Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
blob5319519ddc0d70d6d90a6edf682ccdcbd801191c
1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/AsmPrinterHandler.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Comdat.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GlobalAlias.h"
71 #include "llvm/IR/GlobalIFunc.h"
72 #include "llvm/IR/GlobalIndirectSymbol.h"
73 #include "llvm/IR/GlobalObject.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Mangler.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCStreamer.h"
95 #include "llvm/MC/MCSubtargetInfo.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/MC/MCSymbolELF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/Compiler.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/Format.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/Path.h"
109 #include "llvm/Support/TargetRegistry.h"
110 #include "llvm/Support/Timer.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Target/TargetLoweringObjectFile.h"
113 #include "llvm/Target/TargetMachine.h"
114 #include "llvm/Target/TargetOptions.h"
115 #include <algorithm>
116 #include <cassert>
117 #include <cinttypes>
118 #include <cstdint>
119 #include <iterator>
120 #include <limits>
121 #include <memory>
122 #include <string>
123 #include <utility>
124 #include <vector>
126 using namespace llvm;
128 #define DEBUG_TYPE "asm-printer"
130 static const char *const DWARFGroupName = "dwarf";
131 static const char *const DWARFGroupDescription = "DWARF Emission";
132 static const char *const DbgTimerName = "emit";
133 static const char *const DbgTimerDescription = "Debug Info Emission";
134 static const char *const EHTimerName = "write_exception";
135 static const char *const EHTimerDescription = "DWARF Exception Writer";
136 static const char *const CFGuardName = "Control Flow Guard";
137 static const char *const CFGuardDescription = "Control Flow Guard Tables";
138 static const char *const CodeViewLineTablesGroupName = "linetables";
139 static const char *const CodeViewLineTablesGroupDescription =
140 "CodeView Line Tables";
142 STATISTIC(EmittedInsts, "Number of machine instrs printed");
144 char AsmPrinter::ID = 0;
146 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
148 static gcp_map_type &getGCMap(void *&P) {
149 if (!P)
150 P = new gcp_map_type();
151 return *(gcp_map_type*)P;
154 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
155 /// value in log2 form. This rounds up to the preferred alignment if possible
156 /// and legal.
157 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
158 unsigned InBits = 0) {
159 unsigned NumBits = 0;
160 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
161 NumBits = DL.getPreferredAlignmentLog(GVar);
163 // If InBits is specified, round it to it.
164 if (InBits > NumBits)
165 NumBits = InBits;
167 // If the GV has a specified alignment, take it into account.
168 if (GV->getAlignment() == 0)
169 return NumBits;
171 unsigned GVAlign = Log2_32(GV->getAlignment());
173 // If the GVAlign is larger than NumBits, or if we are required to obey
174 // NumBits because the GV has an assigned section, obey it.
175 if (GVAlign > NumBits || GV->hasSection())
176 NumBits = GVAlign;
177 return NumBits;
180 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
181 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
182 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
183 VerboseAsm = OutStreamer->isVerboseAsm();
186 AsmPrinter::~AsmPrinter() {
187 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
189 if (GCMetadataPrinters) {
190 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
192 delete &GCMap;
193 GCMetadataPrinters = nullptr;
197 bool AsmPrinter::isPositionIndependent() const {
198 return TM.isPositionIndependent();
201 /// getFunctionNumber - Return a unique ID for the current function.
202 unsigned AsmPrinter::getFunctionNumber() const {
203 return MF->getFunctionNumber();
206 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
207 return *TM.getObjFileLowering();
210 const DataLayout &AsmPrinter::getDataLayout() const {
211 return MMI->getModule()->getDataLayout();
214 // Do not use the cached DataLayout because some client use it without a Module
215 // (dsymutil, llvm-dwarfdump).
216 unsigned AsmPrinter::getPointerSize() const {
217 return TM.getPointerSize(0); // FIXME: Default address space
220 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
221 assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
222 return MF->getSubtarget<MCSubtargetInfo>();
225 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
226 S.EmitInstruction(Inst, getSubtargetInfo());
229 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
230 assert(DD && "Dwarf debug file is not defined.");
231 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
232 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
235 /// getCurrentSection() - Return the current section we are emitting to.
236 const MCSection *AsmPrinter::getCurrentSection() const {
237 return OutStreamer->getCurrentSectionOnly();
240 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
241 AU.setPreservesAll();
242 MachineFunctionPass::getAnalysisUsage(AU);
243 AU.addRequired<MachineModuleInfo>();
244 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
245 AU.addRequired<GCModuleInfo>();
248 bool AsmPrinter::doInitialization(Module &M) {
249 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
251 // Initialize TargetLoweringObjectFile.
252 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
253 .Initialize(OutContext, TM);
255 OutStreamer->InitSections(false);
257 // Emit the version-min deployment target directive if needed.
259 // FIXME: If we end up with a collection of these sorts of Darwin-specific
260 // or ELF-specific things, it may make sense to have a platform helper class
261 // that will work with the target helper class. For now keep it here, as the
262 // alternative is duplicated code in each of the target asm printers that
263 // use the directive, where it would need the same conditionalization
264 // anyway.
265 const Triple &Target = TM.getTargetTriple();
266 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
268 // Allow the target to emit any magic that it wants at the start of the file.
269 EmitStartOfAsmFile(M);
271 // Very minimal debug info. It is ignored if we emit actual debug info. If we
272 // don't, this at least helps the user find where a global came from.
273 if (MAI->hasSingleParameterDotFile()) {
274 // .file "foo.c"
275 OutStreamer->EmitFileDirective(
276 llvm::sys::path::filename(M.getSourceFileName()));
279 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
280 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
281 for (auto &I : *MI)
282 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
283 MP->beginAssembly(M, *MI, *this);
285 // Emit module-level inline asm if it exists.
286 if (!M.getModuleInlineAsm().empty()) {
287 // We're at the module level. Construct MCSubtarget from the default CPU
288 // and target triple.
289 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
290 TM.getTargetTriple().str(), TM.getTargetCPU(),
291 TM.getTargetFeatureString()));
292 OutStreamer->AddComment("Start of file scope inline assembly");
293 OutStreamer->AddBlankLine();
294 EmitInlineAsm(M.getModuleInlineAsm()+"\n",
295 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
296 OutStreamer->AddComment("End of file scope inline assembly");
297 OutStreamer->AddBlankLine();
300 if (MAI->doesSupportDebugInformation()) {
301 bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
302 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
303 Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
304 DbgTimerName, DbgTimerDescription,
305 CodeViewLineTablesGroupName,
306 CodeViewLineTablesGroupDescription));
308 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
309 DD = new DwarfDebug(this, &M);
310 DD->beginModule();
311 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
312 DWARFGroupName, DWARFGroupDescription));
316 switch (MAI->getExceptionHandlingType()) {
317 case ExceptionHandling::SjLj:
318 case ExceptionHandling::DwarfCFI:
319 case ExceptionHandling::ARM:
320 isCFIMoveForDebugging = true;
321 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
322 break;
323 for (auto &F: M.getFunctionList()) {
324 // If the module contains any function with unwind data,
325 // .eh_frame has to be emitted.
326 // Ignore functions that won't get emitted.
327 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
328 isCFIMoveForDebugging = false;
329 break;
332 break;
333 default:
334 isCFIMoveForDebugging = false;
335 break;
338 EHStreamer *ES = nullptr;
339 switch (MAI->getExceptionHandlingType()) {
340 case ExceptionHandling::None:
341 break;
342 case ExceptionHandling::SjLj:
343 case ExceptionHandling::DwarfCFI:
344 ES = new DwarfCFIException(this);
345 break;
346 case ExceptionHandling::ARM:
347 ES = new ARMException(this);
348 break;
349 case ExceptionHandling::WinEH:
350 switch (MAI->getWinEHEncodingType()) {
351 default: llvm_unreachable("unsupported unwinding information encoding");
352 case WinEH::EncodingType::Invalid:
353 break;
354 case WinEH::EncodingType::X86:
355 case WinEH::EncodingType::Itanium:
356 ES = new WinException(this);
357 break;
359 break;
360 case ExceptionHandling::Wasm:
361 ES = new WasmException(this);
362 break;
364 if (ES)
365 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
366 DWARFGroupName, DWARFGroupDescription));
368 if (mdconst::extract_or_null<ConstantInt>(
369 MMI->getModule()->getModuleFlag("cfguardtable")))
370 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName,
371 CFGuardDescription, DWARFGroupName,
372 DWARFGroupDescription));
374 return false;
377 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
378 if (!MAI.hasWeakDefCanBeHiddenDirective())
379 return false;
381 return GV->canBeOmittedFromSymbolTable();
384 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
385 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
386 switch (Linkage) {
387 case GlobalValue::CommonLinkage:
388 case GlobalValue::LinkOnceAnyLinkage:
389 case GlobalValue::LinkOnceODRLinkage:
390 case GlobalValue::WeakAnyLinkage:
391 case GlobalValue::WeakODRLinkage:
392 if (MAI->hasWeakDefDirective()) {
393 // .globl _foo
394 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
396 if (!canBeHidden(GV, *MAI))
397 // .weak_definition _foo
398 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
399 else
400 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
401 } else if (MAI->hasLinkOnceDirective()) {
402 // .globl _foo
403 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
404 //NOTE: linkonce is handled by the section the symbol was assigned to.
405 } else {
406 // .weak _foo
407 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
409 return;
410 case GlobalValue::ExternalLinkage:
411 // If external, declare as a global symbol: .globl _foo
412 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
413 return;
414 case GlobalValue::PrivateLinkage:
415 case GlobalValue::InternalLinkage:
416 return;
417 case GlobalValue::AppendingLinkage:
418 case GlobalValue::AvailableExternallyLinkage:
419 case GlobalValue::ExternalWeakLinkage:
420 llvm_unreachable("Should never emit this");
422 llvm_unreachable("Unknown linkage type!");
425 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
426 const GlobalValue *GV) const {
427 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
430 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
431 return TM.getSymbol(GV);
434 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
435 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
436 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
437 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
438 "No emulated TLS variables in the common section");
440 // Never emit TLS variable xyz in emulated TLS model.
441 // The initialization value is in __emutls_t.xyz instead of xyz.
442 if (IsEmuTLSVar)
443 return;
445 if (GV->hasInitializer()) {
446 // Check to see if this is a special global used by LLVM, if so, emit it.
447 if (EmitSpecialLLVMGlobal(GV))
448 return;
450 // Skip the emission of global equivalents. The symbol can be emitted later
451 // on by emitGlobalGOTEquivs in case it turns out to be needed.
452 if (GlobalGOTEquivs.count(getSymbol(GV)))
453 return;
455 if (isVerbose()) {
456 // When printing the control variable __emutls_v.*,
457 // we don't need to print the original TLS variable name.
458 GV->printAsOperand(OutStreamer->GetCommentOS(),
459 /*PrintType=*/false, GV->getParent());
460 OutStreamer->GetCommentOS() << '\n';
464 MCSymbol *GVSym = getSymbol(GV);
465 MCSymbol *EmittedSym = GVSym;
467 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
468 // attributes.
469 // GV's or GVSym's attributes will be used for the EmittedSym.
470 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
472 if (!GV->hasInitializer()) // External globals require no extra code.
473 return;
475 GVSym->redefineIfPossible();
476 if (GVSym->isDefined() || GVSym->isVariable())
477 report_fatal_error("symbol '" + Twine(GVSym->getName()) +
478 "' is already defined");
480 if (MAI->hasDotTypeDotSizeDirective())
481 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
483 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
485 const DataLayout &DL = GV->getParent()->getDataLayout();
486 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
488 // If the alignment is specified, we *must* obey it. Overaligning a global
489 // with a specified alignment is a prompt way to break globals emitted to
490 // sections and expected to be contiguous (e.g. ObjC metadata).
491 unsigned AlignLog = getGVAlignmentLog2(GV, DL);
493 for (const HandlerInfo &HI : Handlers) {
494 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
495 HI.TimerGroupName, HI.TimerGroupDescription,
496 TimePassesIsEnabled);
497 HI.Handler->setSymbolSize(GVSym, Size);
500 // Handle common symbols
501 if (GVKind.isCommon()) {
502 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
503 unsigned Align = 1 << AlignLog;
504 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
505 Align = 0;
507 // .comm _foo, 42, 4
508 OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
509 return;
512 // Determine to which section this global should be emitted.
513 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
515 // If we have a bss global going to a section that supports the
516 // zerofill directive, do so here.
517 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
518 TheSection->isVirtualSection()) {
519 if (Size == 0)
520 Size = 1; // zerofill of 0 bytes is undefined.
521 unsigned Align = 1 << AlignLog;
522 EmitLinkage(GV, GVSym);
523 // .zerofill __DATA, __bss, _foo, 400, 5
524 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
525 return;
528 // If this is a BSS local symbol and we are emitting in the BSS
529 // section use .lcomm/.comm directive.
530 if (GVKind.isBSSLocal() &&
531 getObjFileLowering().getBSSSection() == TheSection) {
532 if (Size == 0)
533 Size = 1; // .comm Foo, 0 is undefined, avoid it.
534 unsigned Align = 1 << AlignLog;
536 // Use .lcomm only if it supports user-specified alignment.
537 // Otherwise, while it would still be correct to use .lcomm in some
538 // cases (e.g. when Align == 1), the external assembler might enfore
539 // some -unknown- default alignment behavior, which could cause
540 // spurious differences between external and integrated assembler.
541 // Prefer to simply fall back to .local / .comm in this case.
542 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
543 // .lcomm _foo, 42
544 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
545 return;
548 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
549 Align = 0;
551 // .local _foo
552 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
553 // .comm _foo, 42, 4
554 OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
555 return;
558 // Handle thread local data for mach-o which requires us to output an
559 // additional structure of data and mangle the original symbol so that we
560 // can reference it later.
562 // TODO: This should become an "emit thread local global" method on TLOF.
563 // All of this macho specific stuff should be sunk down into TLOFMachO and
564 // stuff like "TLSExtraDataSection" should no longer be part of the parent
565 // TLOF class. This will also make it more obvious that stuff like
566 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
567 // specific code.
568 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
569 // Emit the .tbss symbol
570 MCSymbol *MangSym =
571 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
573 if (GVKind.isThreadBSS()) {
574 TheSection = getObjFileLowering().getTLSBSSSection();
575 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
576 } else if (GVKind.isThreadData()) {
577 OutStreamer->SwitchSection(TheSection);
579 EmitAlignment(AlignLog, GV);
580 OutStreamer->EmitLabel(MangSym);
582 EmitGlobalConstant(GV->getParent()->getDataLayout(),
583 GV->getInitializer());
586 OutStreamer->AddBlankLine();
588 // Emit the variable struct for the runtime.
589 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
591 OutStreamer->SwitchSection(TLVSect);
592 // Emit the linkage here.
593 EmitLinkage(GV, GVSym);
594 OutStreamer->EmitLabel(GVSym);
596 // Three pointers in size:
597 // - __tlv_bootstrap - used to make sure support exists
598 // - spare pointer, used when mapped by the runtime
599 // - pointer to mangled symbol above with initializer
600 unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
601 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
602 PtrSize);
603 OutStreamer->EmitIntValue(0, PtrSize);
604 OutStreamer->EmitSymbolValue(MangSym, PtrSize);
606 OutStreamer->AddBlankLine();
607 return;
610 MCSymbol *EmittedInitSym = GVSym;
612 OutStreamer->SwitchSection(TheSection);
614 EmitLinkage(GV, EmittedInitSym);
615 EmitAlignment(AlignLog, GV);
617 OutStreamer->EmitLabel(EmittedInitSym);
619 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
621 if (MAI->hasDotTypeDotSizeDirective())
622 // .size foo, 42
623 OutStreamer->emitELFSize(EmittedInitSym,
624 MCConstantExpr::create(Size, OutContext));
626 OutStreamer->AddBlankLine();
629 /// Emit the directive and value for debug thread local expression
631 /// \p Value - The value to emit.
632 /// \p Size - The size of the integer (in bytes) to emit.
633 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
634 OutStreamer->EmitValue(Value, Size);
637 /// EmitFunctionHeader - This method emits the header for the current
638 /// function.
639 void AsmPrinter::EmitFunctionHeader() {
640 const Function &F = MF->getFunction();
642 if (isVerbose())
643 OutStreamer->GetCommentOS()
644 << "-- Begin function "
645 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
647 // Print out constants referenced by the function
648 EmitConstantPool();
650 // Print the 'header' of function.
651 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
652 EmitVisibility(CurrentFnSym, F.getVisibility());
654 EmitLinkage(&F, CurrentFnSym);
655 if (MAI->hasFunctionAlignment())
656 EmitAlignment(MF->getAlignment(), &F);
658 if (MAI->hasDotTypeDotSizeDirective())
659 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
661 if (F.hasFnAttribute(Attribute::Cold))
662 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
664 if (isVerbose()) {
665 F.printAsOperand(OutStreamer->GetCommentOS(),
666 /*PrintType=*/false, F.getParent());
667 OutStreamer->GetCommentOS() << '\n';
670 // Emit the prefix data.
671 if (F.hasPrefixData()) {
672 if (MAI->hasSubsectionsViaSymbols()) {
673 // Preserving prefix data on platforms which use subsections-via-symbols
674 // is a bit tricky. Here we introduce a symbol for the prefix data
675 // and use the .alt_entry attribute to mark the function's real entry point
676 // as an alternative entry point to the prefix-data symbol.
677 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
678 OutStreamer->EmitLabel(PrefixSym);
680 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
682 // Emit an .alt_entry directive for the actual function symbol.
683 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
684 } else {
685 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
689 // Emit the CurrentFnSym. This is a virtual function to allow targets to
690 // do their wild and crazy things as required.
691 EmitFunctionEntryLabel();
693 // If the function had address-taken blocks that got deleted, then we have
694 // references to the dangling symbols. Emit them at the start of the function
695 // so that we don't get references to undefined symbols.
696 std::vector<MCSymbol*> DeadBlockSyms;
697 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
698 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
699 OutStreamer->AddComment("Address taken block that was later removed");
700 OutStreamer->EmitLabel(DeadBlockSyms[i]);
703 if (CurrentFnBegin) {
704 if (MAI->useAssignmentForEHBegin()) {
705 MCSymbol *CurPos = OutContext.createTempSymbol();
706 OutStreamer->EmitLabel(CurPos);
707 OutStreamer->EmitAssignment(CurrentFnBegin,
708 MCSymbolRefExpr::create(CurPos, OutContext));
709 } else {
710 OutStreamer->EmitLabel(CurrentFnBegin);
714 // Emit pre-function debug and/or EH information.
715 for (const HandlerInfo &HI : Handlers) {
716 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
717 HI.TimerGroupDescription, TimePassesIsEnabled);
718 HI.Handler->beginFunction(MF);
721 // Emit the prologue data.
722 if (F.hasPrologueData())
723 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
726 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
727 /// function. This can be overridden by targets as required to do custom stuff.
728 void AsmPrinter::EmitFunctionEntryLabel() {
729 CurrentFnSym->redefineIfPossible();
731 // The function label could have already been emitted if two symbols end up
732 // conflicting due to asm renaming. Detect this and emit an error.
733 if (CurrentFnSym->isVariable())
734 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
735 "' is a protected alias");
736 if (CurrentFnSym->isDefined())
737 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
738 "' label emitted multiple times to assembly file");
740 return OutStreamer->EmitLabel(CurrentFnSym);
743 /// emitComments - Pretty-print comments for instructions.
744 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
745 const MachineFunction *MF = MI.getMF();
746 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
748 // Check for spills and reloads
750 // We assume a single instruction only has a spill or reload, not
751 // both.
752 Optional<unsigned> Size;
753 if ((Size = MI.getRestoreSize(TII))) {
754 CommentOS << *Size << "-byte Reload\n";
755 } else if ((Size = MI.getFoldedRestoreSize(TII))) {
756 if (*Size)
757 CommentOS << *Size << "-byte Folded Reload\n";
758 } else if ((Size = MI.getSpillSize(TII))) {
759 CommentOS << *Size << "-byte Spill\n";
760 } else if ((Size = MI.getFoldedSpillSize(TII))) {
761 if (*Size)
762 CommentOS << *Size << "-byte Folded Spill\n";
765 // Check for spill-induced copies
766 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
767 CommentOS << " Reload Reuse\n";
770 /// emitImplicitDef - This method emits the specified machine instruction
771 /// that is an implicit def.
772 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
773 unsigned RegNo = MI->getOperand(0).getReg();
775 SmallString<128> Str;
776 raw_svector_ostream OS(Str);
777 OS << "implicit-def: "
778 << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
780 OutStreamer->AddComment(OS.str());
781 OutStreamer->AddBlankLine();
784 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
785 std::string Str;
786 raw_string_ostream OS(Str);
787 OS << "kill:";
788 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
789 const MachineOperand &Op = MI->getOperand(i);
790 assert(Op.isReg() && "KILL instruction must have only register operands");
791 OS << ' ' << (Op.isDef() ? "def " : "killed ")
792 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
794 AP.OutStreamer->AddComment(OS.str());
795 AP.OutStreamer->AddBlankLine();
798 /// emitDebugValueComment - This method handles the target-independent form
799 /// of DBG_VALUE, returning true if it was able to do so. A false return
800 /// means the target will need to handle MI in EmitInstruction.
801 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
802 // This code handles only the 4-operand target-independent form.
803 if (MI->getNumOperands() != 4)
804 return false;
806 SmallString<128> Str;
807 raw_svector_ostream OS(Str);
808 OS << "DEBUG_VALUE: ";
810 const DILocalVariable *V = MI->getDebugVariable();
811 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
812 StringRef Name = SP->getName();
813 if (!Name.empty())
814 OS << Name << ":";
816 OS << V->getName();
817 OS << " <- ";
819 // The second operand is only an offset if it's an immediate.
820 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
821 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
822 const DIExpression *Expr = MI->getDebugExpression();
823 if (Expr->getNumElements()) {
824 OS << '[';
825 bool NeedSep = false;
826 for (auto Op : Expr->expr_ops()) {
827 if (NeedSep)
828 OS << ", ";
829 else
830 NeedSep = true;
831 OS << dwarf::OperationEncodingString(Op.getOp());
832 for (unsigned I = 0; I < Op.getNumArgs(); ++I)
833 OS << ' ' << Op.getArg(I);
835 OS << "] ";
838 // Register or immediate value. Register 0 means undef.
839 if (MI->getOperand(0).isFPImm()) {
840 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
841 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
842 OS << (double)APF.convertToFloat();
843 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
844 OS << APF.convertToDouble();
845 } else {
846 // There is no good way to print long double. Convert a copy to
847 // double. Ah well, it's only a comment.
848 bool ignored;
849 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
850 &ignored);
851 OS << "(long double) " << APF.convertToDouble();
853 } else if (MI->getOperand(0).isImm()) {
854 OS << MI->getOperand(0).getImm();
855 } else if (MI->getOperand(0).isCImm()) {
856 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
857 } else {
858 unsigned Reg;
859 if (MI->getOperand(0).isReg()) {
860 Reg = MI->getOperand(0).getReg();
861 } else {
862 assert(MI->getOperand(0).isFI() && "Unknown operand type");
863 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
864 Offset += TFI->getFrameIndexReference(*AP.MF,
865 MI->getOperand(0).getIndex(), Reg);
866 MemLoc = true;
868 if (Reg == 0) {
869 // Suppress offset, it is not meaningful here.
870 OS << "undef";
871 // NOTE: Want this comment at start of line, don't emit with AddComment.
872 AP.OutStreamer->emitRawComment(OS.str());
873 return true;
875 if (MemLoc)
876 OS << '[';
877 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
880 if (MemLoc)
881 OS << '+' << Offset << ']';
883 // NOTE: Want this comment at start of line, don't emit with AddComment.
884 AP.OutStreamer->emitRawComment(OS.str());
885 return true;
888 /// This method handles the target-independent form of DBG_LABEL, returning
889 /// true if it was able to do so. A false return means the target will need
890 /// to handle MI in EmitInstruction.
891 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
892 if (MI->getNumOperands() != 1)
893 return false;
895 SmallString<128> Str;
896 raw_svector_ostream OS(Str);
897 OS << "DEBUG_LABEL: ";
899 const DILabel *V = MI->getDebugLabel();
900 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
901 StringRef Name = SP->getName();
902 if (!Name.empty())
903 OS << Name << ":";
905 OS << V->getName();
907 // NOTE: Want this comment at start of line, don't emit with AddComment.
908 AP.OutStreamer->emitRawComment(OS.str());
909 return true;
912 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
913 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
914 MF->getFunction().needsUnwindTableEntry())
915 return CFI_M_EH;
917 if (MMI->hasDebugInfo())
918 return CFI_M_Debug;
920 return CFI_M_None;
923 bool AsmPrinter::needsSEHMoves() {
924 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
927 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
928 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
929 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
930 ExceptionHandlingType != ExceptionHandling::ARM)
931 return;
933 if (needsCFIMoves() == CFI_M_None)
934 return;
936 // If there is no "real" instruction following this CFI instruction, skip
937 // emitting it; it would be beyond the end of the function's FDE range.
938 auto *MBB = MI.getParent();
939 auto I = std::next(MI.getIterator());
940 while (I != MBB->end() && I->isTransient())
941 ++I;
942 if (I == MBB->instr_end() &&
943 MBB->getReverseIterator() == MBB->getParent()->rbegin())
944 return;
946 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
947 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
948 const MCCFIInstruction &CFI = Instrs[CFIIndex];
949 emitCFIInstruction(CFI);
952 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
953 // The operands are the MCSymbol and the frame offset of the allocation.
954 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
955 int FrameOffset = MI.getOperand(1).getImm();
957 // Emit a symbol assignment.
958 OutStreamer->EmitAssignment(FrameAllocSym,
959 MCConstantExpr::create(FrameOffset, OutContext));
962 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
963 if (!MF.getTarget().Options.EmitStackSizeSection)
964 return;
966 MCSection *StackSizeSection =
967 getObjFileLowering().getStackSizesSection(*getCurrentSection());
968 if (!StackSizeSection)
969 return;
971 const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
972 // Don't emit functions with dynamic stack allocations.
973 if (FrameInfo.hasVarSizedObjects())
974 return;
976 OutStreamer->PushSection();
977 OutStreamer->SwitchSection(StackSizeSection);
979 const MCSymbol *FunctionSymbol = getFunctionBegin();
980 uint64_t StackSize = FrameInfo.getStackSize();
981 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
982 OutStreamer->EmitULEB128IntValue(StackSize);
984 OutStreamer->PopSection();
987 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
988 MachineModuleInfo *MMI) {
989 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
990 return true;
992 // We might emit an EH table that uses function begin and end labels even if
993 // we don't have any landingpads.
994 if (!MF.getFunction().hasPersonalityFn())
995 return false;
996 return !isNoOpWithoutInvoke(
997 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1000 /// EmitFunctionBody - This method emits the body and trailer for a
1001 /// function.
1002 void AsmPrinter::EmitFunctionBody() {
1003 EmitFunctionHeader();
1005 // Emit target-specific gunk before the function body.
1006 EmitFunctionBodyStart();
1008 bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1010 if (isVerbose()) {
1011 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1012 MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1013 if (!MDT) {
1014 OwnedMDT = make_unique<MachineDominatorTree>();
1015 OwnedMDT->getBase().recalculate(*MF);
1016 MDT = OwnedMDT.get();
1019 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1020 MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1021 if (!MLI) {
1022 OwnedMLI = make_unique<MachineLoopInfo>();
1023 OwnedMLI->getBase().analyze(MDT->getBase());
1024 MLI = OwnedMLI.get();
1028 // Print out code for the function.
1029 bool HasAnyRealCode = false;
1030 int NumInstsInFunction = 0;
1031 for (auto &MBB : *MF) {
1032 // Print a label for the basic block.
1033 EmitBasicBlockStart(MBB);
1034 for (auto &MI : MBB) {
1035 // Print the assembly for the instruction.
1036 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1037 !MI.isDebugInstr()) {
1038 HasAnyRealCode = true;
1039 ++NumInstsInFunction;
1042 // If there is a pre-instruction symbol, emit a label for it here.
1043 if (MCSymbol *S = MI.getPreInstrSymbol())
1044 OutStreamer->EmitLabel(S);
1046 if (ShouldPrintDebugScopes) {
1047 for (const HandlerInfo &HI : Handlers) {
1048 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1049 HI.TimerGroupName, HI.TimerGroupDescription,
1050 TimePassesIsEnabled);
1051 HI.Handler->beginInstruction(&MI);
1055 if (isVerbose())
1056 emitComments(MI, OutStreamer->GetCommentOS());
1058 switch (MI.getOpcode()) {
1059 case TargetOpcode::CFI_INSTRUCTION:
1060 emitCFIInstruction(MI);
1061 break;
1062 case TargetOpcode::LOCAL_ESCAPE:
1063 emitFrameAlloc(MI);
1064 break;
1065 case TargetOpcode::EH_LABEL:
1066 case TargetOpcode::GC_LABEL:
1067 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1068 break;
1069 case TargetOpcode::INLINEASM:
1070 case TargetOpcode::INLINEASM_BR:
1071 EmitInlineAsm(&MI);
1072 break;
1073 case TargetOpcode::DBG_VALUE:
1074 if (isVerbose()) {
1075 if (!emitDebugValueComment(&MI, *this))
1076 EmitInstruction(&MI);
1078 break;
1079 case TargetOpcode::DBG_LABEL:
1080 if (isVerbose()) {
1081 if (!emitDebugLabelComment(&MI, *this))
1082 EmitInstruction(&MI);
1084 break;
1085 case TargetOpcode::IMPLICIT_DEF:
1086 if (isVerbose()) emitImplicitDef(&MI);
1087 break;
1088 case TargetOpcode::KILL:
1089 if (isVerbose()) emitKill(&MI, *this);
1090 break;
1091 default:
1092 EmitInstruction(&MI);
1093 break;
1096 // If there is a post-instruction symbol, emit a label for it here.
1097 if (MCSymbol *S = MI.getPostInstrSymbol())
1098 OutStreamer->EmitLabel(S);
1100 if (ShouldPrintDebugScopes) {
1101 for (const HandlerInfo &HI : Handlers) {
1102 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1103 HI.TimerGroupName, HI.TimerGroupDescription,
1104 TimePassesIsEnabled);
1105 HI.Handler->endInstruction();
1110 EmitBasicBlockEnd(MBB);
1113 EmittedInsts += NumInstsInFunction;
1114 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1115 MF->getFunction().getSubprogram(),
1116 &MF->front());
1117 R << ore::NV("NumInstructions", NumInstsInFunction)
1118 << " instructions in function";
1119 ORE->emit(R);
1121 // If the function is empty and the object file uses .subsections_via_symbols,
1122 // then we need to emit *something* to the function body to prevent the
1123 // labels from collapsing together. Just emit a noop.
1124 // Similarly, don't emit empty functions on Windows either. It can lead to
1125 // duplicate entries (two functions with the same RVA) in the Guard CF Table
1126 // after linking, causing the kernel not to load the binary:
1127 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1128 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1129 const Triple &TT = TM.getTargetTriple();
1130 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1131 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1132 MCInst Noop;
1133 MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1135 // Targets can opt-out of emitting the noop here by leaving the opcode
1136 // unspecified.
1137 if (Noop.getOpcode()) {
1138 OutStreamer->AddComment("avoids zero-length function");
1139 OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1143 const Function &F = MF->getFunction();
1144 for (const auto &BB : F) {
1145 if (!BB.hasAddressTaken())
1146 continue;
1147 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1148 if (Sym->isDefined())
1149 continue;
1150 OutStreamer->AddComment("Address of block that was removed by CodeGen");
1151 OutStreamer->EmitLabel(Sym);
1154 // Emit target-specific gunk after the function body.
1155 EmitFunctionBodyEnd();
1157 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1158 MAI->hasDotTypeDotSizeDirective()) {
1159 // Create a symbol for the end of function.
1160 CurrentFnEnd = createTempSymbol("func_end");
1161 OutStreamer->EmitLabel(CurrentFnEnd);
1164 // If the target wants a .size directive for the size of the function, emit
1165 // it.
1166 if (MAI->hasDotTypeDotSizeDirective()) {
1167 // We can get the size as difference between the function label and the
1168 // temp label.
1169 const MCExpr *SizeExp = MCBinaryExpr::createSub(
1170 MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1171 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1172 OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1175 for (const HandlerInfo &HI : Handlers) {
1176 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1177 HI.TimerGroupDescription, TimePassesIsEnabled);
1178 HI.Handler->markFunctionEnd();
1181 // Print out jump tables referenced by the function.
1182 EmitJumpTableInfo();
1184 // Emit post-function debug and/or EH information.
1185 for (const HandlerInfo &HI : Handlers) {
1186 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1187 HI.TimerGroupDescription, TimePassesIsEnabled);
1188 HI.Handler->endFunction(MF);
1191 // Emit section containing stack size metadata.
1192 emitStackSizeSection(*MF);
1194 if (isVerbose())
1195 OutStreamer->GetCommentOS() << "-- End function\n";
1197 OutStreamer->AddBlankLine();
1200 /// Compute the number of Global Variables that uses a Constant.
1201 static unsigned getNumGlobalVariableUses(const Constant *C) {
1202 if (!C)
1203 return 0;
1205 if (isa<GlobalVariable>(C))
1206 return 1;
1208 unsigned NumUses = 0;
1209 for (auto *CU : C->users())
1210 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1212 return NumUses;
1215 /// Only consider global GOT equivalents if at least one user is a
1216 /// cstexpr inside an initializer of another global variables. Also, don't
1217 /// handle cstexpr inside instructions. During global variable emission,
1218 /// candidates are skipped and are emitted later in case at least one cstexpr
1219 /// isn't replaced by a PC relative GOT entry access.
1220 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1221 unsigned &NumGOTEquivUsers) {
1222 // Global GOT equivalents are unnamed private globals with a constant
1223 // pointer initializer to another global symbol. They must point to a
1224 // GlobalVariable or Function, i.e., as GlobalValue.
1225 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1226 !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1227 !dyn_cast<GlobalValue>(GV->getOperand(0)))
1228 return false;
1230 // To be a got equivalent, at least one of its users need to be a constant
1231 // expression used by another global variable.
1232 for (auto *U : GV->users())
1233 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1235 return NumGOTEquivUsers > 0;
1238 /// Unnamed constant global variables solely contaning a pointer to
1239 /// another globals variable is equivalent to a GOT table entry; it contains the
1240 /// the address of another symbol. Optimize it and replace accesses to these
1241 /// "GOT equivalents" by using the GOT entry for the final global instead.
1242 /// Compute GOT equivalent candidates among all global variables to avoid
1243 /// emitting them if possible later on, after it use is replaced by a GOT entry
1244 /// access.
1245 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1246 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1247 return;
1249 for (const auto &G : M.globals()) {
1250 unsigned NumGOTEquivUsers = 0;
1251 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1252 continue;
1254 const MCSymbol *GOTEquivSym = getSymbol(&G);
1255 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1259 /// Constant expressions using GOT equivalent globals may not be eligible
1260 /// for PC relative GOT entry conversion, in such cases we need to emit such
1261 /// globals we previously omitted in EmitGlobalVariable.
1262 void AsmPrinter::emitGlobalGOTEquivs() {
1263 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1264 return;
1266 SmallVector<const GlobalVariable *, 8> FailedCandidates;
1267 for (auto &I : GlobalGOTEquivs) {
1268 const GlobalVariable *GV = I.second.first;
1269 unsigned Cnt = I.second.second;
1270 if (Cnt)
1271 FailedCandidates.push_back(GV);
1273 GlobalGOTEquivs.clear();
1275 for (auto *GV : FailedCandidates)
1276 EmitGlobalVariable(GV);
1279 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1280 const GlobalIndirectSymbol& GIS) {
1281 MCSymbol *Name = getSymbol(&GIS);
1283 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1284 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1285 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1286 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1287 else
1288 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1290 bool IsFunction = GIS.getType()->getPointerElementType()->isFunctionTy();
1292 // Treat bitcasts of functions as functions also. This is important at least
1293 // on WebAssembly where object and function addresses can't alias each other.
1294 if (!IsFunction)
1295 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1296 if (CE->getOpcode() == Instruction::BitCast)
1297 IsFunction =
1298 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1300 // Set the symbol type to function if the alias has a function type.
1301 // This affects codegen when the aliasee is not a function.
1302 if (IsFunction) {
1303 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1304 if (isa<GlobalIFunc>(GIS))
1305 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1308 EmitVisibility(Name, GIS.getVisibility());
1310 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1312 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1313 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1315 // Emit the directives as assignments aka .set:
1316 OutStreamer->EmitAssignment(Name, Expr);
1318 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1319 // If the aliasee does not correspond to a symbol in the output, i.e. the
1320 // alias is not of an object or the aliased object is private, then set the
1321 // size of the alias symbol from the type of the alias. We don't do this in
1322 // other situations as the alias and aliasee having differing types but same
1323 // size may be intentional.
1324 const GlobalObject *BaseObject = GA->getBaseObject();
1325 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1326 (!BaseObject || BaseObject->hasPrivateLinkage())) {
1327 const DataLayout &DL = M.getDataLayout();
1328 uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1329 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1334 bool AsmPrinter::doFinalization(Module &M) {
1335 // Set the MachineFunction to nullptr so that we can catch attempted
1336 // accesses to MF specific features at the module level and so that
1337 // we can conditionalize accesses based on whether or not it is nullptr.
1338 MF = nullptr;
1340 // Gather all GOT equivalent globals in the module. We really need two
1341 // passes over the globals: one to compute and another to avoid its emission
1342 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1343 // where the got equivalent shows up before its use.
1344 computeGlobalGOTEquivs(M);
1346 // Emit global variables.
1347 for (const auto &G : M.globals())
1348 EmitGlobalVariable(&G);
1350 // Emit remaining GOT equivalent globals.
1351 emitGlobalGOTEquivs();
1353 // Emit visibility info for declarations
1354 for (const Function &F : M) {
1355 if (!F.isDeclarationForLinker())
1356 continue;
1357 GlobalValue::VisibilityTypes V = F.getVisibility();
1358 if (V == GlobalValue::DefaultVisibility)
1359 continue;
1361 MCSymbol *Name = getSymbol(&F);
1362 EmitVisibility(Name, V, false);
1365 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1367 TLOF.emitModuleMetadata(*OutStreamer, M);
1369 if (TM.getTargetTriple().isOSBinFormatELF()) {
1370 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1372 // Output stubs for external and common global variables.
1373 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1374 if (!Stubs.empty()) {
1375 OutStreamer->SwitchSection(TLOF.getDataSection());
1376 const DataLayout &DL = M.getDataLayout();
1378 EmitAlignment(Log2_32(DL.getPointerSize()));
1379 for (const auto &Stub : Stubs) {
1380 OutStreamer->EmitLabel(Stub.first);
1381 OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1382 DL.getPointerSize());
1387 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1388 MachineModuleInfoCOFF &MMICOFF =
1389 MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1391 // Output stubs for external and common global variables.
1392 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1393 if (!Stubs.empty()) {
1394 const DataLayout &DL = M.getDataLayout();
1396 for (const auto &Stub : Stubs) {
1397 SmallString<256> SectionName = StringRef(".rdata$");
1398 SectionName += Stub.first->getName();
1399 OutStreamer->SwitchSection(OutContext.getCOFFSection(
1400 SectionName,
1401 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1402 COFF::IMAGE_SCN_LNK_COMDAT,
1403 SectionKind::getReadOnly(), Stub.first->getName(),
1404 COFF::IMAGE_COMDAT_SELECT_ANY));
1405 EmitAlignment(Log2_32(DL.getPointerSize()));
1406 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1407 OutStreamer->EmitLabel(Stub.first);
1408 OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1409 DL.getPointerSize());
1414 // Finalize debug and EH information.
1415 for (const HandlerInfo &HI : Handlers) {
1416 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1417 HI.TimerGroupDescription, TimePassesIsEnabled);
1418 HI.Handler->endModule();
1419 delete HI.Handler;
1421 Handlers.clear();
1422 DD = nullptr;
1424 // If the target wants to know about weak references, print them all.
1425 if (MAI->getWeakRefDirective()) {
1426 // FIXME: This is not lazy, it would be nice to only print weak references
1427 // to stuff that is actually used. Note that doing so would require targets
1428 // to notice uses in operands (due to constant exprs etc). This should
1429 // happen with the MC stuff eventually.
1431 // Print out module-level global objects here.
1432 for (const auto &GO : M.global_objects()) {
1433 if (!GO.hasExternalWeakLinkage())
1434 continue;
1435 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1439 OutStreamer->AddBlankLine();
1441 // Print aliases in topological order, that is, for each alias a = b,
1442 // b must be printed before a.
1443 // This is because on some targets (e.g. PowerPC) linker expects aliases in
1444 // such an order to generate correct TOC information.
1445 SmallVector<const GlobalAlias *, 16> AliasStack;
1446 SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1447 for (const auto &Alias : M.aliases()) {
1448 for (const GlobalAlias *Cur = &Alias; Cur;
1449 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1450 if (!AliasVisited.insert(Cur).second)
1451 break;
1452 AliasStack.push_back(Cur);
1454 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1455 emitGlobalIndirectSymbol(M, *AncestorAlias);
1456 AliasStack.clear();
1458 for (const auto &IFunc : M.ifuncs())
1459 emitGlobalIndirectSymbol(M, IFunc);
1461 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1462 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1463 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1464 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1465 MP->finishAssembly(M, *MI, *this);
1467 // Emit llvm.ident metadata in an '.ident' directive.
1468 EmitModuleIdents(M);
1470 // Emit bytes for llvm.commandline metadata.
1471 EmitModuleCommandLines(M);
1473 // Emit __morestack address if needed for indirect calls.
1474 if (MMI->usesMorestackAddr()) {
1475 unsigned Align = 1;
1476 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1477 getDataLayout(), SectionKind::getReadOnly(),
1478 /*C=*/nullptr, Align);
1479 OutStreamer->SwitchSection(ReadOnlySection);
1481 MCSymbol *AddrSymbol =
1482 OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1483 OutStreamer->EmitLabel(AddrSymbol);
1485 unsigned PtrSize = MAI->getCodePointerSize();
1486 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1487 PtrSize);
1490 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1491 // split-stack is used.
1492 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1493 OutStreamer->SwitchSection(
1494 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1495 if (MMI->hasNosplitStack())
1496 OutStreamer->SwitchSection(
1497 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1500 // If we don't have any trampolines, then we don't require stack memory
1501 // to be executable. Some targets have a directive to declare this.
1502 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1503 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1504 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1505 OutStreamer->SwitchSection(S);
1507 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1508 // Emit /EXPORT: flags for each exported global as necessary.
1509 const auto &TLOF = getObjFileLowering();
1510 std::string Flags;
1512 for (const GlobalValue &GV : M.global_values()) {
1513 raw_string_ostream OS(Flags);
1514 TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1515 OS.flush();
1516 if (!Flags.empty()) {
1517 OutStreamer->SwitchSection(TLOF.getDrectveSection());
1518 OutStreamer->EmitBytes(Flags);
1520 Flags.clear();
1523 // Emit /INCLUDE: flags for each used global as necessary.
1524 if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1525 assert(LU->hasInitializer() &&
1526 "expected llvm.used to have an initializer");
1527 assert(isa<ArrayType>(LU->getValueType()) &&
1528 "expected llvm.used to be an array type");
1529 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1530 for (const Value *Op : A->operands()) {
1531 const auto *GV =
1532 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1533 // Global symbols with internal or private linkage are not visible to
1534 // the linker, and thus would cause an error when the linker tried to
1535 // preserve the symbol due to the `/include:` directive.
1536 if (GV->hasLocalLinkage())
1537 continue;
1539 raw_string_ostream OS(Flags);
1540 TLOF.emitLinkerFlagsForUsed(OS, GV);
1541 OS.flush();
1543 if (!Flags.empty()) {
1544 OutStreamer->SwitchSection(TLOF.getDrectveSection());
1545 OutStreamer->EmitBytes(Flags);
1547 Flags.clear();
1553 if (TM.Options.EmitAddrsig) {
1554 // Emit address-significance attributes for all globals.
1555 OutStreamer->EmitAddrsig();
1556 for (const GlobalValue &GV : M.global_values())
1557 if (!GV.use_empty() && !GV.isThreadLocal() &&
1558 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1559 !GV.hasAtLeastLocalUnnamedAddr())
1560 OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1563 // Allow the target to emit any magic that it wants at the end of the file,
1564 // after everything else has gone out.
1565 EmitEndOfAsmFile(M);
1567 MMI = nullptr;
1569 OutStreamer->Finish();
1570 OutStreamer->reset();
1571 OwnedMLI.reset();
1572 OwnedMDT.reset();
1574 return false;
1577 MCSymbol *AsmPrinter::getCurExceptionSym() {
1578 if (!CurExceptionSym)
1579 CurExceptionSym = createTempSymbol("exception");
1580 return CurExceptionSym;
1583 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1584 this->MF = &MF;
1585 // Get the function symbol.
1586 CurrentFnSym = getSymbol(&MF.getFunction());
1587 CurrentFnSymForSize = CurrentFnSym;
1588 CurrentFnBegin = nullptr;
1589 CurExceptionSym = nullptr;
1590 bool NeedsLocalForSize = MAI->needsLocalForSize();
1591 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1592 MF.getTarget().Options.EmitStackSizeSection) {
1593 CurrentFnBegin = createTempSymbol("func_begin");
1594 if (NeedsLocalForSize)
1595 CurrentFnSymForSize = CurrentFnBegin;
1598 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1601 namespace {
1603 // Keep track the alignment, constpool entries per Section.
1604 struct SectionCPs {
1605 MCSection *S;
1606 unsigned Alignment;
1607 SmallVector<unsigned, 4> CPEs;
1609 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1612 } // end anonymous namespace
1614 /// EmitConstantPool - Print to the current output stream assembly
1615 /// representations of the constants in the constant pool MCP. This is
1616 /// used to print out constants which have been "spilled to memory" by
1617 /// the code generator.
1618 void AsmPrinter::EmitConstantPool() {
1619 const MachineConstantPool *MCP = MF->getConstantPool();
1620 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1621 if (CP.empty()) return;
1623 // Calculate sections for constant pool entries. We collect entries to go into
1624 // the same section together to reduce amount of section switch statements.
1625 SmallVector<SectionCPs, 4> CPSections;
1626 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1627 const MachineConstantPoolEntry &CPE = CP[i];
1628 unsigned Align = CPE.getAlignment();
1630 SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1632 const Constant *C = nullptr;
1633 if (!CPE.isMachineConstantPoolEntry())
1634 C = CPE.Val.ConstVal;
1636 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1637 Kind, C, Align);
1639 // The number of sections are small, just do a linear search from the
1640 // last section to the first.
1641 bool Found = false;
1642 unsigned SecIdx = CPSections.size();
1643 while (SecIdx != 0) {
1644 if (CPSections[--SecIdx].S == S) {
1645 Found = true;
1646 break;
1649 if (!Found) {
1650 SecIdx = CPSections.size();
1651 CPSections.push_back(SectionCPs(S, Align));
1654 if (Align > CPSections[SecIdx].Alignment)
1655 CPSections[SecIdx].Alignment = Align;
1656 CPSections[SecIdx].CPEs.push_back(i);
1659 // Now print stuff into the calculated sections.
1660 const MCSection *CurSection = nullptr;
1661 unsigned Offset = 0;
1662 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1663 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1664 unsigned CPI = CPSections[i].CPEs[j];
1665 MCSymbol *Sym = GetCPISymbol(CPI);
1666 if (!Sym->isUndefined())
1667 continue;
1669 if (CurSection != CPSections[i].S) {
1670 OutStreamer->SwitchSection(CPSections[i].S);
1671 EmitAlignment(Log2_32(CPSections[i].Alignment));
1672 CurSection = CPSections[i].S;
1673 Offset = 0;
1676 MachineConstantPoolEntry CPE = CP[CPI];
1678 // Emit inter-object padding for alignment.
1679 unsigned AlignMask = CPE.getAlignment() - 1;
1680 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1681 OutStreamer->EmitZeros(NewOffset - Offset);
1683 Type *Ty = CPE.getType();
1684 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1686 OutStreamer->EmitLabel(Sym);
1687 if (CPE.isMachineConstantPoolEntry())
1688 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1689 else
1690 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1695 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1696 /// by the current function to the current output stream.
1697 void AsmPrinter::EmitJumpTableInfo() {
1698 const DataLayout &DL = MF->getDataLayout();
1699 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1700 if (!MJTI) return;
1701 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1702 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1703 if (JT.empty()) return;
1705 // Pick the directive to use to print the jump table entries, and switch to
1706 // the appropriate section.
1707 const Function &F = MF->getFunction();
1708 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1709 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1710 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1712 if (JTInDiffSection) {
1713 // Drop it in the readonly section.
1714 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1715 OutStreamer->SwitchSection(ReadOnlySection);
1718 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1720 // Jump tables in code sections are marked with a data_region directive
1721 // where that's supported.
1722 if (!JTInDiffSection)
1723 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1725 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1726 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1728 // If this jump table was deleted, ignore it.
1729 if (JTBBs.empty()) continue;
1731 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1732 /// emit a .set directive for each unique entry.
1733 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1734 MAI->doesSetDirectiveSuppressReloc()) {
1735 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1736 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1737 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1738 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1739 const MachineBasicBlock *MBB = JTBBs[ii];
1740 if (!EmittedSets.insert(MBB).second)
1741 continue;
1743 // .set LJTSet, LBB32-base
1744 const MCExpr *LHS =
1745 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1746 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1747 MCBinaryExpr::createSub(LHS, Base,
1748 OutContext));
1752 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1753 // before each jump table. The first label is never referenced, but tells
1754 // the assembler and linker the extents of the jump table object. The
1755 // second label is actually referenced by the code.
1756 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1757 // FIXME: This doesn't have to have any specific name, just any randomly
1758 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1759 OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1761 OutStreamer->EmitLabel(GetJTISymbol(JTI));
1763 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1764 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1766 if (!JTInDiffSection)
1767 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1770 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1771 /// current stream.
1772 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1773 const MachineBasicBlock *MBB,
1774 unsigned UID) const {
1775 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1776 const MCExpr *Value = nullptr;
1777 switch (MJTI->getEntryKind()) {
1778 case MachineJumpTableInfo::EK_Inline:
1779 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1780 case MachineJumpTableInfo::EK_Custom32:
1781 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1782 MJTI, MBB, UID, OutContext);
1783 break;
1784 case MachineJumpTableInfo::EK_BlockAddress:
1785 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1786 // .word LBB123
1787 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1788 break;
1789 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1790 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1791 // with a relocation as gp-relative, e.g.:
1792 // .gprel32 LBB123
1793 MCSymbol *MBBSym = MBB->getSymbol();
1794 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1795 return;
1798 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1799 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1800 // with a relocation as gp-relative, e.g.:
1801 // .gpdword LBB123
1802 MCSymbol *MBBSym = MBB->getSymbol();
1803 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1804 return;
1807 case MachineJumpTableInfo::EK_LabelDifference32: {
1808 // Each entry is the address of the block minus the address of the jump
1809 // table. This is used for PIC jump tables where gprel32 is not supported.
1810 // e.g.:
1811 // .word LBB123 - LJTI1_2
1812 // If the .set directive avoids relocations, this is emitted as:
1813 // .set L4_5_set_123, LBB123 - LJTI1_2
1814 // .word L4_5_set_123
1815 if (MAI->doesSetDirectiveSuppressReloc()) {
1816 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1817 OutContext);
1818 break;
1820 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1821 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1822 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1823 Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1824 break;
1828 assert(Value && "Unknown entry kind!");
1830 unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1831 OutStreamer->EmitValue(Value, EntrySize);
1834 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1835 /// special global used by LLVM. If so, emit it and return true, otherwise
1836 /// do nothing and return false.
1837 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1838 if (GV->getName() == "llvm.used") {
1839 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1840 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1841 return true;
1844 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1845 if (GV->getSection() == "llvm.metadata" ||
1846 GV->hasAvailableExternallyLinkage())
1847 return true;
1849 if (!GV->hasAppendingLinkage()) return false;
1851 assert(GV->hasInitializer() && "Not a special LLVM global!");
1853 if (GV->getName() == "llvm.global_ctors") {
1854 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1855 /* isCtor */ true);
1857 return true;
1860 if (GV->getName() == "llvm.global_dtors") {
1861 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1862 /* isCtor */ false);
1864 return true;
1867 report_fatal_error("unknown special variable");
1870 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1871 /// global in the specified llvm.used list.
1872 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1873 // Should be an array of 'i8*'.
1874 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1875 const GlobalValue *GV =
1876 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1877 if (GV)
1878 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1882 namespace {
1884 struct Structor {
1885 int Priority = 0;
1886 Constant *Func = nullptr;
1887 GlobalValue *ComdatKey = nullptr;
1889 Structor() = default;
1892 } // end anonymous namespace
1894 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1895 /// priority.
1896 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1897 bool isCtor) {
1898 // Should be an array of '{ int, void ()* }' structs. The first value is the
1899 // init priority.
1900 if (!isa<ConstantArray>(List)) return;
1902 // Sanity check the structors list.
1903 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1904 if (!InitList) return; // Not an array!
1905 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1906 // FIXME: Only allow the 3-field form in LLVM 4.0.
1907 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1908 return; // Not an array of two or three elements!
1909 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1910 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1911 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1912 return; // Not (int, ptr, ptr).
1914 // Gather the structors in a form that's convenient for sorting by priority.
1915 SmallVector<Structor, 8> Structors;
1916 for (Value *O : InitList->operands()) {
1917 ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1918 if (!CS) continue; // Malformed.
1919 if (CS->getOperand(1)->isNullValue())
1920 break; // Found a null terminator, skip the rest.
1921 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1922 if (!Priority) continue; // Malformed.
1923 Structors.push_back(Structor());
1924 Structor &S = Structors.back();
1925 S.Priority = Priority->getLimitedValue(65535);
1926 S.Func = CS->getOperand(1);
1927 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1928 S.ComdatKey =
1929 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1932 // Emit the function pointers in the target-specific order
1933 unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1934 std::stable_sort(Structors.begin(), Structors.end(),
1935 [](const Structor &L,
1936 const Structor &R) { return L.Priority < R.Priority; });
1937 for (Structor &S : Structors) {
1938 const TargetLoweringObjectFile &Obj = getObjFileLowering();
1939 const MCSymbol *KeySym = nullptr;
1940 if (GlobalValue *GV = S.ComdatKey) {
1941 if (GV->isDeclarationForLinker())
1942 // If the associated variable is not defined in this module
1943 // (it might be available_externally, or have been an
1944 // available_externally definition that was dropped by the
1945 // EliminateAvailableExternally pass), some other TU
1946 // will provide its dynamic initializer.
1947 continue;
1949 KeySym = getSymbol(GV);
1951 MCSection *OutputSection =
1952 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1953 : Obj.getStaticDtorSection(S.Priority, KeySym));
1954 OutStreamer->SwitchSection(OutputSection);
1955 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1956 EmitAlignment(Align);
1957 EmitXXStructor(DL, S.Func);
1961 void AsmPrinter::EmitModuleIdents(Module &M) {
1962 if (!MAI->hasIdentDirective())
1963 return;
1965 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1966 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1967 const MDNode *N = NMD->getOperand(i);
1968 assert(N->getNumOperands() == 1 &&
1969 "llvm.ident metadata entry can have only one operand");
1970 const MDString *S = cast<MDString>(N->getOperand(0));
1971 OutStreamer->EmitIdent(S->getString());
1976 void AsmPrinter::EmitModuleCommandLines(Module &M) {
1977 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
1978 if (!CommandLine)
1979 return;
1981 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
1982 if (!NMD || !NMD->getNumOperands())
1983 return;
1985 OutStreamer->PushSection();
1986 OutStreamer->SwitchSection(CommandLine);
1987 OutStreamer->EmitZeros(1);
1988 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1989 const MDNode *N = NMD->getOperand(i);
1990 assert(N->getNumOperands() == 1 &&
1991 "llvm.commandline metadata entry can have only one operand");
1992 const MDString *S = cast<MDString>(N->getOperand(0));
1993 OutStreamer->EmitBytes(S->getString());
1994 OutStreamer->EmitZeros(1);
1996 OutStreamer->PopSection();
1999 //===--------------------------------------------------------------------===//
2000 // Emission and print routines
2003 /// Emit a byte directive and value.
2005 void AsmPrinter::emitInt8(int Value) const {
2006 OutStreamer->EmitIntValue(Value, 1);
2009 /// Emit a short directive and value.
2010 void AsmPrinter::emitInt16(int Value) const {
2011 OutStreamer->EmitIntValue(Value, 2);
2014 /// Emit a long directive and value.
2015 void AsmPrinter::emitInt32(int Value) const {
2016 OutStreamer->EmitIntValue(Value, 4);
2019 /// Emit a long long directive and value.
2020 void AsmPrinter::emitInt64(uint64_t Value) const {
2021 OutStreamer->EmitIntValue(Value, 8);
2024 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2025 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2026 /// .set if it avoids relocations.
2027 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2028 unsigned Size) const {
2029 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2032 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2033 /// where the size in bytes of the directive is specified by Size and Label
2034 /// specifies the label. This implicitly uses .set if it is available.
2035 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2036 unsigned Size,
2037 bool IsSectionRelative) const {
2038 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2039 OutStreamer->EmitCOFFSecRel32(Label, Offset);
2040 if (Size > 4)
2041 OutStreamer->EmitZeros(Size - 4);
2042 return;
2045 // Emit Label+Offset (or just Label if Offset is zero)
2046 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2047 if (Offset)
2048 Expr = MCBinaryExpr::createAdd(
2049 Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2051 OutStreamer->EmitValue(Expr, Size);
2054 //===----------------------------------------------------------------------===//
2056 // EmitAlignment - Emit an alignment directive to the specified power of
2057 // two boundary. For example, if you pass in 3 here, you will get an 8
2058 // byte alignment. If a global value is specified, and if that global has
2059 // an explicit alignment requested, it will override the alignment request
2060 // if required for correctness.
2061 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2062 if (GV)
2063 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2065 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
2067 assert(NumBits <
2068 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2069 "undefined behavior");
2070 if (getCurrentSection()->getKind().isText())
2071 OutStreamer->EmitCodeAlignment(1u << NumBits);
2072 else
2073 OutStreamer->EmitValueToAlignment(1u << NumBits);
2076 //===----------------------------------------------------------------------===//
2077 // Constant emission.
2078 //===----------------------------------------------------------------------===//
2080 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2081 MCContext &Ctx = OutContext;
2083 if (CV->isNullValue() || isa<UndefValue>(CV))
2084 return MCConstantExpr::create(0, Ctx);
2086 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2087 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2089 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2090 return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2092 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2093 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2095 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2096 if (!CE) {
2097 llvm_unreachable("Unknown constant value to lower!");
2100 switch (CE->getOpcode()) {
2101 default:
2102 // If the code isn't optimized, there may be outstanding folding
2103 // opportunities. Attempt to fold the expression using DataLayout as a
2104 // last resort before giving up.
2105 if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2106 if (C != CE)
2107 return lowerConstant(C);
2109 // Otherwise report the problem to the user.
2111 std::string S;
2112 raw_string_ostream OS(S);
2113 OS << "Unsupported expression in static initializer: ";
2114 CE->printAsOperand(OS, /*PrintType=*/false,
2115 !MF ? nullptr : MF->getFunction().getParent());
2116 report_fatal_error(OS.str());
2118 case Instruction::GetElementPtr: {
2119 // Generate a symbolic expression for the byte address
2120 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2121 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2123 const MCExpr *Base = lowerConstant(CE->getOperand(0));
2124 if (!OffsetAI)
2125 return Base;
2127 int64_t Offset = OffsetAI.getSExtValue();
2128 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2129 Ctx);
2132 case Instruction::Trunc:
2133 // We emit the value and depend on the assembler to truncate the generated
2134 // expression properly. This is important for differences between
2135 // blockaddress labels. Since the two labels are in the same function, it
2136 // is reasonable to treat their delta as a 32-bit value.
2137 LLVM_FALLTHROUGH;
2138 case Instruction::BitCast:
2139 return lowerConstant(CE->getOperand(0));
2141 case Instruction::IntToPtr: {
2142 const DataLayout &DL = getDataLayout();
2144 // Handle casts to pointers by changing them into casts to the appropriate
2145 // integer type. This promotes constant folding and simplifies this code.
2146 Constant *Op = CE->getOperand(0);
2147 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2148 false/*ZExt*/);
2149 return lowerConstant(Op);
2152 case Instruction::PtrToInt: {
2153 const DataLayout &DL = getDataLayout();
2155 // Support only foldable casts to/from pointers that can be eliminated by
2156 // changing the pointer to the appropriately sized integer type.
2157 Constant *Op = CE->getOperand(0);
2158 Type *Ty = CE->getType();
2160 const MCExpr *OpExpr = lowerConstant(Op);
2162 // We can emit the pointer value into this slot if the slot is an
2163 // integer slot equal to the size of the pointer.
2164 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2165 return OpExpr;
2167 // Otherwise the pointer is smaller than the resultant integer, mask off
2168 // the high bits so we are sure to get a proper truncation if the input is
2169 // a constant expr.
2170 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2171 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2172 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2175 case Instruction::Sub: {
2176 GlobalValue *LHSGV;
2177 APInt LHSOffset;
2178 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2179 getDataLayout())) {
2180 GlobalValue *RHSGV;
2181 APInt RHSOffset;
2182 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2183 getDataLayout())) {
2184 const MCExpr *RelocExpr =
2185 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2186 if (!RelocExpr)
2187 RelocExpr = MCBinaryExpr::createSub(
2188 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2189 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2190 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2191 if (Addend != 0)
2192 RelocExpr = MCBinaryExpr::createAdd(
2193 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2194 return RelocExpr;
2198 // else fallthrough
2199 LLVM_FALLTHROUGH;
2201 // The MC library also has a right-shift operator, but it isn't consistently
2202 // signed or unsigned between different targets.
2203 case Instruction::Add:
2204 case Instruction::Mul:
2205 case Instruction::SDiv:
2206 case Instruction::SRem:
2207 case Instruction::Shl:
2208 case Instruction::And:
2209 case Instruction::Or:
2210 case Instruction::Xor: {
2211 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2212 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2213 switch (CE->getOpcode()) {
2214 default: llvm_unreachable("Unknown binary operator constant cast expr");
2215 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2216 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2217 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2218 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2219 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2220 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2221 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2222 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2223 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2229 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2230 AsmPrinter &AP,
2231 const Constant *BaseCV = nullptr,
2232 uint64_t Offset = 0);
2234 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2235 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2237 /// isRepeatedByteSequence - Determine whether the given value is
2238 /// composed of a repeated sequence of identical bytes and return the
2239 /// byte value. If it is not a repeated sequence, return -1.
2240 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2241 StringRef Data = V->getRawDataValues();
2242 assert(!Data.empty() && "Empty aggregates should be CAZ node");
2243 char C = Data[0];
2244 for (unsigned i = 1, e = Data.size(); i != e; ++i)
2245 if (Data[i] != C) return -1;
2246 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2249 /// isRepeatedByteSequence - Determine whether the given value is
2250 /// composed of a repeated sequence of identical bytes and return the
2251 /// byte value. If it is not a repeated sequence, return -1.
2252 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2253 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2254 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2255 assert(Size % 8 == 0);
2257 // Extend the element to take zero padding into account.
2258 APInt Value = CI->getValue().zextOrSelf(Size);
2259 if (!Value.isSplat(8))
2260 return -1;
2262 return Value.zextOrTrunc(8).getZExtValue();
2264 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2265 // Make sure all array elements are sequences of the same repeated
2266 // byte.
2267 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2268 Constant *Op0 = CA->getOperand(0);
2269 int Byte = isRepeatedByteSequence(Op0, DL);
2270 if (Byte == -1)
2271 return -1;
2273 // All array elements must be equal.
2274 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2275 if (CA->getOperand(i) != Op0)
2276 return -1;
2277 return Byte;
2280 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2281 return isRepeatedByteSequence(CDS);
2283 return -1;
2286 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2287 const ConstantDataSequential *CDS,
2288 AsmPrinter &AP) {
2289 // See if we can aggregate this into a .fill, if so, emit it as such.
2290 int Value = isRepeatedByteSequence(CDS, DL);
2291 if (Value != -1) {
2292 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2293 // Don't emit a 1-byte object as a .fill.
2294 if (Bytes > 1)
2295 return AP.OutStreamer->emitFill(Bytes, Value);
2298 // If this can be emitted with .ascii/.asciz, emit it as such.
2299 if (CDS->isString())
2300 return AP.OutStreamer->EmitBytes(CDS->getAsString());
2302 // Otherwise, emit the values in successive locations.
2303 unsigned ElementByteSize = CDS->getElementByteSize();
2304 if (isa<IntegerType>(CDS->getElementType())) {
2305 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2306 if (AP.isVerbose())
2307 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2308 CDS->getElementAsInteger(i));
2309 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2310 ElementByteSize);
2312 } else {
2313 Type *ET = CDS->getElementType();
2314 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2315 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2318 unsigned Size = DL.getTypeAllocSize(CDS->getType());
2319 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2320 CDS->getNumElements();
2321 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2322 if (unsigned Padding = Size - EmittedSize)
2323 AP.OutStreamer->EmitZeros(Padding);
2326 static void emitGlobalConstantArray(const DataLayout &DL,
2327 const ConstantArray *CA, AsmPrinter &AP,
2328 const Constant *BaseCV, uint64_t Offset) {
2329 // See if we can aggregate some values. Make sure it can be
2330 // represented as a series of bytes of the constant value.
2331 int Value = isRepeatedByteSequence(CA, DL);
2333 if (Value != -1) {
2334 uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2335 AP.OutStreamer->emitFill(Bytes, Value);
2337 else {
2338 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2339 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2340 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2345 static void emitGlobalConstantVector(const DataLayout &DL,
2346 const ConstantVector *CV, AsmPrinter &AP) {
2347 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2348 emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2350 unsigned Size = DL.getTypeAllocSize(CV->getType());
2351 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2352 CV->getType()->getNumElements();
2353 if (unsigned Padding = Size - EmittedSize)
2354 AP.OutStreamer->EmitZeros(Padding);
2357 static void emitGlobalConstantStruct(const DataLayout &DL,
2358 const ConstantStruct *CS, AsmPrinter &AP,
2359 const Constant *BaseCV, uint64_t Offset) {
2360 // Print the fields in successive locations. Pad to align if needed!
2361 unsigned Size = DL.getTypeAllocSize(CS->getType());
2362 const StructLayout *Layout = DL.getStructLayout(CS->getType());
2363 uint64_t SizeSoFar = 0;
2364 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2365 const Constant *Field = CS->getOperand(i);
2367 // Print the actual field value.
2368 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2370 // Check if padding is needed and insert one or more 0s.
2371 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2372 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2373 - Layout->getElementOffset(i)) - FieldSize;
2374 SizeSoFar += FieldSize + PadSize;
2376 // Insert padding - this may include padding to increase the size of the
2377 // current field up to the ABI size (if the struct is not packed) as well
2378 // as padding to ensure that the next field starts at the right offset.
2379 AP.OutStreamer->EmitZeros(PadSize);
2381 assert(SizeSoFar == Layout->getSizeInBytes() &&
2382 "Layout of constant struct may be incorrect!");
2385 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2386 APInt API = APF.bitcastToAPInt();
2388 // First print a comment with what we think the original floating-point value
2389 // should have been.
2390 if (AP.isVerbose()) {
2391 SmallString<8> StrVal;
2392 APF.toString(StrVal);
2394 if (ET)
2395 ET->print(AP.OutStreamer->GetCommentOS());
2396 else
2397 AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2398 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2401 // Now iterate through the APInt chunks, emitting them in endian-correct
2402 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2403 // floats).
2404 unsigned NumBytes = API.getBitWidth() / 8;
2405 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2406 const uint64_t *p = API.getRawData();
2408 // PPC's long double has odd notions of endianness compared to how LLVM
2409 // handles it: p[0] goes first for *big* endian on PPC.
2410 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2411 int Chunk = API.getNumWords() - 1;
2413 if (TrailingBytes)
2414 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2416 for (; Chunk >= 0; --Chunk)
2417 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2418 } else {
2419 unsigned Chunk;
2420 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2421 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2423 if (TrailingBytes)
2424 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2427 // Emit the tail padding for the long double.
2428 const DataLayout &DL = AP.getDataLayout();
2429 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2432 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2433 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2436 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2437 const DataLayout &DL = AP.getDataLayout();
2438 unsigned BitWidth = CI->getBitWidth();
2440 // Copy the value as we may massage the layout for constants whose bit width
2441 // is not a multiple of 64-bits.
2442 APInt Realigned(CI->getValue());
2443 uint64_t ExtraBits = 0;
2444 unsigned ExtraBitsSize = BitWidth & 63;
2446 if (ExtraBitsSize) {
2447 // The bit width of the data is not a multiple of 64-bits.
2448 // The extra bits are expected to be at the end of the chunk of the memory.
2449 // Little endian:
2450 // * Nothing to be done, just record the extra bits to emit.
2451 // Big endian:
2452 // * Record the extra bits to emit.
2453 // * Realign the raw data to emit the chunks of 64-bits.
2454 if (DL.isBigEndian()) {
2455 // Basically the structure of the raw data is a chunk of 64-bits cells:
2456 // 0 1 BitWidth / 64
2457 // [chunk1][chunk2] ... [chunkN].
2458 // The most significant chunk is chunkN and it should be emitted first.
2459 // However, due to the alignment issue chunkN contains useless bits.
2460 // Realign the chunks so that they contain only useless information:
2461 // ExtraBits 0 1 (BitWidth / 64) - 1
2462 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2463 ExtraBits = Realigned.getRawData()[0] &
2464 (((uint64_t)-1) >> (64 - ExtraBitsSize));
2465 Realigned.lshrInPlace(ExtraBitsSize);
2466 } else
2467 ExtraBits = Realigned.getRawData()[BitWidth / 64];
2470 // We don't expect assemblers to support integer data directives
2471 // for more than 64 bits, so we emit the data in at most 64-bit
2472 // quantities at a time.
2473 const uint64_t *RawData = Realigned.getRawData();
2474 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2475 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2476 AP.OutStreamer->EmitIntValue(Val, 8);
2479 if (ExtraBitsSize) {
2480 // Emit the extra bits after the 64-bits chunks.
2482 // Emit a directive that fills the expected size.
2483 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2484 Size -= (BitWidth / 64) * 8;
2485 assert(Size && Size * 8 >= ExtraBitsSize &&
2486 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2487 == ExtraBits && "Directive too small for extra bits.");
2488 AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2492 /// Transform a not absolute MCExpr containing a reference to a GOT
2493 /// equivalent global, by a target specific GOT pc relative access to the
2494 /// final symbol.
2495 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2496 const Constant *BaseCst,
2497 uint64_t Offset) {
2498 // The global @foo below illustrates a global that uses a got equivalent.
2500 // @bar = global i32 42
2501 // @gotequiv = private unnamed_addr constant i32* @bar
2502 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2503 // i64 ptrtoint (i32* @foo to i64))
2504 // to i32)
2506 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2507 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2508 // form:
2510 // foo = cstexpr, where
2511 // cstexpr := <gotequiv> - "." + <cst>
2512 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2514 // After canonicalization by evaluateAsRelocatable `ME` turns into:
2516 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2517 // gotpcrelcst := <offset from @foo base> + <cst>
2518 MCValue MV;
2519 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2520 return;
2521 const MCSymbolRefExpr *SymA = MV.getSymA();
2522 if (!SymA)
2523 return;
2525 // Check that GOT equivalent symbol is cached.
2526 const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2527 if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2528 return;
2530 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2531 if (!BaseGV)
2532 return;
2534 // Check for a valid base symbol
2535 const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2536 const MCSymbolRefExpr *SymB = MV.getSymB();
2538 if (!SymB || BaseSym != &SymB->getSymbol())
2539 return;
2541 // Make sure to match:
2543 // gotpcrelcst := <offset from @foo base> + <cst>
2545 // If gotpcrelcst is positive it means that we can safely fold the pc rel
2546 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2547 // if the target knows how to encode it.
2548 int64_t GOTPCRelCst = Offset + MV.getConstant();
2549 if (GOTPCRelCst < 0)
2550 return;
2551 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2552 return;
2554 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2556 // bar:
2557 // .long 42
2558 // gotequiv:
2559 // .quad bar
2560 // foo:
2561 // .long gotequiv - "." + <cst>
2563 // is replaced by the target specific equivalent to:
2565 // bar:
2566 // .long 42
2567 // foo:
2568 // .long bar@GOTPCREL+<gotpcrelcst>
2569 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2570 const GlobalVariable *GV = Result.first;
2571 int NumUses = (int)Result.second;
2572 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2573 const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2574 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2575 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2577 // Update GOT equivalent usage information
2578 --NumUses;
2579 if (NumUses >= 0)
2580 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2583 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2584 AsmPrinter &AP, const Constant *BaseCV,
2585 uint64_t Offset) {
2586 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2588 // Globals with sub-elements such as combinations of arrays and structs
2589 // are handled recursively by emitGlobalConstantImpl. Keep track of the
2590 // constant symbol base and the current position with BaseCV and Offset.
2591 if (!BaseCV && CV->hasOneUse())
2592 BaseCV = dyn_cast<Constant>(CV->user_back());
2594 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2595 return AP.OutStreamer->EmitZeros(Size);
2597 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2598 switch (Size) {
2599 case 1:
2600 case 2:
2601 case 4:
2602 case 8:
2603 if (AP.isVerbose())
2604 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2605 CI->getZExtValue());
2606 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2607 return;
2608 default:
2609 emitGlobalConstantLargeInt(CI, AP);
2610 return;
2614 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2615 return emitGlobalConstantFP(CFP, AP);
2617 if (isa<ConstantPointerNull>(CV)) {
2618 AP.OutStreamer->EmitIntValue(0, Size);
2619 return;
2622 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2623 return emitGlobalConstantDataSequential(DL, CDS, AP);
2625 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2626 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2628 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2629 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2631 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2632 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2633 // vectors).
2634 if (CE->getOpcode() == Instruction::BitCast)
2635 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2637 if (Size > 8) {
2638 // If the constant expression's size is greater than 64-bits, then we have
2639 // to emit the value in chunks. Try to constant fold the value and emit it
2640 // that way.
2641 Constant *New = ConstantFoldConstant(CE, DL);
2642 if (New && New != CE)
2643 return emitGlobalConstantImpl(DL, New, AP);
2647 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2648 return emitGlobalConstantVector(DL, V, AP);
2650 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2651 // thread the streamer with EmitValue.
2652 const MCExpr *ME = AP.lowerConstant(CV);
2654 // Since lowerConstant already folded and got rid of all IR pointer and
2655 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2656 // directly.
2657 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2658 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2660 AP.OutStreamer->EmitValue(ME, Size);
2663 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2664 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2665 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2666 if (Size)
2667 emitGlobalConstantImpl(DL, CV, *this);
2668 else if (MAI->hasSubsectionsViaSymbols()) {
2669 // If the global has zero size, emit a single byte so that two labels don't
2670 // look like they are at the same location.
2671 OutStreamer->EmitIntValue(0, 1);
2675 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2676 // Target doesn't support this yet!
2677 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2680 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2681 if (Offset > 0)
2682 OS << '+' << Offset;
2683 else if (Offset < 0)
2684 OS << Offset;
2687 //===----------------------------------------------------------------------===//
2688 // Symbol Lowering Routines.
2689 //===----------------------------------------------------------------------===//
2691 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2692 return OutContext.createTempSymbol(Name, true);
2695 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2696 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2699 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2700 return MMI->getAddrLabelSymbol(BB);
2703 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2704 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2705 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) {
2706 const MachineConstantPoolEntry &CPE =
2707 MF->getConstantPool()->getConstants()[CPID];
2708 if (!CPE.isMachineConstantPoolEntry()) {
2709 const DataLayout &DL = MF->getDataLayout();
2710 SectionKind Kind = CPE.getSectionKind(&DL);
2711 const Constant *C = CPE.Val.ConstVal;
2712 unsigned Align = CPE.Alignment;
2713 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2714 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2715 if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2716 if (Sym->isUndefined())
2717 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2718 return Sym;
2724 const DataLayout &DL = getDataLayout();
2725 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2726 "CPI" + Twine(getFunctionNumber()) + "_" +
2727 Twine(CPID));
2730 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2731 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2732 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2735 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2736 /// FIXME: privatize to AsmPrinter.
2737 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2738 const DataLayout &DL = getDataLayout();
2739 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2740 Twine(getFunctionNumber()) + "_" +
2741 Twine(UID) + "_set_" + Twine(MBBID));
2744 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2745 StringRef Suffix) const {
2746 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2749 /// Return the MCSymbol for the specified ExternalSymbol.
2750 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2751 SmallString<60> NameStr;
2752 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2753 return OutContext.getOrCreateSymbol(NameStr);
2756 /// PrintParentLoopComment - Print comments about parent loops of this one.
2757 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2758 unsigned FunctionNumber) {
2759 if (!Loop) return;
2760 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2761 OS.indent(Loop->getLoopDepth()*2)
2762 << "Parent Loop BB" << FunctionNumber << "_"
2763 << Loop->getHeader()->getNumber()
2764 << " Depth=" << Loop->getLoopDepth() << '\n';
2767 /// PrintChildLoopComment - Print comments about child loops within
2768 /// the loop for this basic block, with nesting.
2769 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2770 unsigned FunctionNumber) {
2771 // Add child loop information
2772 for (const MachineLoop *CL : *Loop) {
2773 OS.indent(CL->getLoopDepth()*2)
2774 << "Child Loop BB" << FunctionNumber << "_"
2775 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2776 << '\n';
2777 PrintChildLoopComment(OS, CL, FunctionNumber);
2781 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2782 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2783 const MachineLoopInfo *LI,
2784 const AsmPrinter &AP) {
2785 // Add loop depth information
2786 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2787 if (!Loop) return;
2789 MachineBasicBlock *Header = Loop->getHeader();
2790 assert(Header && "No header for loop");
2792 // If this block is not a loop header, just print out what is the loop header
2793 // and return.
2794 if (Header != &MBB) {
2795 AP.OutStreamer->AddComment(" in Loop: Header=BB" +
2796 Twine(AP.getFunctionNumber())+"_" +
2797 Twine(Loop->getHeader()->getNumber())+
2798 " Depth="+Twine(Loop->getLoopDepth()));
2799 return;
2802 // Otherwise, it is a loop header. Print out information about child and
2803 // parent loops.
2804 raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2806 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2808 OS << "=>";
2809 OS.indent(Loop->getLoopDepth()*2-2);
2811 OS << "This ";
2812 if (Loop->empty())
2813 OS << "Inner ";
2814 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2816 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2819 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2820 MCCodePaddingContext &Context) const {
2821 assert(MF != nullptr && "Machine function must be valid");
2822 Context.IsPaddingActive = !MF->hasInlineAsm() &&
2823 !MF->getFunction().optForSize() &&
2824 TM.getOptLevel() != CodeGenOpt::None;
2825 Context.IsBasicBlockReachableViaFallthrough =
2826 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2827 MBB.pred_end();
2828 Context.IsBasicBlockReachableViaBranch =
2829 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2832 /// EmitBasicBlockStart - This method prints the label for the specified
2833 /// MachineBasicBlock, an alignment (if present) and a comment describing
2834 /// it if appropriate.
2835 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2836 // End the previous funclet and start a new one.
2837 if (MBB.isEHFuncletEntry()) {
2838 for (const HandlerInfo &HI : Handlers) {
2839 HI.Handler->endFunclet();
2840 HI.Handler->beginFunclet(MBB);
2844 // Emit an alignment directive for this block, if needed.
2845 if (unsigned Align = MBB.getAlignment())
2846 EmitAlignment(Align);
2847 MCCodePaddingContext Context;
2848 setupCodePaddingContext(MBB, Context);
2849 OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2851 // If the block has its address taken, emit any labels that were used to
2852 // reference the block. It is possible that there is more than one label
2853 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2854 // the references were generated.
2855 if (MBB.hasAddressTaken()) {
2856 const BasicBlock *BB = MBB.getBasicBlock();
2857 if (isVerbose())
2858 OutStreamer->AddComment("Block address taken");
2860 // MBBs can have their address taken as part of CodeGen without having
2861 // their corresponding BB's address taken in IR
2862 if (BB->hasAddressTaken())
2863 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2864 OutStreamer->EmitLabel(Sym);
2867 // Print some verbose block comments.
2868 if (isVerbose()) {
2869 if (const BasicBlock *BB = MBB.getBasicBlock()) {
2870 if (BB->hasName()) {
2871 BB->printAsOperand(OutStreamer->GetCommentOS(),
2872 /*PrintType=*/false, BB->getModule());
2873 OutStreamer->GetCommentOS() << '\n';
2877 assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2878 emitBasicBlockLoopComments(MBB, MLI, *this);
2881 // Print the main label for the block.
2882 if (MBB.pred_empty() ||
2883 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2884 if (isVerbose()) {
2885 // NOTE: Want this comment at start of line, don't emit with AddComment.
2886 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2887 false);
2889 } else {
2890 OutStreamer->EmitLabel(MBB.getSymbol());
2894 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2895 MCCodePaddingContext Context;
2896 setupCodePaddingContext(MBB, Context);
2897 OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2900 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2901 bool IsDefinition) const {
2902 MCSymbolAttr Attr = MCSA_Invalid;
2904 switch (Visibility) {
2905 default: break;
2906 case GlobalValue::HiddenVisibility:
2907 if (IsDefinition)
2908 Attr = MAI->getHiddenVisibilityAttr();
2909 else
2910 Attr = MAI->getHiddenDeclarationVisibilityAttr();
2911 break;
2912 case GlobalValue::ProtectedVisibility:
2913 Attr = MAI->getProtectedVisibilityAttr();
2914 break;
2917 if (Attr != MCSA_Invalid)
2918 OutStreamer->EmitSymbolAttribute(Sym, Attr);
2921 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2922 /// exactly one predecessor and the control transfer mechanism between
2923 /// the predecessor and this block is a fall-through.
2924 bool AsmPrinter::
2925 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2926 // If this is a landing pad, it isn't a fall through. If it has no preds,
2927 // then nothing falls through to it.
2928 if (MBB->isEHPad() || MBB->pred_empty())
2929 return false;
2931 // If there isn't exactly one predecessor, it can't be a fall through.
2932 if (MBB->pred_size() > 1)
2933 return false;
2935 // The predecessor has to be immediately before this block.
2936 MachineBasicBlock *Pred = *MBB->pred_begin();
2937 if (!Pred->isLayoutSuccessor(MBB))
2938 return false;
2940 // If the block is completely empty, then it definitely does fall through.
2941 if (Pred->empty())
2942 return true;
2944 // Check the terminators in the previous blocks
2945 for (const auto &MI : Pred->terminators()) {
2946 // If it is not a simple branch, we are in a table somewhere.
2947 if (!MI.isBranch() || MI.isIndirectBranch())
2948 return false;
2950 // If we are the operands of one of the branches, this is not a fall
2951 // through. Note that targets with delay slots will usually bundle
2952 // terminators with the delay slot instruction.
2953 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2954 if (OP->isJTI())
2955 return false;
2956 if (OP->isMBB() && OP->getMBB() == MBB)
2957 return false;
2961 return true;
2964 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2965 if (!S.usesMetadata())
2966 return nullptr;
2968 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2969 gcp_map_type::iterator GCPI = GCMap.find(&S);
2970 if (GCPI != GCMap.end())
2971 return GCPI->second.get();
2973 auto Name = S.getName();
2975 for (GCMetadataPrinterRegistry::iterator
2976 I = GCMetadataPrinterRegistry::begin(),
2977 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2978 if (Name == I->getName()) {
2979 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2980 GMP->S = &S;
2981 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2982 return IterBool.first->second.get();
2985 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2988 void AsmPrinter::emitStackMaps(StackMaps &SM) {
2989 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
2990 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
2991 bool NeedsDefault = false;
2992 if (MI->begin() == MI->end())
2993 // No GC strategy, use the default format.
2994 NeedsDefault = true;
2995 else
2996 for (auto &I : *MI) {
2997 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
2998 if (MP->emitStackMaps(SM, *this))
2999 continue;
3000 // The strategy doesn't have printer or doesn't emit custom stack maps.
3001 // Use the default format.
3002 NeedsDefault = true;
3005 if (NeedsDefault)
3006 SM.serializeToStackMapSection();
3009 /// Pin vtable to this file.
3010 AsmPrinterHandler::~AsmPrinterHandler() = default;
3012 void AsmPrinterHandler::markFunctionEnd() {}
3014 // In the binary's "xray_instr_map" section, an array of these function entries
3015 // describes each instrumentation point. When XRay patches your code, the index
3016 // into this table will be given to your handler as a patch point identifier.
3017 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3018 const MCSymbol *CurrentFnSym) const {
3019 Out->EmitSymbolValue(Sled, Bytes);
3020 Out->EmitSymbolValue(CurrentFnSym, Bytes);
3021 auto Kind8 = static_cast<uint8_t>(Kind);
3022 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3023 Out->EmitBinaryData(
3024 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3025 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3026 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3027 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3028 Out->EmitZeros(Padding);
3031 void AsmPrinter::emitXRayTable() {
3032 if (Sleds.empty())
3033 return;
3035 auto PrevSection = OutStreamer->getCurrentSectionOnly();
3036 const Function &F = MF->getFunction();
3037 MCSection *InstMap = nullptr;
3038 MCSection *FnSledIndex = nullptr;
3039 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3040 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3041 assert(Associated != nullptr);
3042 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3043 std::string GroupName;
3044 if (F.hasComdat()) {
3045 Flags |= ELF::SHF_GROUP;
3046 GroupName = F.getComdat()->getName();
3049 auto UniqueID = ++XRayFnUniqueID;
3050 InstMap =
3051 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3052 GroupName, UniqueID, Associated);
3053 FnSledIndex =
3054 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3055 GroupName, UniqueID, Associated);
3056 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3057 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3058 SectionKind::getReadOnlyWithRel());
3059 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3060 SectionKind::getReadOnlyWithRel());
3061 } else {
3062 llvm_unreachable("Unsupported target");
3065 auto WordSizeBytes = MAI->getCodePointerSize();
3067 // Now we switch to the instrumentation map section. Because this is done
3068 // per-function, we are able to create an index entry that will represent the
3069 // range of sleds associated with a function.
3070 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3071 OutStreamer->SwitchSection(InstMap);
3072 OutStreamer->EmitLabel(SledsStart);
3073 for (const auto &Sled : Sleds)
3074 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3075 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3076 OutStreamer->EmitLabel(SledsEnd);
3078 // We then emit a single entry in the index per function. We use the symbols
3079 // that bound the instrumentation map as the range for a specific function.
3080 // Each entry here will be 2 * word size aligned, as we're writing down two
3081 // pointers. This should work for both 32-bit and 64-bit platforms.
3082 OutStreamer->SwitchSection(FnSledIndex);
3083 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3084 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3085 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3086 OutStreamer->SwitchSection(PrevSection);
3087 Sleds.clear();
3090 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3091 SledKind Kind, uint8_t Version) {
3092 const Function &F = MI.getMF()->getFunction();
3093 auto Attr = F.getFnAttribute("function-instrument");
3094 bool LogArgs = F.hasFnAttribute("xray-log-args");
3095 bool AlwaysInstrument =
3096 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3097 if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3098 Kind = SledKind::LOG_ARGS_ENTER;
3099 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3100 AlwaysInstrument, &F, Version});
3103 uint16_t AsmPrinter::getDwarfVersion() const {
3104 return OutStreamer->getContext().getDwarfVersion();
3107 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3108 OutStreamer->getContext().setDwarfVersion(Version);