1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the AsmPrinter class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/AsmPrinterHandler.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Comdat.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GlobalAlias.h"
71 #include "llvm/IR/GlobalIFunc.h"
72 #include "llvm/IR/GlobalIndirectSymbol.h"
73 #include "llvm/IR/GlobalObject.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Mangler.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCStreamer.h"
95 #include "llvm/MC/MCSubtargetInfo.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/MC/MCSymbolELF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/Compiler.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/Format.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/Path.h"
109 #include "llvm/Support/TargetRegistry.h"
110 #include "llvm/Support/Timer.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Target/TargetLoweringObjectFile.h"
113 #include "llvm/Target/TargetMachine.h"
114 #include "llvm/Target/TargetOptions.h"
126 using namespace llvm
;
128 #define DEBUG_TYPE "asm-printer"
130 static const char *const DWARFGroupName
= "dwarf";
131 static const char *const DWARFGroupDescription
= "DWARF Emission";
132 static const char *const DbgTimerName
= "emit";
133 static const char *const DbgTimerDescription
= "Debug Info Emission";
134 static const char *const EHTimerName
= "write_exception";
135 static const char *const EHTimerDescription
= "DWARF Exception Writer";
136 static const char *const CFGuardName
= "Control Flow Guard";
137 static const char *const CFGuardDescription
= "Control Flow Guard Tables";
138 static const char *const CodeViewLineTablesGroupName
= "linetables";
139 static const char *const CodeViewLineTablesGroupDescription
=
140 "CodeView Line Tables";
142 STATISTIC(EmittedInsts
, "Number of machine instrs printed");
144 char AsmPrinter::ID
= 0;
146 using gcp_map_type
= DenseMap
<GCStrategy
*, std::unique_ptr
<GCMetadataPrinter
>>;
148 static gcp_map_type
&getGCMap(void *&P
) {
150 P
= new gcp_map_type();
151 return *(gcp_map_type
*)P
;
154 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
155 /// value in log2 form. This rounds up to the preferred alignment if possible
157 static unsigned getGVAlignmentLog2(const GlobalValue
*GV
, const DataLayout
&DL
,
158 unsigned InBits
= 0) {
159 unsigned NumBits
= 0;
160 if (const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
))
161 NumBits
= DL
.getPreferredAlignmentLog(GVar
);
163 // If InBits is specified, round it to it.
164 if (InBits
> NumBits
)
167 // If the GV has a specified alignment, take it into account.
168 if (GV
->getAlignment() == 0)
171 unsigned GVAlign
= Log2_32(GV
->getAlignment());
173 // If the GVAlign is larger than NumBits, or if we are required to obey
174 // NumBits because the GV has an assigned section, obey it.
175 if (GVAlign
> NumBits
|| GV
->hasSection())
180 AsmPrinter::AsmPrinter(TargetMachine
&tm
, std::unique_ptr
<MCStreamer
> Streamer
)
181 : MachineFunctionPass(ID
), TM(tm
), MAI(tm
.getMCAsmInfo()),
182 OutContext(Streamer
->getContext()), OutStreamer(std::move(Streamer
)) {
183 VerboseAsm
= OutStreamer
->isVerboseAsm();
186 AsmPrinter::~AsmPrinter() {
187 assert(!DD
&& Handlers
.empty() && "Debug/EH info didn't get finalized");
189 if (GCMetadataPrinters
) {
190 gcp_map_type
&GCMap
= getGCMap(GCMetadataPrinters
);
193 GCMetadataPrinters
= nullptr;
197 bool AsmPrinter::isPositionIndependent() const {
198 return TM
.isPositionIndependent();
201 /// getFunctionNumber - Return a unique ID for the current function.
202 unsigned AsmPrinter::getFunctionNumber() const {
203 return MF
->getFunctionNumber();
206 const TargetLoweringObjectFile
&AsmPrinter::getObjFileLowering() const {
207 return *TM
.getObjFileLowering();
210 const DataLayout
&AsmPrinter::getDataLayout() const {
211 return MMI
->getModule()->getDataLayout();
214 // Do not use the cached DataLayout because some client use it without a Module
215 // (dsymutil, llvm-dwarfdump).
216 unsigned AsmPrinter::getPointerSize() const {
217 return TM
.getPointerSize(0); // FIXME: Default address space
220 const MCSubtargetInfo
&AsmPrinter::getSubtargetInfo() const {
221 assert(MF
&& "getSubtargetInfo requires a valid MachineFunction!");
222 return MF
->getSubtarget
<MCSubtargetInfo
>();
225 void AsmPrinter::EmitToStreamer(MCStreamer
&S
, const MCInst
&Inst
) {
226 S
.EmitInstruction(Inst
, getSubtargetInfo());
229 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction
&MF
) {
230 assert(DD
&& "Dwarf debug file is not defined.");
231 assert(OutStreamer
->hasRawTextSupport() && "Expected assembly output mode.");
232 (void)DD
->emitInitialLocDirective(MF
, /*CUID=*/0);
235 /// getCurrentSection() - Return the current section we are emitting to.
236 const MCSection
*AsmPrinter::getCurrentSection() const {
237 return OutStreamer
->getCurrentSectionOnly();
240 void AsmPrinter::getAnalysisUsage(AnalysisUsage
&AU
) const {
241 AU
.setPreservesAll();
242 MachineFunctionPass::getAnalysisUsage(AU
);
243 AU
.addRequired
<MachineModuleInfo
>();
244 AU
.addRequired
<MachineOptimizationRemarkEmitterPass
>();
245 AU
.addRequired
<GCModuleInfo
>();
248 bool AsmPrinter::doInitialization(Module
&M
) {
249 MMI
= getAnalysisIfAvailable
<MachineModuleInfo
>();
251 // Initialize TargetLoweringObjectFile.
252 const_cast<TargetLoweringObjectFile
&>(getObjFileLowering())
253 .Initialize(OutContext
, TM
);
255 OutStreamer
->InitSections(false);
257 // Emit the version-min deployment target directive if needed.
259 // FIXME: If we end up with a collection of these sorts of Darwin-specific
260 // or ELF-specific things, it may make sense to have a platform helper class
261 // that will work with the target helper class. For now keep it here, as the
262 // alternative is duplicated code in each of the target asm printers that
263 // use the directive, where it would need the same conditionalization
265 const Triple
&Target
= TM
.getTargetTriple();
266 OutStreamer
->EmitVersionForTarget(Target
, M
.getSDKVersion());
268 // Allow the target to emit any magic that it wants at the start of the file.
269 EmitStartOfAsmFile(M
);
271 // Very minimal debug info. It is ignored if we emit actual debug info. If we
272 // don't, this at least helps the user find where a global came from.
273 if (MAI
->hasSingleParameterDotFile()) {
275 OutStreamer
->EmitFileDirective(
276 llvm::sys::path::filename(M
.getSourceFileName()));
279 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
280 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
282 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*I
))
283 MP
->beginAssembly(M
, *MI
, *this);
285 // Emit module-level inline asm if it exists.
286 if (!M
.getModuleInlineAsm().empty()) {
287 // We're at the module level. Construct MCSubtarget from the default CPU
288 // and target triple.
289 std::unique_ptr
<MCSubtargetInfo
> STI(TM
.getTarget().createMCSubtargetInfo(
290 TM
.getTargetTriple().str(), TM
.getTargetCPU(),
291 TM
.getTargetFeatureString()));
292 OutStreamer
->AddComment("Start of file scope inline assembly");
293 OutStreamer
->AddBlankLine();
294 EmitInlineAsm(M
.getModuleInlineAsm()+"\n",
295 OutContext
.getSubtargetCopy(*STI
), TM
.Options
.MCOptions
);
296 OutStreamer
->AddComment("End of file scope inline assembly");
297 OutStreamer
->AddBlankLine();
300 if (MAI
->doesSupportDebugInformation()) {
301 bool EmitCodeView
= MMI
->getModule()->getCodeViewFlag();
302 if (EmitCodeView
&& TM
.getTargetTriple().isOSWindows()) {
303 Handlers
.push_back(HandlerInfo(new CodeViewDebug(this),
304 DbgTimerName
, DbgTimerDescription
,
305 CodeViewLineTablesGroupName
,
306 CodeViewLineTablesGroupDescription
));
308 if (!EmitCodeView
|| MMI
->getModule()->getDwarfVersion()) {
309 DD
= new DwarfDebug(this, &M
);
311 Handlers
.push_back(HandlerInfo(DD
, DbgTimerName
, DbgTimerDescription
,
312 DWARFGroupName
, DWARFGroupDescription
));
316 switch (MAI
->getExceptionHandlingType()) {
317 case ExceptionHandling::SjLj
:
318 case ExceptionHandling::DwarfCFI
:
319 case ExceptionHandling::ARM
:
320 isCFIMoveForDebugging
= true;
321 if (MAI
->getExceptionHandlingType() != ExceptionHandling::DwarfCFI
)
323 for (auto &F
: M
.getFunctionList()) {
324 // If the module contains any function with unwind data,
325 // .eh_frame has to be emitted.
326 // Ignore functions that won't get emitted.
327 if (!F
.isDeclarationForLinker() && F
.needsUnwindTableEntry()) {
328 isCFIMoveForDebugging
= false;
334 isCFIMoveForDebugging
= false;
338 EHStreamer
*ES
= nullptr;
339 switch (MAI
->getExceptionHandlingType()) {
340 case ExceptionHandling::None
:
342 case ExceptionHandling::SjLj
:
343 case ExceptionHandling::DwarfCFI
:
344 ES
= new DwarfCFIException(this);
346 case ExceptionHandling::ARM
:
347 ES
= new ARMException(this);
349 case ExceptionHandling::WinEH
:
350 switch (MAI
->getWinEHEncodingType()) {
351 default: llvm_unreachable("unsupported unwinding information encoding");
352 case WinEH::EncodingType::Invalid
:
354 case WinEH::EncodingType::X86
:
355 case WinEH::EncodingType::Itanium
:
356 ES
= new WinException(this);
360 case ExceptionHandling::Wasm
:
361 ES
= new WasmException(this);
365 Handlers
.push_back(HandlerInfo(ES
, EHTimerName
, EHTimerDescription
,
366 DWARFGroupName
, DWARFGroupDescription
));
368 if (mdconst::extract_or_null
<ConstantInt
>(
369 MMI
->getModule()->getModuleFlag("cfguardtable")))
370 Handlers
.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName
,
371 CFGuardDescription
, DWARFGroupName
,
372 DWARFGroupDescription
));
377 static bool canBeHidden(const GlobalValue
*GV
, const MCAsmInfo
&MAI
) {
378 if (!MAI
.hasWeakDefCanBeHiddenDirective())
381 return GV
->canBeOmittedFromSymbolTable();
384 void AsmPrinter::EmitLinkage(const GlobalValue
*GV
, MCSymbol
*GVSym
) const {
385 GlobalValue::LinkageTypes Linkage
= GV
->getLinkage();
387 case GlobalValue::CommonLinkage
:
388 case GlobalValue::LinkOnceAnyLinkage
:
389 case GlobalValue::LinkOnceODRLinkage
:
390 case GlobalValue::WeakAnyLinkage
:
391 case GlobalValue::WeakODRLinkage
:
392 if (MAI
->hasWeakDefDirective()) {
394 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Global
);
396 if (!canBeHidden(GV
, *MAI
))
397 // .weak_definition _foo
398 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_WeakDefinition
);
400 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_WeakDefAutoPrivate
);
401 } else if (MAI
->hasLinkOnceDirective()) {
403 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Global
);
404 //NOTE: linkonce is handled by the section the symbol was assigned to.
407 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Weak
);
410 case GlobalValue::ExternalLinkage
:
411 // If external, declare as a global symbol: .globl _foo
412 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Global
);
414 case GlobalValue::PrivateLinkage
:
415 case GlobalValue::InternalLinkage
:
417 case GlobalValue::AppendingLinkage
:
418 case GlobalValue::AvailableExternallyLinkage
:
419 case GlobalValue::ExternalWeakLinkage
:
420 llvm_unreachable("Should never emit this");
422 llvm_unreachable("Unknown linkage type!");
425 void AsmPrinter::getNameWithPrefix(SmallVectorImpl
<char> &Name
,
426 const GlobalValue
*GV
) const {
427 TM
.getNameWithPrefix(Name
, GV
, getObjFileLowering().getMangler());
430 MCSymbol
*AsmPrinter::getSymbol(const GlobalValue
*GV
) const {
431 return TM
.getSymbol(GV
);
434 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
435 void AsmPrinter::EmitGlobalVariable(const GlobalVariable
*GV
) {
436 bool IsEmuTLSVar
= TM
.useEmulatedTLS() && GV
->isThreadLocal();
437 assert(!(IsEmuTLSVar
&& GV
->hasCommonLinkage()) &&
438 "No emulated TLS variables in the common section");
440 // Never emit TLS variable xyz in emulated TLS model.
441 // The initialization value is in __emutls_t.xyz instead of xyz.
445 if (GV
->hasInitializer()) {
446 // Check to see if this is a special global used by LLVM, if so, emit it.
447 if (EmitSpecialLLVMGlobal(GV
))
450 // Skip the emission of global equivalents. The symbol can be emitted later
451 // on by emitGlobalGOTEquivs in case it turns out to be needed.
452 if (GlobalGOTEquivs
.count(getSymbol(GV
)))
456 // When printing the control variable __emutls_v.*,
457 // we don't need to print the original TLS variable name.
458 GV
->printAsOperand(OutStreamer
->GetCommentOS(),
459 /*PrintType=*/false, GV
->getParent());
460 OutStreamer
->GetCommentOS() << '\n';
464 MCSymbol
*GVSym
= getSymbol(GV
);
465 MCSymbol
*EmittedSym
= GVSym
;
467 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
469 // GV's or GVSym's attributes will be used for the EmittedSym.
470 EmitVisibility(EmittedSym
, GV
->getVisibility(), !GV
->isDeclaration());
472 if (!GV
->hasInitializer()) // External globals require no extra code.
475 GVSym
->redefineIfPossible();
476 if (GVSym
->isDefined() || GVSym
->isVariable())
477 report_fatal_error("symbol '" + Twine(GVSym
->getName()) +
478 "' is already defined");
480 if (MAI
->hasDotTypeDotSizeDirective())
481 OutStreamer
->EmitSymbolAttribute(EmittedSym
, MCSA_ELF_TypeObject
);
483 SectionKind GVKind
= TargetLoweringObjectFile::getKindForGlobal(GV
, TM
);
485 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
486 uint64_t Size
= DL
.getTypeAllocSize(GV
->getType()->getElementType());
488 // If the alignment is specified, we *must* obey it. Overaligning a global
489 // with a specified alignment is a prompt way to break globals emitted to
490 // sections and expected to be contiguous (e.g. ObjC metadata).
491 unsigned AlignLog
= getGVAlignmentLog2(GV
, DL
);
493 for (const HandlerInfo
&HI
: Handlers
) {
494 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
,
495 HI
.TimerGroupName
, HI
.TimerGroupDescription
,
496 TimePassesIsEnabled
);
497 HI
.Handler
->setSymbolSize(GVSym
, Size
);
500 // Handle common symbols
501 if (GVKind
.isCommon()) {
502 if (Size
== 0) Size
= 1; // .comm Foo, 0 is undefined, avoid it.
503 unsigned Align
= 1 << AlignLog
;
504 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
508 OutStreamer
->EmitCommonSymbol(GVSym
, Size
, Align
);
512 // Determine to which section this global should be emitted.
513 MCSection
*TheSection
= getObjFileLowering().SectionForGlobal(GV
, GVKind
, TM
);
515 // If we have a bss global going to a section that supports the
516 // zerofill directive, do so here.
517 if (GVKind
.isBSS() && MAI
->hasMachoZeroFillDirective() &&
518 TheSection
->isVirtualSection()) {
520 Size
= 1; // zerofill of 0 bytes is undefined.
521 unsigned Align
= 1 << AlignLog
;
522 EmitLinkage(GV
, GVSym
);
523 // .zerofill __DATA, __bss, _foo, 400, 5
524 OutStreamer
->EmitZerofill(TheSection
, GVSym
, Size
, Align
);
528 // If this is a BSS local symbol and we are emitting in the BSS
529 // section use .lcomm/.comm directive.
530 if (GVKind
.isBSSLocal() &&
531 getObjFileLowering().getBSSSection() == TheSection
) {
533 Size
= 1; // .comm Foo, 0 is undefined, avoid it.
534 unsigned Align
= 1 << AlignLog
;
536 // Use .lcomm only if it supports user-specified alignment.
537 // Otherwise, while it would still be correct to use .lcomm in some
538 // cases (e.g. when Align == 1), the external assembler might enfore
539 // some -unknown- default alignment behavior, which could cause
540 // spurious differences between external and integrated assembler.
541 // Prefer to simply fall back to .local / .comm in this case.
542 if (MAI
->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment
) {
544 OutStreamer
->EmitLocalCommonSymbol(GVSym
, Size
, Align
);
548 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
552 OutStreamer
->EmitSymbolAttribute(GVSym
, MCSA_Local
);
554 OutStreamer
->EmitCommonSymbol(GVSym
, Size
, Align
);
558 // Handle thread local data for mach-o which requires us to output an
559 // additional structure of data and mangle the original symbol so that we
560 // can reference it later.
562 // TODO: This should become an "emit thread local global" method on TLOF.
563 // All of this macho specific stuff should be sunk down into TLOFMachO and
564 // stuff like "TLSExtraDataSection" should no longer be part of the parent
565 // TLOF class. This will also make it more obvious that stuff like
566 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
568 if (GVKind
.isThreadLocal() && MAI
->hasMachoTBSSDirective()) {
569 // Emit the .tbss symbol
571 OutContext
.getOrCreateSymbol(GVSym
->getName() + Twine("$tlv$init"));
573 if (GVKind
.isThreadBSS()) {
574 TheSection
= getObjFileLowering().getTLSBSSSection();
575 OutStreamer
->EmitTBSSSymbol(TheSection
, MangSym
, Size
, 1 << AlignLog
);
576 } else if (GVKind
.isThreadData()) {
577 OutStreamer
->SwitchSection(TheSection
);
579 EmitAlignment(AlignLog
, GV
);
580 OutStreamer
->EmitLabel(MangSym
);
582 EmitGlobalConstant(GV
->getParent()->getDataLayout(),
583 GV
->getInitializer());
586 OutStreamer
->AddBlankLine();
588 // Emit the variable struct for the runtime.
589 MCSection
*TLVSect
= getObjFileLowering().getTLSExtraDataSection();
591 OutStreamer
->SwitchSection(TLVSect
);
592 // Emit the linkage here.
593 EmitLinkage(GV
, GVSym
);
594 OutStreamer
->EmitLabel(GVSym
);
596 // Three pointers in size:
597 // - __tlv_bootstrap - used to make sure support exists
598 // - spare pointer, used when mapped by the runtime
599 // - pointer to mangled symbol above with initializer
600 unsigned PtrSize
= DL
.getPointerTypeSize(GV
->getType());
601 OutStreamer
->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
603 OutStreamer
->EmitIntValue(0, PtrSize
);
604 OutStreamer
->EmitSymbolValue(MangSym
, PtrSize
);
606 OutStreamer
->AddBlankLine();
610 MCSymbol
*EmittedInitSym
= GVSym
;
612 OutStreamer
->SwitchSection(TheSection
);
614 EmitLinkage(GV
, EmittedInitSym
);
615 EmitAlignment(AlignLog
, GV
);
617 OutStreamer
->EmitLabel(EmittedInitSym
);
619 EmitGlobalConstant(GV
->getParent()->getDataLayout(), GV
->getInitializer());
621 if (MAI
->hasDotTypeDotSizeDirective())
623 OutStreamer
->emitELFSize(EmittedInitSym
,
624 MCConstantExpr::create(Size
, OutContext
));
626 OutStreamer
->AddBlankLine();
629 /// Emit the directive and value for debug thread local expression
631 /// \p Value - The value to emit.
632 /// \p Size - The size of the integer (in bytes) to emit.
633 void AsmPrinter::EmitDebugValue(const MCExpr
*Value
, unsigned Size
) const {
634 OutStreamer
->EmitValue(Value
, Size
);
637 /// EmitFunctionHeader - This method emits the header for the current
639 void AsmPrinter::EmitFunctionHeader() {
640 const Function
&F
= MF
->getFunction();
643 OutStreamer
->GetCommentOS()
644 << "-- Begin function "
645 << GlobalValue::dropLLVMManglingEscape(F
.getName()) << '\n';
647 // Print out constants referenced by the function
650 // Print the 'header' of function.
651 OutStreamer
->SwitchSection(getObjFileLowering().SectionForGlobal(&F
, TM
));
652 EmitVisibility(CurrentFnSym
, F
.getVisibility());
654 EmitLinkage(&F
, CurrentFnSym
);
655 if (MAI
->hasFunctionAlignment())
656 EmitAlignment(MF
->getAlignment(), &F
);
658 if (MAI
->hasDotTypeDotSizeDirective())
659 OutStreamer
->EmitSymbolAttribute(CurrentFnSym
, MCSA_ELF_TypeFunction
);
661 if (F
.hasFnAttribute(Attribute::Cold
))
662 OutStreamer
->EmitSymbolAttribute(CurrentFnSym
, MCSA_Cold
);
665 F
.printAsOperand(OutStreamer
->GetCommentOS(),
666 /*PrintType=*/false, F
.getParent());
667 OutStreamer
->GetCommentOS() << '\n';
670 // Emit the prefix data.
671 if (F
.hasPrefixData()) {
672 if (MAI
->hasSubsectionsViaSymbols()) {
673 // Preserving prefix data on platforms which use subsections-via-symbols
674 // is a bit tricky. Here we introduce a symbol for the prefix data
675 // and use the .alt_entry attribute to mark the function's real entry point
676 // as an alternative entry point to the prefix-data symbol.
677 MCSymbol
*PrefixSym
= OutContext
.createLinkerPrivateTempSymbol();
678 OutStreamer
->EmitLabel(PrefixSym
);
680 EmitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrefixData());
682 // Emit an .alt_entry directive for the actual function symbol.
683 OutStreamer
->EmitSymbolAttribute(CurrentFnSym
, MCSA_AltEntry
);
685 EmitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrefixData());
689 // Emit the CurrentFnSym. This is a virtual function to allow targets to
690 // do their wild and crazy things as required.
691 EmitFunctionEntryLabel();
693 // If the function had address-taken blocks that got deleted, then we have
694 // references to the dangling symbols. Emit them at the start of the function
695 // so that we don't get references to undefined symbols.
696 std::vector
<MCSymbol
*> DeadBlockSyms
;
697 MMI
->takeDeletedSymbolsForFunction(&F
, DeadBlockSyms
);
698 for (unsigned i
= 0, e
= DeadBlockSyms
.size(); i
!= e
; ++i
) {
699 OutStreamer
->AddComment("Address taken block that was later removed");
700 OutStreamer
->EmitLabel(DeadBlockSyms
[i
]);
703 if (CurrentFnBegin
) {
704 if (MAI
->useAssignmentForEHBegin()) {
705 MCSymbol
*CurPos
= OutContext
.createTempSymbol();
706 OutStreamer
->EmitLabel(CurPos
);
707 OutStreamer
->EmitAssignment(CurrentFnBegin
,
708 MCSymbolRefExpr::create(CurPos
, OutContext
));
710 OutStreamer
->EmitLabel(CurrentFnBegin
);
714 // Emit pre-function debug and/or EH information.
715 for (const HandlerInfo
&HI
: Handlers
) {
716 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
717 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
718 HI
.Handler
->beginFunction(MF
);
721 // Emit the prologue data.
722 if (F
.hasPrologueData())
723 EmitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrologueData());
726 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
727 /// function. This can be overridden by targets as required to do custom stuff.
728 void AsmPrinter::EmitFunctionEntryLabel() {
729 CurrentFnSym
->redefineIfPossible();
731 // The function label could have already been emitted if two symbols end up
732 // conflicting due to asm renaming. Detect this and emit an error.
733 if (CurrentFnSym
->isVariable())
734 report_fatal_error("'" + Twine(CurrentFnSym
->getName()) +
735 "' is a protected alias");
736 if (CurrentFnSym
->isDefined())
737 report_fatal_error("'" + Twine(CurrentFnSym
->getName()) +
738 "' label emitted multiple times to assembly file");
740 return OutStreamer
->EmitLabel(CurrentFnSym
);
743 /// emitComments - Pretty-print comments for instructions.
744 static void emitComments(const MachineInstr
&MI
, raw_ostream
&CommentOS
) {
745 const MachineFunction
*MF
= MI
.getMF();
746 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
748 // Check for spills and reloads
750 // We assume a single instruction only has a spill or reload, not
752 Optional
<unsigned> Size
;
753 if ((Size
= MI
.getRestoreSize(TII
))) {
754 CommentOS
<< *Size
<< "-byte Reload\n";
755 } else if ((Size
= MI
.getFoldedRestoreSize(TII
))) {
757 CommentOS
<< *Size
<< "-byte Folded Reload\n";
758 } else if ((Size
= MI
.getSpillSize(TII
))) {
759 CommentOS
<< *Size
<< "-byte Spill\n";
760 } else if ((Size
= MI
.getFoldedSpillSize(TII
))) {
762 CommentOS
<< *Size
<< "-byte Folded Spill\n";
765 // Check for spill-induced copies
766 if (MI
.getAsmPrinterFlag(MachineInstr::ReloadReuse
))
767 CommentOS
<< " Reload Reuse\n";
770 /// emitImplicitDef - This method emits the specified machine instruction
771 /// that is an implicit def.
772 void AsmPrinter::emitImplicitDef(const MachineInstr
*MI
) const {
773 unsigned RegNo
= MI
->getOperand(0).getReg();
775 SmallString
<128> Str
;
776 raw_svector_ostream
OS(Str
);
777 OS
<< "implicit-def: "
778 << printReg(RegNo
, MF
->getSubtarget().getRegisterInfo());
780 OutStreamer
->AddComment(OS
.str());
781 OutStreamer
->AddBlankLine();
784 static void emitKill(const MachineInstr
*MI
, AsmPrinter
&AP
) {
786 raw_string_ostream
OS(Str
);
788 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
789 const MachineOperand
&Op
= MI
->getOperand(i
);
790 assert(Op
.isReg() && "KILL instruction must have only register operands");
791 OS
<< ' ' << (Op
.isDef() ? "def " : "killed ")
792 << printReg(Op
.getReg(), AP
.MF
->getSubtarget().getRegisterInfo());
794 AP
.OutStreamer
->AddComment(OS
.str());
795 AP
.OutStreamer
->AddBlankLine();
798 /// emitDebugValueComment - This method handles the target-independent form
799 /// of DBG_VALUE, returning true if it was able to do so. A false return
800 /// means the target will need to handle MI in EmitInstruction.
801 static bool emitDebugValueComment(const MachineInstr
*MI
, AsmPrinter
&AP
) {
802 // This code handles only the 4-operand target-independent form.
803 if (MI
->getNumOperands() != 4)
806 SmallString
<128> Str
;
807 raw_svector_ostream
OS(Str
);
808 OS
<< "DEBUG_VALUE: ";
810 const DILocalVariable
*V
= MI
->getDebugVariable();
811 if (auto *SP
= dyn_cast
<DISubprogram
>(V
->getScope())) {
812 StringRef Name
= SP
->getName();
819 // The second operand is only an offset if it's an immediate.
820 bool MemLoc
= MI
->getOperand(0).isReg() && MI
->getOperand(1).isImm();
821 int64_t Offset
= MemLoc
? MI
->getOperand(1).getImm() : 0;
822 const DIExpression
*Expr
= MI
->getDebugExpression();
823 if (Expr
->getNumElements()) {
825 bool NeedSep
= false;
826 for (auto Op
: Expr
->expr_ops()) {
831 OS
<< dwarf::OperationEncodingString(Op
.getOp());
832 for (unsigned I
= 0; I
< Op
.getNumArgs(); ++I
)
833 OS
<< ' ' << Op
.getArg(I
);
838 // Register or immediate value. Register 0 means undef.
839 if (MI
->getOperand(0).isFPImm()) {
840 APFloat APF
= APFloat(MI
->getOperand(0).getFPImm()->getValueAPF());
841 if (MI
->getOperand(0).getFPImm()->getType()->isFloatTy()) {
842 OS
<< (double)APF
.convertToFloat();
843 } else if (MI
->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
844 OS
<< APF
.convertToDouble();
846 // There is no good way to print long double. Convert a copy to
847 // double. Ah well, it's only a comment.
849 APF
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
,
851 OS
<< "(long double) " << APF
.convertToDouble();
853 } else if (MI
->getOperand(0).isImm()) {
854 OS
<< MI
->getOperand(0).getImm();
855 } else if (MI
->getOperand(0).isCImm()) {
856 MI
->getOperand(0).getCImm()->getValue().print(OS
, false /*isSigned*/);
859 if (MI
->getOperand(0).isReg()) {
860 Reg
= MI
->getOperand(0).getReg();
862 assert(MI
->getOperand(0).isFI() && "Unknown operand type");
863 const TargetFrameLowering
*TFI
= AP
.MF
->getSubtarget().getFrameLowering();
864 Offset
+= TFI
->getFrameIndexReference(*AP
.MF
,
865 MI
->getOperand(0).getIndex(), Reg
);
869 // Suppress offset, it is not meaningful here.
871 // NOTE: Want this comment at start of line, don't emit with AddComment.
872 AP
.OutStreamer
->emitRawComment(OS
.str());
877 OS
<< printReg(Reg
, AP
.MF
->getSubtarget().getRegisterInfo());
881 OS
<< '+' << Offset
<< ']';
883 // NOTE: Want this comment at start of line, don't emit with AddComment.
884 AP
.OutStreamer
->emitRawComment(OS
.str());
888 /// This method handles the target-independent form of DBG_LABEL, returning
889 /// true if it was able to do so. A false return means the target will need
890 /// to handle MI in EmitInstruction.
891 static bool emitDebugLabelComment(const MachineInstr
*MI
, AsmPrinter
&AP
) {
892 if (MI
->getNumOperands() != 1)
895 SmallString
<128> Str
;
896 raw_svector_ostream
OS(Str
);
897 OS
<< "DEBUG_LABEL: ";
899 const DILabel
*V
= MI
->getDebugLabel();
900 if (auto *SP
= dyn_cast
<DISubprogram
>(V
->getScope())) {
901 StringRef Name
= SP
->getName();
907 // NOTE: Want this comment at start of line, don't emit with AddComment.
908 AP
.OutStreamer
->emitRawComment(OS
.str());
912 AsmPrinter::CFIMoveType
AsmPrinter::needsCFIMoves() const {
913 if (MAI
->getExceptionHandlingType() == ExceptionHandling::DwarfCFI
&&
914 MF
->getFunction().needsUnwindTableEntry())
917 if (MMI
->hasDebugInfo())
923 bool AsmPrinter::needsSEHMoves() {
924 return MAI
->usesWindowsCFI() && MF
->getFunction().needsUnwindTableEntry();
927 void AsmPrinter::emitCFIInstruction(const MachineInstr
&MI
) {
928 ExceptionHandling ExceptionHandlingType
= MAI
->getExceptionHandlingType();
929 if (ExceptionHandlingType
!= ExceptionHandling::DwarfCFI
&&
930 ExceptionHandlingType
!= ExceptionHandling::ARM
)
933 if (needsCFIMoves() == CFI_M_None
)
936 // If there is no "real" instruction following this CFI instruction, skip
937 // emitting it; it would be beyond the end of the function's FDE range.
938 auto *MBB
= MI
.getParent();
939 auto I
= std::next(MI
.getIterator());
940 while (I
!= MBB
->end() && I
->isTransient())
942 if (I
== MBB
->instr_end() &&
943 MBB
->getReverseIterator() == MBB
->getParent()->rbegin())
946 const std::vector
<MCCFIInstruction
> &Instrs
= MF
->getFrameInstructions();
947 unsigned CFIIndex
= MI
.getOperand(0).getCFIIndex();
948 const MCCFIInstruction
&CFI
= Instrs
[CFIIndex
];
949 emitCFIInstruction(CFI
);
952 void AsmPrinter::emitFrameAlloc(const MachineInstr
&MI
) {
953 // The operands are the MCSymbol and the frame offset of the allocation.
954 MCSymbol
*FrameAllocSym
= MI
.getOperand(0).getMCSymbol();
955 int FrameOffset
= MI
.getOperand(1).getImm();
957 // Emit a symbol assignment.
958 OutStreamer
->EmitAssignment(FrameAllocSym
,
959 MCConstantExpr::create(FrameOffset
, OutContext
));
962 void AsmPrinter::emitStackSizeSection(const MachineFunction
&MF
) {
963 if (!MF
.getTarget().Options
.EmitStackSizeSection
)
966 MCSection
*StackSizeSection
=
967 getObjFileLowering().getStackSizesSection(*getCurrentSection());
968 if (!StackSizeSection
)
971 const MachineFrameInfo
&FrameInfo
= MF
.getFrameInfo();
972 // Don't emit functions with dynamic stack allocations.
973 if (FrameInfo
.hasVarSizedObjects())
976 OutStreamer
->PushSection();
977 OutStreamer
->SwitchSection(StackSizeSection
);
979 const MCSymbol
*FunctionSymbol
= getFunctionBegin();
980 uint64_t StackSize
= FrameInfo
.getStackSize();
981 OutStreamer
->EmitSymbolValue(FunctionSymbol
, TM
.getProgramPointerSize());
982 OutStreamer
->EmitULEB128IntValue(StackSize
);
984 OutStreamer
->PopSection();
987 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction
&MF
,
988 MachineModuleInfo
*MMI
) {
989 if (!MF
.getLandingPads().empty() || MF
.hasEHFunclets() || MMI
->hasDebugInfo())
992 // We might emit an EH table that uses function begin and end labels even if
993 // we don't have any landingpads.
994 if (!MF
.getFunction().hasPersonalityFn())
996 return !isNoOpWithoutInvoke(
997 classifyEHPersonality(MF
.getFunction().getPersonalityFn()));
1000 /// EmitFunctionBody - This method emits the body and trailer for a
1002 void AsmPrinter::EmitFunctionBody() {
1003 EmitFunctionHeader();
1005 // Emit target-specific gunk before the function body.
1006 EmitFunctionBodyStart();
1008 bool ShouldPrintDebugScopes
= MMI
->hasDebugInfo();
1011 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1012 MDT
= getAnalysisIfAvailable
<MachineDominatorTree
>();
1014 OwnedMDT
= make_unique
<MachineDominatorTree
>();
1015 OwnedMDT
->getBase().recalculate(*MF
);
1016 MDT
= OwnedMDT
.get();
1019 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1020 MLI
= getAnalysisIfAvailable
<MachineLoopInfo
>();
1022 OwnedMLI
= make_unique
<MachineLoopInfo
>();
1023 OwnedMLI
->getBase().analyze(MDT
->getBase());
1024 MLI
= OwnedMLI
.get();
1028 // Print out code for the function.
1029 bool HasAnyRealCode
= false;
1030 int NumInstsInFunction
= 0;
1031 for (auto &MBB
: *MF
) {
1032 // Print a label for the basic block.
1033 EmitBasicBlockStart(MBB
);
1034 for (auto &MI
: MBB
) {
1035 // Print the assembly for the instruction.
1036 if (!MI
.isPosition() && !MI
.isImplicitDef() && !MI
.isKill() &&
1037 !MI
.isDebugInstr()) {
1038 HasAnyRealCode
= true;
1039 ++NumInstsInFunction
;
1042 // If there is a pre-instruction symbol, emit a label for it here.
1043 if (MCSymbol
*S
= MI
.getPreInstrSymbol())
1044 OutStreamer
->EmitLabel(S
);
1046 if (ShouldPrintDebugScopes
) {
1047 for (const HandlerInfo
&HI
: Handlers
) {
1048 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
,
1049 HI
.TimerGroupName
, HI
.TimerGroupDescription
,
1050 TimePassesIsEnabled
);
1051 HI
.Handler
->beginInstruction(&MI
);
1056 emitComments(MI
, OutStreamer
->GetCommentOS());
1058 switch (MI
.getOpcode()) {
1059 case TargetOpcode::CFI_INSTRUCTION
:
1060 emitCFIInstruction(MI
);
1062 case TargetOpcode::LOCAL_ESCAPE
:
1065 case TargetOpcode::EH_LABEL
:
1066 case TargetOpcode::GC_LABEL
:
1067 OutStreamer
->EmitLabel(MI
.getOperand(0).getMCSymbol());
1069 case TargetOpcode::INLINEASM
:
1070 case TargetOpcode::INLINEASM_BR
:
1073 case TargetOpcode::DBG_VALUE
:
1075 if (!emitDebugValueComment(&MI
, *this))
1076 EmitInstruction(&MI
);
1079 case TargetOpcode::DBG_LABEL
:
1081 if (!emitDebugLabelComment(&MI
, *this))
1082 EmitInstruction(&MI
);
1085 case TargetOpcode::IMPLICIT_DEF
:
1086 if (isVerbose()) emitImplicitDef(&MI
);
1088 case TargetOpcode::KILL
:
1089 if (isVerbose()) emitKill(&MI
, *this);
1092 EmitInstruction(&MI
);
1096 // If there is a post-instruction symbol, emit a label for it here.
1097 if (MCSymbol
*S
= MI
.getPostInstrSymbol())
1098 OutStreamer
->EmitLabel(S
);
1100 if (ShouldPrintDebugScopes
) {
1101 for (const HandlerInfo
&HI
: Handlers
) {
1102 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
,
1103 HI
.TimerGroupName
, HI
.TimerGroupDescription
,
1104 TimePassesIsEnabled
);
1105 HI
.Handler
->endInstruction();
1110 EmitBasicBlockEnd(MBB
);
1113 EmittedInsts
+= NumInstsInFunction
;
1114 MachineOptimizationRemarkAnalysis
R(DEBUG_TYPE
, "InstructionCount",
1115 MF
->getFunction().getSubprogram(),
1117 R
<< ore::NV("NumInstructions", NumInstsInFunction
)
1118 << " instructions in function";
1121 // If the function is empty and the object file uses .subsections_via_symbols,
1122 // then we need to emit *something* to the function body to prevent the
1123 // labels from collapsing together. Just emit a noop.
1124 // Similarly, don't emit empty functions on Windows either. It can lead to
1125 // duplicate entries (two functions with the same RVA) in the Guard CF Table
1126 // after linking, causing the kernel not to load the binary:
1127 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1128 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1129 const Triple
&TT
= TM
.getTargetTriple();
1130 if (!HasAnyRealCode
&& (MAI
->hasSubsectionsViaSymbols() ||
1131 (TT
.isOSWindows() && TT
.isOSBinFormatCOFF()))) {
1133 MF
->getSubtarget().getInstrInfo()->getNoop(Noop
);
1135 // Targets can opt-out of emitting the noop here by leaving the opcode
1137 if (Noop
.getOpcode()) {
1138 OutStreamer
->AddComment("avoids zero-length function");
1139 OutStreamer
->EmitInstruction(Noop
, getSubtargetInfo());
1143 const Function
&F
= MF
->getFunction();
1144 for (const auto &BB
: F
) {
1145 if (!BB
.hasAddressTaken())
1147 MCSymbol
*Sym
= GetBlockAddressSymbol(&BB
);
1148 if (Sym
->isDefined())
1150 OutStreamer
->AddComment("Address of block that was removed by CodeGen");
1151 OutStreamer
->EmitLabel(Sym
);
1154 // Emit target-specific gunk after the function body.
1155 EmitFunctionBodyEnd();
1157 if (needFuncLabelsForEHOrDebugInfo(*MF
, MMI
) ||
1158 MAI
->hasDotTypeDotSizeDirective()) {
1159 // Create a symbol for the end of function.
1160 CurrentFnEnd
= createTempSymbol("func_end");
1161 OutStreamer
->EmitLabel(CurrentFnEnd
);
1164 // If the target wants a .size directive for the size of the function, emit
1166 if (MAI
->hasDotTypeDotSizeDirective()) {
1167 // We can get the size as difference between the function label and the
1169 const MCExpr
*SizeExp
= MCBinaryExpr::createSub(
1170 MCSymbolRefExpr::create(CurrentFnEnd
, OutContext
),
1171 MCSymbolRefExpr::create(CurrentFnSymForSize
, OutContext
), OutContext
);
1172 OutStreamer
->emitELFSize(CurrentFnSym
, SizeExp
);
1175 for (const HandlerInfo
&HI
: Handlers
) {
1176 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1177 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1178 HI
.Handler
->markFunctionEnd();
1181 // Print out jump tables referenced by the function.
1182 EmitJumpTableInfo();
1184 // Emit post-function debug and/or EH information.
1185 for (const HandlerInfo
&HI
: Handlers
) {
1186 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1187 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1188 HI
.Handler
->endFunction(MF
);
1191 // Emit section containing stack size metadata.
1192 emitStackSizeSection(*MF
);
1195 OutStreamer
->GetCommentOS() << "-- End function\n";
1197 OutStreamer
->AddBlankLine();
1200 /// Compute the number of Global Variables that uses a Constant.
1201 static unsigned getNumGlobalVariableUses(const Constant
*C
) {
1205 if (isa
<GlobalVariable
>(C
))
1208 unsigned NumUses
= 0;
1209 for (auto *CU
: C
->users())
1210 NumUses
+= getNumGlobalVariableUses(dyn_cast
<Constant
>(CU
));
1215 /// Only consider global GOT equivalents if at least one user is a
1216 /// cstexpr inside an initializer of another global variables. Also, don't
1217 /// handle cstexpr inside instructions. During global variable emission,
1218 /// candidates are skipped and are emitted later in case at least one cstexpr
1219 /// isn't replaced by a PC relative GOT entry access.
1220 static bool isGOTEquivalentCandidate(const GlobalVariable
*GV
,
1221 unsigned &NumGOTEquivUsers
) {
1222 // Global GOT equivalents are unnamed private globals with a constant
1223 // pointer initializer to another global symbol. They must point to a
1224 // GlobalVariable or Function, i.e., as GlobalValue.
1225 if (!GV
->hasGlobalUnnamedAddr() || !GV
->hasInitializer() ||
1226 !GV
->isConstant() || !GV
->isDiscardableIfUnused() ||
1227 !dyn_cast
<GlobalValue
>(GV
->getOperand(0)))
1230 // To be a got equivalent, at least one of its users need to be a constant
1231 // expression used by another global variable.
1232 for (auto *U
: GV
->users())
1233 NumGOTEquivUsers
+= getNumGlobalVariableUses(dyn_cast
<Constant
>(U
));
1235 return NumGOTEquivUsers
> 0;
1238 /// Unnamed constant global variables solely contaning a pointer to
1239 /// another globals variable is equivalent to a GOT table entry; it contains the
1240 /// the address of another symbol. Optimize it and replace accesses to these
1241 /// "GOT equivalents" by using the GOT entry for the final global instead.
1242 /// Compute GOT equivalent candidates among all global variables to avoid
1243 /// emitting them if possible later on, after it use is replaced by a GOT entry
1245 void AsmPrinter::computeGlobalGOTEquivs(Module
&M
) {
1246 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1249 for (const auto &G
: M
.globals()) {
1250 unsigned NumGOTEquivUsers
= 0;
1251 if (!isGOTEquivalentCandidate(&G
, NumGOTEquivUsers
))
1254 const MCSymbol
*GOTEquivSym
= getSymbol(&G
);
1255 GlobalGOTEquivs
[GOTEquivSym
] = std::make_pair(&G
, NumGOTEquivUsers
);
1259 /// Constant expressions using GOT equivalent globals may not be eligible
1260 /// for PC relative GOT entry conversion, in such cases we need to emit such
1261 /// globals we previously omitted in EmitGlobalVariable.
1262 void AsmPrinter::emitGlobalGOTEquivs() {
1263 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1266 SmallVector
<const GlobalVariable
*, 8> FailedCandidates
;
1267 for (auto &I
: GlobalGOTEquivs
) {
1268 const GlobalVariable
*GV
= I
.second
.first
;
1269 unsigned Cnt
= I
.second
.second
;
1271 FailedCandidates
.push_back(GV
);
1273 GlobalGOTEquivs
.clear();
1275 for (auto *GV
: FailedCandidates
)
1276 EmitGlobalVariable(GV
);
1279 void AsmPrinter::emitGlobalIndirectSymbol(Module
&M
,
1280 const GlobalIndirectSymbol
& GIS
) {
1281 MCSymbol
*Name
= getSymbol(&GIS
);
1283 if (GIS
.hasExternalLinkage() || !MAI
->getWeakRefDirective())
1284 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_Global
);
1285 else if (GIS
.hasWeakLinkage() || GIS
.hasLinkOnceLinkage())
1286 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_WeakReference
);
1288 assert(GIS
.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1290 bool IsFunction
= GIS
.getType()->getPointerElementType()->isFunctionTy();
1292 // Treat bitcasts of functions as functions also. This is important at least
1293 // on WebAssembly where object and function addresses can't alias each other.
1295 if (auto *CE
= dyn_cast
<ConstantExpr
>(GIS
.getIndirectSymbol()))
1296 if (CE
->getOpcode() == Instruction::BitCast
)
1298 CE
->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1300 // Set the symbol type to function if the alias has a function type.
1301 // This affects codegen when the aliasee is not a function.
1303 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_ELF_TypeFunction
);
1304 if (isa
<GlobalIFunc
>(GIS
))
1305 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_ELF_TypeIndFunction
);
1308 EmitVisibility(Name
, GIS
.getVisibility());
1310 const MCExpr
*Expr
= lowerConstant(GIS
.getIndirectSymbol());
1312 if (isa
<GlobalAlias
>(&GIS
) && MAI
->hasAltEntry() && isa
<MCBinaryExpr
>(Expr
))
1313 OutStreamer
->EmitSymbolAttribute(Name
, MCSA_AltEntry
);
1315 // Emit the directives as assignments aka .set:
1316 OutStreamer
->EmitAssignment(Name
, Expr
);
1318 if (auto *GA
= dyn_cast
<GlobalAlias
>(&GIS
)) {
1319 // If the aliasee does not correspond to a symbol in the output, i.e. the
1320 // alias is not of an object or the aliased object is private, then set the
1321 // size of the alias symbol from the type of the alias. We don't do this in
1322 // other situations as the alias and aliasee having differing types but same
1323 // size may be intentional.
1324 const GlobalObject
*BaseObject
= GA
->getBaseObject();
1325 if (MAI
->hasDotTypeDotSizeDirective() && GA
->getValueType()->isSized() &&
1326 (!BaseObject
|| BaseObject
->hasPrivateLinkage())) {
1327 const DataLayout
&DL
= M
.getDataLayout();
1328 uint64_t Size
= DL
.getTypeAllocSize(GA
->getValueType());
1329 OutStreamer
->emitELFSize(Name
, MCConstantExpr::create(Size
, OutContext
));
1334 bool AsmPrinter::doFinalization(Module
&M
) {
1335 // Set the MachineFunction to nullptr so that we can catch attempted
1336 // accesses to MF specific features at the module level and so that
1337 // we can conditionalize accesses based on whether or not it is nullptr.
1340 // Gather all GOT equivalent globals in the module. We really need two
1341 // passes over the globals: one to compute and another to avoid its emission
1342 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1343 // where the got equivalent shows up before its use.
1344 computeGlobalGOTEquivs(M
);
1346 // Emit global variables.
1347 for (const auto &G
: M
.globals())
1348 EmitGlobalVariable(&G
);
1350 // Emit remaining GOT equivalent globals.
1351 emitGlobalGOTEquivs();
1353 // Emit visibility info for declarations
1354 for (const Function
&F
: M
) {
1355 if (!F
.isDeclarationForLinker())
1357 GlobalValue::VisibilityTypes V
= F
.getVisibility();
1358 if (V
== GlobalValue::DefaultVisibility
)
1361 MCSymbol
*Name
= getSymbol(&F
);
1362 EmitVisibility(Name
, V
, false);
1365 const TargetLoweringObjectFile
&TLOF
= getObjFileLowering();
1367 TLOF
.emitModuleMetadata(*OutStreamer
, M
);
1369 if (TM
.getTargetTriple().isOSBinFormatELF()) {
1370 MachineModuleInfoELF
&MMIELF
= MMI
->getObjFileInfo
<MachineModuleInfoELF
>();
1372 // Output stubs for external and common global variables.
1373 MachineModuleInfoELF::SymbolListTy Stubs
= MMIELF
.GetGVStubList();
1374 if (!Stubs
.empty()) {
1375 OutStreamer
->SwitchSection(TLOF
.getDataSection());
1376 const DataLayout
&DL
= M
.getDataLayout();
1378 EmitAlignment(Log2_32(DL
.getPointerSize()));
1379 for (const auto &Stub
: Stubs
) {
1380 OutStreamer
->EmitLabel(Stub
.first
);
1381 OutStreamer
->EmitSymbolValue(Stub
.second
.getPointer(),
1382 DL
.getPointerSize());
1387 if (TM
.getTargetTriple().isOSBinFormatCOFF()) {
1388 MachineModuleInfoCOFF
&MMICOFF
=
1389 MMI
->getObjFileInfo
<MachineModuleInfoCOFF
>();
1391 // Output stubs for external and common global variables.
1392 MachineModuleInfoCOFF::SymbolListTy Stubs
= MMICOFF
.GetGVStubList();
1393 if (!Stubs
.empty()) {
1394 const DataLayout
&DL
= M
.getDataLayout();
1396 for (const auto &Stub
: Stubs
) {
1397 SmallString
<256> SectionName
= StringRef(".rdata$");
1398 SectionName
+= Stub
.first
->getName();
1399 OutStreamer
->SwitchSection(OutContext
.getCOFFSection(
1401 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
| COFF::IMAGE_SCN_MEM_READ
|
1402 COFF::IMAGE_SCN_LNK_COMDAT
,
1403 SectionKind::getReadOnly(), Stub
.first
->getName(),
1404 COFF::IMAGE_COMDAT_SELECT_ANY
));
1405 EmitAlignment(Log2_32(DL
.getPointerSize()));
1406 OutStreamer
->EmitSymbolAttribute(Stub
.first
, MCSA_Global
);
1407 OutStreamer
->EmitLabel(Stub
.first
);
1408 OutStreamer
->EmitSymbolValue(Stub
.second
.getPointer(),
1409 DL
.getPointerSize());
1414 // Finalize debug and EH information.
1415 for (const HandlerInfo
&HI
: Handlers
) {
1416 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1417 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1418 HI
.Handler
->endModule();
1424 // If the target wants to know about weak references, print them all.
1425 if (MAI
->getWeakRefDirective()) {
1426 // FIXME: This is not lazy, it would be nice to only print weak references
1427 // to stuff that is actually used. Note that doing so would require targets
1428 // to notice uses in operands (due to constant exprs etc). This should
1429 // happen with the MC stuff eventually.
1431 // Print out module-level global objects here.
1432 for (const auto &GO
: M
.global_objects()) {
1433 if (!GO
.hasExternalWeakLinkage())
1435 OutStreamer
->EmitSymbolAttribute(getSymbol(&GO
), MCSA_WeakReference
);
1439 OutStreamer
->AddBlankLine();
1441 // Print aliases in topological order, that is, for each alias a = b,
1442 // b must be printed before a.
1443 // This is because on some targets (e.g. PowerPC) linker expects aliases in
1444 // such an order to generate correct TOC information.
1445 SmallVector
<const GlobalAlias
*, 16> AliasStack
;
1446 SmallPtrSet
<const GlobalAlias
*, 16> AliasVisited
;
1447 for (const auto &Alias
: M
.aliases()) {
1448 for (const GlobalAlias
*Cur
= &Alias
; Cur
;
1449 Cur
= dyn_cast
<GlobalAlias
>(Cur
->getAliasee())) {
1450 if (!AliasVisited
.insert(Cur
).second
)
1452 AliasStack
.push_back(Cur
);
1454 for (const GlobalAlias
*AncestorAlias
: llvm::reverse(AliasStack
))
1455 emitGlobalIndirectSymbol(M
, *AncestorAlias
);
1458 for (const auto &IFunc
: M
.ifuncs())
1459 emitGlobalIndirectSymbol(M
, IFunc
);
1461 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
1462 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
1463 for (GCModuleInfo::iterator I
= MI
->end(), E
= MI
->begin(); I
!= E
; )
1464 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(**--I
))
1465 MP
->finishAssembly(M
, *MI
, *this);
1467 // Emit llvm.ident metadata in an '.ident' directive.
1468 EmitModuleIdents(M
);
1470 // Emit bytes for llvm.commandline metadata.
1471 EmitModuleCommandLines(M
);
1473 // Emit __morestack address if needed for indirect calls.
1474 if (MMI
->usesMorestackAddr()) {
1476 MCSection
*ReadOnlySection
= getObjFileLowering().getSectionForConstant(
1477 getDataLayout(), SectionKind::getReadOnly(),
1478 /*C=*/nullptr, Align
);
1479 OutStreamer
->SwitchSection(ReadOnlySection
);
1481 MCSymbol
*AddrSymbol
=
1482 OutContext
.getOrCreateSymbol(StringRef("__morestack_addr"));
1483 OutStreamer
->EmitLabel(AddrSymbol
);
1485 unsigned PtrSize
= MAI
->getCodePointerSize();
1486 OutStreamer
->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1490 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1491 // split-stack is used.
1492 if (TM
.getTargetTriple().isOSBinFormatELF() && MMI
->hasSplitStack()) {
1493 OutStreamer
->SwitchSection(
1494 OutContext
.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS
, 0));
1495 if (MMI
->hasNosplitStack())
1496 OutStreamer
->SwitchSection(
1497 OutContext
.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS
, 0));
1500 // If we don't have any trampolines, then we don't require stack memory
1501 // to be executable. Some targets have a directive to declare this.
1502 Function
*InitTrampolineIntrinsic
= M
.getFunction("llvm.init.trampoline");
1503 if (!InitTrampolineIntrinsic
|| InitTrampolineIntrinsic
->use_empty())
1504 if (MCSection
*S
= MAI
->getNonexecutableStackSection(OutContext
))
1505 OutStreamer
->SwitchSection(S
);
1507 if (TM
.getTargetTriple().isOSBinFormatCOFF()) {
1508 // Emit /EXPORT: flags for each exported global as necessary.
1509 const auto &TLOF
= getObjFileLowering();
1512 for (const GlobalValue
&GV
: M
.global_values()) {
1513 raw_string_ostream
OS(Flags
);
1514 TLOF
.emitLinkerFlagsForGlobal(OS
, &GV
);
1516 if (!Flags
.empty()) {
1517 OutStreamer
->SwitchSection(TLOF
.getDrectveSection());
1518 OutStreamer
->EmitBytes(Flags
);
1523 // Emit /INCLUDE: flags for each used global as necessary.
1524 if (const auto *LU
= M
.getNamedGlobal("llvm.used")) {
1525 assert(LU
->hasInitializer() &&
1526 "expected llvm.used to have an initializer");
1527 assert(isa
<ArrayType
>(LU
->getValueType()) &&
1528 "expected llvm.used to be an array type");
1529 if (const auto *A
= cast
<ConstantArray
>(LU
->getInitializer())) {
1530 for (const Value
*Op
: A
->operands()) {
1532 cast
<GlobalValue
>(Op
->stripPointerCastsNoFollowAliases());
1533 // Global symbols with internal or private linkage are not visible to
1534 // the linker, and thus would cause an error when the linker tried to
1535 // preserve the symbol due to the `/include:` directive.
1536 if (GV
->hasLocalLinkage())
1539 raw_string_ostream
OS(Flags
);
1540 TLOF
.emitLinkerFlagsForUsed(OS
, GV
);
1543 if (!Flags
.empty()) {
1544 OutStreamer
->SwitchSection(TLOF
.getDrectveSection());
1545 OutStreamer
->EmitBytes(Flags
);
1553 if (TM
.Options
.EmitAddrsig
) {
1554 // Emit address-significance attributes for all globals.
1555 OutStreamer
->EmitAddrsig();
1556 for (const GlobalValue
&GV
: M
.global_values())
1557 if (!GV
.use_empty() && !GV
.isThreadLocal() &&
1558 !GV
.hasDLLImportStorageClass() && !GV
.getName().startswith("llvm.") &&
1559 !GV
.hasAtLeastLocalUnnamedAddr())
1560 OutStreamer
->EmitAddrsigSym(getSymbol(&GV
));
1563 // Allow the target to emit any magic that it wants at the end of the file,
1564 // after everything else has gone out.
1565 EmitEndOfAsmFile(M
);
1569 OutStreamer
->Finish();
1570 OutStreamer
->reset();
1577 MCSymbol
*AsmPrinter::getCurExceptionSym() {
1578 if (!CurExceptionSym
)
1579 CurExceptionSym
= createTempSymbol("exception");
1580 return CurExceptionSym
;
1583 void AsmPrinter::SetupMachineFunction(MachineFunction
&MF
) {
1585 // Get the function symbol.
1586 CurrentFnSym
= getSymbol(&MF
.getFunction());
1587 CurrentFnSymForSize
= CurrentFnSym
;
1588 CurrentFnBegin
= nullptr;
1589 CurExceptionSym
= nullptr;
1590 bool NeedsLocalForSize
= MAI
->needsLocalForSize();
1591 if (needFuncLabelsForEHOrDebugInfo(MF
, MMI
) || NeedsLocalForSize
||
1592 MF
.getTarget().Options
.EmitStackSizeSection
) {
1593 CurrentFnBegin
= createTempSymbol("func_begin");
1594 if (NeedsLocalForSize
)
1595 CurrentFnSymForSize
= CurrentFnBegin
;
1598 ORE
= &getAnalysis
<MachineOptimizationRemarkEmitterPass
>().getORE();
1603 // Keep track the alignment, constpool entries per Section.
1607 SmallVector
<unsigned, 4> CPEs
;
1609 SectionCPs(MCSection
*s
, unsigned a
) : S(s
), Alignment(a
) {}
1612 } // end anonymous namespace
1614 /// EmitConstantPool - Print to the current output stream assembly
1615 /// representations of the constants in the constant pool MCP. This is
1616 /// used to print out constants which have been "spilled to memory" by
1617 /// the code generator.
1618 void AsmPrinter::EmitConstantPool() {
1619 const MachineConstantPool
*MCP
= MF
->getConstantPool();
1620 const std::vector
<MachineConstantPoolEntry
> &CP
= MCP
->getConstants();
1621 if (CP
.empty()) return;
1623 // Calculate sections for constant pool entries. We collect entries to go into
1624 // the same section together to reduce amount of section switch statements.
1625 SmallVector
<SectionCPs
, 4> CPSections
;
1626 for (unsigned i
= 0, e
= CP
.size(); i
!= e
; ++i
) {
1627 const MachineConstantPoolEntry
&CPE
= CP
[i
];
1628 unsigned Align
= CPE
.getAlignment();
1630 SectionKind Kind
= CPE
.getSectionKind(&getDataLayout());
1632 const Constant
*C
= nullptr;
1633 if (!CPE
.isMachineConstantPoolEntry())
1634 C
= CPE
.Val
.ConstVal
;
1636 MCSection
*S
= getObjFileLowering().getSectionForConstant(getDataLayout(),
1639 // The number of sections are small, just do a linear search from the
1640 // last section to the first.
1642 unsigned SecIdx
= CPSections
.size();
1643 while (SecIdx
!= 0) {
1644 if (CPSections
[--SecIdx
].S
== S
) {
1650 SecIdx
= CPSections
.size();
1651 CPSections
.push_back(SectionCPs(S
, Align
));
1654 if (Align
> CPSections
[SecIdx
].Alignment
)
1655 CPSections
[SecIdx
].Alignment
= Align
;
1656 CPSections
[SecIdx
].CPEs
.push_back(i
);
1659 // Now print stuff into the calculated sections.
1660 const MCSection
*CurSection
= nullptr;
1661 unsigned Offset
= 0;
1662 for (unsigned i
= 0, e
= CPSections
.size(); i
!= e
; ++i
) {
1663 for (unsigned j
= 0, ee
= CPSections
[i
].CPEs
.size(); j
!= ee
; ++j
) {
1664 unsigned CPI
= CPSections
[i
].CPEs
[j
];
1665 MCSymbol
*Sym
= GetCPISymbol(CPI
);
1666 if (!Sym
->isUndefined())
1669 if (CurSection
!= CPSections
[i
].S
) {
1670 OutStreamer
->SwitchSection(CPSections
[i
].S
);
1671 EmitAlignment(Log2_32(CPSections
[i
].Alignment
));
1672 CurSection
= CPSections
[i
].S
;
1676 MachineConstantPoolEntry CPE
= CP
[CPI
];
1678 // Emit inter-object padding for alignment.
1679 unsigned AlignMask
= CPE
.getAlignment() - 1;
1680 unsigned NewOffset
= (Offset
+ AlignMask
) & ~AlignMask
;
1681 OutStreamer
->EmitZeros(NewOffset
- Offset
);
1683 Type
*Ty
= CPE
.getType();
1684 Offset
= NewOffset
+ getDataLayout().getTypeAllocSize(Ty
);
1686 OutStreamer
->EmitLabel(Sym
);
1687 if (CPE
.isMachineConstantPoolEntry())
1688 EmitMachineConstantPoolValue(CPE
.Val
.MachineCPVal
);
1690 EmitGlobalConstant(getDataLayout(), CPE
.Val
.ConstVal
);
1695 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1696 /// by the current function to the current output stream.
1697 void AsmPrinter::EmitJumpTableInfo() {
1698 const DataLayout
&DL
= MF
->getDataLayout();
1699 const MachineJumpTableInfo
*MJTI
= MF
->getJumpTableInfo();
1701 if (MJTI
->getEntryKind() == MachineJumpTableInfo::EK_Inline
) return;
1702 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
1703 if (JT
.empty()) return;
1705 // Pick the directive to use to print the jump table entries, and switch to
1706 // the appropriate section.
1707 const Function
&F
= MF
->getFunction();
1708 const TargetLoweringObjectFile
&TLOF
= getObjFileLowering();
1709 bool JTInDiffSection
= !TLOF
.shouldPutJumpTableInFunctionSection(
1710 MJTI
->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32
,
1712 if (JTInDiffSection
) {
1713 // Drop it in the readonly section.
1714 MCSection
*ReadOnlySection
= TLOF
.getSectionForJumpTable(F
, TM
);
1715 OutStreamer
->SwitchSection(ReadOnlySection
);
1718 EmitAlignment(Log2_32(MJTI
->getEntryAlignment(DL
)));
1720 // Jump tables in code sections are marked with a data_region directive
1721 // where that's supported.
1722 if (!JTInDiffSection
)
1723 OutStreamer
->EmitDataRegion(MCDR_DataRegionJT32
);
1725 for (unsigned JTI
= 0, e
= JT
.size(); JTI
!= e
; ++JTI
) {
1726 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
1728 // If this jump table was deleted, ignore it.
1729 if (JTBBs
.empty()) continue;
1731 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1732 /// emit a .set directive for each unique entry.
1733 if (MJTI
->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32
&&
1734 MAI
->doesSetDirectiveSuppressReloc()) {
1735 SmallPtrSet
<const MachineBasicBlock
*, 16> EmittedSets
;
1736 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
1737 const MCExpr
*Base
= TLI
->getPICJumpTableRelocBaseExpr(MF
,JTI
,OutContext
);
1738 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
) {
1739 const MachineBasicBlock
*MBB
= JTBBs
[ii
];
1740 if (!EmittedSets
.insert(MBB
).second
)
1743 // .set LJTSet, LBB32-base
1745 MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
1746 OutStreamer
->EmitAssignment(GetJTSetSymbol(JTI
, MBB
->getNumber()),
1747 MCBinaryExpr::createSub(LHS
, Base
,
1752 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1753 // before each jump table. The first label is never referenced, but tells
1754 // the assembler and linker the extents of the jump table object. The
1755 // second label is actually referenced by the code.
1756 if (JTInDiffSection
&& DL
.hasLinkerPrivateGlobalPrefix())
1757 // FIXME: This doesn't have to have any specific name, just any randomly
1758 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1759 OutStreamer
->EmitLabel(GetJTISymbol(JTI
, true));
1761 OutStreamer
->EmitLabel(GetJTISymbol(JTI
));
1763 for (unsigned ii
= 0, ee
= JTBBs
.size(); ii
!= ee
; ++ii
)
1764 EmitJumpTableEntry(MJTI
, JTBBs
[ii
], JTI
);
1766 if (!JTInDiffSection
)
1767 OutStreamer
->EmitDataRegion(MCDR_DataRegionEnd
);
1770 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1772 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
1773 const MachineBasicBlock
*MBB
,
1774 unsigned UID
) const {
1775 assert(MBB
&& MBB
->getNumber() >= 0 && "Invalid basic block");
1776 const MCExpr
*Value
= nullptr;
1777 switch (MJTI
->getEntryKind()) {
1778 case MachineJumpTableInfo::EK_Inline
:
1779 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1780 case MachineJumpTableInfo::EK_Custom32
:
1781 Value
= MF
->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1782 MJTI
, MBB
, UID
, OutContext
);
1784 case MachineJumpTableInfo::EK_BlockAddress
:
1785 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1787 Value
= MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
1789 case MachineJumpTableInfo::EK_GPRel32BlockAddress
: {
1790 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1791 // with a relocation as gp-relative, e.g.:
1793 MCSymbol
*MBBSym
= MBB
->getSymbol();
1794 OutStreamer
->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym
, OutContext
));
1798 case MachineJumpTableInfo::EK_GPRel64BlockAddress
: {
1799 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1800 // with a relocation as gp-relative, e.g.:
1802 MCSymbol
*MBBSym
= MBB
->getSymbol();
1803 OutStreamer
->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym
, OutContext
));
1807 case MachineJumpTableInfo::EK_LabelDifference32
: {
1808 // Each entry is the address of the block minus the address of the jump
1809 // table. This is used for PIC jump tables where gprel32 is not supported.
1811 // .word LBB123 - LJTI1_2
1812 // If the .set directive avoids relocations, this is emitted as:
1813 // .set L4_5_set_123, LBB123 - LJTI1_2
1814 // .word L4_5_set_123
1815 if (MAI
->doesSetDirectiveSuppressReloc()) {
1816 Value
= MCSymbolRefExpr::create(GetJTSetSymbol(UID
, MBB
->getNumber()),
1820 Value
= MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
1821 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
1822 const MCExpr
*Base
= TLI
->getPICJumpTableRelocBaseExpr(MF
, UID
, OutContext
);
1823 Value
= MCBinaryExpr::createSub(Value
, Base
, OutContext
);
1828 assert(Value
&& "Unknown entry kind!");
1830 unsigned EntrySize
= MJTI
->getEntrySize(getDataLayout());
1831 OutStreamer
->EmitValue(Value
, EntrySize
);
1834 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1835 /// special global used by LLVM. If so, emit it and return true, otherwise
1836 /// do nothing and return false.
1837 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable
*GV
) {
1838 if (GV
->getName() == "llvm.used") {
1839 if (MAI
->hasNoDeadStrip()) // No need to emit this at all.
1840 EmitLLVMUsedList(cast
<ConstantArray
>(GV
->getInitializer()));
1844 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1845 if (GV
->getSection() == "llvm.metadata" ||
1846 GV
->hasAvailableExternallyLinkage())
1849 if (!GV
->hasAppendingLinkage()) return false;
1851 assert(GV
->hasInitializer() && "Not a special LLVM global!");
1853 if (GV
->getName() == "llvm.global_ctors") {
1854 EmitXXStructorList(GV
->getParent()->getDataLayout(), GV
->getInitializer(),
1860 if (GV
->getName() == "llvm.global_dtors") {
1861 EmitXXStructorList(GV
->getParent()->getDataLayout(), GV
->getInitializer(),
1862 /* isCtor */ false);
1867 report_fatal_error("unknown special variable");
1870 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1871 /// global in the specified llvm.used list.
1872 void AsmPrinter::EmitLLVMUsedList(const ConstantArray
*InitList
) {
1873 // Should be an array of 'i8*'.
1874 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
) {
1875 const GlobalValue
*GV
=
1876 dyn_cast
<GlobalValue
>(InitList
->getOperand(i
)->stripPointerCasts());
1878 OutStreamer
->EmitSymbolAttribute(getSymbol(GV
), MCSA_NoDeadStrip
);
1886 Constant
*Func
= nullptr;
1887 GlobalValue
*ComdatKey
= nullptr;
1889 Structor() = default;
1892 } // end anonymous namespace
1894 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1896 void AsmPrinter::EmitXXStructorList(const DataLayout
&DL
, const Constant
*List
,
1898 // Should be an array of '{ int, void ()* }' structs. The first value is the
1900 if (!isa
<ConstantArray
>(List
)) return;
1902 // Sanity check the structors list.
1903 const ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(List
);
1904 if (!InitList
) return; // Not an array!
1905 StructType
*ETy
= dyn_cast
<StructType
>(InitList
->getType()->getElementType());
1906 // FIXME: Only allow the 3-field form in LLVM 4.0.
1907 if (!ETy
|| ETy
->getNumElements() < 2 || ETy
->getNumElements() > 3)
1908 return; // Not an array of two or three elements!
1909 if (!isa
<IntegerType
>(ETy
->getTypeAtIndex(0U)) ||
1910 !isa
<PointerType
>(ETy
->getTypeAtIndex(1U))) return; // Not (int, ptr).
1911 if (ETy
->getNumElements() == 3 && !isa
<PointerType
>(ETy
->getTypeAtIndex(2U)))
1912 return; // Not (int, ptr, ptr).
1914 // Gather the structors in a form that's convenient for sorting by priority.
1915 SmallVector
<Structor
, 8> Structors
;
1916 for (Value
*O
: InitList
->operands()) {
1917 ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(O
);
1918 if (!CS
) continue; // Malformed.
1919 if (CS
->getOperand(1)->isNullValue())
1920 break; // Found a null terminator, skip the rest.
1921 ConstantInt
*Priority
= dyn_cast
<ConstantInt
>(CS
->getOperand(0));
1922 if (!Priority
) continue; // Malformed.
1923 Structors
.push_back(Structor());
1924 Structor
&S
= Structors
.back();
1925 S
.Priority
= Priority
->getLimitedValue(65535);
1926 S
.Func
= CS
->getOperand(1);
1927 if (ETy
->getNumElements() == 3 && !CS
->getOperand(2)->isNullValue())
1929 dyn_cast
<GlobalValue
>(CS
->getOperand(2)->stripPointerCasts());
1932 // Emit the function pointers in the target-specific order
1933 unsigned Align
= Log2_32(DL
.getPointerPrefAlignment());
1934 std::stable_sort(Structors
.begin(), Structors
.end(),
1935 [](const Structor
&L
,
1936 const Structor
&R
) { return L
.Priority
< R
.Priority
; });
1937 for (Structor
&S
: Structors
) {
1938 const TargetLoweringObjectFile
&Obj
= getObjFileLowering();
1939 const MCSymbol
*KeySym
= nullptr;
1940 if (GlobalValue
*GV
= S
.ComdatKey
) {
1941 if (GV
->isDeclarationForLinker())
1942 // If the associated variable is not defined in this module
1943 // (it might be available_externally, or have been an
1944 // available_externally definition that was dropped by the
1945 // EliminateAvailableExternally pass), some other TU
1946 // will provide its dynamic initializer.
1949 KeySym
= getSymbol(GV
);
1951 MCSection
*OutputSection
=
1952 (isCtor
? Obj
.getStaticCtorSection(S
.Priority
, KeySym
)
1953 : Obj
.getStaticDtorSection(S
.Priority
, KeySym
));
1954 OutStreamer
->SwitchSection(OutputSection
);
1955 if (OutStreamer
->getCurrentSection() != OutStreamer
->getPreviousSection())
1956 EmitAlignment(Align
);
1957 EmitXXStructor(DL
, S
.Func
);
1961 void AsmPrinter::EmitModuleIdents(Module
&M
) {
1962 if (!MAI
->hasIdentDirective())
1965 if (const NamedMDNode
*NMD
= M
.getNamedMetadata("llvm.ident")) {
1966 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
1967 const MDNode
*N
= NMD
->getOperand(i
);
1968 assert(N
->getNumOperands() == 1 &&
1969 "llvm.ident metadata entry can have only one operand");
1970 const MDString
*S
= cast
<MDString
>(N
->getOperand(0));
1971 OutStreamer
->EmitIdent(S
->getString());
1976 void AsmPrinter::EmitModuleCommandLines(Module
&M
) {
1977 MCSection
*CommandLine
= getObjFileLowering().getSectionForCommandLines();
1981 const NamedMDNode
*NMD
= M
.getNamedMetadata("llvm.commandline");
1982 if (!NMD
|| !NMD
->getNumOperands())
1985 OutStreamer
->PushSection();
1986 OutStreamer
->SwitchSection(CommandLine
);
1987 OutStreamer
->EmitZeros(1);
1988 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
1989 const MDNode
*N
= NMD
->getOperand(i
);
1990 assert(N
->getNumOperands() == 1 &&
1991 "llvm.commandline metadata entry can have only one operand");
1992 const MDString
*S
= cast
<MDString
>(N
->getOperand(0));
1993 OutStreamer
->EmitBytes(S
->getString());
1994 OutStreamer
->EmitZeros(1);
1996 OutStreamer
->PopSection();
1999 //===--------------------------------------------------------------------===//
2000 // Emission and print routines
2003 /// Emit a byte directive and value.
2005 void AsmPrinter::emitInt8(int Value
) const {
2006 OutStreamer
->EmitIntValue(Value
, 1);
2009 /// Emit a short directive and value.
2010 void AsmPrinter::emitInt16(int Value
) const {
2011 OutStreamer
->EmitIntValue(Value
, 2);
2014 /// Emit a long directive and value.
2015 void AsmPrinter::emitInt32(int Value
) const {
2016 OutStreamer
->EmitIntValue(Value
, 4);
2019 /// Emit a long long directive and value.
2020 void AsmPrinter::emitInt64(uint64_t Value
) const {
2021 OutStreamer
->EmitIntValue(Value
, 8);
2024 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2025 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2026 /// .set if it avoids relocations.
2027 void AsmPrinter::EmitLabelDifference(const MCSymbol
*Hi
, const MCSymbol
*Lo
,
2028 unsigned Size
) const {
2029 OutStreamer
->emitAbsoluteSymbolDiff(Hi
, Lo
, Size
);
2032 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2033 /// where the size in bytes of the directive is specified by Size and Label
2034 /// specifies the label. This implicitly uses .set if it is available.
2035 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol
*Label
, uint64_t Offset
,
2037 bool IsSectionRelative
) const {
2038 if (MAI
->needsDwarfSectionOffsetDirective() && IsSectionRelative
) {
2039 OutStreamer
->EmitCOFFSecRel32(Label
, Offset
);
2041 OutStreamer
->EmitZeros(Size
- 4);
2045 // Emit Label+Offset (or just Label if Offset is zero)
2046 const MCExpr
*Expr
= MCSymbolRefExpr::create(Label
, OutContext
);
2048 Expr
= MCBinaryExpr::createAdd(
2049 Expr
, MCConstantExpr::create(Offset
, OutContext
), OutContext
);
2051 OutStreamer
->EmitValue(Expr
, Size
);
2054 //===----------------------------------------------------------------------===//
2056 // EmitAlignment - Emit an alignment directive to the specified power of
2057 // two boundary. For example, if you pass in 3 here, you will get an 8
2058 // byte alignment. If a global value is specified, and if that global has
2059 // an explicit alignment requested, it will override the alignment request
2060 // if required for correctness.
2061 void AsmPrinter::EmitAlignment(unsigned NumBits
, const GlobalObject
*GV
) const {
2063 NumBits
= getGVAlignmentLog2(GV
, GV
->getParent()->getDataLayout(), NumBits
);
2065 if (NumBits
== 0) return; // 1-byte aligned: no need to emit alignment.
2068 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
2069 "undefined behavior");
2070 if (getCurrentSection()->getKind().isText())
2071 OutStreamer
->EmitCodeAlignment(1u << NumBits
);
2073 OutStreamer
->EmitValueToAlignment(1u << NumBits
);
2076 //===----------------------------------------------------------------------===//
2077 // Constant emission.
2078 //===----------------------------------------------------------------------===//
2080 const MCExpr
*AsmPrinter::lowerConstant(const Constant
*CV
) {
2081 MCContext
&Ctx
= OutContext
;
2083 if (CV
->isNullValue() || isa
<UndefValue
>(CV
))
2084 return MCConstantExpr::create(0, Ctx
);
2086 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
))
2087 return MCConstantExpr::create(CI
->getZExtValue(), Ctx
);
2089 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
))
2090 return MCSymbolRefExpr::create(getSymbol(GV
), Ctx
);
2092 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(CV
))
2093 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA
), Ctx
);
2095 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
);
2097 llvm_unreachable("Unknown constant value to lower!");
2100 switch (CE
->getOpcode()) {
2102 // If the code isn't optimized, there may be outstanding folding
2103 // opportunities. Attempt to fold the expression using DataLayout as a
2104 // last resort before giving up.
2105 if (Constant
*C
= ConstantFoldConstant(CE
, getDataLayout()))
2107 return lowerConstant(C
);
2109 // Otherwise report the problem to the user.
2112 raw_string_ostream
OS(S
);
2113 OS
<< "Unsupported expression in static initializer: ";
2114 CE
->printAsOperand(OS
, /*PrintType=*/false,
2115 !MF
? nullptr : MF
->getFunction().getParent());
2116 report_fatal_error(OS
.str());
2118 case Instruction::GetElementPtr
: {
2119 // Generate a symbolic expression for the byte address
2120 APInt
OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE
->getType()), 0);
2121 cast
<GEPOperator
>(CE
)->accumulateConstantOffset(getDataLayout(), OffsetAI
);
2123 const MCExpr
*Base
= lowerConstant(CE
->getOperand(0));
2127 int64_t Offset
= OffsetAI
.getSExtValue();
2128 return MCBinaryExpr::createAdd(Base
, MCConstantExpr::create(Offset
, Ctx
),
2132 case Instruction::Trunc
:
2133 // We emit the value and depend on the assembler to truncate the generated
2134 // expression properly. This is important for differences between
2135 // blockaddress labels. Since the two labels are in the same function, it
2136 // is reasonable to treat their delta as a 32-bit value.
2138 case Instruction::BitCast
:
2139 return lowerConstant(CE
->getOperand(0));
2141 case Instruction::IntToPtr
: {
2142 const DataLayout
&DL
= getDataLayout();
2144 // Handle casts to pointers by changing them into casts to the appropriate
2145 // integer type. This promotes constant folding and simplifies this code.
2146 Constant
*Op
= CE
->getOperand(0);
2147 Op
= ConstantExpr::getIntegerCast(Op
, DL
.getIntPtrType(CV
->getType()),
2149 return lowerConstant(Op
);
2152 case Instruction::PtrToInt
: {
2153 const DataLayout
&DL
= getDataLayout();
2155 // Support only foldable casts to/from pointers that can be eliminated by
2156 // changing the pointer to the appropriately sized integer type.
2157 Constant
*Op
= CE
->getOperand(0);
2158 Type
*Ty
= CE
->getType();
2160 const MCExpr
*OpExpr
= lowerConstant(Op
);
2162 // We can emit the pointer value into this slot if the slot is an
2163 // integer slot equal to the size of the pointer.
2164 if (DL
.getTypeAllocSize(Ty
) == DL
.getTypeAllocSize(Op
->getType()))
2167 // Otherwise the pointer is smaller than the resultant integer, mask off
2168 // the high bits so we are sure to get a proper truncation if the input is
2170 unsigned InBits
= DL
.getTypeAllocSizeInBits(Op
->getType());
2171 const MCExpr
*MaskExpr
= MCConstantExpr::create(~0ULL >> (64-InBits
), Ctx
);
2172 return MCBinaryExpr::createAnd(OpExpr
, MaskExpr
, Ctx
);
2175 case Instruction::Sub
: {
2178 if (IsConstantOffsetFromGlobal(CE
->getOperand(0), LHSGV
, LHSOffset
,
2182 if (IsConstantOffsetFromGlobal(CE
->getOperand(1), RHSGV
, RHSOffset
,
2184 const MCExpr
*RelocExpr
=
2185 getObjFileLowering().lowerRelativeReference(LHSGV
, RHSGV
, TM
);
2187 RelocExpr
= MCBinaryExpr::createSub(
2188 MCSymbolRefExpr::create(getSymbol(LHSGV
), Ctx
),
2189 MCSymbolRefExpr::create(getSymbol(RHSGV
), Ctx
), Ctx
);
2190 int64_t Addend
= (LHSOffset
- RHSOffset
).getSExtValue();
2192 RelocExpr
= MCBinaryExpr::createAdd(
2193 RelocExpr
, MCConstantExpr::create(Addend
, Ctx
), Ctx
);
2201 // The MC library also has a right-shift operator, but it isn't consistently
2202 // signed or unsigned between different targets.
2203 case Instruction::Add
:
2204 case Instruction::Mul
:
2205 case Instruction::SDiv
:
2206 case Instruction::SRem
:
2207 case Instruction::Shl
:
2208 case Instruction::And
:
2209 case Instruction::Or
:
2210 case Instruction::Xor
: {
2211 const MCExpr
*LHS
= lowerConstant(CE
->getOperand(0));
2212 const MCExpr
*RHS
= lowerConstant(CE
->getOperand(1));
2213 switch (CE
->getOpcode()) {
2214 default: llvm_unreachable("Unknown binary operator constant cast expr");
2215 case Instruction::Add
: return MCBinaryExpr::createAdd(LHS
, RHS
, Ctx
);
2216 case Instruction::Sub
: return MCBinaryExpr::createSub(LHS
, RHS
, Ctx
);
2217 case Instruction::Mul
: return MCBinaryExpr::createMul(LHS
, RHS
, Ctx
);
2218 case Instruction::SDiv
: return MCBinaryExpr::createDiv(LHS
, RHS
, Ctx
);
2219 case Instruction::SRem
: return MCBinaryExpr::createMod(LHS
, RHS
, Ctx
);
2220 case Instruction::Shl
: return MCBinaryExpr::createShl(LHS
, RHS
, Ctx
);
2221 case Instruction::And
: return MCBinaryExpr::createAnd(LHS
, RHS
, Ctx
);
2222 case Instruction::Or
: return MCBinaryExpr::createOr (LHS
, RHS
, Ctx
);
2223 case Instruction::Xor
: return MCBinaryExpr::createXor(LHS
, RHS
, Ctx
);
2229 static void emitGlobalConstantImpl(const DataLayout
&DL
, const Constant
*C
,
2231 const Constant
*BaseCV
= nullptr,
2232 uint64_t Offset
= 0);
2234 static void emitGlobalConstantFP(const ConstantFP
*CFP
, AsmPrinter
&AP
);
2235 static void emitGlobalConstantFP(APFloat APF
, Type
*ET
, AsmPrinter
&AP
);
2237 /// isRepeatedByteSequence - Determine whether the given value is
2238 /// composed of a repeated sequence of identical bytes and return the
2239 /// byte value. If it is not a repeated sequence, return -1.
2240 static int isRepeatedByteSequence(const ConstantDataSequential
*V
) {
2241 StringRef Data
= V
->getRawDataValues();
2242 assert(!Data
.empty() && "Empty aggregates should be CAZ node");
2244 for (unsigned i
= 1, e
= Data
.size(); i
!= e
; ++i
)
2245 if (Data
[i
] != C
) return -1;
2246 return static_cast<uint8_t>(C
); // Ensure 255 is not returned as -1.
2249 /// isRepeatedByteSequence - Determine whether the given value is
2250 /// composed of a repeated sequence of identical bytes and return the
2251 /// byte value. If it is not a repeated sequence, return -1.
2252 static int isRepeatedByteSequence(const Value
*V
, const DataLayout
&DL
) {
2253 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
2254 uint64_t Size
= DL
.getTypeAllocSizeInBits(V
->getType());
2255 assert(Size
% 8 == 0);
2257 // Extend the element to take zero padding into account.
2258 APInt Value
= CI
->getValue().zextOrSelf(Size
);
2259 if (!Value
.isSplat(8))
2262 return Value
.zextOrTrunc(8).getZExtValue();
2264 if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(V
)) {
2265 // Make sure all array elements are sequences of the same repeated
2267 assert(CA
->getNumOperands() != 0 && "Should be a CAZ");
2268 Constant
*Op0
= CA
->getOperand(0);
2269 int Byte
= isRepeatedByteSequence(Op0
, DL
);
2273 // All array elements must be equal.
2274 for (unsigned i
= 1, e
= CA
->getNumOperands(); i
!= e
; ++i
)
2275 if (CA
->getOperand(i
) != Op0
)
2280 if (const ConstantDataSequential
*CDS
= dyn_cast
<ConstantDataSequential
>(V
))
2281 return isRepeatedByteSequence(CDS
);
2286 static void emitGlobalConstantDataSequential(const DataLayout
&DL
,
2287 const ConstantDataSequential
*CDS
,
2289 // See if we can aggregate this into a .fill, if so, emit it as such.
2290 int Value
= isRepeatedByteSequence(CDS
, DL
);
2292 uint64_t Bytes
= DL
.getTypeAllocSize(CDS
->getType());
2293 // Don't emit a 1-byte object as a .fill.
2295 return AP
.OutStreamer
->emitFill(Bytes
, Value
);
2298 // If this can be emitted with .ascii/.asciz, emit it as such.
2299 if (CDS
->isString())
2300 return AP
.OutStreamer
->EmitBytes(CDS
->getAsString());
2302 // Otherwise, emit the values in successive locations.
2303 unsigned ElementByteSize
= CDS
->getElementByteSize();
2304 if (isa
<IntegerType
>(CDS
->getElementType())) {
2305 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
2307 AP
.OutStreamer
->GetCommentOS() << format("0x%" PRIx64
"\n",
2308 CDS
->getElementAsInteger(i
));
2309 AP
.OutStreamer
->EmitIntValue(CDS
->getElementAsInteger(i
),
2313 Type
*ET
= CDS
->getElementType();
2314 for (unsigned I
= 0, E
= CDS
->getNumElements(); I
!= E
; ++I
)
2315 emitGlobalConstantFP(CDS
->getElementAsAPFloat(I
), ET
, AP
);
2318 unsigned Size
= DL
.getTypeAllocSize(CDS
->getType());
2319 unsigned EmittedSize
= DL
.getTypeAllocSize(CDS
->getType()->getElementType()) *
2320 CDS
->getNumElements();
2321 assert(EmittedSize
<= Size
&& "Size cannot be less than EmittedSize!");
2322 if (unsigned Padding
= Size
- EmittedSize
)
2323 AP
.OutStreamer
->EmitZeros(Padding
);
2326 static void emitGlobalConstantArray(const DataLayout
&DL
,
2327 const ConstantArray
*CA
, AsmPrinter
&AP
,
2328 const Constant
*BaseCV
, uint64_t Offset
) {
2329 // See if we can aggregate some values. Make sure it can be
2330 // represented as a series of bytes of the constant value.
2331 int Value
= isRepeatedByteSequence(CA
, DL
);
2334 uint64_t Bytes
= DL
.getTypeAllocSize(CA
->getType());
2335 AP
.OutStreamer
->emitFill(Bytes
, Value
);
2338 for (unsigned i
= 0, e
= CA
->getNumOperands(); i
!= e
; ++i
) {
2339 emitGlobalConstantImpl(DL
, CA
->getOperand(i
), AP
, BaseCV
, Offset
);
2340 Offset
+= DL
.getTypeAllocSize(CA
->getOperand(i
)->getType());
2345 static void emitGlobalConstantVector(const DataLayout
&DL
,
2346 const ConstantVector
*CV
, AsmPrinter
&AP
) {
2347 for (unsigned i
= 0, e
= CV
->getType()->getNumElements(); i
!= e
; ++i
)
2348 emitGlobalConstantImpl(DL
, CV
->getOperand(i
), AP
);
2350 unsigned Size
= DL
.getTypeAllocSize(CV
->getType());
2351 unsigned EmittedSize
= DL
.getTypeAllocSize(CV
->getType()->getElementType()) *
2352 CV
->getType()->getNumElements();
2353 if (unsigned Padding
= Size
- EmittedSize
)
2354 AP
.OutStreamer
->EmitZeros(Padding
);
2357 static void emitGlobalConstantStruct(const DataLayout
&DL
,
2358 const ConstantStruct
*CS
, AsmPrinter
&AP
,
2359 const Constant
*BaseCV
, uint64_t Offset
) {
2360 // Print the fields in successive locations. Pad to align if needed!
2361 unsigned Size
= DL
.getTypeAllocSize(CS
->getType());
2362 const StructLayout
*Layout
= DL
.getStructLayout(CS
->getType());
2363 uint64_t SizeSoFar
= 0;
2364 for (unsigned i
= 0, e
= CS
->getNumOperands(); i
!= e
; ++i
) {
2365 const Constant
*Field
= CS
->getOperand(i
);
2367 // Print the actual field value.
2368 emitGlobalConstantImpl(DL
, Field
, AP
, BaseCV
, Offset
+ SizeSoFar
);
2370 // Check if padding is needed and insert one or more 0s.
2371 uint64_t FieldSize
= DL
.getTypeAllocSize(Field
->getType());
2372 uint64_t PadSize
= ((i
== e
-1 ? Size
: Layout
->getElementOffset(i
+1))
2373 - Layout
->getElementOffset(i
)) - FieldSize
;
2374 SizeSoFar
+= FieldSize
+ PadSize
;
2376 // Insert padding - this may include padding to increase the size of the
2377 // current field up to the ABI size (if the struct is not packed) as well
2378 // as padding to ensure that the next field starts at the right offset.
2379 AP
.OutStreamer
->EmitZeros(PadSize
);
2381 assert(SizeSoFar
== Layout
->getSizeInBytes() &&
2382 "Layout of constant struct may be incorrect!");
2385 static void emitGlobalConstantFP(APFloat APF
, Type
*ET
, AsmPrinter
&AP
) {
2386 APInt API
= APF
.bitcastToAPInt();
2388 // First print a comment with what we think the original floating-point value
2389 // should have been.
2390 if (AP
.isVerbose()) {
2391 SmallString
<8> StrVal
;
2392 APF
.toString(StrVal
);
2395 ET
->print(AP
.OutStreamer
->GetCommentOS());
2397 AP
.OutStreamer
->GetCommentOS() << "Printing <null> Type";
2398 AP
.OutStreamer
->GetCommentOS() << ' ' << StrVal
<< '\n';
2401 // Now iterate through the APInt chunks, emitting them in endian-correct
2402 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2404 unsigned NumBytes
= API
.getBitWidth() / 8;
2405 unsigned TrailingBytes
= NumBytes
% sizeof(uint64_t);
2406 const uint64_t *p
= API
.getRawData();
2408 // PPC's long double has odd notions of endianness compared to how LLVM
2409 // handles it: p[0] goes first for *big* endian on PPC.
2410 if (AP
.getDataLayout().isBigEndian() && !ET
->isPPC_FP128Ty()) {
2411 int Chunk
= API
.getNumWords() - 1;
2414 AP
.OutStreamer
->EmitIntValue(p
[Chunk
--], TrailingBytes
);
2416 for (; Chunk
>= 0; --Chunk
)
2417 AP
.OutStreamer
->EmitIntValue(p
[Chunk
], sizeof(uint64_t));
2420 for (Chunk
= 0; Chunk
< NumBytes
/ sizeof(uint64_t); ++Chunk
)
2421 AP
.OutStreamer
->EmitIntValue(p
[Chunk
], sizeof(uint64_t));
2424 AP
.OutStreamer
->EmitIntValue(p
[Chunk
], TrailingBytes
);
2427 // Emit the tail padding for the long double.
2428 const DataLayout
&DL
= AP
.getDataLayout();
2429 AP
.OutStreamer
->EmitZeros(DL
.getTypeAllocSize(ET
) - DL
.getTypeStoreSize(ET
));
2432 static void emitGlobalConstantFP(const ConstantFP
*CFP
, AsmPrinter
&AP
) {
2433 emitGlobalConstantFP(CFP
->getValueAPF(), CFP
->getType(), AP
);
2436 static void emitGlobalConstantLargeInt(const ConstantInt
*CI
, AsmPrinter
&AP
) {
2437 const DataLayout
&DL
= AP
.getDataLayout();
2438 unsigned BitWidth
= CI
->getBitWidth();
2440 // Copy the value as we may massage the layout for constants whose bit width
2441 // is not a multiple of 64-bits.
2442 APInt
Realigned(CI
->getValue());
2443 uint64_t ExtraBits
= 0;
2444 unsigned ExtraBitsSize
= BitWidth
& 63;
2446 if (ExtraBitsSize
) {
2447 // The bit width of the data is not a multiple of 64-bits.
2448 // The extra bits are expected to be at the end of the chunk of the memory.
2450 // * Nothing to be done, just record the extra bits to emit.
2452 // * Record the extra bits to emit.
2453 // * Realign the raw data to emit the chunks of 64-bits.
2454 if (DL
.isBigEndian()) {
2455 // Basically the structure of the raw data is a chunk of 64-bits cells:
2456 // 0 1 BitWidth / 64
2457 // [chunk1][chunk2] ... [chunkN].
2458 // The most significant chunk is chunkN and it should be emitted first.
2459 // However, due to the alignment issue chunkN contains useless bits.
2460 // Realign the chunks so that they contain only useless information:
2461 // ExtraBits 0 1 (BitWidth / 64) - 1
2462 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2463 ExtraBits
= Realigned
.getRawData()[0] &
2464 (((uint64_t)-1) >> (64 - ExtraBitsSize
));
2465 Realigned
.lshrInPlace(ExtraBitsSize
);
2467 ExtraBits
= Realigned
.getRawData()[BitWidth
/ 64];
2470 // We don't expect assemblers to support integer data directives
2471 // for more than 64 bits, so we emit the data in at most 64-bit
2472 // quantities at a time.
2473 const uint64_t *RawData
= Realigned
.getRawData();
2474 for (unsigned i
= 0, e
= BitWidth
/ 64; i
!= e
; ++i
) {
2475 uint64_t Val
= DL
.isBigEndian() ? RawData
[e
- i
- 1] : RawData
[i
];
2476 AP
.OutStreamer
->EmitIntValue(Val
, 8);
2479 if (ExtraBitsSize
) {
2480 // Emit the extra bits after the 64-bits chunks.
2482 // Emit a directive that fills the expected size.
2483 uint64_t Size
= AP
.getDataLayout().getTypeAllocSize(CI
->getType());
2484 Size
-= (BitWidth
/ 64) * 8;
2485 assert(Size
&& Size
* 8 >= ExtraBitsSize
&&
2486 (ExtraBits
& (((uint64_t)-1) >> (64 - ExtraBitsSize
)))
2487 == ExtraBits
&& "Directive too small for extra bits.");
2488 AP
.OutStreamer
->EmitIntValue(ExtraBits
, Size
);
2492 /// Transform a not absolute MCExpr containing a reference to a GOT
2493 /// equivalent global, by a target specific GOT pc relative access to the
2495 static void handleIndirectSymViaGOTPCRel(AsmPrinter
&AP
, const MCExpr
**ME
,
2496 const Constant
*BaseCst
,
2498 // The global @foo below illustrates a global that uses a got equivalent.
2500 // @bar = global i32 42
2501 // @gotequiv = private unnamed_addr constant i32* @bar
2502 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2503 // i64 ptrtoint (i32* @foo to i64))
2506 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2507 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2510 // foo = cstexpr, where
2511 // cstexpr := <gotequiv> - "." + <cst>
2512 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2514 // After canonicalization by evaluateAsRelocatable `ME` turns into:
2516 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2517 // gotpcrelcst := <offset from @foo base> + <cst>
2519 if (!(*ME
)->evaluateAsRelocatable(MV
, nullptr, nullptr) || MV
.isAbsolute())
2521 const MCSymbolRefExpr
*SymA
= MV
.getSymA();
2525 // Check that GOT equivalent symbol is cached.
2526 const MCSymbol
*GOTEquivSym
= &SymA
->getSymbol();
2527 if (!AP
.GlobalGOTEquivs
.count(GOTEquivSym
))
2530 const GlobalValue
*BaseGV
= dyn_cast_or_null
<GlobalValue
>(BaseCst
);
2534 // Check for a valid base symbol
2535 const MCSymbol
*BaseSym
= AP
.getSymbol(BaseGV
);
2536 const MCSymbolRefExpr
*SymB
= MV
.getSymB();
2538 if (!SymB
|| BaseSym
!= &SymB
->getSymbol())
2541 // Make sure to match:
2543 // gotpcrelcst := <offset from @foo base> + <cst>
2545 // If gotpcrelcst is positive it means that we can safely fold the pc rel
2546 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2547 // if the target knows how to encode it.
2548 int64_t GOTPCRelCst
= Offset
+ MV
.getConstant();
2549 if (GOTPCRelCst
< 0)
2551 if (!AP
.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst
!= 0)
2554 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2561 // .long gotequiv - "." + <cst>
2563 // is replaced by the target specific equivalent to:
2568 // .long bar@GOTPCREL+<gotpcrelcst>
2569 AsmPrinter::GOTEquivUsePair Result
= AP
.GlobalGOTEquivs
[GOTEquivSym
];
2570 const GlobalVariable
*GV
= Result
.first
;
2571 int NumUses
= (int)Result
.second
;
2572 const GlobalValue
*FinalGV
= dyn_cast
<GlobalValue
>(GV
->getOperand(0));
2573 const MCSymbol
*FinalSym
= AP
.getSymbol(FinalGV
);
2574 *ME
= AP
.getObjFileLowering().getIndirectSymViaGOTPCRel(
2575 FinalSym
, MV
, Offset
, AP
.MMI
, *AP
.OutStreamer
);
2577 // Update GOT equivalent usage information
2580 AP
.GlobalGOTEquivs
[GOTEquivSym
] = std::make_pair(GV
, NumUses
);
2583 static void emitGlobalConstantImpl(const DataLayout
&DL
, const Constant
*CV
,
2584 AsmPrinter
&AP
, const Constant
*BaseCV
,
2586 uint64_t Size
= DL
.getTypeAllocSize(CV
->getType());
2588 // Globals with sub-elements such as combinations of arrays and structs
2589 // are handled recursively by emitGlobalConstantImpl. Keep track of the
2590 // constant symbol base and the current position with BaseCV and Offset.
2591 if (!BaseCV
&& CV
->hasOneUse())
2592 BaseCV
= dyn_cast
<Constant
>(CV
->user_back());
2594 if (isa
<ConstantAggregateZero
>(CV
) || isa
<UndefValue
>(CV
))
2595 return AP
.OutStreamer
->EmitZeros(Size
);
2597 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
2604 AP
.OutStreamer
->GetCommentOS() << format("0x%" PRIx64
"\n",
2605 CI
->getZExtValue());
2606 AP
.OutStreamer
->EmitIntValue(CI
->getZExtValue(), Size
);
2609 emitGlobalConstantLargeInt(CI
, AP
);
2614 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
))
2615 return emitGlobalConstantFP(CFP
, AP
);
2617 if (isa
<ConstantPointerNull
>(CV
)) {
2618 AP
.OutStreamer
->EmitIntValue(0, Size
);
2622 if (const ConstantDataSequential
*CDS
= dyn_cast
<ConstantDataSequential
>(CV
))
2623 return emitGlobalConstantDataSequential(DL
, CDS
, AP
);
2625 if (const ConstantArray
*CVA
= dyn_cast
<ConstantArray
>(CV
))
2626 return emitGlobalConstantArray(DL
, CVA
, AP
, BaseCV
, Offset
);
2628 if (const ConstantStruct
*CVS
= dyn_cast
<ConstantStruct
>(CV
))
2629 return emitGlobalConstantStruct(DL
, CVS
, AP
, BaseCV
, Offset
);
2631 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
2632 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2634 if (CE
->getOpcode() == Instruction::BitCast
)
2635 return emitGlobalConstantImpl(DL
, CE
->getOperand(0), AP
);
2638 // If the constant expression's size is greater than 64-bits, then we have
2639 // to emit the value in chunks. Try to constant fold the value and emit it
2641 Constant
*New
= ConstantFoldConstant(CE
, DL
);
2642 if (New
&& New
!= CE
)
2643 return emitGlobalConstantImpl(DL
, New
, AP
);
2647 if (const ConstantVector
*V
= dyn_cast
<ConstantVector
>(CV
))
2648 return emitGlobalConstantVector(DL
, V
, AP
);
2650 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2651 // thread the streamer with EmitValue.
2652 const MCExpr
*ME
= AP
.lowerConstant(CV
);
2654 // Since lowerConstant already folded and got rid of all IR pointer and
2655 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2657 if (AP
.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2658 handleIndirectSymViaGOTPCRel(AP
, &ME
, BaseCV
, Offset
);
2660 AP
.OutStreamer
->EmitValue(ME
, Size
);
2663 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2664 void AsmPrinter::EmitGlobalConstant(const DataLayout
&DL
, const Constant
*CV
) {
2665 uint64_t Size
= DL
.getTypeAllocSize(CV
->getType());
2667 emitGlobalConstantImpl(DL
, CV
, *this);
2668 else if (MAI
->hasSubsectionsViaSymbols()) {
2669 // If the global has zero size, emit a single byte so that two labels don't
2670 // look like they are at the same location.
2671 OutStreamer
->EmitIntValue(0, 1);
2675 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue
*MCPV
) {
2676 // Target doesn't support this yet!
2677 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2680 void AsmPrinter::printOffset(int64_t Offset
, raw_ostream
&OS
) const {
2682 OS
<< '+' << Offset
;
2683 else if (Offset
< 0)
2687 //===----------------------------------------------------------------------===//
2688 // Symbol Lowering Routines.
2689 //===----------------------------------------------------------------------===//
2691 MCSymbol
*AsmPrinter::createTempSymbol(const Twine
&Name
) const {
2692 return OutContext
.createTempSymbol(Name
, true);
2695 MCSymbol
*AsmPrinter::GetBlockAddressSymbol(const BlockAddress
*BA
) const {
2696 return MMI
->getAddrLabelSymbol(BA
->getBasicBlock());
2699 MCSymbol
*AsmPrinter::GetBlockAddressSymbol(const BasicBlock
*BB
) const {
2700 return MMI
->getAddrLabelSymbol(BB
);
2703 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2704 MCSymbol
*AsmPrinter::GetCPISymbol(unsigned CPID
) const {
2705 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) {
2706 const MachineConstantPoolEntry
&CPE
=
2707 MF
->getConstantPool()->getConstants()[CPID
];
2708 if (!CPE
.isMachineConstantPoolEntry()) {
2709 const DataLayout
&DL
= MF
->getDataLayout();
2710 SectionKind Kind
= CPE
.getSectionKind(&DL
);
2711 const Constant
*C
= CPE
.Val
.ConstVal
;
2712 unsigned Align
= CPE
.Alignment
;
2713 if (const MCSectionCOFF
*S
= dyn_cast
<MCSectionCOFF
>(
2714 getObjFileLowering().getSectionForConstant(DL
, Kind
, C
, Align
))) {
2715 if (MCSymbol
*Sym
= S
->getCOMDATSymbol()) {
2716 if (Sym
->isUndefined())
2717 OutStreamer
->EmitSymbolAttribute(Sym
, MCSA_Global
);
2724 const DataLayout
&DL
= getDataLayout();
2725 return OutContext
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
2726 "CPI" + Twine(getFunctionNumber()) + "_" +
2730 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2731 MCSymbol
*AsmPrinter::GetJTISymbol(unsigned JTID
, bool isLinkerPrivate
) const {
2732 return MF
->getJTISymbol(JTID
, OutContext
, isLinkerPrivate
);
2735 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2736 /// FIXME: privatize to AsmPrinter.
2737 MCSymbol
*AsmPrinter::GetJTSetSymbol(unsigned UID
, unsigned MBBID
) const {
2738 const DataLayout
&DL
= getDataLayout();
2739 return OutContext
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
2740 Twine(getFunctionNumber()) + "_" +
2741 Twine(UID
) + "_set_" + Twine(MBBID
));
2744 MCSymbol
*AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue
*GV
,
2745 StringRef Suffix
) const {
2746 return getObjFileLowering().getSymbolWithGlobalValueBase(GV
, Suffix
, TM
);
2749 /// Return the MCSymbol for the specified ExternalSymbol.
2750 MCSymbol
*AsmPrinter::GetExternalSymbolSymbol(StringRef Sym
) const {
2751 SmallString
<60> NameStr
;
2752 Mangler::getNameWithPrefix(NameStr
, Sym
, getDataLayout());
2753 return OutContext
.getOrCreateSymbol(NameStr
);
2756 /// PrintParentLoopComment - Print comments about parent loops of this one.
2757 static void PrintParentLoopComment(raw_ostream
&OS
, const MachineLoop
*Loop
,
2758 unsigned FunctionNumber
) {
2760 PrintParentLoopComment(OS
, Loop
->getParentLoop(), FunctionNumber
);
2761 OS
.indent(Loop
->getLoopDepth()*2)
2762 << "Parent Loop BB" << FunctionNumber
<< "_"
2763 << Loop
->getHeader()->getNumber()
2764 << " Depth=" << Loop
->getLoopDepth() << '\n';
2767 /// PrintChildLoopComment - Print comments about child loops within
2768 /// the loop for this basic block, with nesting.
2769 static void PrintChildLoopComment(raw_ostream
&OS
, const MachineLoop
*Loop
,
2770 unsigned FunctionNumber
) {
2771 // Add child loop information
2772 for (const MachineLoop
*CL
: *Loop
) {
2773 OS
.indent(CL
->getLoopDepth()*2)
2774 << "Child Loop BB" << FunctionNumber
<< "_"
2775 << CL
->getHeader()->getNumber() << " Depth " << CL
->getLoopDepth()
2777 PrintChildLoopComment(OS
, CL
, FunctionNumber
);
2781 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2782 static void emitBasicBlockLoopComments(const MachineBasicBlock
&MBB
,
2783 const MachineLoopInfo
*LI
,
2784 const AsmPrinter
&AP
) {
2785 // Add loop depth information
2786 const MachineLoop
*Loop
= LI
->getLoopFor(&MBB
);
2789 MachineBasicBlock
*Header
= Loop
->getHeader();
2790 assert(Header
&& "No header for loop");
2792 // If this block is not a loop header, just print out what is the loop header
2794 if (Header
!= &MBB
) {
2795 AP
.OutStreamer
->AddComment(" in Loop: Header=BB" +
2796 Twine(AP
.getFunctionNumber())+"_" +
2797 Twine(Loop
->getHeader()->getNumber())+
2798 " Depth="+Twine(Loop
->getLoopDepth()));
2802 // Otherwise, it is a loop header. Print out information about child and
2804 raw_ostream
&OS
= AP
.OutStreamer
->GetCommentOS();
2806 PrintParentLoopComment(OS
, Loop
->getParentLoop(), AP
.getFunctionNumber());
2809 OS
.indent(Loop
->getLoopDepth()*2-2);
2814 OS
<< "Loop Header: Depth=" + Twine(Loop
->getLoopDepth()) << '\n';
2816 PrintChildLoopComment(OS
, Loop
, AP
.getFunctionNumber());
2819 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock
&MBB
,
2820 MCCodePaddingContext
&Context
) const {
2821 assert(MF
!= nullptr && "Machine function must be valid");
2822 Context
.IsPaddingActive
= !MF
->hasInlineAsm() &&
2823 !MF
->getFunction().optForSize() &&
2824 TM
.getOptLevel() != CodeGenOpt::None
;
2825 Context
.IsBasicBlockReachableViaFallthrough
=
2826 std::find(MBB
.pred_begin(), MBB
.pred_end(), MBB
.getPrevNode()) !=
2828 Context
.IsBasicBlockReachableViaBranch
=
2829 MBB
.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB
);
2832 /// EmitBasicBlockStart - This method prints the label for the specified
2833 /// MachineBasicBlock, an alignment (if present) and a comment describing
2834 /// it if appropriate.
2835 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock
&MBB
) const {
2836 // End the previous funclet and start a new one.
2837 if (MBB
.isEHFuncletEntry()) {
2838 for (const HandlerInfo
&HI
: Handlers
) {
2839 HI
.Handler
->endFunclet();
2840 HI
.Handler
->beginFunclet(MBB
);
2844 // Emit an alignment directive for this block, if needed.
2845 if (unsigned Align
= MBB
.getAlignment())
2846 EmitAlignment(Align
);
2847 MCCodePaddingContext Context
;
2848 setupCodePaddingContext(MBB
, Context
);
2849 OutStreamer
->EmitCodePaddingBasicBlockStart(Context
);
2851 // If the block has its address taken, emit any labels that were used to
2852 // reference the block. It is possible that there is more than one label
2853 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2854 // the references were generated.
2855 if (MBB
.hasAddressTaken()) {
2856 const BasicBlock
*BB
= MBB
.getBasicBlock();
2858 OutStreamer
->AddComment("Block address taken");
2860 // MBBs can have their address taken as part of CodeGen without having
2861 // their corresponding BB's address taken in IR
2862 if (BB
->hasAddressTaken())
2863 for (MCSymbol
*Sym
: MMI
->getAddrLabelSymbolToEmit(BB
))
2864 OutStreamer
->EmitLabel(Sym
);
2867 // Print some verbose block comments.
2869 if (const BasicBlock
*BB
= MBB
.getBasicBlock()) {
2870 if (BB
->hasName()) {
2871 BB
->printAsOperand(OutStreamer
->GetCommentOS(),
2872 /*PrintType=*/false, BB
->getModule());
2873 OutStreamer
->GetCommentOS() << '\n';
2877 assert(MLI
!= nullptr && "MachineLoopInfo should has been computed");
2878 emitBasicBlockLoopComments(MBB
, MLI
, *this);
2881 // Print the main label for the block.
2882 if (MBB
.pred_empty() ||
2883 (isBlockOnlyReachableByFallthrough(&MBB
) && !MBB
.isEHFuncletEntry())) {
2885 // NOTE: Want this comment at start of line, don't emit with AddComment.
2886 OutStreamer
->emitRawComment(" %bb." + Twine(MBB
.getNumber()) + ":",
2890 OutStreamer
->EmitLabel(MBB
.getSymbol());
2894 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock
&MBB
) {
2895 MCCodePaddingContext Context
;
2896 setupCodePaddingContext(MBB
, Context
);
2897 OutStreamer
->EmitCodePaddingBasicBlockEnd(Context
);
2900 void AsmPrinter::EmitVisibility(MCSymbol
*Sym
, unsigned Visibility
,
2901 bool IsDefinition
) const {
2902 MCSymbolAttr Attr
= MCSA_Invalid
;
2904 switch (Visibility
) {
2906 case GlobalValue::HiddenVisibility
:
2908 Attr
= MAI
->getHiddenVisibilityAttr();
2910 Attr
= MAI
->getHiddenDeclarationVisibilityAttr();
2912 case GlobalValue::ProtectedVisibility
:
2913 Attr
= MAI
->getProtectedVisibilityAttr();
2917 if (Attr
!= MCSA_Invalid
)
2918 OutStreamer
->EmitSymbolAttribute(Sym
, Attr
);
2921 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2922 /// exactly one predecessor and the control transfer mechanism between
2923 /// the predecessor and this block is a fall-through.
2925 isBlockOnlyReachableByFallthrough(const MachineBasicBlock
*MBB
) const {
2926 // If this is a landing pad, it isn't a fall through. If it has no preds,
2927 // then nothing falls through to it.
2928 if (MBB
->isEHPad() || MBB
->pred_empty())
2931 // If there isn't exactly one predecessor, it can't be a fall through.
2932 if (MBB
->pred_size() > 1)
2935 // The predecessor has to be immediately before this block.
2936 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
2937 if (!Pred
->isLayoutSuccessor(MBB
))
2940 // If the block is completely empty, then it definitely does fall through.
2944 // Check the terminators in the previous blocks
2945 for (const auto &MI
: Pred
->terminators()) {
2946 // If it is not a simple branch, we are in a table somewhere.
2947 if (!MI
.isBranch() || MI
.isIndirectBranch())
2950 // If we are the operands of one of the branches, this is not a fall
2951 // through. Note that targets with delay slots will usually bundle
2952 // terminators with the delay slot instruction.
2953 for (ConstMIBundleOperands
OP(MI
); OP
.isValid(); ++OP
) {
2956 if (OP
->isMBB() && OP
->getMBB() == MBB
)
2964 GCMetadataPrinter
*AsmPrinter::GetOrCreateGCPrinter(GCStrategy
&S
) {
2965 if (!S
.usesMetadata())
2968 gcp_map_type
&GCMap
= getGCMap(GCMetadataPrinters
);
2969 gcp_map_type::iterator GCPI
= GCMap
.find(&S
);
2970 if (GCPI
!= GCMap
.end())
2971 return GCPI
->second
.get();
2973 auto Name
= S
.getName();
2975 for (GCMetadataPrinterRegistry::iterator
2976 I
= GCMetadataPrinterRegistry::begin(),
2977 E
= GCMetadataPrinterRegistry::end(); I
!= E
; ++I
)
2978 if (Name
== I
->getName()) {
2979 std::unique_ptr
<GCMetadataPrinter
> GMP
= I
->instantiate();
2981 auto IterBool
= GCMap
.insert(std::make_pair(&S
, std::move(GMP
)));
2982 return IterBool
.first
->second
.get();
2985 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name
));
2988 void AsmPrinter::emitStackMaps(StackMaps
&SM
) {
2989 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
2990 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
2991 bool NeedsDefault
= false;
2992 if (MI
->begin() == MI
->end())
2993 // No GC strategy, use the default format.
2994 NeedsDefault
= true;
2996 for (auto &I
: *MI
) {
2997 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*I
))
2998 if (MP
->emitStackMaps(SM
, *this))
3000 // The strategy doesn't have printer or doesn't emit custom stack maps.
3001 // Use the default format.
3002 NeedsDefault
= true;
3006 SM
.serializeToStackMapSection();
3009 /// Pin vtable to this file.
3010 AsmPrinterHandler::~AsmPrinterHandler() = default;
3012 void AsmPrinterHandler::markFunctionEnd() {}
3014 // In the binary's "xray_instr_map" section, an array of these function entries
3015 // describes each instrumentation point. When XRay patches your code, the index
3016 // into this table will be given to your handler as a patch point identifier.
3017 void AsmPrinter::XRayFunctionEntry::emit(int Bytes
, MCStreamer
*Out
,
3018 const MCSymbol
*CurrentFnSym
) const {
3019 Out
->EmitSymbolValue(Sled
, Bytes
);
3020 Out
->EmitSymbolValue(CurrentFnSym
, Bytes
);
3021 auto Kind8
= static_cast<uint8_t>(Kind
);
3022 Out
->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8
), 1));
3023 Out
->EmitBinaryData(
3024 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument
), 1));
3025 Out
->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version
), 1));
3026 auto Padding
= (4 * Bytes
) - ((2 * Bytes
) + 3);
3027 assert(Padding
>= 0 && "Instrumentation map entry > 4 * Word Size");
3028 Out
->EmitZeros(Padding
);
3031 void AsmPrinter::emitXRayTable() {
3035 auto PrevSection
= OutStreamer
->getCurrentSectionOnly();
3036 const Function
&F
= MF
->getFunction();
3037 MCSection
*InstMap
= nullptr;
3038 MCSection
*FnSledIndex
= nullptr;
3039 if (MF
->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3040 auto Associated
= dyn_cast
<MCSymbolELF
>(CurrentFnSym
);
3041 assert(Associated
!= nullptr);
3042 auto Flags
= ELF::SHF_WRITE
| ELF::SHF_ALLOC
| ELF::SHF_LINK_ORDER
;
3043 std::string GroupName
;
3044 if (F
.hasComdat()) {
3045 Flags
|= ELF::SHF_GROUP
;
3046 GroupName
= F
.getComdat()->getName();
3049 auto UniqueID
= ++XRayFnUniqueID
;
3051 OutContext
.getELFSection("xray_instr_map", ELF::SHT_PROGBITS
, Flags
, 0,
3052 GroupName
, UniqueID
, Associated
);
3054 OutContext
.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS
, Flags
, 0,
3055 GroupName
, UniqueID
, Associated
);
3056 } else if (MF
->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3057 InstMap
= OutContext
.getMachOSection("__DATA", "xray_instr_map", 0,
3058 SectionKind::getReadOnlyWithRel());
3059 FnSledIndex
= OutContext
.getMachOSection("__DATA", "xray_fn_idx", 0,
3060 SectionKind::getReadOnlyWithRel());
3062 llvm_unreachable("Unsupported target");
3065 auto WordSizeBytes
= MAI
->getCodePointerSize();
3067 // Now we switch to the instrumentation map section. Because this is done
3068 // per-function, we are able to create an index entry that will represent the
3069 // range of sleds associated with a function.
3070 MCSymbol
*SledsStart
= OutContext
.createTempSymbol("xray_sleds_start", true);
3071 OutStreamer
->SwitchSection(InstMap
);
3072 OutStreamer
->EmitLabel(SledsStart
);
3073 for (const auto &Sled
: Sleds
)
3074 Sled
.emit(WordSizeBytes
, OutStreamer
.get(), CurrentFnSym
);
3075 MCSymbol
*SledsEnd
= OutContext
.createTempSymbol("xray_sleds_end", true);
3076 OutStreamer
->EmitLabel(SledsEnd
);
3078 // We then emit a single entry in the index per function. We use the symbols
3079 // that bound the instrumentation map as the range for a specific function.
3080 // Each entry here will be 2 * word size aligned, as we're writing down two
3081 // pointers. This should work for both 32-bit and 64-bit platforms.
3082 OutStreamer
->SwitchSection(FnSledIndex
);
3083 OutStreamer
->EmitCodeAlignment(2 * WordSizeBytes
);
3084 OutStreamer
->EmitSymbolValue(SledsStart
, WordSizeBytes
, false);
3085 OutStreamer
->EmitSymbolValue(SledsEnd
, WordSizeBytes
, false);
3086 OutStreamer
->SwitchSection(PrevSection
);
3090 void AsmPrinter::recordSled(MCSymbol
*Sled
, const MachineInstr
&MI
,
3091 SledKind Kind
, uint8_t Version
) {
3092 const Function
&F
= MI
.getMF()->getFunction();
3093 auto Attr
= F
.getFnAttribute("function-instrument");
3094 bool LogArgs
= F
.hasFnAttribute("xray-log-args");
3095 bool AlwaysInstrument
=
3096 Attr
.isStringAttribute() && Attr
.getValueAsString() == "xray-always";
3097 if (Kind
== SledKind::FUNCTION_ENTER
&& LogArgs
)
3098 Kind
= SledKind::LOG_ARGS_ENTER
;
3099 Sleds
.emplace_back(XRayFunctionEntry
{Sled
, CurrentFnSym
, Kind
,
3100 AlwaysInstrument
, &F
, Version
});
3103 uint16_t AsmPrinter::getDwarfVersion() const {
3104 return OutStreamer
->getContext().getDwarfVersion();
3107 void AsmPrinter::setDwarfVersion(uint16_t Version
) {
3108 OutStreamer
->getContext().setDwarfVersion(Version
);