1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend. This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/AtomicExpandUtils.h"
21 #include "llvm/CodeGen/RuntimeLibcalls.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
54 #define DEBUG_TYPE "atomic-expand"
58 class AtomicExpand
: public FunctionPass
{
59 const TargetLowering
*TLI
= nullptr;
62 static char ID
; // Pass identification, replacement for typeid
64 AtomicExpand() : FunctionPass(ID
) {
65 initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
68 bool runOnFunction(Function
&F
) override
;
71 bool bracketInstWithFences(Instruction
*I
, AtomicOrdering Order
);
72 IntegerType
*getCorrespondingIntegerType(Type
*T
, const DataLayout
&DL
);
73 LoadInst
*convertAtomicLoadToIntegerType(LoadInst
*LI
);
74 bool tryExpandAtomicLoad(LoadInst
*LI
);
75 bool expandAtomicLoadToLL(LoadInst
*LI
);
76 bool expandAtomicLoadToCmpXchg(LoadInst
*LI
);
77 StoreInst
*convertAtomicStoreToIntegerType(StoreInst
*SI
);
78 bool expandAtomicStore(StoreInst
*SI
);
79 bool tryExpandAtomicRMW(AtomicRMWInst
*AI
);
81 insertRMWLLSCLoop(IRBuilder
<> &Builder
, Type
*ResultTy
, Value
*Addr
,
82 AtomicOrdering MemOpOrder
,
83 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
);
84 void expandAtomicOpToLLSC(
85 Instruction
*I
, Type
*ResultTy
, Value
*Addr
, AtomicOrdering MemOpOrder
,
86 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
);
87 void expandPartwordAtomicRMW(
89 TargetLoweringBase::AtomicExpansionKind ExpansionKind
);
90 AtomicRMWInst
*widenPartwordAtomicRMW(AtomicRMWInst
*AI
);
91 void expandPartwordCmpXchg(AtomicCmpXchgInst
*I
);
92 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst
*AI
);
93 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst
*CI
);
95 AtomicCmpXchgInst
*convertCmpXchgToIntegerType(AtomicCmpXchgInst
*CI
);
96 static Value
*insertRMWCmpXchgLoop(
97 IRBuilder
<> &Builder
, Type
*ResultType
, Value
*Addr
,
98 AtomicOrdering MemOpOrder
,
99 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
,
100 CreateCmpXchgInstFun CreateCmpXchg
);
101 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst
*CI
);
103 bool expandAtomicCmpXchg(AtomicCmpXchgInst
*CI
);
104 bool isIdempotentRMW(AtomicRMWInst
*RMWI
);
105 bool simplifyIdempotentRMW(AtomicRMWInst
*RMWI
);
107 bool expandAtomicOpToLibcall(Instruction
*I
, unsigned Size
, unsigned Align
,
108 Value
*PointerOperand
, Value
*ValueOperand
,
109 Value
*CASExpected
, AtomicOrdering Ordering
,
110 AtomicOrdering Ordering2
,
111 ArrayRef
<RTLIB::Libcall
> Libcalls
);
112 void expandAtomicLoadToLibcall(LoadInst
*LI
);
113 void expandAtomicStoreToLibcall(StoreInst
*LI
);
114 void expandAtomicRMWToLibcall(AtomicRMWInst
*I
);
115 void expandAtomicCASToLibcall(AtomicCmpXchgInst
*I
);
118 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst
*AI
,
119 CreateCmpXchgInstFun CreateCmpXchg
);
122 } // end anonymous namespace
124 char AtomicExpand::ID
= 0;
126 char &llvm::AtomicExpandID
= AtomicExpand::ID
;
128 INITIALIZE_PASS(AtomicExpand
, DEBUG_TYPE
, "Expand Atomic instructions",
131 FunctionPass
*llvm::createAtomicExpandPass() { return new AtomicExpand(); }
133 // Helper functions to retrieve the size of atomic instructions.
134 static unsigned getAtomicOpSize(LoadInst
*LI
) {
135 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
136 return DL
.getTypeStoreSize(LI
->getType());
139 static unsigned getAtomicOpSize(StoreInst
*SI
) {
140 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
141 return DL
.getTypeStoreSize(SI
->getValueOperand()->getType());
144 static unsigned getAtomicOpSize(AtomicRMWInst
*RMWI
) {
145 const DataLayout
&DL
= RMWI
->getModule()->getDataLayout();
146 return DL
.getTypeStoreSize(RMWI
->getValOperand()->getType());
149 static unsigned getAtomicOpSize(AtomicCmpXchgInst
*CASI
) {
150 const DataLayout
&DL
= CASI
->getModule()->getDataLayout();
151 return DL
.getTypeStoreSize(CASI
->getCompareOperand()->getType());
154 // Helper functions to retrieve the alignment of atomic instructions.
155 static unsigned getAtomicOpAlign(LoadInst
*LI
) {
156 unsigned Align
= LI
->getAlignment();
157 // In the future, if this IR restriction is relaxed, we should
158 // return DataLayout::getABITypeAlignment when there's no align
160 assert(Align
!= 0 && "An atomic LoadInst always has an explicit alignment");
164 static unsigned getAtomicOpAlign(StoreInst
*SI
) {
165 unsigned Align
= SI
->getAlignment();
166 // In the future, if this IR restriction is relaxed, we should
167 // return DataLayout::getABITypeAlignment when there's no align
169 assert(Align
!= 0 && "An atomic StoreInst always has an explicit alignment");
173 static unsigned getAtomicOpAlign(AtomicRMWInst
*RMWI
) {
174 // TODO(PR27168): This instruction has no alignment attribute, but unlike the
175 // default alignment for load/store, the default here is to assume
176 // it has NATURAL alignment, not DataLayout-specified alignment.
177 const DataLayout
&DL
= RMWI
->getModule()->getDataLayout();
178 return DL
.getTypeStoreSize(RMWI
->getValOperand()->getType());
181 static unsigned getAtomicOpAlign(AtomicCmpXchgInst
*CASI
) {
182 // TODO(PR27168): same comment as above.
183 const DataLayout
&DL
= CASI
->getModule()->getDataLayout();
184 return DL
.getTypeStoreSize(CASI
->getCompareOperand()->getType());
187 // Determine if a particular atomic operation has a supported size,
188 // and is of appropriate alignment, to be passed through for target
189 // lowering. (Versus turning into a __atomic libcall)
190 template <typename Inst
>
191 static bool atomicSizeSupported(const TargetLowering
*TLI
, Inst
*I
) {
192 unsigned Size
= getAtomicOpSize(I
);
193 unsigned Align
= getAtomicOpAlign(I
);
194 return Align
>= Size
&& Size
<= TLI
->getMaxAtomicSizeInBitsSupported() / 8;
197 bool AtomicExpand::runOnFunction(Function
&F
) {
198 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
202 auto &TM
= TPC
->getTM
<TargetMachine
>();
203 if (!TM
.getSubtargetImpl(F
)->enableAtomicExpand())
205 TLI
= TM
.getSubtargetImpl(F
)->getTargetLowering();
207 SmallVector
<Instruction
*, 1> AtomicInsts
;
209 // Changing control-flow while iterating through it is a bad idea, so gather a
210 // list of all atomic instructions before we start.
211 for (inst_iterator II
= inst_begin(F
), E
= inst_end(F
); II
!= E
; ++II
) {
212 Instruction
*I
= &*II
;
213 if (I
->isAtomic() && !isa
<FenceInst
>(I
))
214 AtomicInsts
.push_back(I
);
217 bool MadeChange
= false;
218 for (auto I
: AtomicInsts
) {
219 auto LI
= dyn_cast
<LoadInst
>(I
);
220 auto SI
= dyn_cast
<StoreInst
>(I
);
221 auto RMWI
= dyn_cast
<AtomicRMWInst
>(I
);
222 auto CASI
= dyn_cast
<AtomicCmpXchgInst
>(I
);
223 assert((LI
|| SI
|| RMWI
|| CASI
) && "Unknown atomic instruction");
225 // If the Size/Alignment is not supported, replace with a libcall.
227 if (!atomicSizeSupported(TLI
, LI
)) {
228 expandAtomicLoadToLibcall(LI
);
233 if (!atomicSizeSupported(TLI
, SI
)) {
234 expandAtomicStoreToLibcall(SI
);
239 if (!atomicSizeSupported(TLI
, RMWI
)) {
240 expandAtomicRMWToLibcall(RMWI
);
245 if (!atomicSizeSupported(TLI
, CASI
)) {
246 expandAtomicCASToLibcall(CASI
);
252 if (TLI
->shouldInsertFencesForAtomic(I
)) {
253 auto FenceOrdering
= AtomicOrdering::Monotonic
;
254 if (LI
&& isAcquireOrStronger(LI
->getOrdering())) {
255 FenceOrdering
= LI
->getOrdering();
256 LI
->setOrdering(AtomicOrdering::Monotonic
);
257 } else if (SI
&& isReleaseOrStronger(SI
->getOrdering())) {
258 FenceOrdering
= SI
->getOrdering();
259 SI
->setOrdering(AtomicOrdering::Monotonic
);
260 } else if (RMWI
&& (isReleaseOrStronger(RMWI
->getOrdering()) ||
261 isAcquireOrStronger(RMWI
->getOrdering()))) {
262 FenceOrdering
= RMWI
->getOrdering();
263 RMWI
->setOrdering(AtomicOrdering::Monotonic
);
265 TLI
->shouldExpandAtomicCmpXchgInIR(CASI
) ==
266 TargetLoweringBase::AtomicExpansionKind::None
&&
267 (isReleaseOrStronger(CASI
->getSuccessOrdering()) ||
268 isAcquireOrStronger(CASI
->getSuccessOrdering()))) {
269 // If a compare and swap is lowered to LL/SC, we can do smarter fence
270 // insertion, with a stronger one on the success path than on the
271 // failure path. As a result, fence insertion is directly done by
272 // expandAtomicCmpXchg in that case.
273 FenceOrdering
= CASI
->getSuccessOrdering();
274 CASI
->setSuccessOrdering(AtomicOrdering::Monotonic
);
275 CASI
->setFailureOrdering(AtomicOrdering::Monotonic
);
278 if (FenceOrdering
!= AtomicOrdering::Monotonic
) {
279 MadeChange
|= bracketInstWithFences(I
, FenceOrdering
);
284 if (LI
->getType()->isFloatingPointTy()) {
285 // TODO: add a TLI hook to control this so that each target can
286 // convert to lowering the original type one at a time.
287 LI
= convertAtomicLoadToIntegerType(LI
);
288 assert(LI
->getType()->isIntegerTy() && "invariant broken");
292 MadeChange
|= tryExpandAtomicLoad(LI
);
294 if (SI
->getValueOperand()->getType()->isFloatingPointTy()) {
295 // TODO: add a TLI hook to control this so that each target can
296 // convert to lowering the original type one at a time.
297 SI
= convertAtomicStoreToIntegerType(SI
);
298 assert(SI
->getValueOperand()->getType()->isIntegerTy() &&
303 if (TLI
->shouldExpandAtomicStoreInIR(SI
))
304 MadeChange
|= expandAtomicStore(SI
);
306 // There are two different ways of expanding RMW instructions:
307 // - into a load if it is idempotent
308 // - into a Cmpxchg/LL-SC loop otherwise
309 // we try them in that order.
311 if (isIdempotentRMW(RMWI
) && simplifyIdempotentRMW(RMWI
)) {
314 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
315 unsigned ValueSize
= getAtomicOpSize(RMWI
);
316 AtomicRMWInst::BinOp Op
= RMWI
->getOperation();
317 if (ValueSize
< MinCASSize
&&
318 (Op
== AtomicRMWInst::Or
|| Op
== AtomicRMWInst::Xor
||
319 Op
== AtomicRMWInst::And
)) {
320 RMWI
= widenPartwordAtomicRMW(RMWI
);
324 MadeChange
|= tryExpandAtomicRMW(RMWI
);
327 // TODO: when we're ready to make the change at the IR level, we can
328 // extend convertCmpXchgToInteger for floating point too.
329 assert(!CASI
->getCompareOperand()->getType()->isFloatingPointTy() &&
330 "unimplemented - floating point not legal at IR level");
331 if (CASI
->getCompareOperand()->getType()->isPointerTy() ) {
332 // TODO: add a TLI hook to control this so that each target can
333 // convert to lowering the original type one at a time.
334 CASI
= convertCmpXchgToIntegerType(CASI
);
335 assert(CASI
->getCompareOperand()->getType()->isIntegerTy() &&
340 MadeChange
|= tryExpandAtomicCmpXchg(CASI
);
346 bool AtomicExpand::bracketInstWithFences(Instruction
*I
, AtomicOrdering Order
) {
347 IRBuilder
<> Builder(I
);
349 auto LeadingFence
= TLI
->emitLeadingFence(Builder
, I
, Order
);
351 auto TrailingFence
= TLI
->emitTrailingFence(Builder
, I
, Order
);
352 // We have a guard here because not every atomic operation generates a
355 TrailingFence
->moveAfter(I
);
357 return (LeadingFence
|| TrailingFence
);
360 /// Get the iX type with the same bitwidth as T.
361 IntegerType
*AtomicExpand::getCorrespondingIntegerType(Type
*T
,
362 const DataLayout
&DL
) {
363 EVT VT
= TLI
->getValueType(DL
, T
);
364 unsigned BitWidth
= VT
.getStoreSizeInBits();
365 assert(BitWidth
== VT
.getSizeInBits() && "must be a power of two");
366 return IntegerType::get(T
->getContext(), BitWidth
);
369 /// Convert an atomic load of a non-integral type to an integer load of the
370 /// equivalent bitwidth. See the function comment on
371 /// convertAtomicStoreToIntegerType for background.
372 LoadInst
*AtomicExpand::convertAtomicLoadToIntegerType(LoadInst
*LI
) {
373 auto *M
= LI
->getModule();
374 Type
*NewTy
= getCorrespondingIntegerType(LI
->getType(),
377 IRBuilder
<> Builder(LI
);
379 Value
*Addr
= LI
->getPointerOperand();
380 Type
*PT
= PointerType::get(NewTy
,
381 Addr
->getType()->getPointerAddressSpace());
382 Value
*NewAddr
= Builder
.CreateBitCast(Addr
, PT
);
384 auto *NewLI
= Builder
.CreateLoad(NewTy
, NewAddr
);
385 NewLI
->setAlignment(LI
->getAlignment());
386 NewLI
->setVolatile(LI
->isVolatile());
387 NewLI
->setAtomic(LI
->getOrdering(), LI
->getSyncScopeID());
388 LLVM_DEBUG(dbgs() << "Replaced " << *LI
<< " with " << *NewLI
<< "\n");
390 Value
*NewVal
= Builder
.CreateBitCast(NewLI
, LI
->getType());
391 LI
->replaceAllUsesWith(NewVal
);
392 LI
->eraseFromParent();
396 bool AtomicExpand::tryExpandAtomicLoad(LoadInst
*LI
) {
397 switch (TLI
->shouldExpandAtomicLoadInIR(LI
)) {
398 case TargetLoweringBase::AtomicExpansionKind::None
:
400 case TargetLoweringBase::AtomicExpansionKind::LLSC
:
401 expandAtomicOpToLLSC(
402 LI
, LI
->getType(), LI
->getPointerOperand(), LI
->getOrdering(),
403 [](IRBuilder
<> &Builder
, Value
*Loaded
) { return Loaded
; });
405 case TargetLoweringBase::AtomicExpansionKind::LLOnly
:
406 return expandAtomicLoadToLL(LI
);
407 case TargetLoweringBase::AtomicExpansionKind::CmpXChg
:
408 return expandAtomicLoadToCmpXchg(LI
);
410 llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
414 bool AtomicExpand::expandAtomicLoadToLL(LoadInst
*LI
) {
415 IRBuilder
<> Builder(LI
);
417 // On some architectures, load-linked instructions are atomic for larger
418 // sizes than normal loads. For example, the only 64-bit load guaranteed
419 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
421 TLI
->emitLoadLinked(Builder
, LI
->getPointerOperand(), LI
->getOrdering());
422 TLI
->emitAtomicCmpXchgNoStoreLLBalance(Builder
);
424 LI
->replaceAllUsesWith(Val
);
425 LI
->eraseFromParent();
430 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst
*LI
) {
431 IRBuilder
<> Builder(LI
);
432 AtomicOrdering Order
= LI
->getOrdering();
433 Value
*Addr
= LI
->getPointerOperand();
434 Type
*Ty
= cast
<PointerType
>(Addr
->getType())->getElementType();
435 Constant
*DummyVal
= Constant::getNullValue(Ty
);
437 Value
*Pair
= Builder
.CreateAtomicCmpXchg(
438 Addr
, DummyVal
, DummyVal
, Order
,
439 AtomicCmpXchgInst::getStrongestFailureOrdering(Order
));
440 Value
*Loaded
= Builder
.CreateExtractValue(Pair
, 0, "loaded");
442 LI
->replaceAllUsesWith(Loaded
);
443 LI
->eraseFromParent();
448 /// Convert an atomic store of a non-integral type to an integer store of the
449 /// equivalent bitwidth. We used to not support floating point or vector
450 /// atomics in the IR at all. The backends learned to deal with the bitcast
451 /// idiom because that was the only way of expressing the notion of a atomic
452 /// float or vector store. The long term plan is to teach each backend to
453 /// instruction select from the original atomic store, but as a migration
454 /// mechanism, we convert back to the old format which the backends understand.
455 /// Each backend will need individual work to recognize the new format.
456 StoreInst
*AtomicExpand::convertAtomicStoreToIntegerType(StoreInst
*SI
) {
457 IRBuilder
<> Builder(SI
);
458 auto *M
= SI
->getModule();
459 Type
*NewTy
= getCorrespondingIntegerType(SI
->getValueOperand()->getType(),
461 Value
*NewVal
= Builder
.CreateBitCast(SI
->getValueOperand(), NewTy
);
463 Value
*Addr
= SI
->getPointerOperand();
464 Type
*PT
= PointerType::get(NewTy
,
465 Addr
->getType()->getPointerAddressSpace());
466 Value
*NewAddr
= Builder
.CreateBitCast(Addr
, PT
);
468 StoreInst
*NewSI
= Builder
.CreateStore(NewVal
, NewAddr
);
469 NewSI
->setAlignment(SI
->getAlignment());
470 NewSI
->setVolatile(SI
->isVolatile());
471 NewSI
->setAtomic(SI
->getOrdering(), SI
->getSyncScopeID());
472 LLVM_DEBUG(dbgs() << "Replaced " << *SI
<< " with " << *NewSI
<< "\n");
473 SI
->eraseFromParent();
477 bool AtomicExpand::expandAtomicStore(StoreInst
*SI
) {
478 // This function is only called on atomic stores that are too large to be
479 // atomic if implemented as a native store. So we replace them by an
480 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
481 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
482 // It is the responsibility of the target to only signal expansion via
483 // shouldExpandAtomicRMW in cases where this is required and possible.
484 IRBuilder
<> Builder(SI
);
486 Builder
.CreateAtomicRMW(AtomicRMWInst::Xchg
, SI
->getPointerOperand(),
487 SI
->getValueOperand(), SI
->getOrdering());
488 SI
->eraseFromParent();
490 // Now we have an appropriate swap instruction, lower it as usual.
491 return tryExpandAtomicRMW(AI
);
494 static void createCmpXchgInstFun(IRBuilder
<> &Builder
, Value
*Addr
,
495 Value
*Loaded
, Value
*NewVal
,
496 AtomicOrdering MemOpOrder
,
497 Value
*&Success
, Value
*&NewLoaded
) {
498 Type
*OrigTy
= NewVal
->getType();
500 // This code can go away when cmpxchg supports FP types.
501 bool NeedBitcast
= OrigTy
->isFloatingPointTy();
503 IntegerType
*IntTy
= Builder
.getIntNTy(OrigTy
->getPrimitiveSizeInBits());
504 unsigned AS
= Addr
->getType()->getPointerAddressSpace();
505 Addr
= Builder
.CreateBitCast(Addr
, IntTy
->getPointerTo(AS
));
506 NewVal
= Builder
.CreateBitCast(NewVal
, IntTy
);
507 Loaded
= Builder
.CreateBitCast(Loaded
, IntTy
);
510 Value
* Pair
= Builder
.CreateAtomicCmpXchg(
511 Addr
, Loaded
, NewVal
, MemOpOrder
,
512 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder
));
513 Success
= Builder
.CreateExtractValue(Pair
, 1, "success");
514 NewLoaded
= Builder
.CreateExtractValue(Pair
, 0, "newloaded");
517 NewLoaded
= Builder
.CreateBitCast(NewLoaded
, OrigTy
);
520 /// Emit IR to implement the given atomicrmw operation on values in registers,
521 /// returning the new value.
522 static Value
*performAtomicOp(AtomicRMWInst::BinOp Op
, IRBuilder
<> &Builder
,
523 Value
*Loaded
, Value
*Inc
) {
526 case AtomicRMWInst::Xchg
:
528 case AtomicRMWInst::Add
:
529 return Builder
.CreateAdd(Loaded
, Inc
, "new");
530 case AtomicRMWInst::Sub
:
531 return Builder
.CreateSub(Loaded
, Inc
, "new");
532 case AtomicRMWInst::And
:
533 return Builder
.CreateAnd(Loaded
, Inc
, "new");
534 case AtomicRMWInst::Nand
:
535 return Builder
.CreateNot(Builder
.CreateAnd(Loaded
, Inc
), "new");
536 case AtomicRMWInst::Or
:
537 return Builder
.CreateOr(Loaded
, Inc
, "new");
538 case AtomicRMWInst::Xor
:
539 return Builder
.CreateXor(Loaded
, Inc
, "new");
540 case AtomicRMWInst::Max
:
541 NewVal
= Builder
.CreateICmpSGT(Loaded
, Inc
);
542 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
543 case AtomicRMWInst::Min
:
544 NewVal
= Builder
.CreateICmpSLE(Loaded
, Inc
);
545 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
546 case AtomicRMWInst::UMax
:
547 NewVal
= Builder
.CreateICmpUGT(Loaded
, Inc
);
548 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
549 case AtomicRMWInst::UMin
:
550 NewVal
= Builder
.CreateICmpULE(Loaded
, Inc
);
551 return Builder
.CreateSelect(NewVal
, Loaded
, Inc
, "new");
552 case AtomicRMWInst::FAdd
:
553 return Builder
.CreateFAdd(Loaded
, Inc
, "new");
554 case AtomicRMWInst::FSub
:
555 return Builder
.CreateFSub(Loaded
, Inc
, "new");
557 llvm_unreachable("Unknown atomic op");
561 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst
*AI
) {
562 switch (TLI
->shouldExpandAtomicRMWInIR(AI
)) {
563 case TargetLoweringBase::AtomicExpansionKind::None
:
565 case TargetLoweringBase::AtomicExpansionKind::LLSC
: {
566 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
567 unsigned ValueSize
= getAtomicOpSize(AI
);
568 if (ValueSize
< MinCASSize
) {
570 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
572 auto PerformOp
= [&](IRBuilder
<> &Builder
, Value
*Loaded
) {
573 return performAtomicOp(AI
->getOperation(), Builder
, Loaded
,
574 AI
->getValOperand());
576 expandAtomicOpToLLSC(AI
, AI
->getType(), AI
->getPointerOperand(),
577 AI
->getOrdering(), PerformOp
);
581 case TargetLoweringBase::AtomicExpansionKind::CmpXChg
: {
582 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
583 unsigned ValueSize
= getAtomicOpSize(AI
);
584 if (ValueSize
< MinCASSize
) {
585 expandPartwordAtomicRMW(AI
,
586 TargetLoweringBase::AtomicExpansionKind::CmpXChg
);
588 expandAtomicRMWToCmpXchg(AI
, createCmpXchgInstFun
);
592 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic
: {
593 expandAtomicRMWToMaskedIntrinsic(AI
);
597 llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
603 /// Result values from createMaskInstrs helper.
604 struct PartwordMaskValues
{
613 } // end anonymous namespace
615 /// This is a helper function which builds instructions to provide
616 /// values necessary for partword atomic operations. It takes an
617 /// incoming address, Addr, and ValueType, and constructs the address,
618 /// shift-amounts and masks needed to work with a larger value of size
621 /// AlignedAddr: Addr rounded down to a multiple of WordSize
623 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
624 /// from AlignAddr for it to have the same value as if
625 /// ValueType was loaded from Addr.
627 /// Mask: Value to mask with the value loaded from AlignAddr to
628 /// include only the part that would've been loaded from Addr.
630 /// Inv_Mask: The inverse of Mask.
631 static PartwordMaskValues
createMaskInstrs(IRBuilder
<> &Builder
, Instruction
*I
,
632 Type
*ValueType
, Value
*Addr
,
634 PartwordMaskValues Ret
;
636 BasicBlock
*BB
= I
->getParent();
637 Function
*F
= BB
->getParent();
638 Module
*M
= I
->getModule();
640 LLVMContext
&Ctx
= F
->getContext();
641 const DataLayout
&DL
= M
->getDataLayout();
643 unsigned ValueSize
= DL
.getTypeStoreSize(ValueType
);
645 assert(ValueSize
< WordSize
);
647 Ret
.ValueType
= ValueType
;
648 Ret
.WordType
= Type::getIntNTy(Ctx
, WordSize
* 8);
651 Ret
.WordType
->getPointerTo(Addr
->getType()->getPointerAddressSpace());
653 Value
*AddrInt
= Builder
.CreatePtrToInt(Addr
, DL
.getIntPtrType(Ctx
));
654 Ret
.AlignedAddr
= Builder
.CreateIntToPtr(
655 Builder
.CreateAnd(AddrInt
, ~(uint64_t)(WordSize
- 1)), WordPtrType
,
658 Value
*PtrLSB
= Builder
.CreateAnd(AddrInt
, WordSize
- 1, "PtrLSB");
659 if (DL
.isLittleEndian()) {
660 // turn bytes into bits
661 Ret
.ShiftAmt
= Builder
.CreateShl(PtrLSB
, 3);
663 // turn bytes into bits, and count from the other side.
665 Builder
.CreateShl(Builder
.CreateXor(PtrLSB
, WordSize
- ValueSize
), 3);
668 Ret
.ShiftAmt
= Builder
.CreateTrunc(Ret
.ShiftAmt
, Ret
.WordType
, "ShiftAmt");
669 Ret
.Mask
= Builder
.CreateShl(
670 ConstantInt::get(Ret
.WordType
, (1 << ValueSize
* 8) - 1), Ret
.ShiftAmt
,
672 Ret
.Inv_Mask
= Builder
.CreateNot(Ret
.Mask
, "Inv_Mask");
677 /// Emit IR to implement a masked version of a given atomicrmw
678 /// operation. (That is, only the bits under the Mask should be
679 /// affected by the operation)
680 static Value
*performMaskedAtomicOp(AtomicRMWInst::BinOp Op
,
681 IRBuilder
<> &Builder
, Value
*Loaded
,
682 Value
*Shifted_Inc
, Value
*Inc
,
683 const PartwordMaskValues
&PMV
) {
684 // TODO: update to use
685 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
686 // to merge bits from two values without requiring PMV.Inv_Mask.
688 case AtomicRMWInst::Xchg
: {
689 Value
*Loaded_MaskOut
= Builder
.CreateAnd(Loaded
, PMV
.Inv_Mask
);
690 Value
*FinalVal
= Builder
.CreateOr(Loaded_MaskOut
, Shifted_Inc
);
693 case AtomicRMWInst::Or
:
694 case AtomicRMWInst::Xor
:
695 case AtomicRMWInst::And
:
696 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
697 case AtomicRMWInst::Add
:
698 case AtomicRMWInst::Sub
:
699 case AtomicRMWInst::Nand
: {
700 // The other arithmetic ops need to be masked into place.
701 Value
*NewVal
= performAtomicOp(Op
, Builder
, Loaded
, Shifted_Inc
);
702 Value
*NewVal_Masked
= Builder
.CreateAnd(NewVal
, PMV
.Mask
);
703 Value
*Loaded_MaskOut
= Builder
.CreateAnd(Loaded
, PMV
.Inv_Mask
);
704 Value
*FinalVal
= Builder
.CreateOr(Loaded_MaskOut
, NewVal_Masked
);
707 case AtomicRMWInst::Max
:
708 case AtomicRMWInst::Min
:
709 case AtomicRMWInst::UMax
:
710 case AtomicRMWInst::UMin
: {
711 // Finally, comparison ops will operate on the full value, so
712 // truncate down to the original size, and expand out again after
713 // doing the operation.
714 Value
*Loaded_Shiftdown
= Builder
.CreateTrunc(
715 Builder
.CreateLShr(Loaded
, PMV
.ShiftAmt
), PMV
.ValueType
);
716 Value
*NewVal
= performAtomicOp(Op
, Builder
, Loaded_Shiftdown
, Inc
);
717 Value
*NewVal_Shiftup
= Builder
.CreateShl(
718 Builder
.CreateZExt(NewVal
, PMV
.WordType
), PMV
.ShiftAmt
);
719 Value
*Loaded_MaskOut
= Builder
.CreateAnd(Loaded
, PMV
.Inv_Mask
);
720 Value
*FinalVal
= Builder
.CreateOr(Loaded_MaskOut
, NewVal_Shiftup
);
724 llvm_unreachable("Unknown atomic op");
728 /// Expand a sub-word atomicrmw operation into an appropriate
729 /// word-sized operation.
731 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
732 /// way as a typical atomicrmw expansion. The only difference here is
733 /// that the operation inside of the loop must operate only upon a
734 /// part of the value.
735 void AtomicExpand::expandPartwordAtomicRMW(
736 AtomicRMWInst
*AI
, TargetLoweringBase::AtomicExpansionKind ExpansionKind
) {
737 assert(ExpansionKind
== TargetLoweringBase::AtomicExpansionKind::CmpXChg
);
739 AtomicOrdering MemOpOrder
= AI
->getOrdering();
741 IRBuilder
<> Builder(AI
);
743 PartwordMaskValues PMV
=
744 createMaskInstrs(Builder
, AI
, AI
->getType(), AI
->getPointerOperand(),
745 TLI
->getMinCmpXchgSizeInBits() / 8);
747 Value
*ValOperand_Shifted
=
748 Builder
.CreateShl(Builder
.CreateZExt(AI
->getValOperand(), PMV
.WordType
),
749 PMV
.ShiftAmt
, "ValOperand_Shifted");
751 auto PerformPartwordOp
= [&](IRBuilder
<> &Builder
, Value
*Loaded
) {
752 return performMaskedAtomicOp(AI
->getOperation(), Builder
, Loaded
,
753 ValOperand_Shifted
, AI
->getValOperand(), PMV
);
756 // TODO: When we're ready to support LLSC conversions too, use
757 // insertRMWLLSCLoop here for ExpansionKind==LLSC.
759 insertRMWCmpXchgLoop(Builder
, PMV
.WordType
, PMV
.AlignedAddr
, MemOpOrder
,
760 PerformPartwordOp
, createCmpXchgInstFun
);
761 Value
*FinalOldResult
= Builder
.CreateTrunc(
762 Builder
.CreateLShr(OldResult
, PMV
.ShiftAmt
), PMV
.ValueType
);
763 AI
->replaceAllUsesWith(FinalOldResult
);
764 AI
->eraseFromParent();
767 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
768 AtomicRMWInst
*AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst
*AI
) {
769 IRBuilder
<> Builder(AI
);
770 AtomicRMWInst::BinOp Op
= AI
->getOperation();
772 assert((Op
== AtomicRMWInst::Or
|| Op
== AtomicRMWInst::Xor
||
773 Op
== AtomicRMWInst::And
) &&
774 "Unable to widen operation");
776 PartwordMaskValues PMV
=
777 createMaskInstrs(Builder
, AI
, AI
->getType(), AI
->getPointerOperand(),
778 TLI
->getMinCmpXchgSizeInBits() / 8);
780 Value
*ValOperand_Shifted
=
781 Builder
.CreateShl(Builder
.CreateZExt(AI
->getValOperand(), PMV
.WordType
),
782 PMV
.ShiftAmt
, "ValOperand_Shifted");
786 if (Op
== AtomicRMWInst::And
)
788 Builder
.CreateOr(PMV
.Inv_Mask
, ValOperand_Shifted
, "AndOperand");
790 NewOperand
= ValOperand_Shifted
;
792 AtomicRMWInst
*NewAI
= Builder
.CreateAtomicRMW(Op
, PMV
.AlignedAddr
,
793 NewOperand
, AI
->getOrdering());
795 Value
*FinalOldResult
= Builder
.CreateTrunc(
796 Builder
.CreateLShr(NewAI
, PMV
.ShiftAmt
), PMV
.ValueType
);
797 AI
->replaceAllUsesWith(FinalOldResult
);
798 AI
->eraseFromParent();
802 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst
*CI
) {
803 // The basic idea here is that we're expanding a cmpxchg of a
804 // smaller memory size up to a word-sized cmpxchg. To do this, we
805 // need to add a retry-loop for strong cmpxchg, so that
806 // modifications to other parts of the word don't cause a spurious
809 // This generates code like the following:
810 // [[Setup mask values PMV.*]]
811 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
812 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
813 // %InitLoaded = load i32* %addr
814 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
815 // br partword.cmpxchg.loop
816 // partword.cmpxchg.loop:
817 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
818 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
819 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
820 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
821 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
822 // i32 %FullWord_NewVal success_ordering failure_ordering
823 // %OldVal = extractvalue { i32, i1 } %NewCI, 0
824 // %Success = extractvalue { i32, i1 } %NewCI, 1
825 // br i1 %Success, label %partword.cmpxchg.end,
826 // label %partword.cmpxchg.failure
827 // partword.cmpxchg.failure:
828 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
829 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
830 // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
831 // label %partword.cmpxchg.end
832 // partword.cmpxchg.end:
833 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
834 // %FinalOldVal = trunc i32 %tmp1 to i8
835 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
836 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
838 Value
*Addr
= CI
->getPointerOperand();
839 Value
*Cmp
= CI
->getCompareOperand();
840 Value
*NewVal
= CI
->getNewValOperand();
842 BasicBlock
*BB
= CI
->getParent();
843 Function
*F
= BB
->getParent();
844 IRBuilder
<> Builder(CI
);
845 LLVMContext
&Ctx
= Builder
.getContext();
847 const int WordSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
850 BB
->splitBasicBlock(CI
->getIterator(), "partword.cmpxchg.end");
852 BasicBlock::Create(Ctx
, "partword.cmpxchg.failure", F
, EndBB
);
853 auto LoopBB
= BasicBlock::Create(Ctx
, "partword.cmpxchg.loop", F
, FailureBB
);
855 // The split call above "helpfully" added a branch at the end of BB
856 // (to the wrong place).
857 std::prev(BB
->end())->eraseFromParent();
858 Builder
.SetInsertPoint(BB
);
860 PartwordMaskValues PMV
= createMaskInstrs(
861 Builder
, CI
, CI
->getCompareOperand()->getType(), Addr
, WordSize
);
863 // Shift the incoming values over, into the right location in the word.
864 Value
*NewVal_Shifted
=
865 Builder
.CreateShl(Builder
.CreateZExt(NewVal
, PMV
.WordType
), PMV
.ShiftAmt
);
867 Builder
.CreateShl(Builder
.CreateZExt(Cmp
, PMV
.WordType
), PMV
.ShiftAmt
);
869 // Load the entire current word, and mask into place the expected and new
871 LoadInst
*InitLoaded
= Builder
.CreateLoad(PMV
.WordType
, PMV
.AlignedAddr
);
872 InitLoaded
->setVolatile(CI
->isVolatile());
873 Value
*InitLoaded_MaskOut
= Builder
.CreateAnd(InitLoaded
, PMV
.Inv_Mask
);
874 Builder
.CreateBr(LoopBB
);
876 // partword.cmpxchg.loop:
877 Builder
.SetInsertPoint(LoopBB
);
878 PHINode
*Loaded_MaskOut
= Builder
.CreatePHI(PMV
.WordType
, 2);
879 Loaded_MaskOut
->addIncoming(InitLoaded_MaskOut
, BB
);
881 // Mask/Or the expected and new values into place in the loaded word.
882 Value
*FullWord_NewVal
= Builder
.CreateOr(Loaded_MaskOut
, NewVal_Shifted
);
883 Value
*FullWord_Cmp
= Builder
.CreateOr(Loaded_MaskOut
, Cmp_Shifted
);
884 AtomicCmpXchgInst
*NewCI
= Builder
.CreateAtomicCmpXchg(
885 PMV
.AlignedAddr
, FullWord_Cmp
, FullWord_NewVal
, CI
->getSuccessOrdering(),
886 CI
->getFailureOrdering(), CI
->getSyncScopeID());
887 NewCI
->setVolatile(CI
->isVolatile());
888 // When we're building a strong cmpxchg, we need a loop, so you
889 // might think we could use a weak cmpxchg inside. But, using strong
890 // allows the below comparison for ShouldContinue, and we're
891 // expecting the underlying cmpxchg to be a machine instruction,
892 // which is strong anyways.
893 NewCI
->setWeak(CI
->isWeak());
895 Value
*OldVal
= Builder
.CreateExtractValue(NewCI
, 0);
896 Value
*Success
= Builder
.CreateExtractValue(NewCI
, 1);
899 Builder
.CreateBr(EndBB
);
901 Builder
.CreateCondBr(Success
, EndBB
, FailureBB
);
903 // partword.cmpxchg.failure:
904 Builder
.SetInsertPoint(FailureBB
);
905 // Upon failure, verify that the masked-out part of the loaded value
906 // has been modified. If it didn't, abort the cmpxchg, since the
907 // masked-in part must've.
908 Value
*OldVal_MaskOut
= Builder
.CreateAnd(OldVal
, PMV
.Inv_Mask
);
909 Value
*ShouldContinue
= Builder
.CreateICmpNE(Loaded_MaskOut
, OldVal_MaskOut
);
910 Builder
.CreateCondBr(ShouldContinue
, LoopBB
, EndBB
);
912 // Add the second value to the phi from above
913 Loaded_MaskOut
->addIncoming(OldVal_MaskOut
, FailureBB
);
915 // partword.cmpxchg.end:
916 Builder
.SetInsertPoint(CI
);
918 Value
*FinalOldVal
= Builder
.CreateTrunc(
919 Builder
.CreateLShr(OldVal
, PMV
.ShiftAmt
), PMV
.ValueType
);
920 Value
*Res
= UndefValue::get(CI
->getType());
921 Res
= Builder
.CreateInsertValue(Res
, FinalOldVal
, 0);
922 Res
= Builder
.CreateInsertValue(Res
, Success
, 1);
924 CI
->replaceAllUsesWith(Res
);
925 CI
->eraseFromParent();
928 void AtomicExpand::expandAtomicOpToLLSC(
929 Instruction
*I
, Type
*ResultType
, Value
*Addr
, AtomicOrdering MemOpOrder
,
930 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
) {
931 IRBuilder
<> Builder(I
);
933 insertRMWLLSCLoop(Builder
, ResultType
, Addr
, MemOpOrder
, PerformOp
);
935 I
->replaceAllUsesWith(Loaded
);
936 I
->eraseFromParent();
939 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst
*AI
) {
940 IRBuilder
<> Builder(AI
);
942 PartwordMaskValues PMV
=
943 createMaskInstrs(Builder
, AI
, AI
->getType(), AI
->getPointerOperand(),
944 TLI
->getMinCmpXchgSizeInBits() / 8);
946 // The value operand must be sign-extended for signed min/max so that the
947 // target's signed comparison instructions can be used. Otherwise, just
949 Instruction::CastOps CastOp
= Instruction::ZExt
;
950 AtomicRMWInst::BinOp RMWOp
= AI
->getOperation();
951 if (RMWOp
== AtomicRMWInst::Max
|| RMWOp
== AtomicRMWInst::Min
)
952 CastOp
= Instruction::SExt
;
954 Value
*ValOperand_Shifted
= Builder
.CreateShl(
955 Builder
.CreateCast(CastOp
, AI
->getValOperand(), PMV
.WordType
),
956 PMV
.ShiftAmt
, "ValOperand_Shifted");
957 Value
*OldResult
= TLI
->emitMaskedAtomicRMWIntrinsic(
958 Builder
, AI
, PMV
.AlignedAddr
, ValOperand_Shifted
, PMV
.Mask
, PMV
.ShiftAmt
,
960 Value
*FinalOldResult
= Builder
.CreateTrunc(
961 Builder
.CreateLShr(OldResult
, PMV
.ShiftAmt
), PMV
.ValueType
);
962 AI
->replaceAllUsesWith(FinalOldResult
);
963 AI
->eraseFromParent();
966 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst
*CI
) {
967 IRBuilder
<> Builder(CI
);
969 PartwordMaskValues PMV
= createMaskInstrs(
970 Builder
, CI
, CI
->getCompareOperand()->getType(), CI
->getPointerOperand(),
971 TLI
->getMinCmpXchgSizeInBits() / 8);
973 Value
*CmpVal_Shifted
= Builder
.CreateShl(
974 Builder
.CreateZExt(CI
->getCompareOperand(), PMV
.WordType
), PMV
.ShiftAmt
,
976 Value
*NewVal_Shifted
= Builder
.CreateShl(
977 Builder
.CreateZExt(CI
->getNewValOperand(), PMV
.WordType
), PMV
.ShiftAmt
,
979 Value
*OldVal
= TLI
->emitMaskedAtomicCmpXchgIntrinsic(
980 Builder
, CI
, PMV
.AlignedAddr
, CmpVal_Shifted
, NewVal_Shifted
, PMV
.Mask
,
981 CI
->getSuccessOrdering());
982 Value
*FinalOldVal
= Builder
.CreateTrunc(
983 Builder
.CreateLShr(OldVal
, PMV
.ShiftAmt
), PMV
.ValueType
);
985 Value
*Res
= UndefValue::get(CI
->getType());
986 Res
= Builder
.CreateInsertValue(Res
, FinalOldVal
, 0);
987 Value
*Success
= Builder
.CreateICmpEQ(
988 CmpVal_Shifted
, Builder
.CreateAnd(OldVal
, PMV
.Mask
), "Success");
989 Res
= Builder
.CreateInsertValue(Res
, Success
, 1);
991 CI
->replaceAllUsesWith(Res
);
992 CI
->eraseFromParent();
995 Value
*AtomicExpand::insertRMWLLSCLoop(
996 IRBuilder
<> &Builder
, Type
*ResultTy
, Value
*Addr
,
997 AtomicOrdering MemOpOrder
,
998 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
) {
999 LLVMContext
&Ctx
= Builder
.getContext();
1000 BasicBlock
*BB
= Builder
.GetInsertBlock();
1001 Function
*F
= BB
->getParent();
1003 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1005 // The standard expansion we produce is:
1008 // %loaded = @load.linked(%addr)
1009 // %new = some_op iN %loaded, %incr
1010 // %stored = @store_conditional(%new, %addr)
1011 // %try_again = icmp i32 ne %stored, 0
1012 // br i1 %try_again, label %loop, label %atomicrmw.end
1015 BasicBlock
*ExitBB
=
1016 BB
->splitBasicBlock(Builder
.GetInsertPoint(), "atomicrmw.end");
1017 BasicBlock
*LoopBB
= BasicBlock::Create(Ctx
, "atomicrmw.start", F
, ExitBB
);
1019 // The split call above "helpfully" added a branch at the end of BB (to the
1021 std::prev(BB
->end())->eraseFromParent();
1022 Builder
.SetInsertPoint(BB
);
1023 Builder
.CreateBr(LoopBB
);
1025 // Start the main loop block now that we've taken care of the preliminaries.
1026 Builder
.SetInsertPoint(LoopBB
);
1027 Value
*Loaded
= TLI
->emitLoadLinked(Builder
, Addr
, MemOpOrder
);
1029 Value
*NewVal
= PerformOp(Builder
, Loaded
);
1031 Value
*StoreSuccess
=
1032 TLI
->emitStoreConditional(Builder
, NewVal
, Addr
, MemOpOrder
);
1033 Value
*TryAgain
= Builder
.CreateICmpNE(
1034 StoreSuccess
, ConstantInt::get(IntegerType::get(Ctx
, 32), 0), "tryagain");
1035 Builder
.CreateCondBr(TryAgain
, LoopBB
, ExitBB
);
1037 Builder
.SetInsertPoint(ExitBB
, ExitBB
->begin());
1041 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1042 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the
1043 /// IR. As a migration step, we convert back to what use to be the standard
1044 /// way to represent a pointer cmpxchg so that we can update backends one by
1046 AtomicCmpXchgInst
*AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst
*CI
) {
1047 auto *M
= CI
->getModule();
1048 Type
*NewTy
= getCorrespondingIntegerType(CI
->getCompareOperand()->getType(),
1049 M
->getDataLayout());
1051 IRBuilder
<> Builder(CI
);
1053 Value
*Addr
= CI
->getPointerOperand();
1054 Type
*PT
= PointerType::get(NewTy
,
1055 Addr
->getType()->getPointerAddressSpace());
1056 Value
*NewAddr
= Builder
.CreateBitCast(Addr
, PT
);
1058 Value
*NewCmp
= Builder
.CreatePtrToInt(CI
->getCompareOperand(), NewTy
);
1059 Value
*NewNewVal
= Builder
.CreatePtrToInt(CI
->getNewValOperand(), NewTy
);
1062 auto *NewCI
= Builder
.CreateAtomicCmpXchg(NewAddr
, NewCmp
, NewNewVal
,
1063 CI
->getSuccessOrdering(),
1064 CI
->getFailureOrdering(),
1065 CI
->getSyncScopeID());
1066 NewCI
->setVolatile(CI
->isVolatile());
1067 NewCI
->setWeak(CI
->isWeak());
1068 LLVM_DEBUG(dbgs() << "Replaced " << *CI
<< " with " << *NewCI
<< "\n");
1070 Value
*OldVal
= Builder
.CreateExtractValue(NewCI
, 0);
1071 Value
*Succ
= Builder
.CreateExtractValue(NewCI
, 1);
1073 OldVal
= Builder
.CreateIntToPtr(OldVal
, CI
->getCompareOperand()->getType());
1075 Value
*Res
= UndefValue::get(CI
->getType());
1076 Res
= Builder
.CreateInsertValue(Res
, OldVal
, 0);
1077 Res
= Builder
.CreateInsertValue(Res
, Succ
, 1);
1079 CI
->replaceAllUsesWith(Res
);
1080 CI
->eraseFromParent();
1084 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst
*CI
) {
1085 AtomicOrdering SuccessOrder
= CI
->getSuccessOrdering();
1086 AtomicOrdering FailureOrder
= CI
->getFailureOrdering();
1087 Value
*Addr
= CI
->getPointerOperand();
1088 BasicBlock
*BB
= CI
->getParent();
1089 Function
*F
= BB
->getParent();
1090 LLVMContext
&Ctx
= F
->getContext();
1091 // If shouldInsertFencesForAtomic() returns true, then the target does not
1092 // want to deal with memory orders, and emitLeading/TrailingFence should take
1093 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1094 // should preserve the ordering.
1095 bool ShouldInsertFencesForAtomic
= TLI
->shouldInsertFencesForAtomic(CI
);
1096 AtomicOrdering MemOpOrder
=
1097 ShouldInsertFencesForAtomic
? AtomicOrdering::Monotonic
: SuccessOrder
;
1099 // In implementations which use a barrier to achieve release semantics, we can
1100 // delay emitting this barrier until we know a store is actually going to be
1101 // attempted. The cost of this delay is that we need 2 copies of the block
1102 // emitting the load-linked, affecting code size.
1104 // Ideally, this logic would be unconditional except for the minsize check
1105 // since in other cases the extra blocks naturally collapse down to the
1106 // minimal loop. Unfortunately, this puts too much stress on later
1107 // optimisations so we avoid emitting the extra logic in those cases too.
1108 bool HasReleasedLoadBB
= !CI
->isWeak() && ShouldInsertFencesForAtomic
&&
1109 SuccessOrder
!= AtomicOrdering::Monotonic
&&
1110 SuccessOrder
!= AtomicOrdering::Acquire
&&
1111 !F
->optForMinSize();
1113 // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1114 // do it even on minsize.
1115 bool UseUnconditionalReleaseBarrier
= F
->optForMinSize() && !CI
->isWeak();
1117 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1119 // The full expansion we produce is:
1122 // %unreleasedload = @load.linked(%addr)
1123 // %should_store = icmp eq %unreleasedload, %desired
1124 // br i1 %should_store, label %cmpxchg.fencedstore,
1125 // label %cmpxchg.nostore
1126 // cmpxchg.releasingstore:
1128 // br label cmpxchg.trystore
1129 // cmpxchg.trystore:
1130 // %loaded.trystore = phi [%unreleasedload, %releasingstore],
1131 // [%releasedload, %cmpxchg.releasedload]
1132 // %stored = @store_conditional(%new, %addr)
1133 // %success = icmp eq i32 %stored, 0
1134 // br i1 %success, label %cmpxchg.success,
1135 // label %cmpxchg.releasedload/%cmpxchg.failure
1136 // cmpxchg.releasedload:
1137 // %releasedload = @load.linked(%addr)
1138 // %should_store = icmp eq %releasedload, %desired
1139 // br i1 %should_store, label %cmpxchg.trystore,
1140 // label %cmpxchg.failure
1143 // br label %cmpxchg.end
1145 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1147 // %cmpxchg.releasedload/%cmpxchg.trystore]
1148 // @load_linked_fail_balance()?
1149 // br label %cmpxchg.failure
1152 // br label %cmpxchg.end
1154 // %loaded = phi [%loaded.nostore, %cmpxchg.failure],
1155 // [%loaded.trystore, %cmpxchg.trystore]
1156 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1157 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1158 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1160 BasicBlock
*ExitBB
= BB
->splitBasicBlock(CI
->getIterator(), "cmpxchg.end");
1161 auto FailureBB
= BasicBlock::Create(Ctx
, "cmpxchg.failure", F
, ExitBB
);
1162 auto NoStoreBB
= BasicBlock::Create(Ctx
, "cmpxchg.nostore", F
, FailureBB
);
1163 auto SuccessBB
= BasicBlock::Create(Ctx
, "cmpxchg.success", F
, NoStoreBB
);
1164 auto ReleasedLoadBB
=
1165 BasicBlock::Create(Ctx
, "cmpxchg.releasedload", F
, SuccessBB
);
1167 BasicBlock::Create(Ctx
, "cmpxchg.trystore", F
, ReleasedLoadBB
);
1168 auto ReleasingStoreBB
=
1169 BasicBlock::Create(Ctx
, "cmpxchg.fencedstore", F
, TryStoreBB
);
1170 auto StartBB
= BasicBlock::Create(Ctx
, "cmpxchg.start", F
, ReleasingStoreBB
);
1172 // This grabs the DebugLoc from CI
1173 IRBuilder
<> Builder(CI
);
1175 // The split call above "helpfully" added a branch at the end of BB (to the
1176 // wrong place), but we might want a fence too. It's easiest to just remove
1177 // the branch entirely.
1178 std::prev(BB
->end())->eraseFromParent();
1179 Builder
.SetInsertPoint(BB
);
1180 if (ShouldInsertFencesForAtomic
&& UseUnconditionalReleaseBarrier
)
1181 TLI
->emitLeadingFence(Builder
, CI
, SuccessOrder
);
1182 Builder
.CreateBr(StartBB
);
1184 // Start the main loop block now that we've taken care of the preliminaries.
1185 Builder
.SetInsertPoint(StartBB
);
1186 Value
*UnreleasedLoad
= TLI
->emitLoadLinked(Builder
, Addr
, MemOpOrder
);
1187 Value
*ShouldStore
= Builder
.CreateICmpEQ(
1188 UnreleasedLoad
, CI
->getCompareOperand(), "should_store");
1190 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1191 // jump straight past that fence instruction (if it exists).
1192 Builder
.CreateCondBr(ShouldStore
, ReleasingStoreBB
, NoStoreBB
);
1194 Builder
.SetInsertPoint(ReleasingStoreBB
);
1195 if (ShouldInsertFencesForAtomic
&& !UseUnconditionalReleaseBarrier
)
1196 TLI
->emitLeadingFence(Builder
, CI
, SuccessOrder
);
1197 Builder
.CreateBr(TryStoreBB
);
1199 Builder
.SetInsertPoint(TryStoreBB
);
1200 Value
*StoreSuccess
= TLI
->emitStoreConditional(
1201 Builder
, CI
->getNewValOperand(), Addr
, MemOpOrder
);
1202 StoreSuccess
= Builder
.CreateICmpEQ(
1203 StoreSuccess
, ConstantInt::get(Type::getInt32Ty(Ctx
), 0), "success");
1204 BasicBlock
*RetryBB
= HasReleasedLoadBB
? ReleasedLoadBB
: StartBB
;
1205 Builder
.CreateCondBr(StoreSuccess
, SuccessBB
,
1206 CI
->isWeak() ? FailureBB
: RetryBB
);
1208 Builder
.SetInsertPoint(ReleasedLoadBB
);
1210 if (HasReleasedLoadBB
) {
1211 SecondLoad
= TLI
->emitLoadLinked(Builder
, Addr
, MemOpOrder
);
1212 ShouldStore
= Builder
.CreateICmpEQ(SecondLoad
, CI
->getCompareOperand(),
1215 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1216 // jump straight past that fence instruction (if it exists).
1217 Builder
.CreateCondBr(ShouldStore
, TryStoreBB
, NoStoreBB
);
1219 Builder
.CreateUnreachable();
1221 // Make sure later instructions don't get reordered with a fence if
1223 Builder
.SetInsertPoint(SuccessBB
);
1224 if (ShouldInsertFencesForAtomic
)
1225 TLI
->emitTrailingFence(Builder
, CI
, SuccessOrder
);
1226 Builder
.CreateBr(ExitBB
);
1228 Builder
.SetInsertPoint(NoStoreBB
);
1229 // In the failing case, where we don't execute the store-conditional, the
1230 // target might want to balance out the load-linked with a dedicated
1231 // instruction (e.g., on ARM, clearing the exclusive monitor).
1232 TLI
->emitAtomicCmpXchgNoStoreLLBalance(Builder
);
1233 Builder
.CreateBr(FailureBB
);
1235 Builder
.SetInsertPoint(FailureBB
);
1236 if (ShouldInsertFencesForAtomic
)
1237 TLI
->emitTrailingFence(Builder
, CI
, FailureOrder
);
1238 Builder
.CreateBr(ExitBB
);
1240 // Finally, we have control-flow based knowledge of whether the cmpxchg
1241 // succeeded or not. We expose this to later passes by converting any
1242 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1244 Builder
.SetInsertPoint(ExitBB
, ExitBB
->begin());
1245 PHINode
*Success
= Builder
.CreatePHI(Type::getInt1Ty(Ctx
), 2);
1246 Success
->addIncoming(ConstantInt::getTrue(Ctx
), SuccessBB
);
1247 Success
->addIncoming(ConstantInt::getFalse(Ctx
), FailureBB
);
1249 // Setup the builder so we can create any PHIs we need.
1251 if (!HasReleasedLoadBB
)
1252 Loaded
= UnreleasedLoad
;
1254 Builder
.SetInsertPoint(TryStoreBB
, TryStoreBB
->begin());
1255 PHINode
*TryStoreLoaded
= Builder
.CreatePHI(UnreleasedLoad
->getType(), 2);
1256 TryStoreLoaded
->addIncoming(UnreleasedLoad
, ReleasingStoreBB
);
1257 TryStoreLoaded
->addIncoming(SecondLoad
, ReleasedLoadBB
);
1259 Builder
.SetInsertPoint(NoStoreBB
, NoStoreBB
->begin());
1260 PHINode
*NoStoreLoaded
= Builder
.CreatePHI(UnreleasedLoad
->getType(), 2);
1261 NoStoreLoaded
->addIncoming(UnreleasedLoad
, StartBB
);
1262 NoStoreLoaded
->addIncoming(SecondLoad
, ReleasedLoadBB
);
1264 Builder
.SetInsertPoint(ExitBB
, ++ExitBB
->begin());
1265 PHINode
*ExitLoaded
= Builder
.CreatePHI(UnreleasedLoad
->getType(), 2);
1266 ExitLoaded
->addIncoming(TryStoreLoaded
, SuccessBB
);
1267 ExitLoaded
->addIncoming(NoStoreLoaded
, FailureBB
);
1269 Loaded
= ExitLoaded
;
1272 // Look for any users of the cmpxchg that are just comparing the loaded value
1273 // against the desired one, and replace them with the CFG-derived version.
1274 SmallVector
<ExtractValueInst
*, 2> PrunedInsts
;
1275 for (auto User
: CI
->users()) {
1276 ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(User
);
1280 assert(EV
->getNumIndices() == 1 && EV
->getIndices()[0] <= 1 &&
1281 "weird extraction from { iN, i1 }");
1283 if (EV
->getIndices()[0] == 0)
1284 EV
->replaceAllUsesWith(Loaded
);
1286 EV
->replaceAllUsesWith(Success
);
1288 PrunedInsts
.push_back(EV
);
1291 // We can remove the instructions now we're no longer iterating through them.
1292 for (auto EV
: PrunedInsts
)
1293 EV
->eraseFromParent();
1295 if (!CI
->use_empty()) {
1296 // Some use of the full struct return that we don't understand has happened,
1297 // so we've got to reconstruct it properly.
1299 Res
= Builder
.CreateInsertValue(UndefValue::get(CI
->getType()), Loaded
, 0);
1300 Res
= Builder
.CreateInsertValue(Res
, Success
, 1);
1302 CI
->replaceAllUsesWith(Res
);
1305 CI
->eraseFromParent();
1309 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst
* RMWI
) {
1310 auto C
= dyn_cast
<ConstantInt
>(RMWI
->getValOperand());
1314 AtomicRMWInst::BinOp Op
= RMWI
->getOperation();
1316 case AtomicRMWInst::Add
:
1317 case AtomicRMWInst::Sub
:
1318 case AtomicRMWInst::Or
:
1319 case AtomicRMWInst::Xor
:
1321 case AtomicRMWInst::And
:
1322 return C
->isMinusOne();
1323 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1329 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst
* RMWI
) {
1330 if (auto ResultingLoad
= TLI
->lowerIdempotentRMWIntoFencedLoad(RMWI
)) {
1331 tryExpandAtomicLoad(ResultingLoad
);
1337 Value
*AtomicExpand::insertRMWCmpXchgLoop(
1338 IRBuilder
<> &Builder
, Type
*ResultTy
, Value
*Addr
,
1339 AtomicOrdering MemOpOrder
,
1340 function_ref
<Value
*(IRBuilder
<> &, Value
*)> PerformOp
,
1341 CreateCmpXchgInstFun CreateCmpXchg
) {
1342 LLVMContext
&Ctx
= Builder
.getContext();
1343 BasicBlock
*BB
= Builder
.GetInsertBlock();
1344 Function
*F
= BB
->getParent();
1346 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1348 // The standard expansion we produce is:
1350 // %init_loaded = load atomic iN* %addr
1353 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1354 // %new = some_op iN %loaded, %incr
1355 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1356 // %new_loaded = extractvalue { iN, i1 } %pair, 0
1357 // %success = extractvalue { iN, i1 } %pair, 1
1358 // br i1 %success, label %atomicrmw.end, label %loop
1361 BasicBlock
*ExitBB
=
1362 BB
->splitBasicBlock(Builder
.GetInsertPoint(), "atomicrmw.end");
1363 BasicBlock
*LoopBB
= BasicBlock::Create(Ctx
, "atomicrmw.start", F
, ExitBB
);
1365 // The split call above "helpfully" added a branch at the end of BB (to the
1366 // wrong place), but we want a load. It's easiest to just remove
1367 // the branch entirely.
1368 std::prev(BB
->end())->eraseFromParent();
1369 Builder
.SetInsertPoint(BB
);
1370 LoadInst
*InitLoaded
= Builder
.CreateLoad(ResultTy
, Addr
);
1371 // Atomics require at least natural alignment.
1372 InitLoaded
->setAlignment(ResultTy
->getPrimitiveSizeInBits() / 8);
1373 Builder
.CreateBr(LoopBB
);
1375 // Start the main loop block now that we've taken care of the preliminaries.
1376 Builder
.SetInsertPoint(LoopBB
);
1377 PHINode
*Loaded
= Builder
.CreatePHI(ResultTy
, 2, "loaded");
1378 Loaded
->addIncoming(InitLoaded
, BB
);
1380 Value
*NewVal
= PerformOp(Builder
, Loaded
);
1382 Value
*NewLoaded
= nullptr;
1383 Value
*Success
= nullptr;
1385 CreateCmpXchg(Builder
, Addr
, Loaded
, NewVal
,
1386 MemOpOrder
== AtomicOrdering::Unordered
1387 ? AtomicOrdering::Monotonic
1389 Success
, NewLoaded
);
1390 assert(Success
&& NewLoaded
);
1392 Loaded
->addIncoming(NewLoaded
, LoopBB
);
1394 Builder
.CreateCondBr(Success
, ExitBB
, LoopBB
);
1396 Builder
.SetInsertPoint(ExitBB
, ExitBB
->begin());
1400 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst
*CI
) {
1401 unsigned MinCASSize
= TLI
->getMinCmpXchgSizeInBits() / 8;
1402 unsigned ValueSize
= getAtomicOpSize(CI
);
1404 switch (TLI
->shouldExpandAtomicCmpXchgInIR(CI
)) {
1406 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1407 case TargetLoweringBase::AtomicExpansionKind::None
:
1408 if (ValueSize
< MinCASSize
)
1409 expandPartwordCmpXchg(CI
);
1411 case TargetLoweringBase::AtomicExpansionKind::LLSC
: {
1412 assert(ValueSize
>= MinCASSize
&&
1413 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
1414 return expandAtomicCmpXchg(CI
);
1416 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic
:
1417 expandAtomicCmpXchgToMaskedIntrinsic(CI
);
1422 // Note: This function is exposed externally by AtomicExpandUtils.h
1423 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst
*AI
,
1424 CreateCmpXchgInstFun CreateCmpXchg
) {
1425 IRBuilder
<> Builder(AI
);
1426 Value
*Loaded
= AtomicExpand::insertRMWCmpXchgLoop(
1427 Builder
, AI
->getType(), AI
->getPointerOperand(), AI
->getOrdering(),
1428 [&](IRBuilder
<> &Builder
, Value
*Loaded
) {
1429 return performAtomicOp(AI
->getOperation(), Builder
, Loaded
,
1430 AI
->getValOperand());
1434 AI
->replaceAllUsesWith(Loaded
);
1435 AI
->eraseFromParent();
1439 // In order to use one of the sized library calls such as
1440 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1441 // must be one of the potentially-specialized sizes, and the value
1442 // type must actually exist in C on the target (otherwise, the
1443 // function wouldn't actually be defined.)
1444 static bool canUseSizedAtomicCall(unsigned Size
, unsigned Align
,
1445 const DataLayout
&DL
) {
1446 // TODO: "LargestSize" is an approximation for "largest type that
1447 // you can express in C". It seems to be the case that int128 is
1448 // supported on all 64-bit platforms, otherwise only up to 64-bit
1449 // integers are supported. If we get this wrong, then we'll try to
1450 // call a sized libcall that doesn't actually exist. There should
1451 // really be some more reliable way in LLVM of determining integer
1452 // sizes which are valid in the target's C ABI...
1453 unsigned LargestSize
= DL
.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1454 return Align
>= Size
&&
1455 (Size
== 1 || Size
== 2 || Size
== 4 || Size
== 8 || Size
== 16) &&
1456 Size
<= LargestSize
;
1459 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst
*I
) {
1460 static const RTLIB::Libcall Libcalls
[6] = {
1461 RTLIB::ATOMIC_LOAD
, RTLIB::ATOMIC_LOAD_1
, RTLIB::ATOMIC_LOAD_2
,
1462 RTLIB::ATOMIC_LOAD_4
, RTLIB::ATOMIC_LOAD_8
, RTLIB::ATOMIC_LOAD_16
};
1463 unsigned Size
= getAtomicOpSize(I
);
1464 unsigned Align
= getAtomicOpAlign(I
);
1466 bool expanded
= expandAtomicOpToLibcall(
1467 I
, Size
, Align
, I
->getPointerOperand(), nullptr, nullptr,
1468 I
->getOrdering(), AtomicOrdering::NotAtomic
, Libcalls
);
1470 assert(expanded
&& "expandAtomicOpToLibcall shouldn't fail tor Load");
1473 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst
*I
) {
1474 static const RTLIB::Libcall Libcalls
[6] = {
1475 RTLIB::ATOMIC_STORE
, RTLIB::ATOMIC_STORE_1
, RTLIB::ATOMIC_STORE_2
,
1476 RTLIB::ATOMIC_STORE_4
, RTLIB::ATOMIC_STORE_8
, RTLIB::ATOMIC_STORE_16
};
1477 unsigned Size
= getAtomicOpSize(I
);
1478 unsigned Align
= getAtomicOpAlign(I
);
1480 bool expanded
= expandAtomicOpToLibcall(
1481 I
, Size
, Align
, I
->getPointerOperand(), I
->getValueOperand(), nullptr,
1482 I
->getOrdering(), AtomicOrdering::NotAtomic
, Libcalls
);
1484 assert(expanded
&& "expandAtomicOpToLibcall shouldn't fail tor Store");
1487 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst
*I
) {
1488 static const RTLIB::Libcall Libcalls
[6] = {
1489 RTLIB::ATOMIC_COMPARE_EXCHANGE
, RTLIB::ATOMIC_COMPARE_EXCHANGE_1
,
1490 RTLIB::ATOMIC_COMPARE_EXCHANGE_2
, RTLIB::ATOMIC_COMPARE_EXCHANGE_4
,
1491 RTLIB::ATOMIC_COMPARE_EXCHANGE_8
, RTLIB::ATOMIC_COMPARE_EXCHANGE_16
};
1492 unsigned Size
= getAtomicOpSize(I
);
1493 unsigned Align
= getAtomicOpAlign(I
);
1495 bool expanded
= expandAtomicOpToLibcall(
1496 I
, Size
, Align
, I
->getPointerOperand(), I
->getNewValOperand(),
1497 I
->getCompareOperand(), I
->getSuccessOrdering(), I
->getFailureOrdering(),
1500 assert(expanded
&& "expandAtomicOpToLibcall shouldn't fail tor CAS");
1503 static ArrayRef
<RTLIB::Libcall
> GetRMWLibcall(AtomicRMWInst::BinOp Op
) {
1504 static const RTLIB::Libcall LibcallsXchg
[6] = {
1505 RTLIB::ATOMIC_EXCHANGE
, RTLIB::ATOMIC_EXCHANGE_1
,
1506 RTLIB::ATOMIC_EXCHANGE_2
, RTLIB::ATOMIC_EXCHANGE_4
,
1507 RTLIB::ATOMIC_EXCHANGE_8
, RTLIB::ATOMIC_EXCHANGE_16
};
1508 static const RTLIB::Libcall LibcallsAdd
[6] = {
1509 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_ADD_1
,
1510 RTLIB::ATOMIC_FETCH_ADD_2
, RTLIB::ATOMIC_FETCH_ADD_4
,
1511 RTLIB::ATOMIC_FETCH_ADD_8
, RTLIB::ATOMIC_FETCH_ADD_16
};
1512 static const RTLIB::Libcall LibcallsSub
[6] = {
1513 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_SUB_1
,
1514 RTLIB::ATOMIC_FETCH_SUB_2
, RTLIB::ATOMIC_FETCH_SUB_4
,
1515 RTLIB::ATOMIC_FETCH_SUB_8
, RTLIB::ATOMIC_FETCH_SUB_16
};
1516 static const RTLIB::Libcall LibcallsAnd
[6] = {
1517 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_AND_1
,
1518 RTLIB::ATOMIC_FETCH_AND_2
, RTLIB::ATOMIC_FETCH_AND_4
,
1519 RTLIB::ATOMIC_FETCH_AND_8
, RTLIB::ATOMIC_FETCH_AND_16
};
1520 static const RTLIB::Libcall LibcallsOr
[6] = {
1521 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_OR_1
,
1522 RTLIB::ATOMIC_FETCH_OR_2
, RTLIB::ATOMIC_FETCH_OR_4
,
1523 RTLIB::ATOMIC_FETCH_OR_8
, RTLIB::ATOMIC_FETCH_OR_16
};
1524 static const RTLIB::Libcall LibcallsXor
[6] = {
1525 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_XOR_1
,
1526 RTLIB::ATOMIC_FETCH_XOR_2
, RTLIB::ATOMIC_FETCH_XOR_4
,
1527 RTLIB::ATOMIC_FETCH_XOR_8
, RTLIB::ATOMIC_FETCH_XOR_16
};
1528 static const RTLIB::Libcall LibcallsNand
[6] = {
1529 RTLIB::UNKNOWN_LIBCALL
, RTLIB::ATOMIC_FETCH_NAND_1
,
1530 RTLIB::ATOMIC_FETCH_NAND_2
, RTLIB::ATOMIC_FETCH_NAND_4
,
1531 RTLIB::ATOMIC_FETCH_NAND_8
, RTLIB::ATOMIC_FETCH_NAND_16
};
1534 case AtomicRMWInst::BAD_BINOP
:
1535 llvm_unreachable("Should not have BAD_BINOP.");
1536 case AtomicRMWInst::Xchg
:
1537 return makeArrayRef(LibcallsXchg
);
1538 case AtomicRMWInst::Add
:
1539 return makeArrayRef(LibcallsAdd
);
1540 case AtomicRMWInst::Sub
:
1541 return makeArrayRef(LibcallsSub
);
1542 case AtomicRMWInst::And
:
1543 return makeArrayRef(LibcallsAnd
);
1544 case AtomicRMWInst::Or
:
1545 return makeArrayRef(LibcallsOr
);
1546 case AtomicRMWInst::Xor
:
1547 return makeArrayRef(LibcallsXor
);
1548 case AtomicRMWInst::Nand
:
1549 return makeArrayRef(LibcallsNand
);
1550 case AtomicRMWInst::Max
:
1551 case AtomicRMWInst::Min
:
1552 case AtomicRMWInst::UMax
:
1553 case AtomicRMWInst::UMin
:
1554 case AtomicRMWInst::FAdd
:
1555 case AtomicRMWInst::FSub
:
1556 // No atomic libcalls are available for max/min/umax/umin.
1559 llvm_unreachable("Unexpected AtomicRMW operation.");
1562 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst
*I
) {
1563 ArrayRef
<RTLIB::Libcall
> Libcalls
= GetRMWLibcall(I
->getOperation());
1565 unsigned Size
= getAtomicOpSize(I
);
1566 unsigned Align
= getAtomicOpAlign(I
);
1568 bool Success
= false;
1569 if (!Libcalls
.empty())
1570 Success
= expandAtomicOpToLibcall(
1571 I
, Size
, Align
, I
->getPointerOperand(), I
->getValOperand(), nullptr,
1572 I
->getOrdering(), AtomicOrdering::NotAtomic
, Libcalls
);
1574 // The expansion failed: either there were no libcalls at all for
1575 // the operation (min/max), or there were only size-specialized
1576 // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1577 // CAS libcall, via a CAS loop, instead.
1579 expandAtomicRMWToCmpXchg(I
, [this](IRBuilder
<> &Builder
, Value
*Addr
,
1580 Value
*Loaded
, Value
*NewVal
,
1581 AtomicOrdering MemOpOrder
,
1582 Value
*&Success
, Value
*&NewLoaded
) {
1583 // Create the CAS instruction normally...
1584 AtomicCmpXchgInst
*Pair
= Builder
.CreateAtomicCmpXchg(
1585 Addr
, Loaded
, NewVal
, MemOpOrder
,
1586 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder
));
1587 Success
= Builder
.CreateExtractValue(Pair
, 1, "success");
1588 NewLoaded
= Builder
.CreateExtractValue(Pair
, 0, "newloaded");
1590 // ...and then expand the CAS into a libcall.
1591 expandAtomicCASToLibcall(Pair
);
1596 // A helper routine for the above expandAtomic*ToLibcall functions.
1598 // 'Libcalls' contains an array of enum values for the particular
1599 // ATOMIC libcalls to be emitted. All of the other arguments besides
1600 // 'I' are extracted from the Instruction subclass by the
1601 // caller. Depending on the particular call, some will be null.
1602 bool AtomicExpand::expandAtomicOpToLibcall(
1603 Instruction
*I
, unsigned Size
, unsigned Align
, Value
*PointerOperand
,
1604 Value
*ValueOperand
, Value
*CASExpected
, AtomicOrdering Ordering
,
1605 AtomicOrdering Ordering2
, ArrayRef
<RTLIB::Libcall
> Libcalls
) {
1606 assert(Libcalls
.size() == 6);
1608 LLVMContext
&Ctx
= I
->getContext();
1609 Module
*M
= I
->getModule();
1610 const DataLayout
&DL
= M
->getDataLayout();
1611 IRBuilder
<> Builder(I
);
1612 IRBuilder
<> AllocaBuilder(&I
->getFunction()->getEntryBlock().front());
1614 bool UseSizedLibcall
= canUseSizedAtomicCall(Size
, Align
, DL
);
1615 Type
*SizedIntTy
= Type::getIntNTy(Ctx
, Size
* 8);
1617 unsigned AllocaAlignment
= DL
.getPrefTypeAlignment(SizedIntTy
);
1619 // TODO: the "order" argument type is "int", not int32. So
1620 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1621 ConstantInt
*SizeVal64
= ConstantInt::get(Type::getInt64Ty(Ctx
), Size
);
1622 assert(Ordering
!= AtomicOrdering::NotAtomic
&& "expect atomic MO");
1623 Constant
*OrderingVal
=
1624 ConstantInt::get(Type::getInt32Ty(Ctx
), (int)toCABI(Ordering
));
1625 Constant
*Ordering2Val
= nullptr;
1627 assert(Ordering2
!= AtomicOrdering::NotAtomic
&& "expect atomic MO");
1629 ConstantInt::get(Type::getInt32Ty(Ctx
), (int)toCABI(Ordering2
));
1631 bool HasResult
= I
->getType() != Type::getVoidTy(Ctx
);
1633 RTLIB::Libcall RTLibType
;
1634 if (UseSizedLibcall
) {
1636 case 1: RTLibType
= Libcalls
[1]; break;
1637 case 2: RTLibType
= Libcalls
[2]; break;
1638 case 4: RTLibType
= Libcalls
[3]; break;
1639 case 8: RTLibType
= Libcalls
[4]; break;
1640 case 16: RTLibType
= Libcalls
[5]; break;
1642 } else if (Libcalls
[0] != RTLIB::UNKNOWN_LIBCALL
) {
1643 RTLibType
= Libcalls
[0];
1645 // Can't use sized function, and there's no generic for this
1646 // operation, so give up.
1650 // Build up the function call. There's two kinds. First, the sized
1651 // variants. These calls are going to be one of the following (with
1653 // iN __atomic_load_N(iN *ptr, int ordering)
1654 // void __atomic_store_N(iN *ptr, iN val, int ordering)
1655 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1656 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1657 // int success_order, int failure_order)
1659 // Note that these functions can be used for non-integer atomic
1660 // operations, the values just need to be bitcast to integers on the
1663 // And, then, the generic variants. They look like the following:
1664 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1665 // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1666 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1668 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1669 // void *desired, int success_order,
1670 // int failure_order)
1672 // The different signatures are built up depending on the
1673 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1676 AllocaInst
*AllocaCASExpected
= nullptr;
1677 Value
*AllocaCASExpected_i8
= nullptr;
1678 AllocaInst
*AllocaValue
= nullptr;
1679 Value
*AllocaValue_i8
= nullptr;
1680 AllocaInst
*AllocaResult
= nullptr;
1681 Value
*AllocaResult_i8
= nullptr;
1684 SmallVector
<Value
*, 6> Args
;
1688 if (!UseSizedLibcall
) {
1689 // Note, getIntPtrType is assumed equivalent to size_t.
1690 Args
.push_back(ConstantInt::get(DL
.getIntPtrType(Ctx
), Size
));
1695 Builder
.CreateBitCast(PointerOperand
, Type::getInt8PtrTy(Ctx
));
1696 Args
.push_back(PtrVal
);
1698 // 'expected' argument, if present.
1700 AllocaCASExpected
= AllocaBuilder
.CreateAlloca(CASExpected
->getType());
1701 AllocaCASExpected
->setAlignment(AllocaAlignment
);
1702 AllocaCASExpected_i8
=
1703 Builder
.CreateBitCast(AllocaCASExpected
, Type::getInt8PtrTy(Ctx
));
1704 Builder
.CreateLifetimeStart(AllocaCASExpected_i8
, SizeVal64
);
1705 Builder
.CreateAlignedStore(CASExpected
, AllocaCASExpected
, AllocaAlignment
);
1706 Args
.push_back(AllocaCASExpected_i8
);
1709 // 'val' argument ('desired' for cas), if present.
1711 if (UseSizedLibcall
) {
1713 Builder
.CreateBitOrPointerCast(ValueOperand
, SizedIntTy
);
1714 Args
.push_back(IntValue
);
1716 AllocaValue
= AllocaBuilder
.CreateAlloca(ValueOperand
->getType());
1717 AllocaValue
->setAlignment(AllocaAlignment
);
1719 Builder
.CreateBitCast(AllocaValue
, Type::getInt8PtrTy(Ctx
));
1720 Builder
.CreateLifetimeStart(AllocaValue_i8
, SizeVal64
);
1721 Builder
.CreateAlignedStore(ValueOperand
, AllocaValue
, AllocaAlignment
);
1722 Args
.push_back(AllocaValue_i8
);
1727 if (!CASExpected
&& HasResult
&& !UseSizedLibcall
) {
1728 AllocaResult
= AllocaBuilder
.CreateAlloca(I
->getType());
1729 AllocaResult
->setAlignment(AllocaAlignment
);
1731 Builder
.CreateBitCast(AllocaResult
, Type::getInt8PtrTy(Ctx
));
1732 Builder
.CreateLifetimeStart(AllocaResult_i8
, SizeVal64
);
1733 Args
.push_back(AllocaResult_i8
);
1736 // 'ordering' ('success_order' for cas) argument.
1737 Args
.push_back(OrderingVal
);
1739 // 'failure_order' argument, if present.
1741 Args
.push_back(Ordering2Val
);
1743 // Now, the return type.
1745 ResultTy
= Type::getInt1Ty(Ctx
);
1746 Attr
= Attr
.addAttribute(Ctx
, AttributeList::ReturnIndex
, Attribute::ZExt
);
1747 } else if (HasResult
&& UseSizedLibcall
)
1748 ResultTy
= SizedIntTy
;
1750 ResultTy
= Type::getVoidTy(Ctx
);
1752 // Done with setting up arguments and return types, create the call:
1753 SmallVector
<Type
*, 6> ArgTys
;
1754 for (Value
*Arg
: Args
)
1755 ArgTys
.push_back(Arg
->getType());
1756 FunctionType
*FnType
= FunctionType::get(ResultTy
, ArgTys
, false);
1757 FunctionCallee LibcallFn
=
1758 M
->getOrInsertFunction(TLI
->getLibcallName(RTLibType
), FnType
, Attr
);
1759 CallInst
*Call
= Builder
.CreateCall(LibcallFn
, Args
);
1760 Call
->setAttributes(Attr
);
1761 Value
*Result
= Call
;
1763 // And then, extract the results...
1764 if (ValueOperand
&& !UseSizedLibcall
)
1765 Builder
.CreateLifetimeEnd(AllocaValue_i8
, SizeVal64
);
1768 // The final result from the CAS is {load of 'expected' alloca, bool result
1770 Type
*FinalResultTy
= I
->getType();
1771 Value
*V
= UndefValue::get(FinalResultTy
);
1772 Value
*ExpectedOut
= Builder
.CreateAlignedLoad(
1773 CASExpected
->getType(), AllocaCASExpected
, AllocaAlignment
);
1774 Builder
.CreateLifetimeEnd(AllocaCASExpected_i8
, SizeVal64
);
1775 V
= Builder
.CreateInsertValue(V
, ExpectedOut
, 0);
1776 V
= Builder
.CreateInsertValue(V
, Result
, 1);
1777 I
->replaceAllUsesWith(V
);
1778 } else if (HasResult
) {
1780 if (UseSizedLibcall
)
1781 V
= Builder
.CreateBitOrPointerCast(Result
, I
->getType());
1783 V
= Builder
.CreateAlignedLoad(I
->getType(), AllocaResult
,
1785 Builder
.CreateLifetimeEnd(AllocaResult_i8
, SizeVal64
);
1787 I
->replaceAllUsesWith(V
);
1789 I
->eraseFromParent();