Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / Analysis.cpp
blob9e3ab2454de758a1550e0bfc7a2f41408822d3b8
1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Transforms/Utils/GlobalStatus.h"
30 using namespace llvm;
32 /// Compute the linearized index of a member in a nested aggregate/struct/array
33 /// by recursing and accumulating CurIndex as long as there are indices in the
34 /// index list.
35 unsigned llvm::ComputeLinearIndex(Type *Ty,
36 const unsigned *Indices,
37 const unsigned *IndicesEnd,
38 unsigned CurIndex) {
39 // Base case: We're done.
40 if (Indices && Indices == IndicesEnd)
41 return CurIndex;
43 // Given a struct type, recursively traverse the elements.
44 if (StructType *STy = dyn_cast<StructType>(Ty)) {
45 for (StructType::element_iterator EB = STy->element_begin(),
46 EI = EB,
47 EE = STy->element_end();
48 EI != EE; ++EI) {
49 if (Indices && *Indices == unsigned(EI - EB))
50 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
51 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
53 assert(!Indices && "Unexpected out of bound");
54 return CurIndex;
56 // Given an array type, recursively traverse the elements.
57 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
58 Type *EltTy = ATy->getElementType();
59 unsigned NumElts = ATy->getNumElements();
60 // Compute the Linear offset when jumping one element of the array
61 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
62 if (Indices) {
63 assert(*Indices < NumElts && "Unexpected out of bound");
64 // If the indice is inside the array, compute the index to the requested
65 // elt and recurse inside the element with the end of the indices list
66 CurIndex += EltLinearOffset* *Indices;
67 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
69 CurIndex += EltLinearOffset*NumElts;
70 return CurIndex;
72 // We haven't found the type we're looking for, so keep searching.
73 return CurIndex + 1;
76 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
77 /// EVTs that represent all the individual underlying
78 /// non-aggregate types that comprise it.
79 ///
80 /// If Offsets is non-null, it points to a vector to be filled in
81 /// with the in-memory offsets of each of the individual values.
82 ///
83 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
84 Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
85 SmallVectorImpl<uint64_t> *Offsets,
86 uint64_t StartingOffset) {
87 // Given a struct type, recursively traverse the elements.
88 if (StructType *STy = dyn_cast<StructType>(Ty)) {
89 const StructLayout *SL = DL.getStructLayout(STy);
90 for (StructType::element_iterator EB = STy->element_begin(),
91 EI = EB,
92 EE = STy->element_end();
93 EI != EE; ++EI)
94 ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
95 StartingOffset + SL->getElementOffset(EI - EB));
96 return;
98 // Given an array type, recursively traverse the elements.
99 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
100 Type *EltTy = ATy->getElementType();
101 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
102 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
103 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
104 StartingOffset + i * EltSize);
105 return;
107 // Interpret void as zero return values.
108 if (Ty->isVoidTy())
109 return;
110 // Base case: we can get an EVT for this LLVM IR type.
111 ValueVTs.push_back(TLI.getValueType(DL, Ty));
112 if (Offsets)
113 Offsets->push_back(StartingOffset);
116 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
117 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
118 V = V->stripPointerCasts();
119 GlobalValue *GV = dyn_cast<GlobalValue>(V);
120 GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
122 if (Var && Var->getName() == "llvm.eh.catch.all.value") {
123 assert(Var->hasInitializer() &&
124 "The EH catch-all value must have an initializer");
125 Value *Init = Var->getInitializer();
126 GV = dyn_cast<GlobalValue>(Init);
127 if (!GV) V = cast<ConstantPointerNull>(Init);
130 assert((GV || isa<ConstantPointerNull>(V)) &&
131 "TypeInfo must be a global variable or NULL");
132 return GV;
135 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
136 /// processed uses a memory 'm' constraint.
137 bool
138 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
139 const TargetLowering &TLI) {
140 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
141 InlineAsm::ConstraintInfo &CI = CInfos[i];
142 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
143 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
144 if (CType == TargetLowering::C_Memory)
145 return true;
148 // Indirect operand accesses access memory.
149 if (CI.isIndirect)
150 return true;
153 return false;
156 /// getFCmpCondCode - Return the ISD condition code corresponding to
157 /// the given LLVM IR floating-point condition code. This includes
158 /// consideration of global floating-point math flags.
160 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
161 switch (Pred) {
162 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
163 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
164 case FCmpInst::FCMP_OGT: return ISD::SETOGT;
165 case FCmpInst::FCMP_OGE: return ISD::SETOGE;
166 case FCmpInst::FCMP_OLT: return ISD::SETOLT;
167 case FCmpInst::FCMP_OLE: return ISD::SETOLE;
168 case FCmpInst::FCMP_ONE: return ISD::SETONE;
169 case FCmpInst::FCMP_ORD: return ISD::SETO;
170 case FCmpInst::FCMP_UNO: return ISD::SETUO;
171 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
172 case FCmpInst::FCMP_UGT: return ISD::SETUGT;
173 case FCmpInst::FCMP_UGE: return ISD::SETUGE;
174 case FCmpInst::FCMP_ULT: return ISD::SETULT;
175 case FCmpInst::FCMP_ULE: return ISD::SETULE;
176 case FCmpInst::FCMP_UNE: return ISD::SETUNE;
177 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
178 default: llvm_unreachable("Invalid FCmp predicate opcode!");
182 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
183 switch (CC) {
184 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
185 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
186 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
187 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
188 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
189 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
190 default: return CC;
194 /// getICmpCondCode - Return the ISD condition code corresponding to
195 /// the given LLVM IR integer condition code.
197 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
198 switch (Pred) {
199 case ICmpInst::ICMP_EQ: return ISD::SETEQ;
200 case ICmpInst::ICMP_NE: return ISD::SETNE;
201 case ICmpInst::ICMP_SLE: return ISD::SETLE;
202 case ICmpInst::ICMP_ULE: return ISD::SETULE;
203 case ICmpInst::ICMP_SGE: return ISD::SETGE;
204 case ICmpInst::ICMP_UGE: return ISD::SETUGE;
205 case ICmpInst::ICMP_SLT: return ISD::SETLT;
206 case ICmpInst::ICMP_ULT: return ISD::SETULT;
207 case ICmpInst::ICMP_SGT: return ISD::SETGT;
208 case ICmpInst::ICMP_UGT: return ISD::SETUGT;
209 default:
210 llvm_unreachable("Invalid ICmp predicate opcode!");
214 static bool isNoopBitcast(Type *T1, Type *T2,
215 const TargetLoweringBase& TLI) {
216 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
217 (isa<VectorType>(T1) && isa<VectorType>(T2) &&
218 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
221 /// Look through operations that will be free to find the earliest source of
222 /// this value.
224 /// @param ValLoc If V has aggegate type, we will be interested in a particular
225 /// scalar component. This records its address; the reverse of this list gives a
226 /// sequence of indices appropriate for an extractvalue to locate the important
227 /// value. This value is updated during the function and on exit will indicate
228 /// similar information for the Value returned.
230 /// @param DataBits If this function looks through truncate instructions, this
231 /// will record the smallest size attained.
232 static const Value *getNoopInput(const Value *V,
233 SmallVectorImpl<unsigned> &ValLoc,
234 unsigned &DataBits,
235 const TargetLoweringBase &TLI,
236 const DataLayout &DL) {
237 while (true) {
238 // Try to look through V1; if V1 is not an instruction, it can't be looked
239 // through.
240 const Instruction *I = dyn_cast<Instruction>(V);
241 if (!I || I->getNumOperands() == 0) return V;
242 const Value *NoopInput = nullptr;
244 Value *Op = I->getOperand(0);
245 if (isa<BitCastInst>(I)) {
246 // Look through truly no-op bitcasts.
247 if (isNoopBitcast(Op->getType(), I->getType(), TLI))
248 NoopInput = Op;
249 } else if (isa<GetElementPtrInst>(I)) {
250 // Look through getelementptr
251 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
252 NoopInput = Op;
253 } else if (isa<IntToPtrInst>(I)) {
254 // Look through inttoptr.
255 // Make sure this isn't a truncating or extending cast. We could
256 // support this eventually, but don't bother for now.
257 if (!isa<VectorType>(I->getType()) &&
258 DL.getPointerSizeInBits() ==
259 cast<IntegerType>(Op->getType())->getBitWidth())
260 NoopInput = Op;
261 } else if (isa<PtrToIntInst>(I)) {
262 // Look through ptrtoint.
263 // Make sure this isn't a truncating or extending cast. We could
264 // support this eventually, but don't bother for now.
265 if (!isa<VectorType>(I->getType()) &&
266 DL.getPointerSizeInBits() ==
267 cast<IntegerType>(I->getType())->getBitWidth())
268 NoopInput = Op;
269 } else if (isa<TruncInst>(I) &&
270 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
271 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
272 NoopInput = Op;
273 } else if (auto CS = ImmutableCallSite(I)) {
274 const Value *ReturnedOp = CS.getReturnedArgOperand();
275 if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
276 NoopInput = ReturnedOp;
277 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
278 // Value may come from either the aggregate or the scalar
279 ArrayRef<unsigned> InsertLoc = IVI->getIndices();
280 if (ValLoc.size() >= InsertLoc.size() &&
281 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
282 // The type being inserted is a nested sub-type of the aggregate; we
283 // have to remove those initial indices to get the location we're
284 // interested in for the operand.
285 ValLoc.resize(ValLoc.size() - InsertLoc.size());
286 NoopInput = IVI->getInsertedValueOperand();
287 } else {
288 // The struct we're inserting into has the value we're interested in, no
289 // change of address.
290 NoopInput = Op;
292 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
293 // The part we're interested in will inevitably be some sub-section of the
294 // previous aggregate. Combine the two paths to obtain the true address of
295 // our element.
296 ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
297 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
298 NoopInput = Op;
300 // Terminate if we couldn't find anything to look through.
301 if (!NoopInput)
302 return V;
304 V = NoopInput;
308 /// Return true if this scalar return value only has bits discarded on its path
309 /// from the "tail call" to the "ret". This includes the obvious noop
310 /// instructions handled by getNoopInput above as well as free truncations (or
311 /// extensions prior to the call).
312 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
313 SmallVectorImpl<unsigned> &RetIndices,
314 SmallVectorImpl<unsigned> &CallIndices,
315 bool AllowDifferingSizes,
316 const TargetLoweringBase &TLI,
317 const DataLayout &DL) {
319 // Trace the sub-value needed by the return value as far back up the graph as
320 // possible, in the hope that it will intersect with the value produced by the
321 // call. In the simple case with no "returned" attribute, the hope is actually
322 // that we end up back at the tail call instruction itself.
323 unsigned BitsRequired = UINT_MAX;
324 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
326 // If this slot in the value returned is undef, it doesn't matter what the
327 // call puts there, it'll be fine.
328 if (isa<UndefValue>(RetVal))
329 return true;
331 // Now do a similar search up through the graph to find where the value
332 // actually returned by the "tail call" comes from. In the simple case without
333 // a "returned" attribute, the search will be blocked immediately and the loop
334 // a Noop.
335 unsigned BitsProvided = UINT_MAX;
336 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
338 // There's no hope if we can't actually trace them to (the same part of!) the
339 // same value.
340 if (CallVal != RetVal || CallIndices != RetIndices)
341 return false;
343 // However, intervening truncates may have made the call non-tail. Make sure
344 // all the bits that are needed by the "ret" have been provided by the "tail
345 // call". FIXME: with sufficiently cunning bit-tracking, we could look through
346 // extensions too.
347 if (BitsProvided < BitsRequired ||
348 (!AllowDifferingSizes && BitsProvided != BitsRequired))
349 return false;
351 return true;
354 /// For an aggregate type, determine whether a given index is within bounds or
355 /// not.
356 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
357 if (ArrayType *AT = dyn_cast<ArrayType>(T))
358 return Idx < AT->getNumElements();
360 return Idx < cast<StructType>(T)->getNumElements();
363 /// Move the given iterators to the next leaf type in depth first traversal.
365 /// Performs a depth-first traversal of the type as specified by its arguments,
366 /// stopping at the next leaf node (which may be a legitimate scalar type or an
367 /// empty struct or array).
369 /// @param SubTypes List of the partial components making up the type from
370 /// outermost to innermost non-empty aggregate. The element currently
371 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
373 /// @param Path Set of extractvalue indices leading from the outermost type
374 /// (SubTypes[0]) to the leaf node currently represented.
376 /// @returns true if a new type was found, false otherwise. Calling this
377 /// function again on a finished iterator will repeatedly return
378 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
379 /// aggregate or a non-aggregate
380 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
381 SmallVectorImpl<unsigned> &Path) {
382 // First march back up the tree until we can successfully increment one of the
383 // coordinates in Path.
384 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
385 Path.pop_back();
386 SubTypes.pop_back();
389 // If we reached the top, then the iterator is done.
390 if (Path.empty())
391 return false;
393 // We know there's *some* valid leaf now, so march back down the tree picking
394 // out the left-most element at each node.
395 ++Path.back();
396 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
397 while (DeeperType->isAggregateType()) {
398 CompositeType *CT = cast<CompositeType>(DeeperType);
399 if (!indexReallyValid(CT, 0))
400 return true;
402 SubTypes.push_back(CT);
403 Path.push_back(0);
405 DeeperType = CT->getTypeAtIndex(0U);
408 return true;
411 /// Find the first non-empty, scalar-like type in Next and setup the iterator
412 /// components.
414 /// Assuming Next is an aggregate of some kind, this function will traverse the
415 /// tree from left to right (i.e. depth-first) looking for the first
416 /// non-aggregate type which will play a role in function return.
418 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
419 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
420 /// i32 in that type.
421 static bool firstRealType(Type *Next,
422 SmallVectorImpl<CompositeType *> &SubTypes,
423 SmallVectorImpl<unsigned> &Path) {
424 // First initialise the iterator components to the first "leaf" node
425 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
426 // despite nominally being an aggregate).
427 while (Next->isAggregateType() &&
428 indexReallyValid(cast<CompositeType>(Next), 0)) {
429 SubTypes.push_back(cast<CompositeType>(Next));
430 Path.push_back(0);
431 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
434 // If there's no Path now, Next was originally scalar already (or empty
435 // leaf). We're done.
436 if (Path.empty())
437 return true;
439 // Otherwise, use normal iteration to keep looking through the tree until we
440 // find a non-aggregate type.
441 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
442 if (!advanceToNextLeafType(SubTypes, Path))
443 return false;
446 return true;
449 /// Set the iterator data-structures to the next non-empty, non-aggregate
450 /// subtype.
451 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
452 SmallVectorImpl<unsigned> &Path) {
453 do {
454 if (!advanceToNextLeafType(SubTypes, Path))
455 return false;
457 assert(!Path.empty() && "found a leaf but didn't set the path?");
458 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
460 return true;
464 /// Test if the given instruction is in a position to be optimized
465 /// with a tail-call. This roughly means that it's in a block with
466 /// a return and there's nothing that needs to be scheduled
467 /// between it and the return.
469 /// This function only tests target-independent requirements.
470 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
471 const Instruction *I = CS.getInstruction();
472 const BasicBlock *ExitBB = I->getParent();
473 const Instruction *Term = ExitBB->getTerminator();
474 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
476 // The block must end in a return statement or unreachable.
478 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
479 // an unreachable, for now. The way tailcall optimization is currently
480 // implemented means it will add an epilogue followed by a jump. That is
481 // not profitable. Also, if the callee is a special function (e.g.
482 // longjmp on x86), it can end up causing miscompilation that has not
483 // been fully understood.
484 if (!Ret &&
485 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
486 return false;
488 // If I will have a chain, make sure no other instruction that will have a
489 // chain interposes between I and the return.
490 if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
491 !isSafeToSpeculativelyExecute(I))
492 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
493 if (&*BBI == I)
494 break;
495 // Debug info intrinsics do not get in the way of tail call optimization.
496 if (isa<DbgInfoIntrinsic>(BBI))
497 continue;
498 // A lifetime end intrinsic should not stop tail call optimization.
499 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
500 if (II->getIntrinsicID() == Intrinsic::lifetime_end)
501 continue;
502 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
503 !isSafeToSpeculativelyExecute(&*BBI))
504 return false;
507 const Function *F = ExitBB->getParent();
508 return returnTypeIsEligibleForTailCall(
509 F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
512 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
513 const ReturnInst *Ret,
514 const TargetLoweringBase &TLI,
515 bool *AllowDifferingSizes) {
516 // ADS may be null, so don't write to it directly.
517 bool DummyADS;
518 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
519 ADS = true;
521 AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex);
522 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
523 AttributeList::ReturnIndex);
525 // NoAlias and NonNull are completely benign as far as calling convention
526 // goes, they shouldn't affect whether the call is a tail call.
527 CallerAttrs.removeAttribute(Attribute::NoAlias);
528 CalleeAttrs.removeAttribute(Attribute::NoAlias);
529 CallerAttrs.removeAttribute(Attribute::NonNull);
530 CalleeAttrs.removeAttribute(Attribute::NonNull);
532 if (CallerAttrs.contains(Attribute::ZExt)) {
533 if (!CalleeAttrs.contains(Attribute::ZExt))
534 return false;
536 ADS = false;
537 CallerAttrs.removeAttribute(Attribute::ZExt);
538 CalleeAttrs.removeAttribute(Attribute::ZExt);
539 } else if (CallerAttrs.contains(Attribute::SExt)) {
540 if (!CalleeAttrs.contains(Attribute::SExt))
541 return false;
543 ADS = false;
544 CallerAttrs.removeAttribute(Attribute::SExt);
545 CalleeAttrs.removeAttribute(Attribute::SExt);
548 // Drop sext and zext return attributes if the result is not used.
549 // This enables tail calls for code like:
551 // define void @caller() {
552 // entry:
553 // %unused_result = tail call zeroext i1 @callee()
554 // br label %retlabel
555 // retlabel:
556 // ret void
557 // }
558 if (I->use_empty()) {
559 CalleeAttrs.removeAttribute(Attribute::SExt);
560 CalleeAttrs.removeAttribute(Attribute::ZExt);
563 // If they're still different, there's some facet we don't understand
564 // (currently only "inreg", but in future who knows). It may be OK but the
565 // only safe option is to reject the tail call.
566 return CallerAttrs == CalleeAttrs;
569 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
570 const Instruction *I,
571 const ReturnInst *Ret,
572 const TargetLoweringBase &TLI) {
573 // If the block ends with a void return or unreachable, it doesn't matter
574 // what the call's return type is.
575 if (!Ret || Ret->getNumOperands() == 0) return true;
577 // If the return value is undef, it doesn't matter what the call's
578 // return type is.
579 if (isa<UndefValue>(Ret->getOperand(0))) return true;
581 // Make sure the attributes attached to each return are compatible.
582 bool AllowDifferingSizes;
583 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
584 return false;
586 const Value *RetVal = Ret->getOperand(0), *CallVal = I;
587 // Intrinsic like llvm.memcpy has no return value, but the expanded
588 // libcall may or may not have return value. On most platforms, it
589 // will be expanded as memcpy in libc, which returns the first
590 // argument. On other platforms like arm-none-eabi, memcpy may be
591 // expanded as library call without return value, like __aeabi_memcpy.
592 const CallInst *Call = cast<CallInst>(I);
593 if (Function *F = Call->getCalledFunction()) {
594 Intrinsic::ID IID = F->getIntrinsicID();
595 if (((IID == Intrinsic::memcpy &&
596 TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
597 (IID == Intrinsic::memmove &&
598 TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
599 (IID == Intrinsic::memset &&
600 TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
601 RetVal == Call->getArgOperand(0))
602 return true;
605 SmallVector<unsigned, 4> RetPath, CallPath;
606 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
608 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
609 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
611 // Nothing's actually returned, it doesn't matter what the callee put there
612 // it's a valid tail call.
613 if (RetEmpty)
614 return true;
616 // Iterate pairwise through each of the value types making up the tail call
617 // and the corresponding return. For each one we want to know whether it's
618 // essentially going directly from the tail call to the ret, via operations
619 // that end up not generating any code.
621 // We allow a certain amount of covariance here. For example it's permitted
622 // for the tail call to define more bits than the ret actually cares about
623 // (e.g. via a truncate).
624 do {
625 if (CallEmpty) {
626 // We've exhausted the values produced by the tail call instruction, the
627 // rest are essentially undef. The type doesn't really matter, but we need
628 // *something*.
629 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
630 CallVal = UndefValue::get(SlotType);
633 // The manipulations performed when we're looking through an insertvalue or
634 // an extractvalue would happen at the front of the RetPath list, so since
635 // we have to copy it anyway it's more efficient to create a reversed copy.
636 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
637 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
639 // Finally, we can check whether the value produced by the tail call at this
640 // index is compatible with the value we return.
641 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
642 AllowDifferingSizes, TLI,
643 F->getParent()->getDataLayout()))
644 return false;
646 CallEmpty = !nextRealType(CallSubTypes, CallPath);
647 } while(nextRealType(RetSubTypes, RetPath));
649 return true;
652 static void collectEHScopeMembers(
653 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
654 const MachineBasicBlock *MBB) {
655 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
656 while (!Worklist.empty()) {
657 const MachineBasicBlock *Visiting = Worklist.pop_back_val();
658 // Don't follow blocks which start new scopes.
659 if (Visiting->isEHPad() && Visiting != MBB)
660 continue;
662 // Add this MBB to our scope.
663 auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
665 // Don't revisit blocks.
666 if (!P.second) {
667 assert(P.first->second == EHScope && "MBB is part of two scopes!");
668 continue;
671 // Returns are boundaries where scope transfer can occur, don't follow
672 // successors.
673 if (Visiting->isEHScopeReturnBlock())
674 continue;
676 for (const MachineBasicBlock *Succ : Visiting->successors())
677 Worklist.push_back(Succ);
681 DenseMap<const MachineBasicBlock *, int>
682 llvm::getEHScopeMembership(const MachineFunction &MF) {
683 DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
685 // We don't have anything to do if there aren't any EH pads.
686 if (!MF.hasEHScopes())
687 return EHScopeMembership;
689 int EntryBBNumber = MF.front().getNumber();
690 bool IsSEH = isAsynchronousEHPersonality(
691 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
693 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
694 SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
695 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
696 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
697 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
698 for (const MachineBasicBlock &MBB : MF) {
699 if (MBB.isEHScopeEntry()) {
700 EHScopeBlocks.push_back(&MBB);
701 } else if (IsSEH && MBB.isEHPad()) {
702 SEHCatchPads.push_back(&MBB);
703 } else if (MBB.pred_empty()) {
704 UnreachableBlocks.push_back(&MBB);
707 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
709 // CatchPads are not scopes for SEH so do not consider CatchRet to
710 // transfer control to another scope.
711 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
712 continue;
714 // FIXME: SEH CatchPads are not necessarily in the parent function:
715 // they could be inside a finally block.
716 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
717 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
718 CatchRetSuccessors.push_back(
719 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
722 // We don't have anything to do if there aren't any EH pads.
723 if (EHScopeBlocks.empty())
724 return EHScopeMembership;
726 // Identify all the basic blocks reachable from the function entry.
727 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
728 // All blocks not part of a scope are in the parent function.
729 for (const MachineBasicBlock *MBB : UnreachableBlocks)
730 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
731 // Next, identify all the blocks inside the scopes.
732 for (const MachineBasicBlock *MBB : EHScopeBlocks)
733 collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
734 // SEH CatchPads aren't really scopes, handle them separately.
735 for (const MachineBasicBlock *MBB : SEHCatchPads)
736 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
737 // Finally, identify all the targets of a catchret.
738 for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
739 CatchRetSuccessors)
740 collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
741 CatchRetPair.first);
742 return EHScopeMembership;