i
!= e
; ++i
)
153 if (i
!= InductionOperand
&&
154 !SE
->isLoopInvariant(SE
->getSCEV(GEP
->getOperand(i
)), Lp
))
156 return GEP
->getOperand(InductionOperand
);
159 /// If a value has only one user that is a CastInst, return it.
160 Value
*llvm::getUniqueCastUse(Value
*Ptr
, Loop
*Lp
, Type
*Ty
) {
161 Value
*UniqueCast
= nullptr;
162 for (User
*U
: Ptr
->users()) {
163 CastInst
*CI
= dyn_cast
<CastInst
>(U
);
164 if (CI
&& CI
->getType() == Ty
) {
174 /// Get the stride of a pointer access in a loop. Looks for symbolic
175 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
176 Value
*llvm::getStrideFromPointer(Value
*Ptr
, ScalarEvolution
*SE
, Loop
*Lp
) {
177 auto *PtrTy
= dyn_cast
<PointerType
>(Ptr
->getType());
178 if (!PtrTy
|| PtrTy
->isAggregateType())
181 // Try to remove a gep instruction to make the pointer (actually index at this
182 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
183 // pointer, otherwise, we are analyzing the index.
184 Value
*OrigPtr
= Ptr
;
186 // The size of the pointer access.
187 int64_t PtrAccessSize
= 1;
189 Ptr
= stripGetElementPtr(Ptr
, SE
, Lp
);
190 const SCEV
*V
= SE
->getSCEV(Ptr
);
194 while (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(V
))
197 const SCEVAddRecExpr
*S
= dyn_cast
<SCEVAddRecExpr
>(V
);
201 V
= S
->getStepRecurrence(*SE
);
205 // Strip off the size of access multiplication if we are still analyzing the
207 if (OrigPtr
== Ptr
) {
208 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(V
)) {
209 if (M
->getOperand(0)->getSCEVType() != scConstant
)
212 const APInt
&APStepVal
= cast
<SCEVConstant
>(M
->getOperand(0))->getAPInt();
214 // Huge step value - give up.
215 if (APStepVal
.getBitWidth() > 64)
218 int64_t StepVal
= APStepVal
.getSExtValue();
219 if (PtrAccessSize
!= StepVal
)
221 V
= M
->getOperand(1);
226 Type
*StripedOffRecurrenceCast
= nullptr;
227 if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(V
)) {
228 StripedOffRecurrenceCast
= C
->getType();
232 // Look for the loop invariant symbolic value.
233 const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(V
);
237 Value
*Stride
= U
->getValue();
238 if (!Lp
->isLoopInvariant(Stride
))
241 // If we have stripped off the recurrence cast we have to make sure that we
242 // return the value that is used in this loop so that we can replace it later.
243 if (StripedOffRecurrenceCast
)
244 Stride
= getUniqueCastUse(Stride
, Lp
, StripedOffRecurrenceCast
);
249 /// Given a vector and an element number, see if the scalar value is
250 /// already around as a register, for example if it were inserted then extracted
252 Value
*llvm::findScalarElement(Value
*V
, unsigned EltNo
) {
253 assert(V
->getType()->isVectorTy() && "Not looking at a vector?");
254 VectorType
*VTy
= cast
<VectorType
>(V
->getType());
255 unsigned Width
= VTy
->getNumElements();
256 if (EltNo
>= Width
) // Out of range access.
257 return UndefValue::get(VTy
->getElementType());
259 if (Constant
*C
= dyn_cast
<Constant
>(V
))
260 return C
->getAggregateElement(EltNo
);
262 if (InsertElementInst
*III
= dyn_cast
<InsertElementInst
>(V
)) {
263 // If this is an insert to a variable element, we don't know what it is.
264 if (!isa
<ConstantInt
>(III
->getOperand(2)))
266 unsigned IIElt
= cast
<ConstantInt
>(III
->getOperand(2))->getZExtValue();
268 // If this is an insert to the element we are looking for, return the
271 return III
->getOperand(1);
273 // Otherwise, the insertelement doesn't modify the value, recurse on its
275 return findScalarElement(III
->getOperand(0), EltNo
);
278 if (ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(V
)) {
279 unsigned LHSWidth
= SVI
->getOperand(0)->getType()->getVectorNumElements();
280 int InEl
= SVI
->getMaskValue(EltNo
);
282 return UndefValue::get(VTy
->getElementType());
283 if (InEl
< (int)LHSWidth
)
284 return findScalarElement(SVI
->getOperand(0), InEl
);
285 return findScalarElement(SVI
->getOperand(1), InEl
- LHSWidth
);
288 // Extract a value from a vector add operation with a constant zero.
289 // TODO: Use getBinOpIdentity() to generalize this.
290 Value
*Val
; Constant
*C
;
291 if (match(V
, m_Add(m_Value(Val
), m_Constant(C
))))
292 if (Constant
*Elt
= C
->getAggregateElement(EltNo
))
293 if (Elt
->isNullValue())
294 return findScalarElement(Val
, EltNo
);
296 // Otherwise, we don't know.
300 /// Get splat value if the input is a splat vector or return nullptr.
301 /// This function is not fully general. It checks only 2 cases:
302 /// the input value is (1) a splat constants vector or (2) a sequence
303 /// of instructions that broadcast a single value into a vector.
305 const llvm::Value
*llvm::getSplatValue(const Value
*V
) {
307 if (auto *C
= dyn_cast
<Constant
>(V
))
308 if (isa
<VectorType
>(V
->getType()))
309 return C
->getSplatValue();
311 auto *ShuffleInst
= dyn_cast
<ShuffleVectorInst
>(V
);
314 // All-zero (or undef) shuffle mask elements.
315 for (int MaskElt
: ShuffleInst
->getShuffleMask())
316 if (MaskElt
!= 0 && MaskElt
!= -1)
318 // The first shuffle source is 'insertelement' with index 0.
319 auto *InsertEltInst
=
320 dyn_cast
<InsertElementInst
>(ShuffleInst
->getOperand(0));
321 if (!InsertEltInst
|| !isa
<ConstantInt
>(InsertEltInst
->getOperand(2)) ||
322 !cast
<ConstantInt
>(InsertEltInst
->getOperand(2))->isZero())
325 return InsertEltInst
->getOperand(1);
328 MapVector
<Instruction
*, uint64_t>
329 llvm::computeMinimumValueSizes(ArrayRef
<BasicBlock
*> Blocks
, DemandedBits
&DB
,
330 const TargetTransformInfo
*TTI
) {
332 // DemandedBits will give us every value's live-out bits. But we want
333 // to ensure no extra casts would need to be inserted, so every DAG
334 // of connected values must have the same minimum bitwidth.
335 EquivalenceClasses
<Value
*> ECs
;
336 SmallVector
<Value
*, 16> Worklist
;
337 SmallPtrSet
<Value
*, 4> Roots
;
338 SmallPtrSet
<Value
*, 16> Visited
;
339 DenseMap
<Value
*, uint64_t> DBits
;
340 SmallPtrSet
<Instruction
*, 4> InstructionSet
;
341 MapVector
<Instruction
*, uint64_t> MinBWs
;
343 // Determine the roots. We work bottom-up, from truncs or icmps.
344 bool SeenExtFromIllegalType
= false;
345 for (auto *BB
: Blocks
)
346 for (auto &I
: *BB
) {
347 InstructionSet
.insert(&I
);
349 if (TTI
&& (isa
<ZExtInst
>(&I
) || isa
<SExtInst
>(&I
)) &&
350 !TTI
->isTypeLegal(I
.getOperand(0)->getType()))
351 SeenExtFromIllegalType
= true;
353 // Only deal with non-vector integers up to 64-bits wide.
354 if ((isa
<TruncInst
>(&I
) || isa
<ICmpInst
>(&I
)) &&
355 !I
.getType()->isVectorTy() &&
356 I
.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
357 // Don't make work for ourselves. If we know the loaded type is legal,
358 // don't add it to the worklist.
359 if (TTI
&& isa
<TruncInst
>(&I
) && TTI
->isTypeLegal(I
.getType()))
362 Worklist
.push_back(&I
);
367 if (Worklist
.empty() || (TTI
&& !SeenExtFromIllegalType
))
370 // Now proceed breadth-first, unioning values together.
371 while (!Worklist
.empty()) {
372 Value
*Val
= Worklist
.pop_back_val();
373 Value
*Leader
= ECs
.getOrInsertLeaderValue(Val
);
375 if (Visited
.count(Val
))
379 // Non-instructions terminate a chain successfully.
380 if (!isa
<Instruction
>(Val
))
382 Instruction
*I
= cast
<Instruction
>(Val
);
384 // If we encounter a type that is larger than 64 bits, we can't represent
386 if (DB
.getDemandedBits(I
).getBitWidth() > 64)
387 return MapVector
<Instruction
*, uint64_t>();
389 uint64_t V
= DB
.getDemandedBits(I
).getZExtValue();
393 // Casts, loads and instructions outside of our range terminate a chain
395 if (isa
<SExtInst
>(I
) || isa
<ZExtInst
>(I
) || isa
<LoadInst
>(I
) ||
396 !InstructionSet
.count(I
))
399 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
400 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
401 // transform anything that relies on them.
402 if (isa
<BitCastInst
>(I
) || isa
<PtrToIntInst
>(I
) || isa
<IntToPtrInst
>(I
) ||
403 !I
->getType()->isIntegerTy()) {
404 DBits
[Leader
] |= ~0ULL;
408 // We don't modify the types of PHIs. Reductions will already have been
409 // truncated if possible, and inductions' sizes will have been chosen by
414 if (DBits
[Leader
] == ~0ULL)
415 // All bits demanded, no point continuing.
418 for (Value
*O
: cast
<User
>(I
)->operands()) {
419 ECs
.unionSets(Leader
, O
);
420 Worklist
.push_back(O
);
424 // Now we've discovered all values, walk them to see if there are
425 // any users we didn't see. If there are, we can't optimize that
427 for (auto &I
: DBits
)
428 for (auto *U
: I
.first
->users())
429 if (U
->getType()->isIntegerTy() && DBits
.count(U
) == 0)
430 DBits
[ECs
.getOrInsertLeaderValue(I
.first
)] |= ~0ULL;
432 for (auto I
= ECs
.begin(), E
= ECs
.end(); I
!= E
; ++I
) {
433 uint64_t LeaderDemandedBits
= 0;
434 for (auto MI
= ECs
.member_begin(I
), ME
= ECs
.member_end(); MI
!= ME
; ++MI
)
435 LeaderDemandedBits
|= DBits
[*MI
];
437 uint64_t MinBW
= (sizeof(LeaderDemandedBits
) * 8) -
438 llvm::countLeadingZeros(LeaderDemandedBits
);
439 // Round up to a power of 2
440 if (!isPowerOf2_64((uint64_t)MinBW
))
441 MinBW
= NextPowerOf2(MinBW
);
443 // We don't modify the types of PHIs. Reductions will already have been
444 // truncated if possible, and inductions' sizes will have been chosen by
446 // If we are required to shrink a PHI, abandon this entire equivalence class.
448 for (auto MI
= ECs
.member_begin(I
), ME
= ECs
.member_end(); MI
!= ME
; ++MI
)
449 if (isa
<PHINode
>(*MI
) && MinBW
< (*MI
)->getType()->getScalarSizeInBits()) {
456 for (auto MI
= ECs
.member_begin(I
), ME
= ECs
.member_end(); MI
!= ME
; ++MI
) {
457 if (!isa
<Instruction
>(*MI
))
459 Type
*Ty
= (*MI
)->getType();
460 if (Roots
.count(*MI
))
461 Ty
= cast
<Instruction
>(*MI
)->getOperand(0)->getType();
462 if (MinBW
< Ty
->getScalarSizeInBits())
463 MinBWs
[cast
<Instruction
>(*MI
)] = MinBW
;
470 /// Add all access groups in @p AccGroups to @p List.
471 template <typename ListT
>
472 static void addToAccessGroupList(ListT
&List
, MDNode
*AccGroups
) {
473 // Interpret an access group as a list containing itself.
474 if (AccGroups
->getNumOperands() == 0) {
475 assert(isValidAsAccessGroup(AccGroups
) && "Node must be an access group");
476 List
.insert(AccGroups
);
480 for (auto &AccGroupListOp
: AccGroups
->operands()) {
481 auto *Item
= cast
<MDNode
>(AccGroupListOp
.get());
482 assert(isValidAsAccessGroup(Item
) && "List item must be an access group");
487 MDNode
*llvm::uniteAccessGroups(MDNode
*AccGroups1
, MDNode
*AccGroups2
) {
492 if (AccGroups1
== AccGroups2
)
495 SmallSetVector
<Metadata
*, 4> Union
;
496 addToAccessGroupList(Union
, AccGroups1
);
497 addToAccessGroupList(Union
, AccGroups2
);
499 if (Union
.size() == 0)
501 if (Union
.size() == 1)
502 return cast
<MDNode
>(Union
.front());
504 LLVMContext
&Ctx
= AccGroups1
->getContext();
505 return MDNode::get(Ctx
, Union
.getArrayRef());
508 MDNode
*llvm::intersectAccessGroups(const Instruction
*Inst1
,
509 const Instruction
*Inst2
) {
510 bool MayAccessMem1
= Inst1
->mayReadOrWriteMemory();
511 bool MayAccessMem2
= Inst2
->mayReadOrWriteMemory();
513 if (!MayAccessMem1
&& !MayAccessMem2
)
516 return Inst2
->getMetadata(LLVMContext::MD_access_group
);
518 return Inst1
->getMetadata(LLVMContext::MD_access_group
);
520 MDNode
*MD1
= Inst1
->getMetadata(LLVMContext::MD_access_group
);
521 MDNode
*MD2
= Inst2
->getMetadata(LLVMContext::MD_access_group
);
527 // Use set for scalable 'contains' check.
528 SmallPtrSet
<Metadata
*, 4> AccGroupSet2
;
529 addToAccessGroupList(AccGroupSet2
, MD2
);
531 SmallVector
<Metadata
*, 4> Intersection
;
532 if (MD1
->getNumOperands() == 0) {
533 assert(isValidAsAccessGroup(MD1
) && "Node must be an access group");
534 if (AccGroupSet2
.count(MD1
))
535 Intersection
.push_back(MD1
);
537 for (const MDOperand
&Node
: MD1
->operands()) {
538 auto *Item
= cast
<MDNode
>(Node
.get());
539 assert(isValidAsAccessGroup(Item
) && "List item must be an access group");
540 if (AccGroupSet2
.count(Item
))
541 Intersection
.push_back(Item
);
545 if (Intersection
.size() == 0)
547 if (Intersection
.size() == 1)
548 return cast
<MDNode
>(Intersection
.front());
550 LLVMContext
&Ctx
= Inst1
->getContext();
551 return MDNode::get(Ctx
, Intersection
);
554 /// \returns \p I after propagating metadata from \p VL.
555 Instruction
*llvm::propagateMetadata(Instruction
*Inst
, ArrayRef
<Value
*> VL
) {
556 Instruction
*I0
= cast
<Instruction
>(VL
[0]);
557 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> Metadata
;
558 I0
->getAllMetadataOtherThanDebugLoc(Metadata
);
560 for (auto Kind
: {LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
561 LLVMContext::MD_noalias
, LLVMContext::MD_fpmath
,
562 LLVMContext::MD_nontemporal
, LLVMContext::MD_invariant_load
,
563 LLVMContext::MD_access_group
}) {
564 MDNode
*MD
= I0
->getMetadata(Kind
);
566 for (int J
= 1, E
= VL
.size(); MD
&& J
!= E
; ++J
) {
567 const Instruction
*IJ
= cast
<Instruction
>(VL
[J
]);
568 MDNode
*IMD
= IJ
->getMetadata(Kind
);
570 case LLVMContext::MD_tbaa
:
571 MD
= MDNode::getMostGenericTBAA(MD
, IMD
);
573 case LLVMContext::MD_alias_scope
:
574 MD
= MDNode::getMostGenericAliasScope(MD
, IMD
);
576 case LLVMContext::MD_fpmath
:
577 MD
= MDNode::getMostGenericFPMath(MD
, IMD
);
579 case LLVMContext::MD_noalias
:
580 case LLVMContext::MD_nontemporal
:
581 case LLVMContext::MD_invariant_load
:
582 MD
= MDNode::intersect(MD
, IMD
);
584 case LLVMContext::MD_access_group
:
585 MD
= intersectAccessGroups(Inst
, IJ
);
588 llvm_unreachable("unhandled metadata");
592 Inst
->setMetadata(Kind
, MD
);
599 llvm::createBitMaskForGaps(IRBuilder
<> &Builder
, unsigned VF
,
600 const InterleaveGroup
<Instruction
> &Group
) {
601 // All 1's means mask is not needed.
602 if (Group
.getNumMembers() == Group
.getFactor())
605 // TODO: support reversed access.
606 assert(!Group
.isReverse() && "Reversed group not supported.");
608 SmallVector
<Constant
*, 16> Mask
;
609 for (unsigned i
= 0; i
< VF
; i
++)
610 for (unsigned j
= 0; j
< Group
.getFactor(); ++j
) {
611 unsigned HasMember
= Group
.getMember(j
) ? 1 : 0;
612 Mask
.push_back(Builder
.getInt1(HasMember
));
615 return ConstantVector::get(Mask
);
618 Constant
*llvm::createReplicatedMask(IRBuilder
<> &Builder
,
619 unsigned ReplicationFactor
, unsigned VF
) {
620 SmallVector
<Constant
*, 16> MaskVec
;
621 for (unsigned i
= 0; i
< VF
; i
++)
622 for (unsigned j
= 0; j
< ReplicationFactor
; j
++)
623 MaskVec
.push_back(Builder
.getInt32(i
));
625 return ConstantVector::get(MaskVec
);
628 Constant
*llvm::createInterleaveMask(IRBuilder
<> &Builder
, unsigned VF
,
630 SmallVector
<Constant
*, 16> Mask
;
631 for (unsigned i
= 0; i
< VF
; i
++)
632 for (unsigned j
= 0; j
< NumVecs
; j
++)
633 Mask
.push_back(Builder
.getInt32(j
* VF
+ i
));
635 return ConstantVector::get(Mask
);
638 Constant
*llvm::createStrideMask(IRBuilder
<> &Builder
, unsigned Start
,
639 unsigned Stride
, unsigned VF
) {
640 SmallVector
<Constant
*, 16> Mask
;
641 for (unsigned i
= 0; i
< VF
; i
++)
642 Mask
.push_back(Builder
.getInt32(Start
+ i
* Stride
));
644 return ConstantVector::get(Mask
);
647 Constant
*llvm::createSequentialMask(IRBuilder
<> &Builder
, unsigned Start
,
648 unsigned NumInts
, unsigned NumUndefs
) {
649 SmallVector
<Constant
*, 16> Mask
;
650 for (unsigned i
= 0; i
< NumInts
; i
++)
651 Mask
.push_back(Builder
.getInt32(Start
+ i
));
653 Constant
*Undef
= UndefValue::get(Builder
.getInt32Ty());
654 for (unsigned i
= 0; i
< NumUndefs
; i
++)
655 Mask
.push_back(Undef
);
657 return ConstantVector::get(Mask
);
660 /// A helper function for concatenating vectors. This function concatenates two
661 /// vectors having the same element type. If the second vector has fewer
662 /// elements than the first, it is padded with undefs.
663 static Value
*concatenateTwoVectors(IRBuilder
<> &Builder
, Value
*V1
,
665 VectorType
*VecTy1
= dyn_cast
<VectorType
>(V1
->getType());
666 VectorType
*VecTy2
= dyn_cast
<VectorType
>(V2
->getType());
667 assert(VecTy1
&& VecTy2
&&
668 VecTy1
->getScalarType() == VecTy2
->getScalarType() &&
669 "Expect two vectors with the same element type");
671 unsigned NumElts1
= VecTy1
->getNumElements();
672 unsigned NumElts2
= VecTy2
->getNumElements();
673 assert(NumElts1
>= NumElts2
&& "Unexpect the first vector has less elements");
675 if (NumElts1
> NumElts2
) {
676 // Extend with UNDEFs.
678 createSequentialMask(Builder
, 0, NumElts2
, NumElts1
- NumElts2
);
679 V2
= Builder
.CreateShuffleVector(V2
, UndefValue::get(VecTy2
), ExtMask
);
682 Constant
*Mask
= createSequentialMask(Builder
, 0, NumElts1
+ NumElts2
, 0);
683 return Builder
.CreateShuffleVector(V1
, V2
, Mask
);
686 Value
*llvm::concatenateVectors(IRBuilder
<> &Builder
, ArrayRef
<Value
*> Vecs
) {
687 unsigned NumVecs
= Vecs
.size();
688 assert(NumVecs
> 1 && "Should be at least two vectors");
690 SmallVector
<Value
*, 8> ResList
;
691 ResList
.append(Vecs
.begin(), Vecs
.end());
693 SmallVector
<Value
*, 8> TmpList
;
694 for (unsigned i
= 0; i
< NumVecs
- 1; i
+= 2) {
695 Value
*V0
= ResList
[i
], *V1
= ResList
[i
+ 1];
696 assert((V0
->getType() == V1
->getType() || i
== NumVecs
- 2) &&
697 "Only the last vector may have a different type");
699 TmpList
.push_back(concatenateTwoVectors(Builder
, V0
, V1
));
702 // Push the last vector if the total number of vectors is odd.
703 if (NumVecs
% 2 != 0)
704 TmpList
.push_back(ResList
[NumVecs
- 1]);
707 NumVecs
= ResList
.size();
708 } while (NumVecs
> 1);
713 bool InterleavedAccessInfo::isStrided(int Stride
) {
714 unsigned Factor
= std::abs(Stride
);
715 return Factor
>= 2 && Factor
<= MaxInterleaveGroupFactor
;
718 void InterleavedAccessInfo::collectConstStrideAccesses(
719 MapVector
<Instruction
*, StrideDescriptor
> &AccessStrideInfo
,
720 const ValueToValueMap
&Strides
) {
721 auto &DL
= TheLoop
->getHeader()->getModule()->getDataLayout();
723 // Since it's desired that the load/store instructions be maintained in
724 // "program order" for the interleaved access analysis, we have to visit the
725 // blocks in the loop in reverse postorder (i.e., in a topological order).
726 // Such an ordering will ensure that any load/store that may be executed
727 // before a second load/store will precede the second load/store in
729 LoopBlocksDFS
DFS(TheLoop
);
731 for (BasicBlock
*BB
: make_range(DFS
.beginRPO(), DFS
.endRPO()))
732 for (auto &I
: *BB
) {
733 auto *LI
= dyn_cast
<LoadInst
>(&I
);
734 auto *SI
= dyn_cast
<StoreInst
>(&I
);
738 Value
*Ptr
= getLoadStorePointerOperand(&I
);
739 // We don't check wrapping here because we don't know yet if Ptr will be
740 // part of a full group or a group with gaps. Checking wrapping for all
741 // pointers (even those that end up in groups with no gaps) will be overly
742 // conservative. For full groups, wrapping should be ok since if we would
743 // wrap around the address space we would do a memory access at nullptr
744 // even without the transformation. The wrapping checks are therefore
745 // deferred until after we've formed the interleaved groups.
746 int64_t Stride
= getPtrStride(PSE
, Ptr
, TheLoop
, Strides
,
747 /*Assume=*/true, /*ShouldCheckWrap=*/false);
749 const SCEV
*Scev
= replaceSymbolicStrideSCEV(PSE
, Strides
, Ptr
);
750 PointerType
*PtrTy
= dyn_cast
<PointerType
>(Ptr
->getType());
751 uint64_t Size
= DL
.getTypeAllocSize(PtrTy
->getElementType());
753 // An alignment of 0 means target ABI alignment.
754 unsigned Align
= getLoadStoreAlignment(&I
);
756 Align
= DL
.getABITypeAlignment(PtrTy
->getElementType());
758 AccessStrideInfo
[&I
] = StrideDescriptor(Stride
, Scev
, Size
, Align
);
762 // Analyze interleaved accesses and collect them into interleaved load and
765 // When generating code for an interleaved load group, we effectively hoist all
766 // loads in the group to the location of the first load in program order. When
767 // generating code for an interleaved store group, we sink all stores to the
768 // location of the last store. This code motion can change the order of load
769 // and store instructions and may break dependences.
771 // The code generation strategy mentioned above ensures that we won't violate
772 // any write-after-read (WAR) dependences.
774 // E.g., for the WAR dependence: a = A[i]; // (1)
777 // The store group of (2) is always inserted at or below (2), and the load
778 // group of (1) is always inserted at or above (1). Thus, the instructions will
779 // never be reordered. All other dependences are checked to ensure the
780 // correctness of the instruction reordering.
782 // The algorithm visits all memory accesses in the loop in bottom-up program
783 // order. Program order is established by traversing the blocks in the loop in
784 // reverse postorder when collecting the accesses.
786 // We visit the memory accesses in bottom-up order because it can simplify the
787 // construction of store groups in the presence of write-after-write (WAW)
790 // E.g., for the WAW dependence: A[i] = a; // (1)
792 // A[i + 1] = c; // (3)
794 // We will first create a store group with (3) and (2). (1) can't be added to
795 // this group because it and (2) are dependent. However, (1) can be grouped
796 // with other accesses that may precede it in program order. Note that a
797 // bottom-up order does not imply that WAW dependences should not be checked.
798 void InterleavedAccessInfo::analyzeInterleaving(
799 bool EnablePredicatedInterleavedMemAccesses
) {
800 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
801 const ValueToValueMap
&Strides
= LAI
->getSymbolicStrides();
803 // Holds all accesses with a constant stride.
804 MapVector
<Instruction
*, StrideDescriptor
> AccessStrideInfo
;
805 collectConstStrideAccesses(AccessStrideInfo
, Strides
);
807 if (AccessStrideInfo
.empty())
810 // Collect the dependences in the loop.
811 collectDependences();
813 // Holds all interleaved store groups temporarily.
814 SmallSetVector
<InterleaveGroup
<Instruction
> *, 4> StoreGroups
;
815 // Holds all interleaved load groups temporarily.
816 SmallSetVector
<InterleaveGroup
<Instruction
> *, 4> LoadGroups
;
818 // Search in bottom-up program order for pairs of accesses (A and B) that can
819 // form interleaved load or store groups. In the algorithm below, access A
820 // precedes access B in program order. We initialize a group for B in the
821 // outer loop of the algorithm, and then in the inner loop, we attempt to
822 // insert each A into B's group if:
824 // 1. A and B have the same stride,
825 // 2. A and B have the same memory object size, and
826 // 3. A belongs in B's group according to its distance from B.
828 // Special care is taken to ensure group formation will not break any
830 for (auto BI
= AccessStrideInfo
.rbegin(), E
= AccessStrideInfo
.rend();
832 Instruction
*B
= BI
->first
;
833 StrideDescriptor DesB
= BI
->second
;
835 // Initialize a group for B if it has an allowable stride. Even if we don't
836 // create a group for B, we continue with the bottom-up algorithm to ensure
837 // we don't break any of B's dependences.
838 InterleaveGroup
<Instruction
> *Group
= nullptr;
839 if (isStrided(DesB
.Stride
) &&
840 (!isPredicated(B
->getParent()) || EnablePredicatedInterleavedMemAccesses
)) {
841 Group
= getInterleaveGroup(B
);
843 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
845 Group
= createInterleaveGroup(B
, DesB
.Stride
, DesB
.Align
);
847 if (B
->mayWriteToMemory())
848 StoreGroups
.insert(Group
);
850 LoadGroups
.insert(Group
);
853 for (auto AI
= std::next(BI
); AI
!= E
; ++AI
) {
854 Instruction
*A
= AI
->first
;
855 StrideDescriptor DesA
= AI
->second
;
857 // Our code motion strategy implies that we can't have dependences
858 // between accesses in an interleaved group and other accesses located
859 // between the first and last member of the group. Note that this also
860 // means that a group can't have more than one member at a given offset.
861 // The accesses in a group can have dependences with other accesses, but
862 // we must ensure we don't extend the boundaries of the group such that
863 // we encompass those dependent accesses.
865 // For example, assume we have the sequence of accesses shown below in a
868 // (1, 2) is a group | A[i] = a; // (1)
869 // | A[i-1] = b; // (2) |
870 // A[i-3] = c; // (3)
871 // A[i] = d; // (4) | (2, 4) is not a group
873 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
874 // but not with (4). If we did, the dependent access (3) would be within
875 // the boundaries of the (2, 4) group.
876 if (!canReorderMemAccessesForInterleavedGroups(&*AI
, &*BI
)) {
877 // If a dependence exists and A is already in a group, we know that A
878 // must be a store since A precedes B and WAR dependences are allowed.
879 // Thus, A would be sunk below B. We release A's group to prevent this
880 // illegal code motion. A will then be free to form another group with
881 // instructions that precede it.
882 if (isInterleaved(A
)) {
883 InterleaveGroup
<Instruction
> *StoreGroup
= getInterleaveGroup(A
);
884 StoreGroups
.remove(StoreGroup
);
885 releaseGroup(StoreGroup
);
888 // If a dependence exists and A is not already in a group (or it was
889 // and we just released it), B might be hoisted above A (if B is a
890 // load) or another store might be sunk below A (if B is a store). In
891 // either case, we can't add additional instructions to B's group. B
892 // will only form a group with instructions that it precedes.
896 // At this point, we've checked for illegal code motion. If either A or B
897 // isn't strided, there's nothing left to do.
898 if (!isStrided(DesA
.Stride
) || !isStrided(DesB
.Stride
))
901 // Ignore A if it's already in a group or isn't the same kind of memory
903 // Note that mayReadFromMemory() isn't mutually exclusive to
904 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
905 // here, canVectorizeMemory() should have returned false - except for the
906 // case we asked for optimization remarks.
907 if (isInterleaved(A
) ||
908 (A
->mayReadFromMemory() != B
->mayReadFromMemory()) ||
909 (A
->mayWriteToMemory() != B
->mayWriteToMemory()))
912 // Check rules 1 and 2. Ignore A if its stride or size is different from
914 if (DesA
.Stride
!= DesB
.Stride
|| DesA
.Size
!= DesB
.Size
)
917 // Ignore A if the memory object of A and B don't belong to the same
919 if (getLoadStoreAddressSpace(A
) != getLoadStoreAddressSpace(B
))
922 // Calculate the distance from A to B.
923 const SCEVConstant
*DistToB
= dyn_cast
<SCEVConstant
>(
924 PSE
.getSE()->getMinusSCEV(DesA
.Scev
, DesB
.Scev
));
927 int64_t DistanceToB
= DistToB
->getAPInt().getSExtValue();
929 // Check rule 3. Ignore A if its distance to B is not a multiple of the
931 if (DistanceToB
% static_cast<int64_t>(DesB
.Size
))
934 // All members of a predicated interleave-group must have the same predicate,
935 // and currently must reside in the same BB.
936 BasicBlock
*BlockA
= A
->getParent();
937 BasicBlock
*BlockB
= B
->getParent();
938 if ((isPredicated(BlockA
) || isPredicated(BlockB
)) &&
939 (!EnablePredicatedInterleavedMemAccesses
|| BlockA
!= BlockB
))
942 // The index of A is the index of B plus A's distance to B in multiples
945 Group
->getIndex(B
) + DistanceToB
/ static_cast<int64_t>(DesB
.Size
);
947 // Try to insert A into B's group.
948 if (Group
->insertMember(A
, IndexA
, DesA
.Align
)) {
949 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A
<< '\n'
950 << " into the interleave group with" << *B
952 InterleaveGroupMap
[A
] = Group
;
954 // Set the first load in program order as the insert position.
955 if (A
->mayReadFromMemory())
956 Group
->setInsertPos(A
);
958 } // Iteration over A accesses.
959 } // Iteration over B accesses.
961 // Remove interleaved store groups with gaps.
962 for (auto *Group
: StoreGroups
)
963 if (Group
->getNumMembers() != Group
->getFactor()) {
965 dbgs() << "LV: Invalidate candidate interleaved store group due "
969 // Remove interleaved groups with gaps (currently only loads) whose memory
970 // accesses may wrap around. We have to revisit the getPtrStride analysis,
971 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
972 // not check wrapping (see documentation there).
973 // FORNOW we use Assume=false;
974 // TODO: Change to Assume=true but making sure we don't exceed the threshold
975 // of runtime SCEV assumptions checks (thereby potentially failing to
976 // vectorize altogether).
977 // Additional optional optimizations:
978 // TODO: If we are peeling the loop and we know that the first pointer doesn't
979 // wrap then we can deduce that all pointers in the group don't wrap.
980 // This means that we can forcefully peel the loop in order to only have to
981 // check the first pointer for no-wrap. When we'll change to use Assume=true
982 // we'll only need at most one runtime check per interleaved group.
983 for (auto *Group
: LoadGroups
) {
984 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
985 // load would wrap around the address space we would do a memory access at
986 // nullptr even without the transformation.
987 if (Group
->getNumMembers() == Group
->getFactor())
990 // Case 2: If first and last members of the group don't wrap this implies
991 // that all the pointers in the group don't wrap.
992 // So we check only group member 0 (which is always guaranteed to exist),
993 // and group member Factor - 1; If the latter doesn't exist we rely on
994 // peeling (if it is a non-reversed accsess -- see Case 3).
995 Value
*FirstMemberPtr
= getLoadStorePointerOperand(Group
->getMember(0));
996 if (!getPtrStride(PSE
, FirstMemberPtr
, TheLoop
, Strides
, /*Assume=*/false,
997 /*ShouldCheckWrap=*/true)) {
999 dbgs() << "LV: Invalidate candidate interleaved group due to "
1000 "first group member potentially pointer-wrapping.\n");
1001 releaseGroup(Group
);
1004 Instruction
*LastMember
= Group
->getMember(Group
->getFactor() - 1);
1006 Value
*LastMemberPtr
= getLoadStorePointerOperand(LastMember
);
1007 if (!getPtrStride(PSE
, LastMemberPtr
, TheLoop
, Strides
, /*Assume=*/false,
1008 /*ShouldCheckWrap=*/true)) {
1010 dbgs() << "LV: Invalidate candidate interleaved group due to "
1011 "last group member potentially pointer-wrapping.\n");
1012 releaseGroup(Group
);
1015 // Case 3: A non-reversed interleaved load group with gaps: We need
1016 // to execute at least one scalar epilogue iteration. This will ensure
1017 // we don't speculatively access memory out-of-bounds. We only need
1018 // to look for a member at index factor - 1, since every group must have
1019 // a member at index zero.
1020 if (Group
->isReverse()) {
1022 dbgs() << "LV: Invalidate candidate interleaved group due to "
1023 "a reverse access with gaps.\n");
1024 releaseGroup(Group
);
1028 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1029 RequiresScalarEpilogue
= true;
1034 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1035 // If no group had triggered the requirement to create an epilogue loop,
1036 // there is nothing to do.
1037 if (!requiresScalarEpilogue())
1040 // Avoid releasing a Group twice.
1041 SmallPtrSet
<InterleaveGroup
<Instruction
> *, 4> DelSet
;
1042 for (auto &I
: InterleaveGroupMap
) {
1043 InterleaveGroup
<Instruction
> *Group
= I
.second
;
1044 if (Group
->requiresScalarEpilogue())
1045 DelSet
.insert(Group
);
1047 for (auto *Ptr
: DelSet
) {
1050 << "LV: Invalidate candidate interleaved group due to gaps that "
1051 "require a scalar epilogue (not allowed under optsize) and cannot "
1052 "be masked (not enabled). \n");
1056 RequiresScalarEpilogue
= false;
1059 template <typename InstT
>
1060 void InterleaveGroup
<InstT
>::addMetadata(InstT
*NewInst
) const {
1061 llvm_unreachable("addMetadata can only be used for Instruction");
1066 void InterleaveGroup
<Instruction
>::addMetadata(Instruction
*NewInst
) const {
1067 SmallVector
<Value
*, 4> VL
;
1068 std::transform(Members
.begin(), Members
.end(), std::back_inserter(VL
),
1069 [](std::pair
<int, Instruction
*> p
) { return p
.second
; });
1070 propagateMetadata(NewInst
, VL
);