Revert r354244 "[DAGCombiner] Eliminate dead stores to stack."
[llvm-complete.git] / lib / CodeGen / CodeGenPrepare.cpp
blob14f56279e851236206e8fbc6d59ec54749f8b9fe
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Argument.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Statepoint.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/IR/ValueMap.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/BlockFrequency.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/MachineValueType.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Target/TargetMachine.h"
86 #include "llvm/Target/TargetOptions.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <limits>
95 #include <memory>
96 #include <utility>
97 #include <vector>
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
102 #define DEBUG_TYPE "codegenprepare"
104 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
108 "sunken Cmps");
109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
110 "of sunken Casts");
111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
112 "computations were sunk");
113 STATISTIC(NumMemoryInstsPhiCreated,
114 "Number of phis created when address "
115 "computations were sunk to memory instructions");
116 STATISTIC(NumMemoryInstsSelectCreated,
117 "Number of select created when address "
118 "computations were sunk to memory instructions");
119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
121 STATISTIC(NumAndsAdded,
122 "Number of and mask instructions added to form ext loads");
123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
124 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
129 static cl::opt<bool> DisableBranchOpts(
130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
131 cl::desc("Disable branch optimizations in CodeGenPrepare"));
133 static cl::opt<bool>
134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
135 cl::desc("Disable GC optimizations in CodeGenPrepare"));
137 static cl::opt<bool> DisableSelectToBranch(
138 "disable-cgp-select2branch", cl::Hidden, cl::init(false),
139 cl::desc("Disable select to branch conversion."));
141 static cl::opt<bool> AddrSinkUsingGEPs(
142 "addr-sink-using-gep", cl::Hidden, cl::init(true),
143 cl::desc("Address sinking in CGP using GEPs."));
145 static cl::opt<bool> EnableAndCmpSinking(
146 "enable-andcmp-sinking", cl::Hidden, cl::init(true),
147 cl::desc("Enable sinkinig and/cmp into branches."));
149 static cl::opt<bool> DisableStoreExtract(
150 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
153 static cl::opt<bool> StressStoreExtract(
154 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
157 static cl::opt<bool> DisableExtLdPromotion(
158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
160 "CodeGenPrepare"));
162 static cl::opt<bool> StressExtLdPromotion(
163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
165 "optimization in CodeGenPrepare"));
167 static cl::opt<bool> DisablePreheaderProtect(
168 "disable-preheader-prot", cl::Hidden, cl::init(false),
169 cl::desc("Disable protection against removing loop preheaders"));
171 static cl::opt<bool> ProfileGuidedSectionPrefix(
172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
173 cl::desc("Use profile info to add section prefix for hot/cold functions"));
175 static cl::opt<unsigned> FreqRatioToSkipMerge(
176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
177 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
178 "(frequency of destination block) is greater than this ratio"));
180 static cl::opt<bool> ForceSplitStore(
181 "force-split-store", cl::Hidden, cl::init(false),
182 cl::desc("Force store splitting no matter what the target query says."));
184 static cl::opt<bool>
185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
186 cl::desc("Enable merging of redundant sexts when one is dominating"
187 " the other."), cl::init(true));
189 static cl::opt<bool> DisableComplexAddrModes(
190 "disable-complex-addr-modes", cl::Hidden, cl::init(false),
191 cl::desc("Disables combining addressing modes with different parts "
192 "in optimizeMemoryInst."));
194 static cl::opt<bool>
195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
196 cl::desc("Allow creation of Phis in Address sinking."));
198 static cl::opt<bool>
199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
200 cl::desc("Allow creation of selects in Address sinking."));
202 static cl::opt<bool> AddrSinkCombineBaseReg(
203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
204 cl::desc("Allow combining of BaseReg field in Address sinking."));
206 static cl::opt<bool> AddrSinkCombineBaseGV(
207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
208 cl::desc("Allow combining of BaseGV field in Address sinking."));
210 static cl::opt<bool> AddrSinkCombineBaseOffs(
211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
212 cl::desc("Allow combining of BaseOffs field in Address sinking."));
214 static cl::opt<bool> AddrSinkCombineScaledReg(
215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
216 cl::desc("Allow combining of ScaledReg field in Address sinking."));
218 static cl::opt<bool>
219 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
220 cl::init(true),
221 cl::desc("Enable splitting large offset of GEP."));
223 namespace {
225 enum ExtType {
226 ZeroExtension, // Zero extension has been seen.
227 SignExtension, // Sign extension has been seen.
228 BothExtension // This extension type is used if we saw sext after
229 // ZeroExtension had been set, or if we saw zext after
230 // SignExtension had been set. It makes the type
231 // information of a promoted instruction invalid.
234 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
235 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
236 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
237 using SExts = SmallVector<Instruction *, 16>;
238 using ValueToSExts = DenseMap<Value *, SExts>;
240 class TypePromotionTransaction;
242 class CodeGenPrepare : public FunctionPass {
243 const TargetMachine *TM = nullptr;
244 const TargetSubtargetInfo *SubtargetInfo;
245 const TargetLowering *TLI = nullptr;
246 const TargetRegisterInfo *TRI;
247 const TargetTransformInfo *TTI = nullptr;
248 const TargetLibraryInfo *TLInfo;
249 const LoopInfo *LI;
250 std::unique_ptr<BlockFrequencyInfo> BFI;
251 std::unique_ptr<BranchProbabilityInfo> BPI;
253 /// As we scan instructions optimizing them, this is the next instruction
254 /// to optimize. Transforms that can invalidate this should update it.
255 BasicBlock::iterator CurInstIterator;
257 /// Keeps track of non-local addresses that have been sunk into a block.
258 /// This allows us to avoid inserting duplicate code for blocks with
259 /// multiple load/stores of the same address. The usage of WeakTrackingVH
260 /// enables SunkAddrs to be treated as a cache whose entries can be
261 /// invalidated if a sunken address computation has been erased.
262 ValueMap<Value*, WeakTrackingVH> SunkAddrs;
264 /// Keeps track of all instructions inserted for the current function.
265 SetOfInstrs InsertedInsts;
267 /// Keeps track of the type of the related instruction before their
268 /// promotion for the current function.
269 InstrToOrigTy PromotedInsts;
271 /// Keep track of instructions removed during promotion.
272 SetOfInstrs RemovedInsts;
274 /// Keep track of sext chains based on their initial value.
275 DenseMap<Value *, Instruction *> SeenChainsForSExt;
277 /// Keep track of GEPs accessing the same data structures such as structs or
278 /// arrays that are candidates to be split later because of their large
279 /// size.
280 MapVector<
281 AssertingVH<Value>,
282 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
283 LargeOffsetGEPMap;
285 /// Keep track of new GEP base after splitting the GEPs having large offset.
286 SmallSet<AssertingVH<Value>, 2> NewGEPBases;
288 /// Map serial numbers to Large offset GEPs.
289 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
291 /// Keep track of SExt promoted.
292 ValueToSExts ValToSExtendedUses;
294 /// True if CFG is modified in any way.
295 bool ModifiedDT;
297 /// True if optimizing for size.
298 bool OptSize;
300 /// DataLayout for the Function being processed.
301 const DataLayout *DL = nullptr;
303 public:
304 static char ID; // Pass identification, replacement for typeid
306 CodeGenPrepare() : FunctionPass(ID) {
307 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
310 bool runOnFunction(Function &F) override;
312 StringRef getPassName() const override { return "CodeGen Prepare"; }
314 void getAnalysisUsage(AnalysisUsage &AU) const override {
315 // FIXME: When we can selectively preserve passes, preserve the domtree.
316 AU.addRequired<ProfileSummaryInfoWrapperPass>();
317 AU.addRequired<TargetLibraryInfoWrapperPass>();
318 AU.addRequired<TargetTransformInfoWrapperPass>();
319 AU.addRequired<LoopInfoWrapperPass>();
322 private:
323 template <typename F>
324 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
325 // Substituting can cause recursive simplifications, which can invalidate
326 // our iterator. Use a WeakTrackingVH to hold onto it in case this
327 // happens.
328 Value *CurValue = &*CurInstIterator;
329 WeakTrackingVH IterHandle(CurValue);
331 f();
333 // If the iterator instruction was recursively deleted, start over at the
334 // start of the block.
335 if (IterHandle != CurValue) {
336 CurInstIterator = BB->begin();
337 SunkAddrs.clear();
341 bool eliminateFallThrough(Function &F);
342 bool eliminateMostlyEmptyBlocks(Function &F);
343 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
344 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
345 void eliminateMostlyEmptyBlock(BasicBlock *BB);
346 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
347 bool isPreheader);
348 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
349 bool optimizeInst(Instruction *I, bool &ModifiedDT);
350 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
351 Type *AccessTy, unsigned AddrSpace);
352 bool optimizeInlineAsmInst(CallInst *CS);
353 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
354 bool optimizeExt(Instruction *&I);
355 bool optimizeExtUses(Instruction *I);
356 bool optimizeLoadExt(LoadInst *Load);
357 bool optimizeSelectInst(SelectInst *SI);
358 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
359 bool optimizeSwitchInst(SwitchInst *SI);
360 bool optimizeExtractElementInst(Instruction *Inst);
361 bool dupRetToEnableTailCallOpts(BasicBlock *BB);
362 bool placeDbgValues(Function &F);
363 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
364 LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
365 bool tryToPromoteExts(TypePromotionTransaction &TPT,
366 const SmallVectorImpl<Instruction *> &Exts,
367 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
368 unsigned CreatedInstsCost = 0);
369 bool mergeSExts(Function &F);
370 bool splitLargeGEPOffsets();
371 bool performAddressTypePromotion(
372 Instruction *&Inst,
373 bool AllowPromotionWithoutCommonHeader,
374 bool HasPromoted, TypePromotionTransaction &TPT,
375 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
376 bool splitBranchCondition(Function &F);
377 bool simplifyOffsetableRelocate(Instruction &I);
379 bool tryToSinkFreeOperands(Instruction *I);
382 } // end anonymous namespace
384 char CodeGenPrepare::ID = 0;
386 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
387 "Optimize for code generation", false, false)
388 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
389 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
390 "Optimize for code generation", false, false)
392 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
394 bool CodeGenPrepare::runOnFunction(Function &F) {
395 if (skipFunction(F))
396 return false;
398 DL = &F.getParent()->getDataLayout();
400 bool EverMadeChange = false;
401 // Clear per function information.
402 InsertedInsts.clear();
403 PromotedInsts.clear();
405 ModifiedDT = false;
406 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
407 TM = &TPC->getTM<TargetMachine>();
408 SubtargetInfo = TM->getSubtargetImpl(F);
409 TLI = SubtargetInfo->getTargetLowering();
410 TRI = SubtargetInfo->getRegisterInfo();
412 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
413 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
414 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
415 BPI.reset(new BranchProbabilityInfo(F, *LI));
416 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
417 OptSize = F.optForSize();
419 ProfileSummaryInfo *PSI =
420 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
421 if (ProfileGuidedSectionPrefix) {
422 if (PSI->isFunctionHotInCallGraph(&F, *BFI))
423 F.setSectionPrefix(".hot");
424 else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
425 F.setSectionPrefix(".unlikely");
428 /// This optimization identifies DIV instructions that can be
429 /// profitably bypassed and carried out with a shorter, faster divide.
430 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
431 TLI->isSlowDivBypassed()) {
432 const DenseMap<unsigned int, unsigned int> &BypassWidths =
433 TLI->getBypassSlowDivWidths();
434 BasicBlock* BB = &*F.begin();
435 while (BB != nullptr) {
436 // bypassSlowDivision may create new BBs, but we don't want to reapply the
437 // optimization to those blocks.
438 BasicBlock* Next = BB->getNextNode();
439 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
440 BB = Next;
444 // Eliminate blocks that contain only PHI nodes and an
445 // unconditional branch.
446 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
448 if (!DisableBranchOpts)
449 EverMadeChange |= splitBranchCondition(F);
451 // Split some critical edges where one of the sources is an indirect branch,
452 // to help generate sane code for PHIs involving such edges.
453 EverMadeChange |= SplitIndirectBrCriticalEdges(F);
455 bool MadeChange = true;
456 while (MadeChange) {
457 MadeChange = false;
458 for (Function::iterator I = F.begin(); I != F.end(); ) {
459 BasicBlock *BB = &*I++;
460 bool ModifiedDTOnIteration = false;
461 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
463 // Restart BB iteration if the dominator tree of the Function was changed
464 if (ModifiedDTOnIteration)
465 break;
467 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
468 MadeChange |= mergeSExts(F);
469 if (!LargeOffsetGEPMap.empty())
470 MadeChange |= splitLargeGEPOffsets();
472 // Really free removed instructions during promotion.
473 for (Instruction *I : RemovedInsts)
474 I->deleteValue();
476 EverMadeChange |= MadeChange;
477 SeenChainsForSExt.clear();
478 ValToSExtendedUses.clear();
479 RemovedInsts.clear();
480 LargeOffsetGEPMap.clear();
481 LargeOffsetGEPID.clear();
484 SunkAddrs.clear();
486 if (!DisableBranchOpts) {
487 MadeChange = false;
488 // Use a set vector to get deterministic iteration order. The order the
489 // blocks are removed may affect whether or not PHI nodes in successors
490 // are removed.
491 SmallSetVector<BasicBlock*, 8> WorkList;
492 for (BasicBlock &BB : F) {
493 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
494 MadeChange |= ConstantFoldTerminator(&BB, true);
495 if (!MadeChange) continue;
497 for (SmallVectorImpl<BasicBlock*>::iterator
498 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
499 if (pred_begin(*II) == pred_end(*II))
500 WorkList.insert(*II);
503 // Delete the dead blocks and any of their dead successors.
504 MadeChange |= !WorkList.empty();
505 while (!WorkList.empty()) {
506 BasicBlock *BB = WorkList.pop_back_val();
507 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
509 DeleteDeadBlock(BB);
511 for (SmallVectorImpl<BasicBlock*>::iterator
512 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
513 if (pred_begin(*II) == pred_end(*II))
514 WorkList.insert(*II);
517 // Merge pairs of basic blocks with unconditional branches, connected by
518 // a single edge.
519 if (EverMadeChange || MadeChange)
520 MadeChange |= eliminateFallThrough(F);
522 EverMadeChange |= MadeChange;
525 if (!DisableGCOpts) {
526 SmallVector<Instruction *, 2> Statepoints;
527 for (BasicBlock &BB : F)
528 for (Instruction &I : BB)
529 if (isStatepoint(I))
530 Statepoints.push_back(&I);
531 for (auto &I : Statepoints)
532 EverMadeChange |= simplifyOffsetableRelocate(*I);
535 // Do this last to clean up use-before-def scenarios introduced by other
536 // preparatory transforms.
537 EverMadeChange |= placeDbgValues(F);
539 return EverMadeChange;
542 /// Merge basic blocks which are connected by a single edge, where one of the
543 /// basic blocks has a single successor pointing to the other basic block,
544 /// which has a single predecessor.
545 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
546 bool Changed = false;
547 // Scan all of the blocks in the function, except for the entry block.
548 // Use a temporary array to avoid iterator being invalidated when
549 // deleting blocks.
550 SmallVector<WeakTrackingVH, 16> Blocks;
551 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
552 Blocks.push_back(&Block);
554 for (auto &Block : Blocks) {
555 auto *BB = cast_or_null<BasicBlock>(Block);
556 if (!BB)
557 continue;
558 // If the destination block has a single pred, then this is a trivial
559 // edge, just collapse it.
560 BasicBlock *SinglePred = BB->getSinglePredecessor();
562 // Don't merge if BB's address is taken.
563 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
565 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
566 if (Term && !Term->isConditional()) {
567 Changed = true;
568 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
570 // Merge BB into SinglePred and delete it.
571 MergeBlockIntoPredecessor(BB);
574 return Changed;
577 /// Find a destination block from BB if BB is mergeable empty block.
578 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
579 // If this block doesn't end with an uncond branch, ignore it.
580 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
581 if (!BI || !BI->isUnconditional())
582 return nullptr;
584 // If the instruction before the branch (skipping debug info) isn't a phi
585 // node, then other stuff is happening here.
586 BasicBlock::iterator BBI = BI->getIterator();
587 if (BBI != BB->begin()) {
588 --BBI;
589 while (isa<DbgInfoIntrinsic>(BBI)) {
590 if (BBI == BB->begin())
591 break;
592 --BBI;
594 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
595 return nullptr;
598 // Do not break infinite loops.
599 BasicBlock *DestBB = BI->getSuccessor(0);
600 if (DestBB == BB)
601 return nullptr;
603 if (!canMergeBlocks(BB, DestBB))
604 DestBB = nullptr;
606 return DestBB;
609 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
610 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
611 /// edges in ways that are non-optimal for isel. Start by eliminating these
612 /// blocks so we can split them the way we want them.
613 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
614 SmallPtrSet<BasicBlock *, 16> Preheaders;
615 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
616 while (!LoopList.empty()) {
617 Loop *L = LoopList.pop_back_val();
618 LoopList.insert(LoopList.end(), L->begin(), L->end());
619 if (BasicBlock *Preheader = L->getLoopPreheader())
620 Preheaders.insert(Preheader);
623 bool MadeChange = false;
624 // Copy blocks into a temporary array to avoid iterator invalidation issues
625 // as we remove them.
626 // Note that this intentionally skips the entry block.
627 SmallVector<WeakTrackingVH, 16> Blocks;
628 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
629 Blocks.push_back(&Block);
631 for (auto &Block : Blocks) {
632 BasicBlock *BB = cast_or_null<BasicBlock>(Block);
633 if (!BB)
634 continue;
635 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
636 if (!DestBB ||
637 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
638 continue;
640 eliminateMostlyEmptyBlock(BB);
641 MadeChange = true;
643 return MadeChange;
646 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
647 BasicBlock *DestBB,
648 bool isPreheader) {
649 // Do not delete loop preheaders if doing so would create a critical edge.
650 // Loop preheaders can be good locations to spill registers. If the
651 // preheader is deleted and we create a critical edge, registers may be
652 // spilled in the loop body instead.
653 if (!DisablePreheaderProtect && isPreheader &&
654 !(BB->getSinglePredecessor() &&
655 BB->getSinglePredecessor()->getSingleSuccessor()))
656 return false;
658 // Skip merging if the block's successor is also a successor to any callbr
659 // that leads to this block.
660 // FIXME: Is this really needed? Is this a correctness issue?
661 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
662 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
663 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
664 if (DestBB == CBI->getSuccessor(i))
665 return false;
668 // Try to skip merging if the unique predecessor of BB is terminated by a
669 // switch or indirect branch instruction, and BB is used as an incoming block
670 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
671 // add COPY instructions in the predecessor of BB instead of BB (if it is not
672 // merged). Note that the critical edge created by merging such blocks wont be
673 // split in MachineSink because the jump table is not analyzable. By keeping
674 // such empty block (BB), ISel will place COPY instructions in BB, not in the
675 // predecessor of BB.
676 BasicBlock *Pred = BB->getUniquePredecessor();
677 if (!Pred ||
678 !(isa<SwitchInst>(Pred->getTerminator()) ||
679 isa<IndirectBrInst>(Pred->getTerminator())))
680 return true;
682 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
683 return true;
685 // We use a simple cost heuristic which determine skipping merging is
686 // profitable if the cost of skipping merging is less than the cost of
687 // merging : Cost(skipping merging) < Cost(merging BB), where the
688 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
689 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
690 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
691 // Freq(Pred) / Freq(BB) > 2.
692 // Note that if there are multiple empty blocks sharing the same incoming
693 // value for the PHIs in the DestBB, we consider them together. In such
694 // case, Cost(merging BB) will be the sum of their frequencies.
696 if (!isa<PHINode>(DestBB->begin()))
697 return true;
699 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
701 // Find all other incoming blocks from which incoming values of all PHIs in
702 // DestBB are the same as the ones from BB.
703 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
704 ++PI) {
705 BasicBlock *DestBBPred = *PI;
706 if (DestBBPred == BB)
707 continue;
709 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
710 return DestPN.getIncomingValueForBlock(BB) ==
711 DestPN.getIncomingValueForBlock(DestBBPred);
713 SameIncomingValueBBs.insert(DestBBPred);
716 // See if all BB's incoming values are same as the value from Pred. In this
717 // case, no reason to skip merging because COPYs are expected to be place in
718 // Pred already.
719 if (SameIncomingValueBBs.count(Pred))
720 return true;
722 BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
723 BlockFrequency BBFreq = BFI->getBlockFreq(BB);
725 for (auto SameValueBB : SameIncomingValueBBs)
726 if (SameValueBB->getUniquePredecessor() == Pred &&
727 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
728 BBFreq += BFI->getBlockFreq(SameValueBB);
730 return PredFreq.getFrequency() <=
731 BBFreq.getFrequency() * FreqRatioToSkipMerge;
734 /// Return true if we can merge BB into DestBB if there is a single
735 /// unconditional branch between them, and BB contains no other non-phi
736 /// instructions.
737 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
738 const BasicBlock *DestBB) const {
739 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
740 // the successor. If there are more complex condition (e.g. preheaders),
741 // don't mess around with them.
742 for (const PHINode &PN : BB->phis()) {
743 for (const User *U : PN.users()) {
744 const Instruction *UI = cast<Instruction>(U);
745 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
746 return false;
747 // If User is inside DestBB block and it is a PHINode then check
748 // incoming value. If incoming value is not from BB then this is
749 // a complex condition (e.g. preheaders) we want to avoid here.
750 if (UI->getParent() == DestBB) {
751 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
752 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
753 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
754 if (Insn && Insn->getParent() == BB &&
755 Insn->getParent() != UPN->getIncomingBlock(I))
756 return false;
762 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
763 // and DestBB may have conflicting incoming values for the block. If so, we
764 // can't merge the block.
765 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
766 if (!DestBBPN) return true; // no conflict.
768 // Collect the preds of BB.
769 SmallPtrSet<const BasicBlock*, 16> BBPreds;
770 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
771 // It is faster to get preds from a PHI than with pred_iterator.
772 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
773 BBPreds.insert(BBPN->getIncomingBlock(i));
774 } else {
775 BBPreds.insert(pred_begin(BB), pred_end(BB));
778 // Walk the preds of DestBB.
779 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
780 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
781 if (BBPreds.count(Pred)) { // Common predecessor?
782 for (const PHINode &PN : DestBB->phis()) {
783 const Value *V1 = PN.getIncomingValueForBlock(Pred);
784 const Value *V2 = PN.getIncomingValueForBlock(BB);
786 // If V2 is a phi node in BB, look up what the mapped value will be.
787 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
788 if (V2PN->getParent() == BB)
789 V2 = V2PN->getIncomingValueForBlock(Pred);
791 // If there is a conflict, bail out.
792 if (V1 != V2) return false;
797 return true;
800 /// Eliminate a basic block that has only phi's and an unconditional branch in
801 /// it.
802 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
803 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
804 BasicBlock *DestBB = BI->getSuccessor(0);
806 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
807 << *BB << *DestBB);
809 // If the destination block has a single pred, then this is a trivial edge,
810 // just collapse it.
811 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
812 if (SinglePred != DestBB) {
813 assert(SinglePred == BB &&
814 "Single predecessor not the same as predecessor");
815 // Merge DestBB into SinglePred/BB and delete it.
816 MergeBlockIntoPredecessor(DestBB);
817 // Note: BB(=SinglePred) will not be deleted on this path.
818 // DestBB(=its single successor) is the one that was deleted.
819 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
820 return;
824 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
825 // to handle the new incoming edges it is about to have.
826 for (PHINode &PN : DestBB->phis()) {
827 // Remove the incoming value for BB, and remember it.
828 Value *InVal = PN.removeIncomingValue(BB, false);
830 // Two options: either the InVal is a phi node defined in BB or it is some
831 // value that dominates BB.
832 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
833 if (InValPhi && InValPhi->getParent() == BB) {
834 // Add all of the input values of the input PHI as inputs of this phi.
835 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
836 PN.addIncoming(InValPhi->getIncomingValue(i),
837 InValPhi->getIncomingBlock(i));
838 } else {
839 // Otherwise, add one instance of the dominating value for each edge that
840 // we will be adding.
841 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
842 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
843 PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
844 } else {
845 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
846 PN.addIncoming(InVal, *PI);
851 // The PHIs are now updated, change everything that refers to BB to use
852 // DestBB and remove BB.
853 BB->replaceAllUsesWith(DestBB);
854 BB->eraseFromParent();
855 ++NumBlocksElim;
857 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
860 // Computes a map of base pointer relocation instructions to corresponding
861 // derived pointer relocation instructions given a vector of all relocate calls
862 static void computeBaseDerivedRelocateMap(
863 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
864 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
865 &RelocateInstMap) {
866 // Collect information in two maps: one primarily for locating the base object
867 // while filling the second map; the second map is the final structure holding
868 // a mapping between Base and corresponding Derived relocate calls
869 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
870 for (auto *ThisRelocate : AllRelocateCalls) {
871 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
872 ThisRelocate->getDerivedPtrIndex());
873 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
875 for (auto &Item : RelocateIdxMap) {
876 std::pair<unsigned, unsigned> Key = Item.first;
877 if (Key.first == Key.second)
878 // Base relocation: nothing to insert
879 continue;
881 GCRelocateInst *I = Item.second;
882 auto BaseKey = std::make_pair(Key.first, Key.first);
884 // We're iterating over RelocateIdxMap so we cannot modify it.
885 auto MaybeBase = RelocateIdxMap.find(BaseKey);
886 if (MaybeBase == RelocateIdxMap.end())
887 // TODO: We might want to insert a new base object relocate and gep off
888 // that, if there are enough derived object relocates.
889 continue;
891 RelocateInstMap[MaybeBase->second].push_back(I);
895 // Accepts a GEP and extracts the operands into a vector provided they're all
896 // small integer constants
897 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
898 SmallVectorImpl<Value *> &OffsetV) {
899 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
900 // Only accept small constant integer operands
901 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
902 if (!Op || Op->getZExtValue() > 20)
903 return false;
906 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
907 OffsetV.push_back(GEP->getOperand(i));
908 return true;
911 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
912 // replace, computes a replacement, and affects it.
913 static bool
914 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
915 const SmallVectorImpl<GCRelocateInst *> &Targets) {
916 bool MadeChange = false;
917 // We must ensure the relocation of derived pointer is defined after
918 // relocation of base pointer. If we find a relocation corresponding to base
919 // defined earlier than relocation of base then we move relocation of base
920 // right before found relocation. We consider only relocation in the same
921 // basic block as relocation of base. Relocations from other basic block will
922 // be skipped by optimization and we do not care about them.
923 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
924 &*R != RelocatedBase; ++R)
925 if (auto RI = dyn_cast<GCRelocateInst>(R))
926 if (RI->getStatepoint() == RelocatedBase->getStatepoint())
927 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
928 RelocatedBase->moveBefore(RI);
929 break;
932 for (GCRelocateInst *ToReplace : Targets) {
933 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
934 "Not relocating a derived object of the original base object");
935 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
936 // A duplicate relocate call. TODO: coalesce duplicates.
937 continue;
940 if (RelocatedBase->getParent() != ToReplace->getParent()) {
941 // Base and derived relocates are in different basic blocks.
942 // In this case transform is only valid when base dominates derived
943 // relocate. However it would be too expensive to check dominance
944 // for each such relocate, so we skip the whole transformation.
945 continue;
948 Value *Base = ToReplace->getBasePtr();
949 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
950 if (!Derived || Derived->getPointerOperand() != Base)
951 continue;
953 SmallVector<Value *, 2> OffsetV;
954 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
955 continue;
957 // Create a Builder and replace the target callsite with a gep
958 assert(RelocatedBase->getNextNode() &&
959 "Should always have one since it's not a terminator");
961 // Insert after RelocatedBase
962 IRBuilder<> Builder(RelocatedBase->getNextNode());
963 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
965 // If gc_relocate does not match the actual type, cast it to the right type.
966 // In theory, there must be a bitcast after gc_relocate if the type does not
967 // match, and we should reuse it to get the derived pointer. But it could be
968 // cases like this:
969 // bb1:
970 // ...
971 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
972 // br label %merge
974 // bb2:
975 // ...
976 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
977 // br label %merge
979 // merge:
980 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
981 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
983 // In this case, we can not find the bitcast any more. So we insert a new bitcast
984 // no matter there is already one or not. In this way, we can handle all cases, and
985 // the extra bitcast should be optimized away in later passes.
986 Value *ActualRelocatedBase = RelocatedBase;
987 if (RelocatedBase->getType() != Base->getType()) {
988 ActualRelocatedBase =
989 Builder.CreateBitCast(RelocatedBase, Base->getType());
991 Value *Replacement = Builder.CreateGEP(
992 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
993 Replacement->takeName(ToReplace);
994 // If the newly generated derived pointer's type does not match the original derived
995 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
996 Value *ActualReplacement = Replacement;
997 if (Replacement->getType() != ToReplace->getType()) {
998 ActualReplacement =
999 Builder.CreateBitCast(Replacement, ToReplace->getType());
1001 ToReplace->replaceAllUsesWith(ActualReplacement);
1002 ToReplace->eraseFromParent();
1004 MadeChange = true;
1006 return MadeChange;
1009 // Turns this:
1011 // %base = ...
1012 // %ptr = gep %base + 15
1013 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1014 // %base' = relocate(%tok, i32 4, i32 4)
1015 // %ptr' = relocate(%tok, i32 4, i32 5)
1016 // %val = load %ptr'
1018 // into this:
1020 // %base = ...
1021 // %ptr = gep %base + 15
1022 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1023 // %base' = gc.relocate(%tok, i32 4, i32 4)
1024 // %ptr' = gep %base' + 15
1025 // %val = load %ptr'
1026 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1027 bool MadeChange = false;
1028 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1030 for (auto *U : I.users())
1031 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1032 // Collect all the relocate calls associated with a statepoint
1033 AllRelocateCalls.push_back(Relocate);
1035 // We need atleast one base pointer relocation + one derived pointer
1036 // relocation to mangle
1037 if (AllRelocateCalls.size() < 2)
1038 return false;
1040 // RelocateInstMap is a mapping from the base relocate instruction to the
1041 // corresponding derived relocate instructions
1042 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1043 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1044 if (RelocateInstMap.empty())
1045 return false;
1047 for (auto &Item : RelocateInstMap)
1048 // Item.first is the RelocatedBase to offset against
1049 // Item.second is the vector of Targets to replace
1050 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1051 return MadeChange;
1054 /// SinkCast - Sink the specified cast instruction into its user blocks
1055 static bool SinkCast(CastInst *CI) {
1056 BasicBlock *DefBB = CI->getParent();
1058 /// InsertedCasts - Only insert a cast in each block once.
1059 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1061 bool MadeChange = false;
1062 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1063 UI != E; ) {
1064 Use &TheUse = UI.getUse();
1065 Instruction *User = cast<Instruction>(*UI);
1067 // Figure out which BB this cast is used in. For PHI's this is the
1068 // appropriate predecessor block.
1069 BasicBlock *UserBB = User->getParent();
1070 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1071 UserBB = PN->getIncomingBlock(TheUse);
1074 // Preincrement use iterator so we don't invalidate it.
1075 ++UI;
1077 // The first insertion point of a block containing an EH pad is after the
1078 // pad. If the pad is the user, we cannot sink the cast past the pad.
1079 if (User->isEHPad())
1080 continue;
1082 // If the block selected to receive the cast is an EH pad that does not
1083 // allow non-PHI instructions before the terminator, we can't sink the
1084 // cast.
1085 if (UserBB->getTerminator()->isEHPad())
1086 continue;
1088 // If this user is in the same block as the cast, don't change the cast.
1089 if (UserBB == DefBB) continue;
1091 // If we have already inserted a cast into this block, use it.
1092 CastInst *&InsertedCast = InsertedCasts[UserBB];
1094 if (!InsertedCast) {
1095 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1096 assert(InsertPt != UserBB->end());
1097 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1098 CI->getType(), "", &*InsertPt);
1099 InsertedCast->setDebugLoc(CI->getDebugLoc());
1102 // Replace a use of the cast with a use of the new cast.
1103 TheUse = InsertedCast;
1104 MadeChange = true;
1105 ++NumCastUses;
1108 // If we removed all uses, nuke the cast.
1109 if (CI->use_empty()) {
1110 salvageDebugInfo(*CI);
1111 CI->eraseFromParent();
1112 MadeChange = true;
1115 return MadeChange;
1118 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1119 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1120 /// reduce the number of virtual registers that must be created and coalesced.
1122 /// Return true if any changes are made.
1123 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1124 const DataLayout &DL) {
1125 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1126 // than sinking only nop casts, but is helpful on some platforms.
1127 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1128 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1129 ASC->getDestAddressSpace()))
1130 return false;
1133 // If this is a noop copy,
1134 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1135 EVT DstVT = TLI.getValueType(DL, CI->getType());
1137 // This is an fp<->int conversion?
1138 if (SrcVT.isInteger() != DstVT.isInteger())
1139 return false;
1141 // If this is an extension, it will be a zero or sign extension, which
1142 // isn't a noop.
1143 if (SrcVT.bitsLT(DstVT)) return false;
1145 // If these values will be promoted, find out what they will be promoted
1146 // to. This helps us consider truncates on PPC as noop copies when they
1147 // are.
1148 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1149 TargetLowering::TypePromoteInteger)
1150 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1151 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1152 TargetLowering::TypePromoteInteger)
1153 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1155 // If, after promotion, these are the same types, this is a noop copy.
1156 if (SrcVT != DstVT)
1157 return false;
1159 return SinkCast(CI);
1162 static void replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
1163 Instruction *InsertPt,
1164 Intrinsic::ID IID) {
1165 IRBuilder<> Builder(InsertPt);
1166 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, BO->getOperand(0),
1167 BO->getOperand(1));
1168 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1169 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1170 BO->replaceAllUsesWith(Math);
1171 Cmp->replaceAllUsesWith(OV);
1172 BO->eraseFromParent();
1173 Cmp->eraseFromParent();
1176 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1177 /// intrinsic. Return true if any changes were made.
1178 static bool combineToUAddWithOverflow(CmpInst *Cmp, const TargetLowering &TLI,
1179 const DataLayout &DL) {
1180 Value *A, *B;
1181 BinaryOperator *Add;
1182 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1183 return false;
1185 // Allow the transform as long as we have an integer type that is not
1186 // obviously illegal and unsupported.
1187 Type *Ty = Add->getType();
1188 if (!isa<IntegerType>(Ty))
1189 return false;
1190 EVT CodegenVT = TLI.getValueType(DL, Ty);
1191 if (!CodegenVT.isSimple() && TLI.isOperationExpand(ISD::UADDO, CodegenVT))
1192 return false;
1194 // We don't want to move around uses of condition values this late, so we
1195 // check if it is legal to create the call to the intrinsic in the basic
1196 // block containing the icmp.
1197 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1198 return false;
1200 #ifndef NDEBUG
1201 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1202 // for now:
1203 if (Add->hasOneUse())
1204 assert(*Add->user_begin() == Cmp && "expected!");
1205 #endif
1207 Instruction *InPt = Add->hasOneUse() ? cast<Instruction>(Cmp)
1208 : cast<Instruction>(Add);
1209 replaceMathCmpWithIntrinsic(Add, Cmp, InPt, Intrinsic::uadd_with_overflow);
1210 return true;
1213 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1214 /// registers that must be created and coalesced. This is a clear win except on
1215 /// targets with multiple condition code registers (PowerPC), where it might
1216 /// lose; some adjustment may be wanted there.
1218 /// Return true if any changes are made.
1219 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1220 if (TLI.hasMultipleConditionRegisters())
1221 return false;
1223 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1224 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1225 return false;
1227 // Only insert a cmp in each block once.
1228 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1230 bool MadeChange = false;
1231 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1232 UI != E; ) {
1233 Use &TheUse = UI.getUse();
1234 Instruction *User = cast<Instruction>(*UI);
1236 // Preincrement use iterator so we don't invalidate it.
1237 ++UI;
1239 // Don't bother for PHI nodes.
1240 if (isa<PHINode>(User))
1241 continue;
1243 // Figure out which BB this cmp is used in.
1244 BasicBlock *UserBB = User->getParent();
1245 BasicBlock *DefBB = Cmp->getParent();
1247 // If this user is in the same block as the cmp, don't change the cmp.
1248 if (UserBB == DefBB) continue;
1250 // If we have already inserted a cmp into this block, use it.
1251 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1253 if (!InsertedCmp) {
1254 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1255 assert(InsertPt != UserBB->end());
1256 InsertedCmp =
1257 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1258 Cmp->getOperand(0), Cmp->getOperand(1), "",
1259 &*InsertPt);
1260 // Propagate the debug info.
1261 InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1264 // Replace a use of the cmp with a use of the new cmp.
1265 TheUse = InsertedCmp;
1266 MadeChange = true;
1267 ++NumCmpUses;
1270 // If we removed all uses, nuke the cmp.
1271 if (Cmp->use_empty()) {
1272 Cmp->eraseFromParent();
1273 MadeChange = true;
1276 return MadeChange;
1279 static bool optimizeCmpExpression(CmpInst *Cmp, const TargetLowering &TLI,
1280 const DataLayout &DL) {
1281 if (sinkCmpExpression(Cmp, TLI))
1282 return true;
1284 if (combineToUAddWithOverflow(Cmp, TLI, DL))
1285 return true;
1287 return false;
1290 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1291 /// used in a compare to allow isel to generate better code for targets where
1292 /// this operation can be combined.
1294 /// Return true if any changes are made.
1295 static bool sinkAndCmp0Expression(Instruction *AndI,
1296 const TargetLowering &TLI,
1297 SetOfInstrs &InsertedInsts) {
1298 // Double-check that we're not trying to optimize an instruction that was
1299 // already optimized by some other part of this pass.
1300 assert(!InsertedInsts.count(AndI) &&
1301 "Attempting to optimize already optimized and instruction");
1302 (void) InsertedInsts;
1304 // Nothing to do for single use in same basic block.
1305 if (AndI->hasOneUse() &&
1306 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1307 return false;
1309 // Try to avoid cases where sinking/duplicating is likely to increase register
1310 // pressure.
1311 if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1312 !isa<ConstantInt>(AndI->getOperand(1)) &&
1313 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1314 return false;
1316 for (auto *U : AndI->users()) {
1317 Instruction *User = cast<Instruction>(U);
1319 // Only sink for and mask feeding icmp with 0.
1320 if (!isa<ICmpInst>(User))
1321 return false;
1323 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1324 if (!CmpC || !CmpC->isZero())
1325 return false;
1328 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1329 return false;
1331 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1332 LLVM_DEBUG(AndI->getParent()->dump());
1334 // Push the 'and' into the same block as the icmp 0. There should only be
1335 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1336 // others, so we don't need to keep track of which BBs we insert into.
1337 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1338 UI != E; ) {
1339 Use &TheUse = UI.getUse();
1340 Instruction *User = cast<Instruction>(*UI);
1342 // Preincrement use iterator so we don't invalidate it.
1343 ++UI;
1345 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1347 // Keep the 'and' in the same place if the use is already in the same block.
1348 Instruction *InsertPt =
1349 User->getParent() == AndI->getParent() ? AndI : User;
1350 Instruction *InsertedAnd =
1351 BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1352 AndI->getOperand(1), "", InsertPt);
1353 // Propagate the debug info.
1354 InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1356 // Replace a use of the 'and' with a use of the new 'and'.
1357 TheUse = InsertedAnd;
1358 ++NumAndUses;
1359 LLVM_DEBUG(User->getParent()->dump());
1362 // We removed all uses, nuke the and.
1363 AndI->eraseFromParent();
1364 return true;
1367 /// Check if the candidates could be combined with a shift instruction, which
1368 /// includes:
1369 /// 1. Truncate instruction
1370 /// 2. And instruction and the imm is a mask of the low bits:
1371 /// imm & (imm+1) == 0
1372 static bool isExtractBitsCandidateUse(Instruction *User) {
1373 if (!isa<TruncInst>(User)) {
1374 if (User->getOpcode() != Instruction::And ||
1375 !isa<ConstantInt>(User->getOperand(1)))
1376 return false;
1378 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1380 if ((Cimm & (Cimm + 1)).getBoolValue())
1381 return false;
1383 return true;
1386 /// Sink both shift and truncate instruction to the use of truncate's BB.
1387 static bool
1388 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1389 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1390 const TargetLowering &TLI, const DataLayout &DL) {
1391 BasicBlock *UserBB = User->getParent();
1392 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1393 TruncInst *TruncI = dyn_cast<TruncInst>(User);
1394 bool MadeChange = false;
1396 for (Value::user_iterator TruncUI = TruncI->user_begin(),
1397 TruncE = TruncI->user_end();
1398 TruncUI != TruncE;) {
1400 Use &TruncTheUse = TruncUI.getUse();
1401 Instruction *TruncUser = cast<Instruction>(*TruncUI);
1402 // Preincrement use iterator so we don't invalidate it.
1404 ++TruncUI;
1406 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1407 if (!ISDOpcode)
1408 continue;
1410 // If the use is actually a legal node, there will not be an
1411 // implicit truncate.
1412 // FIXME: always querying the result type is just an
1413 // approximation; some nodes' legality is determined by the
1414 // operand or other means. There's no good way to find out though.
1415 if (TLI.isOperationLegalOrCustom(
1416 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1417 continue;
1419 // Don't bother for PHI nodes.
1420 if (isa<PHINode>(TruncUser))
1421 continue;
1423 BasicBlock *TruncUserBB = TruncUser->getParent();
1425 if (UserBB == TruncUserBB)
1426 continue;
1428 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1429 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1431 if (!InsertedShift && !InsertedTrunc) {
1432 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1433 assert(InsertPt != TruncUserBB->end());
1434 // Sink the shift
1435 if (ShiftI->getOpcode() == Instruction::AShr)
1436 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1437 "", &*InsertPt);
1438 else
1439 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1440 "", &*InsertPt);
1441 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1443 // Sink the trunc
1444 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1445 TruncInsertPt++;
1446 assert(TruncInsertPt != TruncUserBB->end());
1448 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1449 TruncI->getType(), "", &*TruncInsertPt);
1450 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1452 MadeChange = true;
1454 TruncTheUse = InsertedTrunc;
1457 return MadeChange;
1460 /// Sink the shift *right* instruction into user blocks if the uses could
1461 /// potentially be combined with this shift instruction and generate BitExtract
1462 /// instruction. It will only be applied if the architecture supports BitExtract
1463 /// instruction. Here is an example:
1464 /// BB1:
1465 /// %x.extract.shift = lshr i64 %arg1, 32
1466 /// BB2:
1467 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1468 /// ==>
1470 /// BB2:
1471 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1472 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1474 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1475 /// instruction.
1476 /// Return true if any changes are made.
1477 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1478 const TargetLowering &TLI,
1479 const DataLayout &DL) {
1480 BasicBlock *DefBB = ShiftI->getParent();
1482 /// Only insert instructions in each block once.
1483 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1485 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1487 bool MadeChange = false;
1488 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1489 UI != E;) {
1490 Use &TheUse = UI.getUse();
1491 Instruction *User = cast<Instruction>(*UI);
1492 // Preincrement use iterator so we don't invalidate it.
1493 ++UI;
1495 // Don't bother for PHI nodes.
1496 if (isa<PHINode>(User))
1497 continue;
1499 if (!isExtractBitsCandidateUse(User))
1500 continue;
1502 BasicBlock *UserBB = User->getParent();
1504 if (UserBB == DefBB) {
1505 // If the shift and truncate instruction are in the same BB. The use of
1506 // the truncate(TruncUse) may still introduce another truncate if not
1507 // legal. In this case, we would like to sink both shift and truncate
1508 // instruction to the BB of TruncUse.
1509 // for example:
1510 // BB1:
1511 // i64 shift.result = lshr i64 opnd, imm
1512 // trunc.result = trunc shift.result to i16
1514 // BB2:
1515 // ----> We will have an implicit truncate here if the architecture does
1516 // not have i16 compare.
1517 // cmp i16 trunc.result, opnd2
1519 if (isa<TruncInst>(User) && shiftIsLegal
1520 // If the type of the truncate is legal, no truncate will be
1521 // introduced in other basic blocks.
1523 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1524 MadeChange =
1525 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1527 continue;
1529 // If we have already inserted a shift into this block, use it.
1530 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1532 if (!InsertedShift) {
1533 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1534 assert(InsertPt != UserBB->end());
1536 if (ShiftI->getOpcode() == Instruction::AShr)
1537 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1538 "", &*InsertPt);
1539 else
1540 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1541 "", &*InsertPt);
1542 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1544 MadeChange = true;
1547 // Replace a use of the shift with a use of the new shift.
1548 TheUse = InsertedShift;
1551 // If we removed all uses, nuke the shift.
1552 if (ShiftI->use_empty()) {
1553 salvageDebugInfo(*ShiftI);
1554 ShiftI->eraseFromParent();
1557 return MadeChange;
1560 /// If counting leading or trailing zeros is an expensive operation and a zero
1561 /// input is defined, add a check for zero to avoid calling the intrinsic.
1563 /// We want to transform:
1564 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1566 /// into:
1567 /// entry:
1568 /// %cmpz = icmp eq i64 %A, 0
1569 /// br i1 %cmpz, label %cond.end, label %cond.false
1570 /// cond.false:
1571 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1572 /// br label %cond.end
1573 /// cond.end:
1574 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1576 /// If the transform is performed, return true and set ModifiedDT to true.
1577 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1578 const TargetLowering *TLI,
1579 const DataLayout *DL,
1580 bool &ModifiedDT) {
1581 if (!TLI || !DL)
1582 return false;
1584 // If a zero input is undefined, it doesn't make sense to despeculate that.
1585 if (match(CountZeros->getOperand(1), m_One()))
1586 return false;
1588 // If it's cheap to speculate, there's nothing to do.
1589 auto IntrinsicID = CountZeros->getIntrinsicID();
1590 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1591 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1592 return false;
1594 // Only handle legal scalar cases. Anything else requires too much work.
1595 Type *Ty = CountZeros->getType();
1596 unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1597 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1598 return false;
1600 // The intrinsic will be sunk behind a compare against zero and branch.
1601 BasicBlock *StartBlock = CountZeros->getParent();
1602 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1604 // Create another block after the count zero intrinsic. A PHI will be added
1605 // in this block to select the result of the intrinsic or the bit-width
1606 // constant if the input to the intrinsic is zero.
1607 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1608 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1610 // Set up a builder to create a compare, conditional branch, and PHI.
1611 IRBuilder<> Builder(CountZeros->getContext());
1612 Builder.SetInsertPoint(StartBlock->getTerminator());
1613 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1615 // Replace the unconditional branch that was created by the first split with
1616 // a compare against zero and a conditional branch.
1617 Value *Zero = Constant::getNullValue(Ty);
1618 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1619 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1620 StartBlock->getTerminator()->eraseFromParent();
1622 // Create a PHI in the end block to select either the output of the intrinsic
1623 // or the bit width of the operand.
1624 Builder.SetInsertPoint(&EndBlock->front());
1625 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1626 CountZeros->replaceAllUsesWith(PN);
1627 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1628 PN->addIncoming(BitWidth, StartBlock);
1629 PN->addIncoming(CountZeros, CallBlock);
1631 // We are explicitly handling the zero case, so we can set the intrinsic's
1632 // undefined zero argument to 'true'. This will also prevent reprocessing the
1633 // intrinsic; we only despeculate when a zero input is defined.
1634 CountZeros->setArgOperand(1, Builder.getTrue());
1635 ModifiedDT = true;
1636 return true;
1639 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1640 BasicBlock *BB = CI->getParent();
1642 // Lower inline assembly if we can.
1643 // If we found an inline asm expession, and if the target knows how to
1644 // lower it to normal LLVM code, do so now.
1645 if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1646 if (TLI->ExpandInlineAsm(CI)) {
1647 // Avoid invalidating the iterator.
1648 CurInstIterator = BB->begin();
1649 // Avoid processing instructions out of order, which could cause
1650 // reuse before a value is defined.
1651 SunkAddrs.clear();
1652 return true;
1654 // Sink address computing for memory operands into the block.
1655 if (optimizeInlineAsmInst(CI))
1656 return true;
1659 // Align the pointer arguments to this call if the target thinks it's a good
1660 // idea
1661 unsigned MinSize, PrefAlign;
1662 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1663 for (auto &Arg : CI->arg_operands()) {
1664 // We want to align both objects whose address is used directly and
1665 // objects whose address is used in casts and GEPs, though it only makes
1666 // sense for GEPs if the offset is a multiple of the desired alignment and
1667 // if size - offset meets the size threshold.
1668 if (!Arg->getType()->isPointerTy())
1669 continue;
1670 APInt Offset(DL->getIndexSizeInBits(
1671 cast<PointerType>(Arg->getType())->getAddressSpace()),
1673 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1674 uint64_t Offset2 = Offset.getLimitedValue();
1675 if ((Offset2 & (PrefAlign-1)) != 0)
1676 continue;
1677 AllocaInst *AI;
1678 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1679 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1680 AI->setAlignment(PrefAlign);
1681 // Global variables can only be aligned if they are defined in this
1682 // object (i.e. they are uniquely initialized in this object), and
1683 // over-aligning global variables that have an explicit section is
1684 // forbidden.
1685 GlobalVariable *GV;
1686 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1687 GV->getPointerAlignment(*DL) < PrefAlign &&
1688 DL->getTypeAllocSize(GV->getValueType()) >=
1689 MinSize + Offset2)
1690 GV->setAlignment(PrefAlign);
1692 // If this is a memcpy (or similar) then we may be able to improve the
1693 // alignment
1694 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1695 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1696 if (DestAlign > MI->getDestAlignment())
1697 MI->setDestAlignment(DestAlign);
1698 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1699 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1700 if (SrcAlign > MTI->getSourceAlignment())
1701 MTI->setSourceAlignment(SrcAlign);
1706 // If we have a cold call site, try to sink addressing computation into the
1707 // cold block. This interacts with our handling for loads and stores to
1708 // ensure that we can fold all uses of a potential addressing computation
1709 // into their uses. TODO: generalize this to work over profiling data
1710 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1711 for (auto &Arg : CI->arg_operands()) {
1712 if (!Arg->getType()->isPointerTy())
1713 continue;
1714 unsigned AS = Arg->getType()->getPointerAddressSpace();
1715 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1718 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1719 if (II) {
1720 switch (II->getIntrinsicID()) {
1721 default: break;
1722 case Intrinsic::experimental_widenable_condition: {
1723 // Give up on future widening oppurtunties so that we can fold away dead
1724 // paths and merge blocks before going into block-local instruction
1725 // selection.
1726 if (II->use_empty()) {
1727 II->eraseFromParent();
1728 return true;
1730 Constant *RetVal = ConstantInt::getTrue(II->getContext());
1731 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1732 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1734 return true;
1736 case Intrinsic::objectsize: {
1737 // Lower all uses of llvm.objectsize.*
1738 Value *RetVal =
1739 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1741 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1742 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1744 return true;
1746 case Intrinsic::is_constant: {
1747 // If is_constant hasn't folded away yet, lower it to false now.
1748 Constant *RetVal = ConstantInt::get(II->getType(), 0);
1749 resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1750 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1752 return true;
1754 case Intrinsic::aarch64_stlxr:
1755 case Intrinsic::aarch64_stxr: {
1756 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1757 if (!ExtVal || !ExtVal->hasOneUse() ||
1758 ExtVal->getParent() == CI->getParent())
1759 return false;
1760 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1761 ExtVal->moveBefore(CI);
1762 // Mark this instruction as "inserted by CGP", so that other
1763 // optimizations don't touch it.
1764 InsertedInsts.insert(ExtVal);
1765 return true;
1768 case Intrinsic::launder_invariant_group:
1769 case Intrinsic::strip_invariant_group: {
1770 Value *ArgVal = II->getArgOperand(0);
1771 auto it = LargeOffsetGEPMap.find(II);
1772 if (it != LargeOffsetGEPMap.end()) {
1773 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1774 // Make sure not to have to deal with iterator invalidation
1775 // after possibly adding ArgVal to LargeOffsetGEPMap.
1776 auto GEPs = std::move(it->second);
1777 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1778 LargeOffsetGEPMap.erase(II);
1781 II->replaceAllUsesWith(ArgVal);
1782 II->eraseFromParent();
1783 return true;
1785 case Intrinsic::cttz:
1786 case Intrinsic::ctlz:
1787 // If counting zeros is expensive, try to avoid it.
1788 return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1791 if (TLI) {
1792 SmallVector<Value*, 2> PtrOps;
1793 Type *AccessTy;
1794 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1795 while (!PtrOps.empty()) {
1796 Value *PtrVal = PtrOps.pop_back_val();
1797 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1798 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1799 return true;
1804 // From here on out we're working with named functions.
1805 if (!CI->getCalledFunction()) return false;
1807 // Lower all default uses of _chk calls. This is very similar
1808 // to what InstCombineCalls does, but here we are only lowering calls
1809 // to fortified library functions (e.g. __memcpy_chk) that have the default
1810 // "don't know" as the objectsize. Anything else should be left alone.
1811 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1812 if (Value *V = Simplifier.optimizeCall(CI)) {
1813 CI->replaceAllUsesWith(V);
1814 CI->eraseFromParent();
1815 return true;
1818 return false;
1821 /// Look for opportunities to duplicate return instructions to the predecessor
1822 /// to enable tail call optimizations. The case it is currently looking for is:
1823 /// @code
1824 /// bb0:
1825 /// %tmp0 = tail call i32 @f0()
1826 /// br label %return
1827 /// bb1:
1828 /// %tmp1 = tail call i32 @f1()
1829 /// br label %return
1830 /// bb2:
1831 /// %tmp2 = tail call i32 @f2()
1832 /// br label %return
1833 /// return:
1834 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1835 /// ret i32 %retval
1836 /// @endcode
1838 /// =>
1840 /// @code
1841 /// bb0:
1842 /// %tmp0 = tail call i32 @f0()
1843 /// ret i32 %tmp0
1844 /// bb1:
1845 /// %tmp1 = tail call i32 @f1()
1846 /// ret i32 %tmp1
1847 /// bb2:
1848 /// %tmp2 = tail call i32 @f2()
1849 /// ret i32 %tmp2
1850 /// @endcode
1851 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1852 if (!TLI)
1853 return false;
1855 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1856 if (!RetI)
1857 return false;
1859 PHINode *PN = nullptr;
1860 BitCastInst *BCI = nullptr;
1861 Value *V = RetI->getReturnValue();
1862 if (V) {
1863 BCI = dyn_cast<BitCastInst>(V);
1864 if (BCI)
1865 V = BCI->getOperand(0);
1867 PN = dyn_cast<PHINode>(V);
1868 if (!PN)
1869 return false;
1872 if (PN && PN->getParent() != BB)
1873 return false;
1875 // Make sure there are no instructions between the PHI and return, or that the
1876 // return is the first instruction in the block.
1877 if (PN) {
1878 BasicBlock::iterator BI = BB->begin();
1879 // Skip over debug and the bitcast.
1880 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
1881 if (&*BI != RetI)
1882 return false;
1883 } else {
1884 BasicBlock::iterator BI = BB->begin();
1885 while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1886 if (&*BI != RetI)
1887 return false;
1890 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1891 /// call.
1892 const Function *F = BB->getParent();
1893 SmallVector<CallInst*, 4> TailCalls;
1894 if (PN) {
1895 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1896 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1897 // Make sure the phi value is indeed produced by the tail call.
1898 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1899 TLI->mayBeEmittedAsTailCall(CI) &&
1900 attributesPermitTailCall(F, CI, RetI, *TLI))
1901 TailCalls.push_back(CI);
1903 } else {
1904 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1905 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1906 if (!VisitedBBs.insert(*PI).second)
1907 continue;
1909 BasicBlock::InstListType &InstList = (*PI)->getInstList();
1910 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1911 BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1912 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1913 if (RI == RE)
1914 continue;
1916 CallInst *CI = dyn_cast<CallInst>(&*RI);
1917 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
1918 attributesPermitTailCall(F, CI, RetI, *TLI))
1919 TailCalls.push_back(CI);
1923 bool Changed = false;
1924 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1925 CallInst *CI = TailCalls[i];
1926 CallSite CS(CI);
1928 // Make sure the call instruction is followed by an unconditional branch to
1929 // the return block.
1930 BasicBlock *CallBB = CI->getParent();
1931 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1932 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1933 continue;
1935 // Duplicate the return into CallBB.
1936 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
1937 ModifiedDT = Changed = true;
1938 ++NumRetsDup;
1941 // If we eliminated all predecessors of the block, delete the block now.
1942 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1943 BB->eraseFromParent();
1945 return Changed;
1948 //===----------------------------------------------------------------------===//
1949 // Memory Optimization
1950 //===----------------------------------------------------------------------===//
1952 namespace {
1954 /// This is an extended version of TargetLowering::AddrMode
1955 /// which holds actual Value*'s for register values.
1956 struct ExtAddrMode : public TargetLowering::AddrMode {
1957 Value *BaseReg = nullptr;
1958 Value *ScaledReg = nullptr;
1959 Value *OriginalValue = nullptr;
1961 enum FieldName {
1962 NoField = 0x00,
1963 BaseRegField = 0x01,
1964 BaseGVField = 0x02,
1965 BaseOffsField = 0x04,
1966 ScaledRegField = 0x08,
1967 ScaleField = 0x10,
1968 MultipleFields = 0xff
1971 ExtAddrMode() = default;
1973 void print(raw_ostream &OS) const;
1974 void dump() const;
1976 FieldName compare(const ExtAddrMode &other) {
1977 // First check that the types are the same on each field, as differing types
1978 // is something we can't cope with later on.
1979 if (BaseReg && other.BaseReg &&
1980 BaseReg->getType() != other.BaseReg->getType())
1981 return MultipleFields;
1982 if (BaseGV && other.BaseGV &&
1983 BaseGV->getType() != other.BaseGV->getType())
1984 return MultipleFields;
1985 if (ScaledReg && other.ScaledReg &&
1986 ScaledReg->getType() != other.ScaledReg->getType())
1987 return MultipleFields;
1989 // Check each field to see if it differs.
1990 unsigned Result = NoField;
1991 if (BaseReg != other.BaseReg)
1992 Result |= BaseRegField;
1993 if (BaseGV != other.BaseGV)
1994 Result |= BaseGVField;
1995 if (BaseOffs != other.BaseOffs)
1996 Result |= BaseOffsField;
1997 if (ScaledReg != other.ScaledReg)
1998 Result |= ScaledRegField;
1999 // Don't count 0 as being a different scale, because that actually means
2000 // unscaled (which will already be counted by having no ScaledReg).
2001 if (Scale && other.Scale && Scale != other.Scale)
2002 Result |= ScaleField;
2004 if (countPopulation(Result) > 1)
2005 return MultipleFields;
2006 else
2007 return static_cast<FieldName>(Result);
2010 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2011 // with no offset.
2012 bool isTrivial() {
2013 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2014 // trivial if at most one of these terms is nonzero, except that BaseGV and
2015 // BaseReg both being zero actually means a null pointer value, which we
2016 // consider to be 'non-zero' here.
2017 return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2020 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2021 switch (Field) {
2022 default:
2023 return nullptr;
2024 case BaseRegField:
2025 return BaseReg;
2026 case BaseGVField:
2027 return BaseGV;
2028 case ScaledRegField:
2029 return ScaledReg;
2030 case BaseOffsField:
2031 return ConstantInt::get(IntPtrTy, BaseOffs);
2035 void SetCombinedField(FieldName Field, Value *V,
2036 const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2037 switch (Field) {
2038 default:
2039 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2040 break;
2041 case ExtAddrMode::BaseRegField:
2042 BaseReg = V;
2043 break;
2044 case ExtAddrMode::BaseGVField:
2045 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2046 // in the BaseReg field.
2047 assert(BaseReg == nullptr);
2048 BaseReg = V;
2049 BaseGV = nullptr;
2050 break;
2051 case ExtAddrMode::ScaledRegField:
2052 ScaledReg = V;
2053 // If we have a mix of scaled and unscaled addrmodes then we want scale
2054 // to be the scale and not zero.
2055 if (!Scale)
2056 for (const ExtAddrMode &AM : AddrModes)
2057 if (AM.Scale) {
2058 Scale = AM.Scale;
2059 break;
2061 break;
2062 case ExtAddrMode::BaseOffsField:
2063 // The offset is no longer a constant, so it goes in ScaledReg with a
2064 // scale of 1.
2065 assert(ScaledReg == nullptr);
2066 ScaledReg = V;
2067 Scale = 1;
2068 BaseOffs = 0;
2069 break;
2074 } // end anonymous namespace
2076 #ifndef NDEBUG
2077 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2078 AM.print(OS);
2079 return OS;
2081 #endif
2083 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2084 void ExtAddrMode::print(raw_ostream &OS) const {
2085 bool NeedPlus = false;
2086 OS << "[";
2087 if (BaseGV) {
2088 OS << (NeedPlus ? " + " : "")
2089 << "GV:";
2090 BaseGV->printAsOperand(OS, /*PrintType=*/false);
2091 NeedPlus = true;
2094 if (BaseOffs) {
2095 OS << (NeedPlus ? " + " : "")
2096 << BaseOffs;
2097 NeedPlus = true;
2100 if (BaseReg) {
2101 OS << (NeedPlus ? " + " : "")
2102 << "Base:";
2103 BaseReg->printAsOperand(OS, /*PrintType=*/false);
2104 NeedPlus = true;
2106 if (Scale) {
2107 OS << (NeedPlus ? " + " : "")
2108 << Scale << "*";
2109 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2112 OS << ']';
2115 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2116 print(dbgs());
2117 dbgs() << '\n';
2119 #endif
2121 namespace {
2123 /// This class provides transaction based operation on the IR.
2124 /// Every change made through this class is recorded in the internal state and
2125 /// can be undone (rollback) until commit is called.
2126 class TypePromotionTransaction {
2127 /// This represents the common interface of the individual transaction.
2128 /// Each class implements the logic for doing one specific modification on
2129 /// the IR via the TypePromotionTransaction.
2130 class TypePromotionAction {
2131 protected:
2132 /// The Instruction modified.
2133 Instruction *Inst;
2135 public:
2136 /// Constructor of the action.
2137 /// The constructor performs the related action on the IR.
2138 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2140 virtual ~TypePromotionAction() = default;
2142 /// Undo the modification done by this action.
2143 /// When this method is called, the IR must be in the same state as it was
2144 /// before this action was applied.
2145 /// \pre Undoing the action works if and only if the IR is in the exact same
2146 /// state as it was directly after this action was applied.
2147 virtual void undo() = 0;
2149 /// Advocate every change made by this action.
2150 /// When the results on the IR of the action are to be kept, it is important
2151 /// to call this function, otherwise hidden information may be kept forever.
2152 virtual void commit() {
2153 // Nothing to be done, this action is not doing anything.
2157 /// Utility to remember the position of an instruction.
2158 class InsertionHandler {
2159 /// Position of an instruction.
2160 /// Either an instruction:
2161 /// - Is the first in a basic block: BB is used.
2162 /// - Has a previous instruction: PrevInst is used.
2163 union {
2164 Instruction *PrevInst;
2165 BasicBlock *BB;
2166 } Point;
2168 /// Remember whether or not the instruction had a previous instruction.
2169 bool HasPrevInstruction;
2171 public:
2172 /// Record the position of \p Inst.
2173 InsertionHandler(Instruction *Inst) {
2174 BasicBlock::iterator It = Inst->getIterator();
2175 HasPrevInstruction = (It != (Inst->getParent()->begin()));
2176 if (HasPrevInstruction)
2177 Point.PrevInst = &*--It;
2178 else
2179 Point.BB = Inst->getParent();
2182 /// Insert \p Inst at the recorded position.
2183 void insert(Instruction *Inst) {
2184 if (HasPrevInstruction) {
2185 if (Inst->getParent())
2186 Inst->removeFromParent();
2187 Inst->insertAfter(Point.PrevInst);
2188 } else {
2189 Instruction *Position = &*Point.BB->getFirstInsertionPt();
2190 if (Inst->getParent())
2191 Inst->moveBefore(Position);
2192 else
2193 Inst->insertBefore(Position);
2198 /// Move an instruction before another.
2199 class InstructionMoveBefore : public TypePromotionAction {
2200 /// Original position of the instruction.
2201 InsertionHandler Position;
2203 public:
2204 /// Move \p Inst before \p Before.
2205 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2206 : TypePromotionAction(Inst), Position(Inst) {
2207 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2208 << "\n");
2209 Inst->moveBefore(Before);
2212 /// Move the instruction back to its original position.
2213 void undo() override {
2214 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2215 Position.insert(Inst);
2219 /// Set the operand of an instruction with a new value.
2220 class OperandSetter : public TypePromotionAction {
2221 /// Original operand of the instruction.
2222 Value *Origin;
2224 /// Index of the modified instruction.
2225 unsigned Idx;
2227 public:
2228 /// Set \p Idx operand of \p Inst with \p NewVal.
2229 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2230 : TypePromotionAction(Inst), Idx(Idx) {
2231 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2232 << "for:" << *Inst << "\n"
2233 << "with:" << *NewVal << "\n");
2234 Origin = Inst->getOperand(Idx);
2235 Inst->setOperand(Idx, NewVal);
2238 /// Restore the original value of the instruction.
2239 void undo() override {
2240 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2241 << "for: " << *Inst << "\n"
2242 << "with: " << *Origin << "\n");
2243 Inst->setOperand(Idx, Origin);
2247 /// Hide the operands of an instruction.
2248 /// Do as if this instruction was not using any of its operands.
2249 class OperandsHider : public TypePromotionAction {
2250 /// The list of original operands.
2251 SmallVector<Value *, 4> OriginalValues;
2253 public:
2254 /// Remove \p Inst from the uses of the operands of \p Inst.
2255 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2256 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2257 unsigned NumOpnds = Inst->getNumOperands();
2258 OriginalValues.reserve(NumOpnds);
2259 for (unsigned It = 0; It < NumOpnds; ++It) {
2260 // Save the current operand.
2261 Value *Val = Inst->getOperand(It);
2262 OriginalValues.push_back(Val);
2263 // Set a dummy one.
2264 // We could use OperandSetter here, but that would imply an overhead
2265 // that we are not willing to pay.
2266 Inst->setOperand(It, UndefValue::get(Val->getType()));
2270 /// Restore the original list of uses.
2271 void undo() override {
2272 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2273 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2274 Inst->setOperand(It, OriginalValues[It]);
2278 /// Build a truncate instruction.
2279 class TruncBuilder : public TypePromotionAction {
2280 Value *Val;
2282 public:
2283 /// Build a truncate instruction of \p Opnd producing a \p Ty
2284 /// result.
2285 /// trunc Opnd to Ty.
2286 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2287 IRBuilder<> Builder(Opnd);
2288 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2289 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2292 /// Get the built value.
2293 Value *getBuiltValue() { return Val; }
2295 /// Remove the built instruction.
2296 void undo() override {
2297 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2298 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2299 IVal->eraseFromParent();
2303 /// Build a sign extension instruction.
2304 class SExtBuilder : public TypePromotionAction {
2305 Value *Val;
2307 public:
2308 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2309 /// result.
2310 /// sext Opnd to Ty.
2311 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2312 : TypePromotionAction(InsertPt) {
2313 IRBuilder<> Builder(InsertPt);
2314 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2315 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2318 /// Get the built value.
2319 Value *getBuiltValue() { return Val; }
2321 /// Remove the built instruction.
2322 void undo() override {
2323 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2324 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2325 IVal->eraseFromParent();
2329 /// Build a zero extension instruction.
2330 class ZExtBuilder : public TypePromotionAction {
2331 Value *Val;
2333 public:
2334 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2335 /// result.
2336 /// zext Opnd to Ty.
2337 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2338 : TypePromotionAction(InsertPt) {
2339 IRBuilder<> Builder(InsertPt);
2340 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2341 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2344 /// Get the built value.
2345 Value *getBuiltValue() { return Val; }
2347 /// Remove the built instruction.
2348 void undo() override {
2349 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2350 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2351 IVal->eraseFromParent();
2355 /// Mutate an instruction to another type.
2356 class TypeMutator : public TypePromotionAction {
2357 /// Record the original type.
2358 Type *OrigTy;
2360 public:
2361 /// Mutate the type of \p Inst into \p NewTy.
2362 TypeMutator(Instruction *Inst, Type *NewTy)
2363 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2364 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2365 << "\n");
2366 Inst->mutateType(NewTy);
2369 /// Mutate the instruction back to its original type.
2370 void undo() override {
2371 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2372 << "\n");
2373 Inst->mutateType(OrigTy);
2377 /// Replace the uses of an instruction by another instruction.
2378 class UsesReplacer : public TypePromotionAction {
2379 /// Helper structure to keep track of the replaced uses.
2380 struct InstructionAndIdx {
2381 /// The instruction using the instruction.
2382 Instruction *Inst;
2384 /// The index where this instruction is used for Inst.
2385 unsigned Idx;
2387 InstructionAndIdx(Instruction *Inst, unsigned Idx)
2388 : Inst(Inst), Idx(Idx) {}
2391 /// Keep track of the original uses (pair Instruction, Index).
2392 SmallVector<InstructionAndIdx, 4> OriginalUses;
2393 /// Keep track of the debug users.
2394 SmallVector<DbgValueInst *, 1> DbgValues;
2396 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2398 public:
2399 /// Replace all the use of \p Inst by \p New.
2400 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2401 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2402 << "\n");
2403 // Record the original uses.
2404 for (Use &U : Inst->uses()) {
2405 Instruction *UserI = cast<Instruction>(U.getUser());
2406 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2408 // Record the debug uses separately. They are not in the instruction's
2409 // use list, but they are replaced by RAUW.
2410 findDbgValues(DbgValues, Inst);
2412 // Now, we can replace the uses.
2413 Inst->replaceAllUsesWith(New);
2416 /// Reassign the original uses of Inst to Inst.
2417 void undo() override {
2418 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2419 for (use_iterator UseIt = OriginalUses.begin(),
2420 EndIt = OriginalUses.end();
2421 UseIt != EndIt; ++UseIt) {
2422 UseIt->Inst->setOperand(UseIt->Idx, Inst);
2424 // RAUW has replaced all original uses with references to the new value,
2425 // including the debug uses. Since we are undoing the replacements,
2426 // the original debug uses must also be reinstated to maintain the
2427 // correctness and utility of debug value instructions.
2428 for (auto *DVI: DbgValues) {
2429 LLVMContext &Ctx = Inst->getType()->getContext();
2430 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2431 DVI->setOperand(0, MV);
2436 /// Remove an instruction from the IR.
2437 class InstructionRemover : public TypePromotionAction {
2438 /// Original position of the instruction.
2439 InsertionHandler Inserter;
2441 /// Helper structure to hide all the link to the instruction. In other
2442 /// words, this helps to do as if the instruction was removed.
2443 OperandsHider Hider;
2445 /// Keep track of the uses replaced, if any.
2446 UsesReplacer *Replacer = nullptr;
2448 /// Keep track of instructions removed.
2449 SetOfInstrs &RemovedInsts;
2451 public:
2452 /// Remove all reference of \p Inst and optionally replace all its
2453 /// uses with New.
2454 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2455 /// \pre If !Inst->use_empty(), then New != nullptr
2456 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2457 Value *New = nullptr)
2458 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2459 RemovedInsts(RemovedInsts) {
2460 if (New)
2461 Replacer = new UsesReplacer(Inst, New);
2462 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2463 RemovedInsts.insert(Inst);
2464 /// The instructions removed here will be freed after completing
2465 /// optimizeBlock() for all blocks as we need to keep track of the
2466 /// removed instructions during promotion.
2467 Inst->removeFromParent();
2470 ~InstructionRemover() override { delete Replacer; }
2472 /// Resurrect the instruction and reassign it to the proper uses if
2473 /// new value was provided when build this action.
2474 void undo() override {
2475 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2476 Inserter.insert(Inst);
2477 if (Replacer)
2478 Replacer->undo();
2479 Hider.undo();
2480 RemovedInsts.erase(Inst);
2484 public:
2485 /// Restoration point.
2486 /// The restoration point is a pointer to an action instead of an iterator
2487 /// because the iterator may be invalidated but not the pointer.
2488 using ConstRestorationPt = const TypePromotionAction *;
2490 TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2491 : RemovedInsts(RemovedInsts) {}
2493 /// Advocate every changes made in that transaction.
2494 void commit();
2496 /// Undo all the changes made after the given point.
2497 void rollback(ConstRestorationPt Point);
2499 /// Get the current restoration point.
2500 ConstRestorationPt getRestorationPoint() const;
2502 /// \name API for IR modification with state keeping to support rollback.
2503 /// @{
2504 /// Same as Instruction::setOperand.
2505 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2507 /// Same as Instruction::eraseFromParent.
2508 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2510 /// Same as Value::replaceAllUsesWith.
2511 void replaceAllUsesWith(Instruction *Inst, Value *New);
2513 /// Same as Value::mutateType.
2514 void mutateType(Instruction *Inst, Type *NewTy);
2516 /// Same as IRBuilder::createTrunc.
2517 Value *createTrunc(Instruction *Opnd, Type *Ty);
2519 /// Same as IRBuilder::createSExt.
2520 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2522 /// Same as IRBuilder::createZExt.
2523 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2525 /// Same as Instruction::moveBefore.
2526 void moveBefore(Instruction *Inst, Instruction *Before);
2527 /// @}
2529 private:
2530 /// The ordered list of actions made so far.
2531 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2533 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2535 SetOfInstrs &RemovedInsts;
2538 } // end anonymous namespace
2540 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2541 Value *NewVal) {
2542 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2543 Inst, Idx, NewVal));
2546 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2547 Value *NewVal) {
2548 Actions.push_back(
2549 llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2550 Inst, RemovedInsts, NewVal));
2553 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2554 Value *New) {
2555 Actions.push_back(
2556 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2559 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2560 Actions.push_back(
2561 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2564 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2565 Type *Ty) {
2566 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2567 Value *Val = Ptr->getBuiltValue();
2568 Actions.push_back(std::move(Ptr));
2569 return Val;
2572 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2573 Value *Opnd, Type *Ty) {
2574 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2575 Value *Val = Ptr->getBuiltValue();
2576 Actions.push_back(std::move(Ptr));
2577 return Val;
2580 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2581 Value *Opnd, Type *Ty) {
2582 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2583 Value *Val = Ptr->getBuiltValue();
2584 Actions.push_back(std::move(Ptr));
2585 return Val;
2588 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2589 Instruction *Before) {
2590 Actions.push_back(
2591 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2592 Inst, Before));
2595 TypePromotionTransaction::ConstRestorationPt
2596 TypePromotionTransaction::getRestorationPoint() const {
2597 return !Actions.empty() ? Actions.back().get() : nullptr;
2600 void TypePromotionTransaction::commit() {
2601 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2602 ++It)
2603 (*It)->commit();
2604 Actions.clear();
2607 void TypePromotionTransaction::rollback(
2608 TypePromotionTransaction::ConstRestorationPt Point) {
2609 while (!Actions.empty() && Point != Actions.back().get()) {
2610 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2611 Curr->undo();
2615 namespace {
2617 /// A helper class for matching addressing modes.
2619 /// This encapsulates the logic for matching the target-legal addressing modes.
2620 class AddressingModeMatcher {
2621 SmallVectorImpl<Instruction*> &AddrModeInsts;
2622 const TargetLowering &TLI;
2623 const TargetRegisterInfo &TRI;
2624 const DataLayout &DL;
2626 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2627 /// the memory instruction that we're computing this address for.
2628 Type *AccessTy;
2629 unsigned AddrSpace;
2630 Instruction *MemoryInst;
2632 /// This is the addressing mode that we're building up. This is
2633 /// part of the return value of this addressing mode matching stuff.
2634 ExtAddrMode &AddrMode;
2636 /// The instructions inserted by other CodeGenPrepare optimizations.
2637 const SetOfInstrs &InsertedInsts;
2639 /// A map from the instructions to their type before promotion.
2640 InstrToOrigTy &PromotedInsts;
2642 /// The ongoing transaction where every action should be registered.
2643 TypePromotionTransaction &TPT;
2645 // A GEP which has too large offset to be folded into the addressing mode.
2646 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2648 /// This is set to true when we should not do profitability checks.
2649 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2650 bool IgnoreProfitability;
2652 AddressingModeMatcher(
2653 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2654 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2655 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2656 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2657 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2658 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2659 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2660 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2661 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2662 IgnoreProfitability = false;
2665 public:
2666 /// Find the maximal addressing mode that a load/store of V can fold,
2667 /// give an access type of AccessTy. This returns a list of involved
2668 /// instructions in AddrModeInsts.
2669 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2670 /// optimizations.
2671 /// \p PromotedInsts maps the instructions to their type before promotion.
2672 /// \p The ongoing transaction where every action should be registered.
2673 static ExtAddrMode
2674 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2675 SmallVectorImpl<Instruction *> &AddrModeInsts,
2676 const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2677 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2678 TypePromotionTransaction &TPT,
2679 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2680 ExtAddrMode Result;
2682 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2683 MemoryInst, Result, InsertedInsts,
2684 PromotedInsts, TPT, LargeOffsetGEP)
2685 .matchAddr(V, 0);
2686 (void)Success; assert(Success && "Couldn't select *anything*?");
2687 return Result;
2690 private:
2691 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2692 bool matchAddr(Value *Addr, unsigned Depth);
2693 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2694 bool *MovedAway = nullptr);
2695 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2696 ExtAddrMode &AMBefore,
2697 ExtAddrMode &AMAfter);
2698 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2699 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2700 Value *PromotedOperand) const;
2703 class PhiNodeSet;
2705 /// An iterator for PhiNodeSet.
2706 class PhiNodeSetIterator {
2707 PhiNodeSet * const Set;
2708 size_t CurrentIndex = 0;
2710 public:
2711 /// The constructor. Start should point to either a valid element, or be equal
2712 /// to the size of the underlying SmallVector of the PhiNodeSet.
2713 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2714 PHINode * operator*() const;
2715 PhiNodeSetIterator& operator++();
2716 bool operator==(const PhiNodeSetIterator &RHS) const;
2717 bool operator!=(const PhiNodeSetIterator &RHS) const;
2720 /// Keeps a set of PHINodes.
2722 /// This is a minimal set implementation for a specific use case:
2723 /// It is very fast when there are very few elements, but also provides good
2724 /// performance when there are many. It is similar to SmallPtrSet, but also
2725 /// provides iteration by insertion order, which is deterministic and stable
2726 /// across runs. It is also similar to SmallSetVector, but provides removing
2727 /// elements in O(1) time. This is achieved by not actually removing the element
2728 /// from the underlying vector, so comes at the cost of using more memory, but
2729 /// that is fine, since PhiNodeSets are used as short lived objects.
2730 class PhiNodeSet {
2731 friend class PhiNodeSetIterator;
2733 using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2734 using iterator = PhiNodeSetIterator;
2736 /// Keeps the elements in the order of their insertion in the underlying
2737 /// vector. To achieve constant time removal, it never deletes any element.
2738 SmallVector<PHINode *, 32> NodeList;
2740 /// Keeps the elements in the underlying set implementation. This (and not the
2741 /// NodeList defined above) is the source of truth on whether an element
2742 /// is actually in the collection.
2743 MapType NodeMap;
2745 /// Points to the first valid (not deleted) element when the set is not empty
2746 /// and the value is not zero. Equals to the size of the underlying vector
2747 /// when the set is empty. When the value is 0, as in the beginning, the
2748 /// first element may or may not be valid.
2749 size_t FirstValidElement = 0;
2751 public:
2752 /// Inserts a new element to the collection.
2753 /// \returns true if the element is actually added, i.e. was not in the
2754 /// collection before the operation.
2755 bool insert(PHINode *Ptr) {
2756 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2757 NodeList.push_back(Ptr);
2758 return true;
2760 return false;
2763 /// Removes the element from the collection.
2764 /// \returns whether the element is actually removed, i.e. was in the
2765 /// collection before the operation.
2766 bool erase(PHINode *Ptr) {
2767 auto it = NodeMap.find(Ptr);
2768 if (it != NodeMap.end()) {
2769 NodeMap.erase(Ptr);
2770 SkipRemovedElements(FirstValidElement);
2771 return true;
2773 return false;
2776 /// Removes all elements and clears the collection.
2777 void clear() {
2778 NodeMap.clear();
2779 NodeList.clear();
2780 FirstValidElement = 0;
2783 /// \returns an iterator that will iterate the elements in the order of
2784 /// insertion.
2785 iterator begin() {
2786 if (FirstValidElement == 0)
2787 SkipRemovedElements(FirstValidElement);
2788 return PhiNodeSetIterator(this, FirstValidElement);
2791 /// \returns an iterator that points to the end of the collection.
2792 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
2794 /// Returns the number of elements in the collection.
2795 size_t size() const {
2796 return NodeMap.size();
2799 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2800 size_t count(PHINode *Ptr) const {
2801 return NodeMap.count(Ptr);
2804 private:
2805 /// Updates the CurrentIndex so that it will point to a valid element.
2807 /// If the element of NodeList at CurrentIndex is valid, it does not
2808 /// change it. If there are no more valid elements, it updates CurrentIndex
2809 /// to point to the end of the NodeList.
2810 void SkipRemovedElements(size_t &CurrentIndex) {
2811 while (CurrentIndex < NodeList.size()) {
2812 auto it = NodeMap.find(NodeList[CurrentIndex]);
2813 // If the element has been deleted and added again later, NodeMap will
2814 // point to a different index, so CurrentIndex will still be invalid.
2815 if (it != NodeMap.end() && it->second == CurrentIndex)
2816 break;
2817 ++CurrentIndex;
2822 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
2823 : Set(Set), CurrentIndex(Start) {}
2825 PHINode * PhiNodeSetIterator::operator*() const {
2826 assert(CurrentIndex < Set->NodeList.size() &&
2827 "PhiNodeSet access out of range");
2828 return Set->NodeList[CurrentIndex];
2831 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
2832 assert(CurrentIndex < Set->NodeList.size() &&
2833 "PhiNodeSet access out of range");
2834 ++CurrentIndex;
2835 Set->SkipRemovedElements(CurrentIndex);
2836 return *this;
2839 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
2840 return CurrentIndex == RHS.CurrentIndex;
2843 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
2844 return !((*this) == RHS);
2847 /// Keep track of simplification of Phi nodes.
2848 /// Accept the set of all phi nodes and erase phi node from this set
2849 /// if it is simplified.
2850 class SimplificationTracker {
2851 DenseMap<Value *, Value *> Storage;
2852 const SimplifyQuery &SQ;
2853 // Tracks newly created Phi nodes. The elements are iterated by insertion
2854 // order.
2855 PhiNodeSet AllPhiNodes;
2856 // Tracks newly created Select nodes.
2857 SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2859 public:
2860 SimplificationTracker(const SimplifyQuery &sq)
2861 : SQ(sq) {}
2863 Value *Get(Value *V) {
2864 do {
2865 auto SV = Storage.find(V);
2866 if (SV == Storage.end())
2867 return V;
2868 V = SV->second;
2869 } while (true);
2872 Value *Simplify(Value *Val) {
2873 SmallVector<Value *, 32> WorkList;
2874 SmallPtrSet<Value *, 32> Visited;
2875 WorkList.push_back(Val);
2876 while (!WorkList.empty()) {
2877 auto P = WorkList.pop_back_val();
2878 if (!Visited.insert(P).second)
2879 continue;
2880 if (auto *PI = dyn_cast<Instruction>(P))
2881 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
2882 for (auto *U : PI->users())
2883 WorkList.push_back(cast<Value>(U));
2884 Put(PI, V);
2885 PI->replaceAllUsesWith(V);
2886 if (auto *PHI = dyn_cast<PHINode>(PI))
2887 AllPhiNodes.erase(PHI);
2888 if (auto *Select = dyn_cast<SelectInst>(PI))
2889 AllSelectNodes.erase(Select);
2890 PI->eraseFromParent();
2893 return Get(Val);
2896 void Put(Value *From, Value *To) {
2897 Storage.insert({ From, To });
2900 void ReplacePhi(PHINode *From, PHINode *To) {
2901 Value* OldReplacement = Get(From);
2902 while (OldReplacement != From) {
2903 From = To;
2904 To = dyn_cast<PHINode>(OldReplacement);
2905 OldReplacement = Get(From);
2907 assert(Get(To) == To && "Replacement PHI node is already replaced.");
2908 Put(From, To);
2909 From->replaceAllUsesWith(To);
2910 AllPhiNodes.erase(From);
2911 From->eraseFromParent();
2914 PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
2916 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
2918 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
2920 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
2922 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
2924 void destroyNewNodes(Type *CommonType) {
2925 // For safe erasing, replace the uses with dummy value first.
2926 auto Dummy = UndefValue::get(CommonType);
2927 for (auto I : AllPhiNodes) {
2928 I->replaceAllUsesWith(Dummy);
2929 I->eraseFromParent();
2931 AllPhiNodes.clear();
2932 for (auto I : AllSelectNodes) {
2933 I->replaceAllUsesWith(Dummy);
2934 I->eraseFromParent();
2936 AllSelectNodes.clear();
2940 /// A helper class for combining addressing modes.
2941 class AddressingModeCombiner {
2942 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
2943 typedef std::pair<PHINode *, PHINode *> PHIPair;
2945 private:
2946 /// The addressing modes we've collected.
2947 SmallVector<ExtAddrMode, 16> AddrModes;
2949 /// The field in which the AddrModes differ, when we have more than one.
2950 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
2952 /// Are the AddrModes that we have all just equal to their original values?
2953 bool AllAddrModesTrivial = true;
2955 /// Common Type for all different fields in addressing modes.
2956 Type *CommonType;
2958 /// SimplifyQuery for simplifyInstruction utility.
2959 const SimplifyQuery &SQ;
2961 /// Original Address.
2962 Value *Original;
2964 public:
2965 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
2966 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
2968 /// Get the combined AddrMode
2969 const ExtAddrMode &getAddrMode() const {
2970 return AddrModes[0];
2973 /// Add a new AddrMode if it's compatible with the AddrModes we already
2974 /// have.
2975 /// \return True iff we succeeded in doing so.
2976 bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
2977 // Take note of if we have any non-trivial AddrModes, as we need to detect
2978 // when all AddrModes are trivial as then we would introduce a phi or select
2979 // which just duplicates what's already there.
2980 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
2982 // If this is the first addrmode then everything is fine.
2983 if (AddrModes.empty()) {
2984 AddrModes.emplace_back(NewAddrMode);
2985 return true;
2988 // Figure out how different this is from the other address modes, which we
2989 // can do just by comparing against the first one given that we only care
2990 // about the cumulative difference.
2991 ExtAddrMode::FieldName ThisDifferentField =
2992 AddrModes[0].compare(NewAddrMode);
2993 if (DifferentField == ExtAddrMode::NoField)
2994 DifferentField = ThisDifferentField;
2995 else if (DifferentField != ThisDifferentField)
2996 DifferentField = ExtAddrMode::MultipleFields;
2998 // If NewAddrMode differs in more than one dimension we cannot handle it.
2999 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3001 // If Scale Field is different then we reject.
3002 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3004 // We also must reject the case when base offset is different and
3005 // scale reg is not null, we cannot handle this case due to merge of
3006 // different offsets will be used as ScaleReg.
3007 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3008 !NewAddrMode.ScaledReg);
3010 // We also must reject the case when GV is different and BaseReg installed
3011 // due to we want to use base reg as a merge of GV values.
3012 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3013 !NewAddrMode.HasBaseReg);
3015 // Even if NewAddMode is the same we still need to collect it due to
3016 // original value is different. And later we will need all original values
3017 // as anchors during finding the common Phi node.
3018 if (CanHandle)
3019 AddrModes.emplace_back(NewAddrMode);
3020 else
3021 AddrModes.clear();
3023 return CanHandle;
3026 /// Combine the addressing modes we've collected into a single
3027 /// addressing mode.
3028 /// \return True iff we successfully combined them or we only had one so
3029 /// didn't need to combine them anyway.
3030 bool combineAddrModes() {
3031 // If we have no AddrModes then they can't be combined.
3032 if (AddrModes.size() == 0)
3033 return false;
3035 // A single AddrMode can trivially be combined.
3036 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3037 return true;
3039 // If the AddrModes we collected are all just equal to the value they are
3040 // derived from then combining them wouldn't do anything useful.
3041 if (AllAddrModesTrivial)
3042 return false;
3044 if (!addrModeCombiningAllowed())
3045 return false;
3047 // Build a map between <original value, basic block where we saw it> to
3048 // value of base register.
3049 // Bail out if there is no common type.
3050 FoldAddrToValueMapping Map;
3051 if (!initializeMap(Map))
3052 return false;
3054 Value *CommonValue = findCommon(Map);
3055 if (CommonValue)
3056 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3057 return CommonValue != nullptr;
3060 private:
3061 /// Initialize Map with anchor values. For address seen
3062 /// we set the value of different field saw in this address.
3063 /// At the same time we find a common type for different field we will
3064 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3065 /// Return false if there is no common type found.
3066 bool initializeMap(FoldAddrToValueMapping &Map) {
3067 // Keep track of keys where the value is null. We will need to replace it
3068 // with constant null when we know the common type.
3069 SmallVector<Value *, 2> NullValue;
3070 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3071 for (auto &AM : AddrModes) {
3072 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3073 if (DV) {
3074 auto *Type = DV->getType();
3075 if (CommonType && CommonType != Type)
3076 return false;
3077 CommonType = Type;
3078 Map[AM.OriginalValue] = DV;
3079 } else {
3080 NullValue.push_back(AM.OriginalValue);
3083 assert(CommonType && "At least one non-null value must be!");
3084 for (auto *V : NullValue)
3085 Map[V] = Constant::getNullValue(CommonType);
3086 return true;
3089 /// We have mapping between value A and other value B where B was a field in
3090 /// addressing mode represented by A. Also we have an original value C
3091 /// representing an address we start with. Traversing from C through phi and
3092 /// selects we ended up with A's in a map. This utility function tries to find
3093 /// a value V which is a field in addressing mode C and traversing through phi
3094 /// nodes and selects we will end up in corresponded values B in a map.
3095 /// The utility will create a new Phi/Selects if needed.
3096 // The simple example looks as follows:
3097 // BB1:
3098 // p1 = b1 + 40
3099 // br cond BB2, BB3
3100 // BB2:
3101 // p2 = b2 + 40
3102 // br BB3
3103 // BB3:
3104 // p = phi [p1, BB1], [p2, BB2]
3105 // v = load p
3106 // Map is
3107 // p1 -> b1
3108 // p2 -> b2
3109 // Request is
3110 // p -> ?
3111 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3112 Value *findCommon(FoldAddrToValueMapping &Map) {
3113 // Tracks the simplification of newly created phi nodes. The reason we use
3114 // this mapping is because we will add new created Phi nodes in AddrToBase.
3115 // Simplification of Phi nodes is recursive, so some Phi node may
3116 // be simplified after we added it to AddrToBase. In reality this
3117 // simplification is possible only if original phi/selects were not
3118 // simplified yet.
3119 // Using this mapping we can find the current value in AddrToBase.
3120 SimplificationTracker ST(SQ);
3122 // First step, DFS to create PHI nodes for all intermediate blocks.
3123 // Also fill traverse order for the second step.
3124 SmallVector<Value *, 32> TraverseOrder;
3125 InsertPlaceholders(Map, TraverseOrder, ST);
3127 // Second Step, fill new nodes by merged values and simplify if possible.
3128 FillPlaceholders(Map, TraverseOrder, ST);
3130 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3131 ST.destroyNewNodes(CommonType);
3132 return nullptr;
3135 // Now we'd like to match New Phi nodes to existed ones.
3136 unsigned PhiNotMatchedCount = 0;
3137 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3138 ST.destroyNewNodes(CommonType);
3139 return nullptr;
3142 auto *Result = ST.Get(Map.find(Original)->second);
3143 if (Result) {
3144 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3145 NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3147 return Result;
3150 /// Try to match PHI node to Candidate.
3151 /// Matcher tracks the matched Phi nodes.
3152 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3153 SmallSetVector<PHIPair, 8> &Matcher,
3154 PhiNodeSet &PhiNodesToMatch) {
3155 SmallVector<PHIPair, 8> WorkList;
3156 Matcher.insert({ PHI, Candidate });
3157 WorkList.push_back({ PHI, Candidate });
3158 SmallSet<PHIPair, 8> Visited;
3159 while (!WorkList.empty()) {
3160 auto Item = WorkList.pop_back_val();
3161 if (!Visited.insert(Item).second)
3162 continue;
3163 // We iterate over all incoming values to Phi to compare them.
3164 // If values are different and both of them Phi and the first one is a
3165 // Phi we added (subject to match) and both of them is in the same basic
3166 // block then we can match our pair if values match. So we state that
3167 // these values match and add it to work list to verify that.
3168 for (auto B : Item.first->blocks()) {
3169 Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3170 Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3171 if (FirstValue == SecondValue)
3172 continue;
3174 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3175 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3177 // One of them is not Phi or
3178 // The first one is not Phi node from the set we'd like to match or
3179 // Phi nodes from different basic blocks then
3180 // we will not be able to match.
3181 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3182 FirstPhi->getParent() != SecondPhi->getParent())
3183 return false;
3185 // If we already matched them then continue.
3186 if (Matcher.count({ FirstPhi, SecondPhi }))
3187 continue;
3188 // So the values are different and does not match. So we need them to
3189 // match.
3190 Matcher.insert({ FirstPhi, SecondPhi });
3191 // But me must check it.
3192 WorkList.push_back({ FirstPhi, SecondPhi });
3195 return true;
3198 /// For the given set of PHI nodes (in the SimplificationTracker) try
3199 /// to find their equivalents.
3200 /// Returns false if this matching fails and creation of new Phi is disabled.
3201 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3202 unsigned &PhiNotMatchedCount) {
3203 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3204 // order, so the replacements (ReplacePhi) are also done in a deterministic
3205 // order.
3206 SmallSetVector<PHIPair, 8> Matched;
3207 SmallPtrSet<PHINode *, 8> WillNotMatch;
3208 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3209 while (PhiNodesToMatch.size()) {
3210 PHINode *PHI = *PhiNodesToMatch.begin();
3212 // Add us, if no Phi nodes in the basic block we do not match.
3213 WillNotMatch.clear();
3214 WillNotMatch.insert(PHI);
3216 // Traverse all Phis until we found equivalent or fail to do that.
3217 bool IsMatched = false;
3218 for (auto &P : PHI->getParent()->phis()) {
3219 if (&P == PHI)
3220 continue;
3221 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3222 break;
3223 // If it does not match, collect all Phi nodes from matcher.
3224 // if we end up with no match, them all these Phi nodes will not match
3225 // later.
3226 for (auto M : Matched)
3227 WillNotMatch.insert(M.first);
3228 Matched.clear();
3230 if (IsMatched) {
3231 // Replace all matched values and erase them.
3232 for (auto MV : Matched)
3233 ST.ReplacePhi(MV.first, MV.second);
3234 Matched.clear();
3235 continue;
3237 // If we are not allowed to create new nodes then bail out.
3238 if (!AllowNewPhiNodes)
3239 return false;
3240 // Just remove all seen values in matcher. They will not match anything.
3241 PhiNotMatchedCount += WillNotMatch.size();
3242 for (auto *P : WillNotMatch)
3243 PhiNodesToMatch.erase(P);
3245 return true;
3247 /// Fill the placeholders with values from predecessors and simplify them.
3248 void FillPlaceholders(FoldAddrToValueMapping &Map,
3249 SmallVectorImpl<Value *> &TraverseOrder,
3250 SimplificationTracker &ST) {
3251 while (!TraverseOrder.empty()) {
3252 Value *Current = TraverseOrder.pop_back_val();
3253 assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3254 Value *V = Map[Current];
3256 if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3257 // CurrentValue also must be Select.
3258 auto *CurrentSelect = cast<SelectInst>(Current);
3259 auto *TrueValue = CurrentSelect->getTrueValue();
3260 assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3261 Select->setTrueValue(ST.Get(Map[TrueValue]));
3262 auto *FalseValue = CurrentSelect->getFalseValue();
3263 assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3264 Select->setFalseValue(ST.Get(Map[FalseValue]));
3265 } else {
3266 // Must be a Phi node then.
3267 PHINode *PHI = cast<PHINode>(V);
3268 auto *CurrentPhi = dyn_cast<PHINode>(Current);
3269 // Fill the Phi node with values from predecessors.
3270 for (auto B : predecessors(PHI->getParent())) {
3271 Value *PV = CurrentPhi->getIncomingValueForBlock(B);
3272 assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3273 PHI->addIncoming(ST.Get(Map[PV]), B);
3276 Map[Current] = ST.Simplify(V);
3280 /// Starting from original value recursively iterates over def-use chain up to
3281 /// known ending values represented in a map. For each traversed phi/select
3282 /// inserts a placeholder Phi or Select.
3283 /// Reports all new created Phi/Select nodes by adding them to set.
3284 /// Also reports and order in what values have been traversed.
3285 void InsertPlaceholders(FoldAddrToValueMapping &Map,
3286 SmallVectorImpl<Value *> &TraverseOrder,
3287 SimplificationTracker &ST) {
3288 SmallVector<Value *, 32> Worklist;
3289 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3290 "Address must be a Phi or Select node");
3291 auto *Dummy = UndefValue::get(CommonType);
3292 Worklist.push_back(Original);
3293 while (!Worklist.empty()) {
3294 Value *Current = Worklist.pop_back_val();
3295 // if it is already visited or it is an ending value then skip it.
3296 if (Map.find(Current) != Map.end())
3297 continue;
3298 TraverseOrder.push_back(Current);
3300 // CurrentValue must be a Phi node or select. All others must be covered
3301 // by anchors.
3302 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3303 // Is it OK to get metadata from OrigSelect?!
3304 // Create a Select placeholder with dummy value.
3305 SelectInst *Select = SelectInst::Create(
3306 CurrentSelect->getCondition(), Dummy, Dummy,
3307 CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3308 Map[Current] = Select;
3309 ST.insertNewSelect(Select);
3310 // We are interested in True and False values.
3311 Worklist.push_back(CurrentSelect->getTrueValue());
3312 Worklist.push_back(CurrentSelect->getFalseValue());
3313 } else {
3314 // It must be a Phi node then.
3315 PHINode *CurrentPhi = cast<PHINode>(Current);
3316 unsigned PredCount = CurrentPhi->getNumIncomingValues();
3317 PHINode *PHI =
3318 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3319 Map[Current] = PHI;
3320 ST.insertNewPhi(PHI);
3321 for (Value *P : CurrentPhi->incoming_values())
3322 Worklist.push_back(P);
3327 bool addrModeCombiningAllowed() {
3328 if (DisableComplexAddrModes)
3329 return false;
3330 switch (DifferentField) {
3331 default:
3332 return false;
3333 case ExtAddrMode::BaseRegField:
3334 return AddrSinkCombineBaseReg;
3335 case ExtAddrMode::BaseGVField:
3336 return AddrSinkCombineBaseGV;
3337 case ExtAddrMode::BaseOffsField:
3338 return AddrSinkCombineBaseOffs;
3339 case ExtAddrMode::ScaledRegField:
3340 return AddrSinkCombineScaledReg;
3344 } // end anonymous namespace
3346 /// Try adding ScaleReg*Scale to the current addressing mode.
3347 /// Return true and update AddrMode if this addr mode is legal for the target,
3348 /// false if not.
3349 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3350 unsigned Depth) {
3351 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3352 // mode. Just process that directly.
3353 if (Scale == 1)
3354 return matchAddr(ScaleReg, Depth);
3356 // If the scale is 0, it takes nothing to add this.
3357 if (Scale == 0)
3358 return true;
3360 // If we already have a scale of this value, we can add to it, otherwise, we
3361 // need an available scale field.
3362 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3363 return false;
3365 ExtAddrMode TestAddrMode = AddrMode;
3367 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3368 // [A+B + A*7] -> [B+A*8].
3369 TestAddrMode.Scale += Scale;
3370 TestAddrMode.ScaledReg = ScaleReg;
3372 // If the new address isn't legal, bail out.
3373 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3374 return false;
3376 // It was legal, so commit it.
3377 AddrMode = TestAddrMode;
3379 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3380 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3381 // X*Scale + C*Scale to addr mode.
3382 ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3383 if (isa<Instruction>(ScaleReg) && // not a constant expr.
3384 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3385 TestAddrMode.ScaledReg = AddLHS;
3386 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3388 // If this addressing mode is legal, commit it and remember that we folded
3389 // this instruction.
3390 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3391 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3392 AddrMode = TestAddrMode;
3393 return true;
3397 // Otherwise, not (x+c)*scale, just return what we have.
3398 return true;
3401 /// This is a little filter, which returns true if an addressing computation
3402 /// involving I might be folded into a load/store accessing it.
3403 /// This doesn't need to be perfect, but needs to accept at least
3404 /// the set of instructions that MatchOperationAddr can.
3405 static bool MightBeFoldableInst(Instruction *I) {
3406 switch (I->getOpcode()) {
3407 case Instruction::BitCast:
3408 case Instruction::AddrSpaceCast:
3409 // Don't touch identity bitcasts.
3410 if (I->getType() == I->getOperand(0)->getType())
3411 return false;
3412 return I->getType()->isIntOrPtrTy();
3413 case Instruction::PtrToInt:
3414 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3415 return true;
3416 case Instruction::IntToPtr:
3417 // We know the input is intptr_t, so this is foldable.
3418 return true;
3419 case Instruction::Add:
3420 return true;
3421 case Instruction::Mul:
3422 case Instruction::Shl:
3423 // Can only handle X*C and X << C.
3424 return isa<ConstantInt>(I->getOperand(1));
3425 case Instruction::GetElementPtr:
3426 return true;
3427 default:
3428 return false;
3432 /// Check whether or not \p Val is a legal instruction for \p TLI.
3433 /// \note \p Val is assumed to be the product of some type promotion.
3434 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3435 /// to be legal, as the non-promoted value would have had the same state.
3436 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3437 const DataLayout &DL, Value *Val) {
3438 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3439 if (!PromotedInst)
3440 return false;
3441 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3442 // If the ISDOpcode is undefined, it was undefined before the promotion.
3443 if (!ISDOpcode)
3444 return true;
3445 // Otherwise, check if the promoted instruction is legal or not.
3446 return TLI.isOperationLegalOrCustom(
3447 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3450 namespace {
3452 /// Hepler class to perform type promotion.
3453 class TypePromotionHelper {
3454 /// Utility function to add a promoted instruction \p ExtOpnd to
3455 /// \p PromotedInsts and record the type of extension we have seen.
3456 static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3457 Instruction *ExtOpnd,
3458 bool IsSExt) {
3459 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3460 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3461 if (It != PromotedInsts.end()) {
3462 // If the new extension is same as original, the information in
3463 // PromotedInsts[ExtOpnd] is still correct.
3464 if (It->second.getInt() == ExtTy)
3465 return;
3467 // Now the new extension is different from old extension, we make
3468 // the type information invalid by setting extension type to
3469 // BothExtension.
3470 ExtTy = BothExtension;
3472 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3475 /// Utility function to query the original type of instruction \p Opnd
3476 /// with a matched extension type. If the extension doesn't match, we
3477 /// cannot use the information we had on the original type.
3478 /// BothExtension doesn't match any extension type.
3479 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3480 Instruction *Opnd,
3481 bool IsSExt) {
3482 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3483 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3484 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3485 return It->second.getPointer();
3486 return nullptr;
3489 /// Utility function to check whether or not a sign or zero extension
3490 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3491 /// either using the operands of \p Inst or promoting \p Inst.
3492 /// The type of the extension is defined by \p IsSExt.
3493 /// In other words, check if:
3494 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3495 /// #1 Promotion applies:
3496 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3497 /// #2 Operand reuses:
3498 /// ext opnd1 to ConsideredExtType.
3499 /// \p PromotedInsts maps the instructions to their type before promotion.
3500 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3501 const InstrToOrigTy &PromotedInsts, bool IsSExt);
3503 /// Utility function to determine if \p OpIdx should be promoted when
3504 /// promoting \p Inst.
3505 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3506 return !(isa<SelectInst>(Inst) && OpIdx == 0);
3509 /// Utility function to promote the operand of \p Ext when this
3510 /// operand is a promotable trunc or sext or zext.
3511 /// \p PromotedInsts maps the instructions to their type before promotion.
3512 /// \p CreatedInstsCost[out] contains the cost of all instructions
3513 /// created to promote the operand of Ext.
3514 /// Newly added extensions are inserted in \p Exts.
3515 /// Newly added truncates are inserted in \p Truncs.
3516 /// Should never be called directly.
3517 /// \return The promoted value which is used instead of Ext.
3518 static Value *promoteOperandForTruncAndAnyExt(
3519 Instruction *Ext, TypePromotionTransaction &TPT,
3520 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3521 SmallVectorImpl<Instruction *> *Exts,
3522 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3524 /// Utility function to promote the operand of \p Ext when this
3525 /// operand is promotable and is not a supported trunc or sext.
3526 /// \p PromotedInsts maps the instructions to their type before promotion.
3527 /// \p CreatedInstsCost[out] contains the cost of all the instructions
3528 /// created to promote the operand of Ext.
3529 /// Newly added extensions are inserted in \p Exts.
3530 /// Newly added truncates are inserted in \p Truncs.
3531 /// Should never be called directly.
3532 /// \return The promoted value which is used instead of Ext.
3533 static Value *promoteOperandForOther(Instruction *Ext,
3534 TypePromotionTransaction &TPT,
3535 InstrToOrigTy &PromotedInsts,
3536 unsigned &CreatedInstsCost,
3537 SmallVectorImpl<Instruction *> *Exts,
3538 SmallVectorImpl<Instruction *> *Truncs,
3539 const TargetLowering &TLI, bool IsSExt);
3541 /// \see promoteOperandForOther.
3542 static Value *signExtendOperandForOther(
3543 Instruction *Ext, TypePromotionTransaction &TPT,
3544 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3545 SmallVectorImpl<Instruction *> *Exts,
3546 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3547 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3548 Exts, Truncs, TLI, true);
3551 /// \see promoteOperandForOther.
3552 static Value *zeroExtendOperandForOther(
3553 Instruction *Ext, TypePromotionTransaction &TPT,
3554 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3555 SmallVectorImpl<Instruction *> *Exts,
3556 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3557 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3558 Exts, Truncs, TLI, false);
3561 public:
3562 /// Type for the utility function that promotes the operand of Ext.
3563 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3564 InstrToOrigTy &PromotedInsts,
3565 unsigned &CreatedInstsCost,
3566 SmallVectorImpl<Instruction *> *Exts,
3567 SmallVectorImpl<Instruction *> *Truncs,
3568 const TargetLowering &TLI);
3570 /// Given a sign/zero extend instruction \p Ext, return the appropriate
3571 /// action to promote the operand of \p Ext instead of using Ext.
3572 /// \return NULL if no promotable action is possible with the current
3573 /// sign extension.
3574 /// \p InsertedInsts keeps track of all the instructions inserted by the
3575 /// other CodeGenPrepare optimizations. This information is important
3576 /// because we do not want to promote these instructions as CodeGenPrepare
3577 /// will reinsert them later. Thus creating an infinite loop: create/remove.
3578 /// \p PromotedInsts maps the instructions to their type before promotion.
3579 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3580 const TargetLowering &TLI,
3581 const InstrToOrigTy &PromotedInsts);
3584 } // end anonymous namespace
3586 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3587 Type *ConsideredExtType,
3588 const InstrToOrigTy &PromotedInsts,
3589 bool IsSExt) {
3590 // The promotion helper does not know how to deal with vector types yet.
3591 // To be able to fix that, we would need to fix the places where we
3592 // statically extend, e.g., constants and such.
3593 if (Inst->getType()->isVectorTy())
3594 return false;
3596 // We can always get through zext.
3597 if (isa<ZExtInst>(Inst))
3598 return true;
3600 // sext(sext) is ok too.
3601 if (IsSExt && isa<SExtInst>(Inst))
3602 return true;
3604 // We can get through binary operator, if it is legal. In other words, the
3605 // binary operator must have a nuw or nsw flag.
3606 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3607 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3608 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3609 (IsSExt && BinOp->hasNoSignedWrap())))
3610 return true;
3612 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3613 if ((Inst->getOpcode() == Instruction::And ||
3614 Inst->getOpcode() == Instruction::Or))
3615 return true;
3617 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3618 if (Inst->getOpcode() == Instruction::Xor) {
3619 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3620 // Make sure it is not a NOT.
3621 if (Cst && !Cst->getValue().isAllOnesValue())
3622 return true;
3625 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3626 // It may change a poisoned value into a regular value, like
3627 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
3628 // poisoned value regular value
3629 // It should be OK since undef covers valid value.
3630 if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3631 return true;
3633 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3634 // It may change a poisoned value into a regular value, like
3635 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
3636 // poisoned value regular value
3637 // It should be OK since undef covers valid value.
3638 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3639 const Instruction *ExtInst =
3640 dyn_cast<const Instruction>(*Inst->user_begin());
3641 if (ExtInst->hasOneUse()) {
3642 const Instruction *AndInst =
3643 dyn_cast<const Instruction>(*ExtInst->user_begin());
3644 if (AndInst && AndInst->getOpcode() == Instruction::And) {
3645 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3646 if (Cst &&
3647 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3648 return true;
3653 // Check if we can do the following simplification.
3654 // ext(trunc(opnd)) --> ext(opnd)
3655 if (!isa<TruncInst>(Inst))
3656 return false;
3658 Value *OpndVal = Inst->getOperand(0);
3659 // Check if we can use this operand in the extension.
3660 // If the type is larger than the result type of the extension, we cannot.
3661 if (!OpndVal->getType()->isIntegerTy() ||
3662 OpndVal->getType()->getIntegerBitWidth() >
3663 ConsideredExtType->getIntegerBitWidth())
3664 return false;
3666 // If the operand of the truncate is not an instruction, we will not have
3667 // any information on the dropped bits.
3668 // (Actually we could for constant but it is not worth the extra logic).
3669 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3670 if (!Opnd)
3671 return false;
3673 // Check if the source of the type is narrow enough.
3674 // I.e., check that trunc just drops extended bits of the same kind of
3675 // the extension.
3676 // #1 get the type of the operand and check the kind of the extended bits.
3677 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3678 if (OpndType)
3680 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3681 OpndType = Opnd->getOperand(0)->getType();
3682 else
3683 return false;
3685 // #2 check that the truncate just drops extended bits.
3686 return Inst->getType()->getIntegerBitWidth() >=
3687 OpndType->getIntegerBitWidth();
3690 TypePromotionHelper::Action TypePromotionHelper::getAction(
3691 Instruction *Ext, const SetOfInstrs &InsertedInsts,
3692 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3693 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3694 "Unexpected instruction type");
3695 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3696 Type *ExtTy = Ext->getType();
3697 bool IsSExt = isa<SExtInst>(Ext);
3698 // If the operand of the extension is not an instruction, we cannot
3699 // get through.
3700 // If it, check we can get through.
3701 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3702 return nullptr;
3704 // Do not promote if the operand has been added by codegenprepare.
3705 // Otherwise, it means we are undoing an optimization that is likely to be
3706 // redone, thus causing potential infinite loop.
3707 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3708 return nullptr;
3710 // SExt or Trunc instructions.
3711 // Return the related handler.
3712 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3713 isa<ZExtInst>(ExtOpnd))
3714 return promoteOperandForTruncAndAnyExt;
3716 // Regular instruction.
3717 // Abort early if we will have to insert non-free instructions.
3718 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3719 return nullptr;
3720 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3723 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3724 Instruction *SExt, TypePromotionTransaction &TPT,
3725 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3726 SmallVectorImpl<Instruction *> *Exts,
3727 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3728 // By construction, the operand of SExt is an instruction. Otherwise we cannot
3729 // get through it and this method should not be called.
3730 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3731 Value *ExtVal = SExt;
3732 bool HasMergedNonFreeExt = false;
3733 if (isa<ZExtInst>(SExtOpnd)) {
3734 // Replace s|zext(zext(opnd))
3735 // => zext(opnd).
3736 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3737 Value *ZExt =
3738 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3739 TPT.replaceAllUsesWith(SExt, ZExt);
3740 TPT.eraseInstruction(SExt);
3741 ExtVal = ZExt;
3742 } else {
3743 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3744 // => z|sext(opnd).
3745 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3747 CreatedInstsCost = 0;
3749 // Remove dead code.
3750 if (SExtOpnd->use_empty())
3751 TPT.eraseInstruction(SExtOpnd);
3753 // Check if the extension is still needed.
3754 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3755 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3756 if (ExtInst) {
3757 if (Exts)
3758 Exts->push_back(ExtInst);
3759 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3761 return ExtVal;
3764 // At this point we have: ext ty opnd to ty.
3765 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3766 Value *NextVal = ExtInst->getOperand(0);
3767 TPT.eraseInstruction(ExtInst, NextVal);
3768 return NextVal;
3771 Value *TypePromotionHelper::promoteOperandForOther(
3772 Instruction *Ext, TypePromotionTransaction &TPT,
3773 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3774 SmallVectorImpl<Instruction *> *Exts,
3775 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3776 bool IsSExt) {
3777 // By construction, the operand of Ext is an instruction. Otherwise we cannot
3778 // get through it and this method should not be called.
3779 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3780 CreatedInstsCost = 0;
3781 if (!ExtOpnd->hasOneUse()) {
3782 // ExtOpnd will be promoted.
3783 // All its uses, but Ext, will need to use a truncated value of the
3784 // promoted version.
3785 // Create the truncate now.
3786 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3787 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3788 // Insert it just after the definition.
3789 ITrunc->moveAfter(ExtOpnd);
3790 if (Truncs)
3791 Truncs->push_back(ITrunc);
3794 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3795 // Restore the operand of Ext (which has been replaced by the previous call
3796 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3797 TPT.setOperand(Ext, 0, ExtOpnd);
3800 // Get through the Instruction:
3801 // 1. Update its type.
3802 // 2. Replace the uses of Ext by Inst.
3803 // 3. Extend each operand that needs to be extended.
3805 // Remember the original type of the instruction before promotion.
3806 // This is useful to know that the high bits are sign extended bits.
3807 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3808 // Step #1.
3809 TPT.mutateType(ExtOpnd, Ext->getType());
3810 // Step #2.
3811 TPT.replaceAllUsesWith(Ext, ExtOpnd);
3812 // Step #3.
3813 Instruction *ExtForOpnd = Ext;
3815 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3816 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3817 ++OpIdx) {
3818 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3819 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3820 !shouldExtOperand(ExtOpnd, OpIdx)) {
3821 LLVM_DEBUG(dbgs() << "No need to propagate\n");
3822 continue;
3824 // Check if we can statically extend the operand.
3825 Value *Opnd = ExtOpnd->getOperand(OpIdx);
3826 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3827 LLVM_DEBUG(dbgs() << "Statically extend\n");
3828 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3829 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3830 : Cst->getValue().zext(BitWidth);
3831 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3832 continue;
3834 // UndefValue are typed, so we have to statically sign extend them.
3835 if (isa<UndefValue>(Opnd)) {
3836 LLVM_DEBUG(dbgs() << "Statically extend\n");
3837 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3838 continue;
3841 // Otherwise we have to explicitly sign extend the operand.
3842 // Check if Ext was reused to extend an operand.
3843 if (!ExtForOpnd) {
3844 // If yes, create a new one.
3845 LLVM_DEBUG(dbgs() << "More operands to ext\n");
3846 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3847 : TPT.createZExt(Ext, Opnd, Ext->getType());
3848 if (!isa<Instruction>(ValForExtOpnd)) {
3849 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3850 continue;
3852 ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3854 if (Exts)
3855 Exts->push_back(ExtForOpnd);
3856 TPT.setOperand(ExtForOpnd, 0, Opnd);
3858 // Move the sign extension before the insertion point.
3859 TPT.moveBefore(ExtForOpnd, ExtOpnd);
3860 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3861 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3862 // If more sext are required, new instructions will have to be created.
3863 ExtForOpnd = nullptr;
3865 if (ExtForOpnd == Ext) {
3866 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3867 TPT.eraseInstruction(Ext);
3869 return ExtOpnd;
3872 /// Check whether or not promoting an instruction to a wider type is profitable.
3873 /// \p NewCost gives the cost of extension instructions created by the
3874 /// promotion.
3875 /// \p OldCost gives the cost of extension instructions before the promotion
3876 /// plus the number of instructions that have been
3877 /// matched in the addressing mode the promotion.
3878 /// \p PromotedOperand is the value that has been promoted.
3879 /// \return True if the promotion is profitable, false otherwise.
3880 bool AddressingModeMatcher::isPromotionProfitable(
3881 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3882 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
3883 << '\n');
3884 // The cost of the new extensions is greater than the cost of the
3885 // old extension plus what we folded.
3886 // This is not profitable.
3887 if (NewCost > OldCost)
3888 return false;
3889 if (NewCost < OldCost)
3890 return true;
3891 // The promotion is neutral but it may help folding the sign extension in
3892 // loads for instance.
3893 // Check that we did not create an illegal instruction.
3894 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3897 /// Given an instruction or constant expr, see if we can fold the operation
3898 /// into the addressing mode. If so, update the addressing mode and return
3899 /// true, otherwise return false without modifying AddrMode.
3900 /// If \p MovedAway is not NULL, it contains the information of whether or
3901 /// not AddrInst has to be folded into the addressing mode on success.
3902 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3903 /// because it has been moved away.
3904 /// Thus AddrInst must not be added in the matched instructions.
3905 /// This state can happen when AddrInst is a sext, since it may be moved away.
3906 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3907 /// not be referenced anymore.
3908 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3909 unsigned Depth,
3910 bool *MovedAway) {
3911 // Avoid exponential behavior on extremely deep expression trees.
3912 if (Depth >= 5) return false;
3914 // By default, all matched instructions stay in place.
3915 if (MovedAway)
3916 *MovedAway = false;
3918 switch (Opcode) {
3919 case Instruction::PtrToInt:
3920 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3921 return matchAddr(AddrInst->getOperand(0), Depth);
3922 case Instruction::IntToPtr: {
3923 auto AS = AddrInst->getType()->getPointerAddressSpace();
3924 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3925 // This inttoptr is a no-op if the integer type is pointer sized.
3926 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3927 return matchAddr(AddrInst->getOperand(0), Depth);
3928 return false;
3930 case Instruction::BitCast:
3931 // BitCast is always a noop, and we can handle it as long as it is
3932 // int->int or pointer->pointer (we don't want int<->fp or something).
3933 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
3934 // Don't touch identity bitcasts. These were probably put here by LSR,
3935 // and we don't want to mess around with them. Assume it knows what it
3936 // is doing.
3937 AddrInst->getOperand(0)->getType() != AddrInst->getType())
3938 return matchAddr(AddrInst->getOperand(0), Depth);
3939 return false;
3940 case Instruction::AddrSpaceCast: {
3941 unsigned SrcAS
3942 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3943 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3944 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3945 return matchAddr(AddrInst->getOperand(0), Depth);
3946 return false;
3948 case Instruction::Add: {
3949 // Check to see if we can merge in the RHS then the LHS. If so, we win.
3950 ExtAddrMode BackupAddrMode = AddrMode;
3951 unsigned OldSize = AddrModeInsts.size();
3952 // Start a transaction at this point.
3953 // The LHS may match but not the RHS.
3954 // Therefore, we need a higher level restoration point to undo partially
3955 // matched operation.
3956 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3957 TPT.getRestorationPoint();
3959 if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3960 matchAddr(AddrInst->getOperand(0), Depth+1))
3961 return true;
3963 // Restore the old addr mode info.
3964 AddrMode = BackupAddrMode;
3965 AddrModeInsts.resize(OldSize);
3966 TPT.rollback(LastKnownGood);
3968 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
3969 if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3970 matchAddr(AddrInst->getOperand(1), Depth+1))
3971 return true;
3973 // Otherwise we definitely can't merge the ADD in.
3974 AddrMode = BackupAddrMode;
3975 AddrModeInsts.resize(OldSize);
3976 TPT.rollback(LastKnownGood);
3977 break;
3979 //case Instruction::Or:
3980 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3981 //break;
3982 case Instruction::Mul:
3983 case Instruction::Shl: {
3984 // Can only handle X*C and X << C.
3985 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3986 if (!RHS || RHS->getBitWidth() > 64)
3987 return false;
3988 int64_t Scale = RHS->getSExtValue();
3989 if (Opcode == Instruction::Shl)
3990 Scale = 1LL << Scale;
3992 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3994 case Instruction::GetElementPtr: {
3995 // Scan the GEP. We check it if it contains constant offsets and at most
3996 // one variable offset.
3997 int VariableOperand = -1;
3998 unsigned VariableScale = 0;
4000 int64_t ConstantOffset = 0;
4001 gep_type_iterator GTI = gep_type_begin(AddrInst);
4002 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4003 if (StructType *STy = GTI.getStructTypeOrNull()) {
4004 const StructLayout *SL = DL.getStructLayout(STy);
4005 unsigned Idx =
4006 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4007 ConstantOffset += SL->getElementOffset(Idx);
4008 } else {
4009 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4010 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4011 const APInt &CVal = CI->getValue();
4012 if (CVal.getMinSignedBits() <= 64) {
4013 ConstantOffset += CVal.getSExtValue() * TypeSize;
4014 continue;
4017 if (TypeSize) { // Scales of zero don't do anything.
4018 // We only allow one variable index at the moment.
4019 if (VariableOperand != -1)
4020 return false;
4022 // Remember the variable index.
4023 VariableOperand = i;
4024 VariableScale = TypeSize;
4029 // A common case is for the GEP to only do a constant offset. In this case,
4030 // just add it to the disp field and check validity.
4031 if (VariableOperand == -1) {
4032 AddrMode.BaseOffs += ConstantOffset;
4033 if (ConstantOffset == 0 ||
4034 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4035 // Check to see if we can fold the base pointer in too.
4036 if (matchAddr(AddrInst->getOperand(0), Depth+1))
4037 return true;
4038 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4039 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4040 ConstantOffset > 0) {
4041 // Record GEPs with non-zero offsets as candidates for splitting in the
4042 // event that the offset cannot fit into the r+i addressing mode.
4043 // Simple and common case that only one GEP is used in calculating the
4044 // address for the memory access.
4045 Value *Base = AddrInst->getOperand(0);
4046 auto *BaseI = dyn_cast<Instruction>(Base);
4047 auto *GEP = cast<GetElementPtrInst>(AddrInst);
4048 if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4049 (BaseI && !isa<CastInst>(BaseI) &&
4050 !isa<GetElementPtrInst>(BaseI))) {
4051 // If the base is an instruction, make sure the GEP is not in the same
4052 // basic block as the base. If the base is an argument or global
4053 // value, make sure the GEP is not in the entry block. Otherwise,
4054 // instruction selection can undo the split. Also make sure the
4055 // parent block allows inserting non-PHI instructions before the
4056 // terminator.
4057 BasicBlock *Parent =
4058 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4059 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad())
4060 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4063 AddrMode.BaseOffs -= ConstantOffset;
4064 return false;
4067 // Save the valid addressing mode in case we can't match.
4068 ExtAddrMode BackupAddrMode = AddrMode;
4069 unsigned OldSize = AddrModeInsts.size();
4071 // See if the scale and offset amount is valid for this target.
4072 AddrMode.BaseOffs += ConstantOffset;
4074 // Match the base operand of the GEP.
4075 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4076 // If it couldn't be matched, just stuff the value in a register.
4077 if (AddrMode.HasBaseReg) {
4078 AddrMode = BackupAddrMode;
4079 AddrModeInsts.resize(OldSize);
4080 return false;
4082 AddrMode.HasBaseReg = true;
4083 AddrMode.BaseReg = AddrInst->getOperand(0);
4086 // Match the remaining variable portion of the GEP.
4087 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4088 Depth)) {
4089 // If it couldn't be matched, try stuffing the base into a register
4090 // instead of matching it, and retrying the match of the scale.
4091 AddrMode = BackupAddrMode;
4092 AddrModeInsts.resize(OldSize);
4093 if (AddrMode.HasBaseReg)
4094 return false;
4095 AddrMode.HasBaseReg = true;
4096 AddrMode.BaseReg = AddrInst->getOperand(0);
4097 AddrMode.BaseOffs += ConstantOffset;
4098 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4099 VariableScale, Depth)) {
4100 // If even that didn't work, bail.
4101 AddrMode = BackupAddrMode;
4102 AddrModeInsts.resize(OldSize);
4103 return false;
4107 return true;
4109 case Instruction::SExt:
4110 case Instruction::ZExt: {
4111 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4112 if (!Ext)
4113 return false;
4115 // Try to move this ext out of the way of the addressing mode.
4116 // Ask for a method for doing so.
4117 TypePromotionHelper::Action TPH =
4118 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4119 if (!TPH)
4120 return false;
4122 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4123 TPT.getRestorationPoint();
4124 unsigned CreatedInstsCost = 0;
4125 unsigned ExtCost = !TLI.isExtFree(Ext);
4126 Value *PromotedOperand =
4127 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4128 // SExt has been moved away.
4129 // Thus either it will be rematched later in the recursive calls or it is
4130 // gone. Anyway, we must not fold it into the addressing mode at this point.
4131 // E.g.,
4132 // op = add opnd, 1
4133 // idx = ext op
4134 // addr = gep base, idx
4135 // is now:
4136 // promotedOpnd = ext opnd <- no match here
4137 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4138 // addr = gep base, op <- match
4139 if (MovedAway)
4140 *MovedAway = true;
4142 assert(PromotedOperand &&
4143 "TypePromotionHelper should have filtered out those cases");
4145 ExtAddrMode BackupAddrMode = AddrMode;
4146 unsigned OldSize = AddrModeInsts.size();
4148 if (!matchAddr(PromotedOperand, Depth) ||
4149 // The total of the new cost is equal to the cost of the created
4150 // instructions.
4151 // The total of the old cost is equal to the cost of the extension plus
4152 // what we have saved in the addressing mode.
4153 !isPromotionProfitable(CreatedInstsCost,
4154 ExtCost + (AddrModeInsts.size() - OldSize),
4155 PromotedOperand)) {
4156 AddrMode = BackupAddrMode;
4157 AddrModeInsts.resize(OldSize);
4158 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4159 TPT.rollback(LastKnownGood);
4160 return false;
4162 return true;
4165 return false;
4168 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4169 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4170 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4171 /// for the target.
4173 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4174 // Start a transaction at this point that we will rollback if the matching
4175 // fails.
4176 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4177 TPT.getRestorationPoint();
4178 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4179 // Fold in immediates if legal for the target.
4180 AddrMode.BaseOffs += CI->getSExtValue();
4181 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4182 return true;
4183 AddrMode.BaseOffs -= CI->getSExtValue();
4184 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4185 // If this is a global variable, try to fold it into the addressing mode.
4186 if (!AddrMode.BaseGV) {
4187 AddrMode.BaseGV = GV;
4188 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4189 return true;
4190 AddrMode.BaseGV = nullptr;
4192 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4193 ExtAddrMode BackupAddrMode = AddrMode;
4194 unsigned OldSize = AddrModeInsts.size();
4196 // Check to see if it is possible to fold this operation.
4197 bool MovedAway = false;
4198 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4199 // This instruction may have been moved away. If so, there is nothing
4200 // to check here.
4201 if (MovedAway)
4202 return true;
4203 // Okay, it's possible to fold this. Check to see if it is actually
4204 // *profitable* to do so. We use a simple cost model to avoid increasing
4205 // register pressure too much.
4206 if (I->hasOneUse() ||
4207 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4208 AddrModeInsts.push_back(I);
4209 return true;
4212 // It isn't profitable to do this, roll back.
4213 //cerr << "NOT FOLDING: " << *I;
4214 AddrMode = BackupAddrMode;
4215 AddrModeInsts.resize(OldSize);
4216 TPT.rollback(LastKnownGood);
4218 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4219 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4220 return true;
4221 TPT.rollback(LastKnownGood);
4222 } else if (isa<ConstantPointerNull>(Addr)) {
4223 // Null pointer gets folded without affecting the addressing mode.
4224 return true;
4227 // Worse case, the target should support [reg] addressing modes. :)
4228 if (!AddrMode.HasBaseReg) {
4229 AddrMode.HasBaseReg = true;
4230 AddrMode.BaseReg = Addr;
4231 // Still check for legality in case the target supports [imm] but not [i+r].
4232 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4233 return true;
4234 AddrMode.HasBaseReg = false;
4235 AddrMode.BaseReg = nullptr;
4238 // If the base register is already taken, see if we can do [r+r].
4239 if (AddrMode.Scale == 0) {
4240 AddrMode.Scale = 1;
4241 AddrMode.ScaledReg = Addr;
4242 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4243 return true;
4244 AddrMode.Scale = 0;
4245 AddrMode.ScaledReg = nullptr;
4247 // Couldn't match.
4248 TPT.rollback(LastKnownGood);
4249 return false;
4252 /// Check to see if all uses of OpVal by the specified inline asm call are due
4253 /// to memory operands. If so, return true, otherwise return false.
4254 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4255 const TargetLowering &TLI,
4256 const TargetRegisterInfo &TRI) {
4257 const Function *F = CI->getFunction();
4258 TargetLowering::AsmOperandInfoVector TargetConstraints =
4259 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4260 ImmutableCallSite(CI));
4262 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4263 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4265 // Compute the constraint code and ConstraintType to use.
4266 TLI.ComputeConstraintToUse(OpInfo, SDValue());
4268 // If this asm operand is our Value*, and if it isn't an indirect memory
4269 // operand, we can't fold it!
4270 if (OpInfo.CallOperandVal == OpVal &&
4271 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4272 !OpInfo.isIndirect))
4273 return false;
4276 return true;
4279 // Max number of memory uses to look at before aborting the search to conserve
4280 // compile time.
4281 static constexpr int MaxMemoryUsesToScan = 20;
4283 /// Recursively walk all the uses of I until we find a memory use.
4284 /// If we find an obviously non-foldable instruction, return true.
4285 /// Add the ultimately found memory instructions to MemoryUses.
4286 static bool FindAllMemoryUses(
4287 Instruction *I,
4288 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4289 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4290 const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4291 // If we already considered this instruction, we're done.
4292 if (!ConsideredInsts.insert(I).second)
4293 return false;
4295 // If this is an obviously unfoldable instruction, bail out.
4296 if (!MightBeFoldableInst(I))
4297 return true;
4299 const bool OptSize = I->getFunction()->optForSize();
4301 // Loop over all the uses, recursively processing them.
4302 for (Use &U : I->uses()) {
4303 // Conservatively return true if we're seeing a large number or a deep chain
4304 // of users. This avoids excessive compilation times in pathological cases.
4305 if (SeenInsts++ >= MaxMemoryUsesToScan)
4306 return true;
4308 Instruction *UserI = cast<Instruction>(U.getUser());
4309 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4310 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4311 continue;
4314 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4315 unsigned opNo = U.getOperandNo();
4316 if (opNo != StoreInst::getPointerOperandIndex())
4317 return true; // Storing addr, not into addr.
4318 MemoryUses.push_back(std::make_pair(SI, opNo));
4319 continue;
4322 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4323 unsigned opNo = U.getOperandNo();
4324 if (opNo != AtomicRMWInst::getPointerOperandIndex())
4325 return true; // Storing addr, not into addr.
4326 MemoryUses.push_back(std::make_pair(RMW, opNo));
4327 continue;
4330 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4331 unsigned opNo = U.getOperandNo();
4332 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4333 return true; // Storing addr, not into addr.
4334 MemoryUses.push_back(std::make_pair(CmpX, opNo));
4335 continue;
4338 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4339 // If this is a cold call, we can sink the addressing calculation into
4340 // the cold path. See optimizeCallInst
4341 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4342 continue;
4344 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4345 if (!IA) return true;
4347 // If this is a memory operand, we're cool, otherwise bail out.
4348 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4349 return true;
4350 continue;
4353 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4354 SeenInsts))
4355 return true;
4358 return false;
4361 /// Return true if Val is already known to be live at the use site that we're
4362 /// folding it into. If so, there is no cost to include it in the addressing
4363 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4364 /// instruction already.
4365 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4366 Value *KnownLive2) {
4367 // If Val is either of the known-live values, we know it is live!
4368 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4369 return true;
4371 // All values other than instructions and arguments (e.g. constants) are live.
4372 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4374 // If Val is a constant sized alloca in the entry block, it is live, this is
4375 // true because it is just a reference to the stack/frame pointer, which is
4376 // live for the whole function.
4377 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4378 if (AI->isStaticAlloca())
4379 return true;
4381 // Check to see if this value is already used in the memory instruction's
4382 // block. If so, it's already live into the block at the very least, so we
4383 // can reasonably fold it.
4384 return Val->isUsedInBasicBlock(MemoryInst->getParent());
4387 /// It is possible for the addressing mode of the machine to fold the specified
4388 /// instruction into a load or store that ultimately uses it.
4389 /// However, the specified instruction has multiple uses.
4390 /// Given this, it may actually increase register pressure to fold it
4391 /// into the load. For example, consider this code:
4393 /// X = ...
4394 /// Y = X+1
4395 /// use(Y) -> nonload/store
4396 /// Z = Y+1
4397 /// load Z
4399 /// In this case, Y has multiple uses, and can be folded into the load of Z
4400 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4401 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4402 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4403 /// number of computations either.
4405 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4406 /// X was live across 'load Z' for other reasons, we actually *would* want to
4407 /// fold the addressing mode in the Z case. This would make Y die earlier.
4408 bool AddressingModeMatcher::
4409 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4410 ExtAddrMode &AMAfter) {
4411 if (IgnoreProfitability) return true;
4413 // AMBefore is the addressing mode before this instruction was folded into it,
4414 // and AMAfter is the addressing mode after the instruction was folded. Get
4415 // the set of registers referenced by AMAfter and subtract out those
4416 // referenced by AMBefore: this is the set of values which folding in this
4417 // address extends the lifetime of.
4419 // Note that there are only two potential values being referenced here,
4420 // BaseReg and ScaleReg (global addresses are always available, as are any
4421 // folded immediates).
4422 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4424 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4425 // lifetime wasn't extended by adding this instruction.
4426 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4427 BaseReg = nullptr;
4428 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4429 ScaledReg = nullptr;
4431 // If folding this instruction (and it's subexprs) didn't extend any live
4432 // ranges, we're ok with it.
4433 if (!BaseReg && !ScaledReg)
4434 return true;
4436 // If all uses of this instruction can have the address mode sunk into them,
4437 // we can remove the addressing mode and effectively trade one live register
4438 // for another (at worst.) In this context, folding an addressing mode into
4439 // the use is just a particularly nice way of sinking it.
4440 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4441 SmallPtrSet<Instruction*, 16> ConsideredInsts;
4442 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4443 return false; // Has a non-memory, non-foldable use!
4445 // Now that we know that all uses of this instruction are part of a chain of
4446 // computation involving only operations that could theoretically be folded
4447 // into a memory use, loop over each of these memory operation uses and see
4448 // if they could *actually* fold the instruction. The assumption is that
4449 // addressing modes are cheap and that duplicating the computation involved
4450 // many times is worthwhile, even on a fastpath. For sinking candidates
4451 // (i.e. cold call sites), this serves as a way to prevent excessive code
4452 // growth since most architectures have some reasonable small and fast way to
4453 // compute an effective address. (i.e LEA on x86)
4454 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4455 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4456 Instruction *User = MemoryUses[i].first;
4457 unsigned OpNo = MemoryUses[i].second;
4459 // Get the access type of this use. If the use isn't a pointer, we don't
4460 // know what it accesses.
4461 Value *Address = User->getOperand(OpNo);
4462 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4463 if (!AddrTy)
4464 return false;
4465 Type *AddressAccessTy = AddrTy->getElementType();
4466 unsigned AS = AddrTy->getAddressSpace();
4468 // Do a match against the root of this address, ignoring profitability. This
4469 // will tell us if the addressing mode for the memory operation will
4470 // *actually* cover the shared instruction.
4471 ExtAddrMode Result;
4472 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4474 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4475 TPT.getRestorationPoint();
4476 AddressingModeMatcher Matcher(
4477 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4478 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4479 Matcher.IgnoreProfitability = true;
4480 bool Success = Matcher.matchAddr(Address, 0);
4481 (void)Success; assert(Success && "Couldn't select *anything*?");
4483 // The match was to check the profitability, the changes made are not
4484 // part of the original matcher. Therefore, they should be dropped
4485 // otherwise the original matcher will not present the right state.
4486 TPT.rollback(LastKnownGood);
4488 // If the match didn't cover I, then it won't be shared by it.
4489 if (!is_contained(MatchedAddrModeInsts, I))
4490 return false;
4492 MatchedAddrModeInsts.clear();
4495 return true;
4498 /// Return true if the specified values are defined in a
4499 /// different basic block than BB.
4500 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4501 if (Instruction *I = dyn_cast<Instruction>(V))
4502 return I->getParent() != BB;
4503 return false;
4506 /// Sink addressing mode computation immediate before MemoryInst if doing so
4507 /// can be done without increasing register pressure. The need for the
4508 /// register pressure constraint means this can end up being an all or nothing
4509 /// decision for all uses of the same addressing computation.
4511 /// Load and Store Instructions often have addressing modes that can do
4512 /// significant amounts of computation. As such, instruction selection will try
4513 /// to get the load or store to do as much computation as possible for the
4514 /// program. The problem is that isel can only see within a single block. As
4515 /// such, we sink as much legal addressing mode work into the block as possible.
4517 /// This method is used to optimize both load/store and inline asms with memory
4518 /// operands. It's also used to sink addressing computations feeding into cold
4519 /// call sites into their (cold) basic block.
4521 /// The motivation for handling sinking into cold blocks is that doing so can
4522 /// both enable other address mode sinking (by satisfying the register pressure
4523 /// constraint above), and reduce register pressure globally (by removing the
4524 /// addressing mode computation from the fast path entirely.).
4525 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4526 Type *AccessTy, unsigned AddrSpace) {
4527 Value *Repl = Addr;
4529 // Try to collapse single-value PHI nodes. This is necessary to undo
4530 // unprofitable PRE transformations.
4531 SmallVector<Value*, 8> worklist;
4532 SmallPtrSet<Value*, 16> Visited;
4533 worklist.push_back(Addr);
4535 // Use a worklist to iteratively look through PHI and select nodes, and
4536 // ensure that the addressing mode obtained from the non-PHI/select roots of
4537 // the graph are compatible.
4538 bool PhiOrSelectSeen = false;
4539 SmallVector<Instruction*, 16> AddrModeInsts;
4540 const SimplifyQuery SQ(*DL, TLInfo);
4541 AddressingModeCombiner AddrModes(SQ, Addr);
4542 TypePromotionTransaction TPT(RemovedInsts);
4543 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4544 TPT.getRestorationPoint();
4545 while (!worklist.empty()) {
4546 Value *V = worklist.back();
4547 worklist.pop_back();
4549 // We allow traversing cyclic Phi nodes.
4550 // In case of success after this loop we ensure that traversing through
4551 // Phi nodes ends up with all cases to compute address of the form
4552 // BaseGV + Base + Scale * Index + Offset
4553 // where Scale and Offset are constans and BaseGV, Base and Index
4554 // are exactly the same Values in all cases.
4555 // It means that BaseGV, Scale and Offset dominate our memory instruction
4556 // and have the same value as they had in address computation represented
4557 // as Phi. So we can safely sink address computation to memory instruction.
4558 if (!Visited.insert(V).second)
4559 continue;
4561 // For a PHI node, push all of its incoming values.
4562 if (PHINode *P = dyn_cast<PHINode>(V)) {
4563 for (Value *IncValue : P->incoming_values())
4564 worklist.push_back(IncValue);
4565 PhiOrSelectSeen = true;
4566 continue;
4568 // Similar for select.
4569 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4570 worklist.push_back(SI->getFalseValue());
4571 worklist.push_back(SI->getTrueValue());
4572 PhiOrSelectSeen = true;
4573 continue;
4576 // For non-PHIs, determine the addressing mode being computed. Note that
4577 // the result may differ depending on what other uses our candidate
4578 // addressing instructions might have.
4579 AddrModeInsts.clear();
4580 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4582 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4583 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4584 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4586 GetElementPtrInst *GEP = LargeOffsetGEP.first;
4587 if (GEP && GEP->getParent() != MemoryInst->getParent() &&
4588 !NewGEPBases.count(GEP)) {
4589 // If splitting the underlying data structure can reduce the offset of a
4590 // GEP, collect the GEP. Skip the GEPs that are the new bases of
4591 // previously split data structures.
4592 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4593 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4594 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4597 NewAddrMode.OriginalValue = V;
4598 if (!AddrModes.addNewAddrMode(NewAddrMode))
4599 break;
4602 // Try to combine the AddrModes we've collected. If we couldn't collect any,
4603 // or we have multiple but either couldn't combine them or combining them
4604 // wouldn't do anything useful, bail out now.
4605 if (!AddrModes.combineAddrModes()) {
4606 TPT.rollback(LastKnownGood);
4607 return false;
4609 TPT.commit();
4611 // Get the combined AddrMode (or the only AddrMode, if we only had one).
4612 ExtAddrMode AddrMode = AddrModes.getAddrMode();
4614 // If all the instructions matched are already in this BB, don't do anything.
4615 // If we saw a Phi node then it is not local definitely, and if we saw a select
4616 // then we want to push the address calculation past it even if it's already
4617 // in this BB.
4618 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4619 return IsNonLocalValue(V, MemoryInst->getParent());
4620 })) {
4621 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
4622 << "\n");
4623 return false;
4626 // Insert this computation right after this user. Since our caller is
4627 // scanning from the top of the BB to the bottom, reuse of the expr are
4628 // guaranteed to happen later.
4629 IRBuilder<> Builder(MemoryInst);
4631 // Now that we determined the addressing expression we want to use and know
4632 // that we have to sink it into this block. Check to see if we have already
4633 // done this for some other load/store instr in this block. If so, reuse
4634 // the computation. Before attempting reuse, check if the address is valid
4635 // as it may have been erased.
4637 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4639 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4640 if (SunkAddr) {
4641 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4642 << " for " << *MemoryInst << "\n");
4643 if (SunkAddr->getType() != Addr->getType())
4644 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4645 } else if (AddrSinkUsingGEPs ||
4646 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4647 // By default, we use the GEP-based method when AA is used later. This
4648 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4649 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4650 << " for " << *MemoryInst << "\n");
4651 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4652 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4654 // First, find the pointer.
4655 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4656 ResultPtr = AddrMode.BaseReg;
4657 AddrMode.BaseReg = nullptr;
4660 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4661 // We can't add more than one pointer together, nor can we scale a
4662 // pointer (both of which seem meaningless).
4663 if (ResultPtr || AddrMode.Scale != 1)
4664 return false;
4666 ResultPtr = AddrMode.ScaledReg;
4667 AddrMode.Scale = 0;
4670 // It is only safe to sign extend the BaseReg if we know that the math
4671 // required to create it did not overflow before we extend it. Since
4672 // the original IR value was tossed in favor of a constant back when
4673 // the AddrMode was created we need to bail out gracefully if widths
4674 // do not match instead of extending it.
4676 // (See below for code to add the scale.)
4677 if (AddrMode.Scale) {
4678 Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4679 if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4680 cast<IntegerType>(ScaledRegTy)->getBitWidth())
4681 return false;
4684 if (AddrMode.BaseGV) {
4685 if (ResultPtr)
4686 return false;
4688 ResultPtr = AddrMode.BaseGV;
4691 // If the real base value actually came from an inttoptr, then the matcher
4692 // will look through it and provide only the integer value. In that case,
4693 // use it here.
4694 if (!DL->isNonIntegralPointerType(Addr->getType())) {
4695 if (!ResultPtr && AddrMode.BaseReg) {
4696 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4697 "sunkaddr");
4698 AddrMode.BaseReg = nullptr;
4699 } else if (!ResultPtr && AddrMode.Scale == 1) {
4700 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4701 "sunkaddr");
4702 AddrMode.Scale = 0;
4706 if (!ResultPtr &&
4707 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4708 SunkAddr = Constant::getNullValue(Addr->getType());
4709 } else if (!ResultPtr) {
4710 return false;
4711 } else {
4712 Type *I8PtrTy =
4713 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4714 Type *I8Ty = Builder.getInt8Ty();
4716 // Start with the base register. Do this first so that subsequent address
4717 // matching finds it last, which will prevent it from trying to match it
4718 // as the scaled value in case it happens to be a mul. That would be
4719 // problematic if we've sunk a different mul for the scale, because then
4720 // we'd end up sinking both muls.
4721 if (AddrMode.BaseReg) {
4722 Value *V = AddrMode.BaseReg;
4723 if (V->getType() != IntPtrTy)
4724 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4726 ResultIndex = V;
4729 // Add the scale value.
4730 if (AddrMode.Scale) {
4731 Value *V = AddrMode.ScaledReg;
4732 if (V->getType() == IntPtrTy) {
4733 // done.
4734 } else {
4735 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4736 cast<IntegerType>(V->getType())->getBitWidth() &&
4737 "We can't transform if ScaledReg is too narrow");
4738 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4741 if (AddrMode.Scale != 1)
4742 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4743 "sunkaddr");
4744 if (ResultIndex)
4745 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4746 else
4747 ResultIndex = V;
4750 // Add in the Base Offset if present.
4751 if (AddrMode.BaseOffs) {
4752 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4753 if (ResultIndex) {
4754 // We need to add this separately from the scale above to help with
4755 // SDAG consecutive load/store merging.
4756 if (ResultPtr->getType() != I8PtrTy)
4757 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4758 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4761 ResultIndex = V;
4764 if (!ResultIndex) {
4765 SunkAddr = ResultPtr;
4766 } else {
4767 if (ResultPtr->getType() != I8PtrTy)
4768 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4769 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4772 if (SunkAddr->getType() != Addr->getType())
4773 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4775 } else {
4776 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4777 // non-integral pointers, so in that case bail out now.
4778 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4779 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4780 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4781 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4782 if (DL->isNonIntegralPointerType(Addr->getType()) ||
4783 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4784 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4785 (AddrMode.BaseGV &&
4786 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4787 return false;
4789 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4790 << " for " << *MemoryInst << "\n");
4791 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4792 Value *Result = nullptr;
4794 // Start with the base register. Do this first so that subsequent address
4795 // matching finds it last, which will prevent it from trying to match it
4796 // as the scaled value in case it happens to be a mul. That would be
4797 // problematic if we've sunk a different mul for the scale, because then
4798 // we'd end up sinking both muls.
4799 if (AddrMode.BaseReg) {
4800 Value *V = AddrMode.BaseReg;
4801 if (V->getType()->isPointerTy())
4802 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4803 if (V->getType() != IntPtrTy)
4804 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4805 Result = V;
4808 // Add the scale value.
4809 if (AddrMode.Scale) {
4810 Value *V = AddrMode.ScaledReg;
4811 if (V->getType() == IntPtrTy) {
4812 // done.
4813 } else if (V->getType()->isPointerTy()) {
4814 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4815 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4816 cast<IntegerType>(V->getType())->getBitWidth()) {
4817 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4818 } else {
4819 // It is only safe to sign extend the BaseReg if we know that the math
4820 // required to create it did not overflow before we extend it. Since
4821 // the original IR value was tossed in favor of a constant back when
4822 // the AddrMode was created we need to bail out gracefully if widths
4823 // do not match instead of extending it.
4824 Instruction *I = dyn_cast_or_null<Instruction>(Result);
4825 if (I && (Result != AddrMode.BaseReg))
4826 I->eraseFromParent();
4827 return false;
4829 if (AddrMode.Scale != 1)
4830 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4831 "sunkaddr");
4832 if (Result)
4833 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4834 else
4835 Result = V;
4838 // Add in the BaseGV if present.
4839 if (AddrMode.BaseGV) {
4840 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4841 if (Result)
4842 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4843 else
4844 Result = V;
4847 // Add in the Base Offset if present.
4848 if (AddrMode.BaseOffs) {
4849 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4850 if (Result)
4851 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4852 else
4853 Result = V;
4856 if (!Result)
4857 SunkAddr = Constant::getNullValue(Addr->getType());
4858 else
4859 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4862 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4863 // Store the newly computed address into the cache. In the case we reused a
4864 // value, this should be idempotent.
4865 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
4867 // If we have no uses, recursively delete the value and all dead instructions
4868 // using it.
4869 if (Repl->use_empty()) {
4870 // This can cause recursive deletion, which can invalidate our iterator.
4871 // Use a WeakTrackingVH to hold onto it in case this happens.
4872 Value *CurValue = &*CurInstIterator;
4873 WeakTrackingVH IterHandle(CurValue);
4874 BasicBlock *BB = CurInstIterator->getParent();
4876 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4878 if (IterHandle != CurValue) {
4879 // If the iterator instruction was recursively deleted, start over at the
4880 // start of the block.
4881 CurInstIterator = BB->begin();
4882 SunkAddrs.clear();
4885 ++NumMemoryInsts;
4886 return true;
4889 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4890 /// address computing into the block when possible / profitable.
4891 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4892 bool MadeChange = false;
4894 const TargetRegisterInfo *TRI =
4895 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4896 TargetLowering::AsmOperandInfoVector TargetConstraints =
4897 TLI->ParseConstraints(*DL, TRI, CS);
4898 unsigned ArgNo = 0;
4899 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4900 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4902 // Compute the constraint code and ConstraintType to use.
4903 TLI->ComputeConstraintToUse(OpInfo, SDValue());
4905 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4906 OpInfo.isIndirect) {
4907 Value *OpVal = CS->getArgOperand(ArgNo++);
4908 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4909 } else if (OpInfo.Type == InlineAsm::isInput)
4910 ArgNo++;
4913 return MadeChange;
4916 /// Check if all the uses of \p Val are equivalent (or free) zero or
4917 /// sign extensions.
4918 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4919 assert(!Val->use_empty() && "Input must have at least one use");
4920 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4921 bool IsSExt = isa<SExtInst>(FirstUser);
4922 Type *ExtTy = FirstUser->getType();
4923 for (const User *U : Val->users()) {
4924 const Instruction *UI = cast<Instruction>(U);
4925 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4926 return false;
4927 Type *CurTy = UI->getType();
4928 // Same input and output types: Same instruction after CSE.
4929 if (CurTy == ExtTy)
4930 continue;
4932 // If IsSExt is true, we are in this situation:
4933 // a = Val
4934 // b = sext ty1 a to ty2
4935 // c = sext ty1 a to ty3
4936 // Assuming ty2 is shorter than ty3, this could be turned into:
4937 // a = Val
4938 // b = sext ty1 a to ty2
4939 // c = sext ty2 b to ty3
4940 // However, the last sext is not free.
4941 if (IsSExt)
4942 return false;
4944 // This is a ZExt, maybe this is free to extend from one type to another.
4945 // In that case, we would not account for a different use.
4946 Type *NarrowTy;
4947 Type *LargeTy;
4948 if (ExtTy->getScalarType()->getIntegerBitWidth() >
4949 CurTy->getScalarType()->getIntegerBitWidth()) {
4950 NarrowTy = CurTy;
4951 LargeTy = ExtTy;
4952 } else {
4953 NarrowTy = ExtTy;
4954 LargeTy = CurTy;
4957 if (!TLI.isZExtFree(NarrowTy, LargeTy))
4958 return false;
4960 // All uses are the same or can be derived from one another for free.
4961 return true;
4964 /// Try to speculatively promote extensions in \p Exts and continue
4965 /// promoting through newly promoted operands recursively as far as doing so is
4966 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4967 /// When some promotion happened, \p TPT contains the proper state to revert
4968 /// them.
4970 /// \return true if some promotion happened, false otherwise.
4971 bool CodeGenPrepare::tryToPromoteExts(
4972 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4973 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4974 unsigned CreatedInstsCost) {
4975 bool Promoted = false;
4977 // Iterate over all the extensions to try to promote them.
4978 for (auto I : Exts) {
4979 // Early check if we directly have ext(load).
4980 if (isa<LoadInst>(I->getOperand(0))) {
4981 ProfitablyMovedExts.push_back(I);
4982 continue;
4985 // Check whether or not we want to do any promotion. The reason we have
4986 // this check inside the for loop is to catch the case where an extension
4987 // is directly fed by a load because in such case the extension can be moved
4988 // up without any promotion on its operands.
4989 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4990 return false;
4992 // Get the action to perform the promotion.
4993 TypePromotionHelper::Action TPH =
4994 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4995 // Check if we can promote.
4996 if (!TPH) {
4997 // Save the current extension as we cannot move up through its operand.
4998 ProfitablyMovedExts.push_back(I);
4999 continue;
5002 // Save the current state.
5003 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5004 TPT.getRestorationPoint();
5005 SmallVector<Instruction *, 4> NewExts;
5006 unsigned NewCreatedInstsCost = 0;
5007 unsigned ExtCost = !TLI->isExtFree(I);
5008 // Promote.
5009 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5010 &NewExts, nullptr, *TLI);
5011 assert(PromotedVal &&
5012 "TypePromotionHelper should have filtered out those cases");
5014 // We would be able to merge only one extension in a load.
5015 // Therefore, if we have more than 1 new extension we heuristically
5016 // cut this search path, because it means we degrade the code quality.
5017 // With exactly 2, the transformation is neutral, because we will merge
5018 // one extension but leave one. However, we optimistically keep going,
5019 // because the new extension may be removed too.
5020 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5021 // FIXME: It would be possible to propagate a negative value instead of
5022 // conservatively ceiling it to 0.
5023 TotalCreatedInstsCost =
5024 std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5025 if (!StressExtLdPromotion &&
5026 (TotalCreatedInstsCost > 1 ||
5027 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5028 // This promotion is not profitable, rollback to the previous state, and
5029 // save the current extension in ProfitablyMovedExts as the latest
5030 // speculative promotion turned out to be unprofitable.
5031 TPT.rollback(LastKnownGood);
5032 ProfitablyMovedExts.push_back(I);
5033 continue;
5035 // Continue promoting NewExts as far as doing so is profitable.
5036 SmallVector<Instruction *, 2> NewlyMovedExts;
5037 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5038 bool NewPromoted = false;
5039 for (auto ExtInst : NewlyMovedExts) {
5040 Instruction *MovedExt = cast<Instruction>(ExtInst);
5041 Value *ExtOperand = MovedExt->getOperand(0);
5042 // If we have reached to a load, we need this extra profitability check
5043 // as it could potentially be merged into an ext(load).
5044 if (isa<LoadInst>(ExtOperand) &&
5045 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5046 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5047 continue;
5049 ProfitablyMovedExts.push_back(MovedExt);
5050 NewPromoted = true;
5053 // If none of speculative promotions for NewExts is profitable, rollback
5054 // and save the current extension (I) as the last profitable extension.
5055 if (!NewPromoted) {
5056 TPT.rollback(LastKnownGood);
5057 ProfitablyMovedExts.push_back(I);
5058 continue;
5060 // The promotion is profitable.
5061 Promoted = true;
5063 return Promoted;
5066 /// Merging redundant sexts when one is dominating the other.
5067 bool CodeGenPrepare::mergeSExts(Function &F) {
5068 DominatorTree DT(F);
5069 bool Changed = false;
5070 for (auto &Entry : ValToSExtendedUses) {
5071 SExts &Insts = Entry.second;
5072 SExts CurPts;
5073 for (Instruction *Inst : Insts) {
5074 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5075 Inst->getOperand(0) != Entry.first)
5076 continue;
5077 bool inserted = false;
5078 for (auto &Pt : CurPts) {
5079 if (DT.dominates(Inst, Pt)) {
5080 Pt->replaceAllUsesWith(Inst);
5081 RemovedInsts.insert(Pt);
5082 Pt->removeFromParent();
5083 Pt = Inst;
5084 inserted = true;
5085 Changed = true;
5086 break;
5088 if (!DT.dominates(Pt, Inst))
5089 // Give up if we need to merge in a common dominator as the
5090 // experiments show it is not profitable.
5091 continue;
5092 Inst->replaceAllUsesWith(Pt);
5093 RemovedInsts.insert(Inst);
5094 Inst->removeFromParent();
5095 inserted = true;
5096 Changed = true;
5097 break;
5099 if (!inserted)
5100 CurPts.push_back(Inst);
5103 return Changed;
5106 // Spliting large data structures so that the GEPs accessing them can have
5107 // smaller offsets so that they can be sunk to the same blocks as their users.
5108 // For example, a large struct starting from %base is splitted into two parts
5109 // where the second part starts from %new_base.
5111 // Before:
5112 // BB0:
5113 // %base =
5115 // BB1:
5116 // %gep0 = gep %base, off0
5117 // %gep1 = gep %base, off1
5118 // %gep2 = gep %base, off2
5120 // BB2:
5121 // %load1 = load %gep0
5122 // %load2 = load %gep1
5123 // %load3 = load %gep2
5125 // After:
5126 // BB0:
5127 // %base =
5128 // %new_base = gep %base, off0
5130 // BB1:
5131 // %new_gep0 = %new_base
5132 // %new_gep1 = gep %new_base, off1 - off0
5133 // %new_gep2 = gep %new_base, off2 - off0
5135 // BB2:
5136 // %load1 = load i32, i32* %new_gep0
5137 // %load2 = load i32, i32* %new_gep1
5138 // %load3 = load i32, i32* %new_gep2
5140 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5141 // their offsets are smaller enough to fit into the addressing mode.
5142 bool CodeGenPrepare::splitLargeGEPOffsets() {
5143 bool Changed = false;
5144 for (auto &Entry : LargeOffsetGEPMap) {
5145 Value *OldBase = Entry.first;
5146 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5147 &LargeOffsetGEPs = Entry.second;
5148 auto compareGEPOffset =
5149 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5150 const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5151 if (LHS.first == RHS.first)
5152 return false;
5153 if (LHS.second != RHS.second)
5154 return LHS.second < RHS.second;
5155 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5157 // Sorting all the GEPs of the same data structures based on the offsets.
5158 llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5159 LargeOffsetGEPs.erase(
5160 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5161 LargeOffsetGEPs.end());
5162 // Skip if all the GEPs have the same offsets.
5163 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5164 continue;
5165 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5166 int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5167 Value *NewBaseGEP = nullptr;
5169 auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5170 while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5171 GetElementPtrInst *GEP = LargeOffsetGEP->first;
5172 int64_t Offset = LargeOffsetGEP->second;
5173 if (Offset != BaseOffset) {
5174 TargetLowering::AddrMode AddrMode;
5175 AddrMode.BaseOffs = Offset - BaseOffset;
5176 // The result type of the GEP might not be the type of the memory
5177 // access.
5178 if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5179 GEP->getResultElementType(),
5180 GEP->getAddressSpace())) {
5181 // We need to create a new base if the offset to the current base is
5182 // too large to fit into the addressing mode. So, a very large struct
5183 // may be splitted into several parts.
5184 BaseGEP = GEP;
5185 BaseOffset = Offset;
5186 NewBaseGEP = nullptr;
5190 // Generate a new GEP to replace the current one.
5191 LLVMContext &Ctx = GEP->getContext();
5192 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5193 Type *I8PtrTy =
5194 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5195 Type *I8Ty = Type::getInt8Ty(Ctx);
5197 if (!NewBaseGEP) {
5198 // Create a new base if we don't have one yet. Find the insertion
5199 // pointer for the new base first.
5200 BasicBlock::iterator NewBaseInsertPt;
5201 BasicBlock *NewBaseInsertBB;
5202 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5203 // If the base of the struct is an instruction, the new base will be
5204 // inserted close to it.
5205 NewBaseInsertBB = BaseI->getParent();
5206 if (isa<PHINode>(BaseI))
5207 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5208 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5209 NewBaseInsertBB =
5210 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5211 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5212 } else
5213 NewBaseInsertPt = std::next(BaseI->getIterator());
5214 } else {
5215 // If the current base is an argument or global value, the new base
5216 // will be inserted to the entry block.
5217 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5218 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5220 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5221 // Create a new base.
5222 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5223 NewBaseGEP = OldBase;
5224 if (NewBaseGEP->getType() != I8PtrTy)
5225 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5226 NewBaseGEP =
5227 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5228 NewGEPBases.insert(NewBaseGEP);
5231 IRBuilder<> Builder(GEP);
5232 Value *NewGEP = NewBaseGEP;
5233 if (Offset == BaseOffset) {
5234 if (GEP->getType() != I8PtrTy)
5235 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5236 } else {
5237 // Calculate the new offset for the new GEP.
5238 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5239 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5241 if (GEP->getType() != I8PtrTy)
5242 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5244 GEP->replaceAllUsesWith(NewGEP);
5245 LargeOffsetGEPID.erase(GEP);
5246 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5247 GEP->eraseFromParent();
5248 Changed = true;
5251 return Changed;
5254 /// Return true, if an ext(load) can be formed from an extension in
5255 /// \p MovedExts.
5256 bool CodeGenPrepare::canFormExtLd(
5257 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5258 Instruction *&Inst, bool HasPromoted) {
5259 for (auto *MovedExtInst : MovedExts) {
5260 if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5261 LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5262 Inst = MovedExtInst;
5263 break;
5266 if (!LI)
5267 return false;
5269 // If they're already in the same block, there's nothing to do.
5270 // Make the cheap checks first if we did not promote.
5271 // If we promoted, we need to check if it is indeed profitable.
5272 if (!HasPromoted && LI->getParent() == Inst->getParent())
5273 return false;
5275 return TLI->isExtLoad(LI, Inst, *DL);
5278 /// Move a zext or sext fed by a load into the same basic block as the load,
5279 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5280 /// extend into the load.
5282 /// E.g.,
5283 /// \code
5284 /// %ld = load i32* %addr
5285 /// %add = add nuw i32 %ld, 4
5286 /// %zext = zext i32 %add to i64
5287 // \endcode
5288 /// =>
5289 /// \code
5290 /// %ld = load i32* %addr
5291 /// %zext = zext i32 %ld to i64
5292 /// %add = add nuw i64 %zext, 4
5293 /// \encode
5294 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5295 /// allow us to match zext(load i32*) to i64.
5297 /// Also, try to promote the computations used to obtain a sign extended
5298 /// value used into memory accesses.
5299 /// E.g.,
5300 /// \code
5301 /// a = add nsw i32 b, 3
5302 /// d = sext i32 a to i64
5303 /// e = getelementptr ..., i64 d
5304 /// \endcode
5305 /// =>
5306 /// \code
5307 /// f = sext i32 b to i64
5308 /// a = add nsw i64 f, 3
5309 /// e = getelementptr ..., i64 a
5310 /// \endcode
5312 /// \p Inst[in/out] the extension may be modified during the process if some
5313 /// promotions apply.
5314 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5315 // ExtLoad formation and address type promotion infrastructure requires TLI to
5316 // be effective.
5317 if (!TLI)
5318 return false;
5320 bool AllowPromotionWithoutCommonHeader = false;
5321 /// See if it is an interesting sext operations for the address type
5322 /// promotion before trying to promote it, e.g., the ones with the right
5323 /// type and used in memory accesses.
5324 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5325 *Inst, AllowPromotionWithoutCommonHeader);
5326 TypePromotionTransaction TPT(RemovedInsts);
5327 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5328 TPT.getRestorationPoint();
5329 SmallVector<Instruction *, 1> Exts;
5330 SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5331 Exts.push_back(Inst);
5333 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5335 // Look for a load being extended.
5336 LoadInst *LI = nullptr;
5337 Instruction *ExtFedByLoad;
5339 // Try to promote a chain of computation if it allows to form an extended
5340 // load.
5341 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5342 assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5343 TPT.commit();
5344 // Move the extend into the same block as the load
5345 ExtFedByLoad->moveAfter(LI);
5346 // CGP does not check if the zext would be speculatively executed when moved
5347 // to the same basic block as the load. Preserving its original location
5348 // would pessimize the debugging experience, as well as negatively impact
5349 // the quality of sample pgo. We don't want to use "line 0" as that has a
5350 // size cost in the line-table section and logically the zext can be seen as
5351 // part of the load. Therefore we conservatively reuse the same debug
5352 // location for the load and the zext.
5353 ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5354 ++NumExtsMoved;
5355 Inst = ExtFedByLoad;
5356 return true;
5359 // Continue promoting SExts if known as considerable depending on targets.
5360 if (ATPConsiderable &&
5361 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5362 HasPromoted, TPT, SpeculativelyMovedExts))
5363 return true;
5365 TPT.rollback(LastKnownGood);
5366 return false;
5369 // Perform address type promotion if doing so is profitable.
5370 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5371 // instructions that sign extended the same initial value. However, if
5372 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5373 // extension is just profitable.
5374 bool CodeGenPrepare::performAddressTypePromotion(
5375 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5376 bool HasPromoted, TypePromotionTransaction &TPT,
5377 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5378 bool Promoted = false;
5379 SmallPtrSet<Instruction *, 1> UnhandledExts;
5380 bool AllSeenFirst = true;
5381 for (auto I : SpeculativelyMovedExts) {
5382 Value *HeadOfChain = I->getOperand(0);
5383 DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5384 SeenChainsForSExt.find(HeadOfChain);
5385 // If there is an unhandled SExt which has the same header, try to promote
5386 // it as well.
5387 if (AlreadySeen != SeenChainsForSExt.end()) {
5388 if (AlreadySeen->second != nullptr)
5389 UnhandledExts.insert(AlreadySeen->second);
5390 AllSeenFirst = false;
5394 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5395 SpeculativelyMovedExts.size() == 1)) {
5396 TPT.commit();
5397 if (HasPromoted)
5398 Promoted = true;
5399 for (auto I : SpeculativelyMovedExts) {
5400 Value *HeadOfChain = I->getOperand(0);
5401 SeenChainsForSExt[HeadOfChain] = nullptr;
5402 ValToSExtendedUses[HeadOfChain].push_back(I);
5404 // Update Inst as promotion happen.
5405 Inst = SpeculativelyMovedExts.pop_back_val();
5406 } else {
5407 // This is the first chain visited from the header, keep the current chain
5408 // as unhandled. Defer to promote this until we encounter another SExt
5409 // chain derived from the same header.
5410 for (auto I : SpeculativelyMovedExts) {
5411 Value *HeadOfChain = I->getOperand(0);
5412 SeenChainsForSExt[HeadOfChain] = Inst;
5414 return false;
5417 if (!AllSeenFirst && !UnhandledExts.empty())
5418 for (auto VisitedSExt : UnhandledExts) {
5419 if (RemovedInsts.count(VisitedSExt))
5420 continue;
5421 TypePromotionTransaction TPT(RemovedInsts);
5422 SmallVector<Instruction *, 1> Exts;
5423 SmallVector<Instruction *, 2> Chains;
5424 Exts.push_back(VisitedSExt);
5425 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5426 TPT.commit();
5427 if (HasPromoted)
5428 Promoted = true;
5429 for (auto I : Chains) {
5430 Value *HeadOfChain = I->getOperand(0);
5431 // Mark this as handled.
5432 SeenChainsForSExt[HeadOfChain] = nullptr;
5433 ValToSExtendedUses[HeadOfChain].push_back(I);
5436 return Promoted;
5439 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5440 BasicBlock *DefBB = I->getParent();
5442 // If the result of a {s|z}ext and its source are both live out, rewrite all
5443 // other uses of the source with result of extension.
5444 Value *Src = I->getOperand(0);
5445 if (Src->hasOneUse())
5446 return false;
5448 // Only do this xform if truncating is free.
5449 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5450 return false;
5452 // Only safe to perform the optimization if the source is also defined in
5453 // this block.
5454 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5455 return false;
5457 bool DefIsLiveOut = false;
5458 for (User *U : I->users()) {
5459 Instruction *UI = cast<Instruction>(U);
5461 // Figure out which BB this ext is used in.
5462 BasicBlock *UserBB = UI->getParent();
5463 if (UserBB == DefBB) continue;
5464 DefIsLiveOut = true;
5465 break;
5467 if (!DefIsLiveOut)
5468 return false;
5470 // Make sure none of the uses are PHI nodes.
5471 for (User *U : Src->users()) {
5472 Instruction *UI = cast<Instruction>(U);
5473 BasicBlock *UserBB = UI->getParent();
5474 if (UserBB == DefBB) continue;
5475 // Be conservative. We don't want this xform to end up introducing
5476 // reloads just before load / store instructions.
5477 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5478 return false;
5481 // InsertedTruncs - Only insert one trunc in each block once.
5482 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5484 bool MadeChange = false;
5485 for (Use &U : Src->uses()) {
5486 Instruction *User = cast<Instruction>(U.getUser());
5488 // Figure out which BB this ext is used in.
5489 BasicBlock *UserBB = User->getParent();
5490 if (UserBB == DefBB) continue;
5492 // Both src and def are live in this block. Rewrite the use.
5493 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5495 if (!InsertedTrunc) {
5496 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5497 assert(InsertPt != UserBB->end());
5498 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5499 InsertedInsts.insert(InsertedTrunc);
5502 // Replace a use of the {s|z}ext source with a use of the result.
5503 U = InsertedTrunc;
5504 ++NumExtUses;
5505 MadeChange = true;
5508 return MadeChange;
5511 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
5512 // just after the load if the target can fold this into one extload instruction,
5513 // with the hope of eliminating some of the other later "and" instructions using
5514 // the loaded value. "and"s that are made trivially redundant by the insertion
5515 // of the new "and" are removed by this function, while others (e.g. those whose
5516 // path from the load goes through a phi) are left for isel to potentially
5517 // remove.
5519 // For example:
5521 // b0:
5522 // x = load i32
5523 // ...
5524 // b1:
5525 // y = and x, 0xff
5526 // z = use y
5528 // becomes:
5530 // b0:
5531 // x = load i32
5532 // x' = and x, 0xff
5533 // ...
5534 // b1:
5535 // z = use x'
5537 // whereas:
5539 // b0:
5540 // x1 = load i32
5541 // ...
5542 // b1:
5543 // x2 = load i32
5544 // ...
5545 // b2:
5546 // x = phi x1, x2
5547 // y = and x, 0xff
5549 // becomes (after a call to optimizeLoadExt for each load):
5551 // b0:
5552 // x1 = load i32
5553 // x1' = and x1, 0xff
5554 // ...
5555 // b1:
5556 // x2 = load i32
5557 // x2' = and x2, 0xff
5558 // ...
5559 // b2:
5560 // x = phi x1', x2'
5561 // y = and x, 0xff
5562 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5563 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5564 return false;
5566 // Skip loads we've already transformed.
5567 if (Load->hasOneUse() &&
5568 InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5569 return false;
5571 // Look at all uses of Load, looking through phis, to determine how many bits
5572 // of the loaded value are needed.
5573 SmallVector<Instruction *, 8> WorkList;
5574 SmallPtrSet<Instruction *, 16> Visited;
5575 SmallVector<Instruction *, 8> AndsToMaybeRemove;
5576 for (auto *U : Load->users())
5577 WorkList.push_back(cast<Instruction>(U));
5579 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5580 unsigned BitWidth = LoadResultVT.getSizeInBits();
5581 APInt DemandBits(BitWidth, 0);
5582 APInt WidestAndBits(BitWidth, 0);
5584 while (!WorkList.empty()) {
5585 Instruction *I = WorkList.back();
5586 WorkList.pop_back();
5588 // Break use-def graph loops.
5589 if (!Visited.insert(I).second)
5590 continue;
5592 // For a PHI node, push all of its users.
5593 if (auto *Phi = dyn_cast<PHINode>(I)) {
5594 for (auto *U : Phi->users())
5595 WorkList.push_back(cast<Instruction>(U));
5596 continue;
5599 switch (I->getOpcode()) {
5600 case Instruction::And: {
5601 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5602 if (!AndC)
5603 return false;
5604 APInt AndBits = AndC->getValue();
5605 DemandBits |= AndBits;
5606 // Keep track of the widest and mask we see.
5607 if (AndBits.ugt(WidestAndBits))
5608 WidestAndBits = AndBits;
5609 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5610 AndsToMaybeRemove.push_back(I);
5611 break;
5614 case Instruction::Shl: {
5615 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5616 if (!ShlC)
5617 return false;
5618 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5619 DemandBits.setLowBits(BitWidth - ShiftAmt);
5620 break;
5623 case Instruction::Trunc: {
5624 EVT TruncVT = TLI->getValueType(*DL, I->getType());
5625 unsigned TruncBitWidth = TruncVT.getSizeInBits();
5626 DemandBits.setLowBits(TruncBitWidth);
5627 break;
5630 default:
5631 return false;
5635 uint32_t ActiveBits = DemandBits.getActiveBits();
5636 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5637 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
5638 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5639 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5640 // followed by an AND.
5641 // TODO: Look into removing this restriction by fixing backends to either
5642 // return false for isLoadExtLegal for i1 or have them select this pattern to
5643 // a single instruction.
5645 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5646 // mask, since these are the only ands that will be removed by isel.
5647 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5648 WidestAndBits != DemandBits)
5649 return false;
5651 LLVMContext &Ctx = Load->getType()->getContext();
5652 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5653 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5655 // Reject cases that won't be matched as extloads.
5656 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5657 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5658 return false;
5660 IRBuilder<> Builder(Load->getNextNode());
5661 auto *NewAnd = dyn_cast<Instruction>(
5662 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5663 // Mark this instruction as "inserted by CGP", so that other
5664 // optimizations don't touch it.
5665 InsertedInsts.insert(NewAnd);
5667 // Replace all uses of load with new and (except for the use of load in the
5668 // new and itself).
5669 Load->replaceAllUsesWith(NewAnd);
5670 NewAnd->setOperand(0, Load);
5672 // Remove any and instructions that are now redundant.
5673 for (auto *And : AndsToMaybeRemove)
5674 // Check that the and mask is the same as the one we decided to put on the
5675 // new and.
5676 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5677 And->replaceAllUsesWith(NewAnd);
5678 if (&*CurInstIterator == And)
5679 CurInstIterator = std::next(And->getIterator());
5680 And->eraseFromParent();
5681 ++NumAndUses;
5684 ++NumAndsAdded;
5685 return true;
5688 /// Check if V (an operand of a select instruction) is an expensive instruction
5689 /// that is only used once.
5690 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5691 auto *I = dyn_cast<Instruction>(V);
5692 // If it's safe to speculatively execute, then it should not have side
5693 // effects; therefore, it's safe to sink and possibly *not* execute.
5694 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5695 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5698 /// Returns true if a SelectInst should be turned into an explicit branch.
5699 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5700 const TargetLowering *TLI,
5701 SelectInst *SI) {
5702 // If even a predictable select is cheap, then a branch can't be cheaper.
5703 if (!TLI->isPredictableSelectExpensive())
5704 return false;
5706 // FIXME: This should use the same heuristics as IfConversion to determine
5707 // whether a select is better represented as a branch.
5709 // If metadata tells us that the select condition is obviously predictable,
5710 // then we want to replace the select with a branch.
5711 uint64_t TrueWeight, FalseWeight;
5712 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5713 uint64_t Max = std::max(TrueWeight, FalseWeight);
5714 uint64_t Sum = TrueWeight + FalseWeight;
5715 if (Sum != 0) {
5716 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5717 if (Probability > TLI->getPredictableBranchThreshold())
5718 return true;
5722 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5724 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5725 // comparison condition. If the compare has more than one use, there's
5726 // probably another cmov or setcc around, so it's not worth emitting a branch.
5727 if (!Cmp || !Cmp->hasOneUse())
5728 return false;
5730 // If either operand of the select is expensive and only needed on one side
5731 // of the select, we should form a branch.
5732 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5733 sinkSelectOperand(TTI, SI->getFalseValue()))
5734 return true;
5736 return false;
5739 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5740 /// false value of \p SI. If the true/false value of \p SI is defined by any
5741 /// select instructions in \p Selects, look through the defining select
5742 /// instruction until the true/false value is not defined in \p Selects.
5743 static Value *getTrueOrFalseValue(
5744 SelectInst *SI, bool isTrue,
5745 const SmallPtrSet<const Instruction *, 2> &Selects) {
5746 Value *V;
5748 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5749 DefSI = dyn_cast<SelectInst>(V)) {
5750 assert(DefSI->getCondition() == SI->getCondition() &&
5751 "The condition of DefSI does not match with SI");
5752 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5754 return V;
5757 /// If we have a SelectInst that will likely profit from branch prediction,
5758 /// turn it into a branch.
5759 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5760 // If branch conversion isn't desirable, exit early.
5761 if (DisableSelectToBranch || OptSize || !TLI)
5762 return false;
5764 // Find all consecutive select instructions that share the same condition.
5765 SmallVector<SelectInst *, 2> ASI;
5766 ASI.push_back(SI);
5767 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5768 It != SI->getParent()->end(); ++It) {
5769 SelectInst *I = dyn_cast<SelectInst>(&*It);
5770 if (I && SI->getCondition() == I->getCondition()) {
5771 ASI.push_back(I);
5772 } else {
5773 break;
5777 SelectInst *LastSI = ASI.back();
5778 // Increment the current iterator to skip all the rest of select instructions
5779 // because they will be either "not lowered" or "all lowered" to branch.
5780 CurInstIterator = std::next(LastSI->getIterator());
5782 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5784 // Can we convert the 'select' to CF ?
5785 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5786 return false;
5788 TargetLowering::SelectSupportKind SelectKind;
5789 if (VectorCond)
5790 SelectKind = TargetLowering::VectorMaskSelect;
5791 else if (SI->getType()->isVectorTy())
5792 SelectKind = TargetLowering::ScalarCondVectorVal;
5793 else
5794 SelectKind = TargetLowering::ScalarValSelect;
5796 if (TLI->isSelectSupported(SelectKind) &&
5797 !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5798 return false;
5800 ModifiedDT = true;
5802 // Transform a sequence like this:
5803 // start:
5804 // %cmp = cmp uge i32 %a, %b
5805 // %sel = select i1 %cmp, i32 %c, i32 %d
5807 // Into:
5808 // start:
5809 // %cmp = cmp uge i32 %a, %b
5810 // br i1 %cmp, label %select.true, label %select.false
5811 // select.true:
5812 // br label %select.end
5813 // select.false:
5814 // br label %select.end
5815 // select.end:
5816 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5818 // In addition, we may sink instructions that produce %c or %d from
5819 // the entry block into the destination(s) of the new branch.
5820 // If the true or false blocks do not contain a sunken instruction, that
5821 // block and its branch may be optimized away. In that case, one side of the
5822 // first branch will point directly to select.end, and the corresponding PHI
5823 // predecessor block will be the start block.
5825 // First, we split the block containing the select into 2 blocks.
5826 BasicBlock *StartBlock = SI->getParent();
5827 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5828 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5830 // Delete the unconditional branch that was just created by the split.
5831 StartBlock->getTerminator()->eraseFromParent();
5833 // These are the new basic blocks for the conditional branch.
5834 // At least one will become an actual new basic block.
5835 BasicBlock *TrueBlock = nullptr;
5836 BasicBlock *FalseBlock = nullptr;
5837 BranchInst *TrueBranch = nullptr;
5838 BranchInst *FalseBranch = nullptr;
5840 // Sink expensive instructions into the conditional blocks to avoid executing
5841 // them speculatively.
5842 for (SelectInst *SI : ASI) {
5843 if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5844 if (TrueBlock == nullptr) {
5845 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5846 EndBlock->getParent(), EndBlock);
5847 TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5848 TrueBranch->setDebugLoc(SI->getDebugLoc());
5850 auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5851 TrueInst->moveBefore(TrueBranch);
5853 if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5854 if (FalseBlock == nullptr) {
5855 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5856 EndBlock->getParent(), EndBlock);
5857 FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5858 FalseBranch->setDebugLoc(SI->getDebugLoc());
5860 auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5861 FalseInst->moveBefore(FalseBranch);
5865 // If there was nothing to sink, then arbitrarily choose the 'false' side
5866 // for a new input value to the PHI.
5867 if (TrueBlock == FalseBlock) {
5868 assert(TrueBlock == nullptr &&
5869 "Unexpected basic block transform while optimizing select");
5871 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5872 EndBlock->getParent(), EndBlock);
5873 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5874 FalseBranch->setDebugLoc(SI->getDebugLoc());
5877 // Insert the real conditional branch based on the original condition.
5878 // If we did not create a new block for one of the 'true' or 'false' paths
5879 // of the condition, it means that side of the branch goes to the end block
5880 // directly and the path originates from the start block from the point of
5881 // view of the new PHI.
5882 BasicBlock *TT, *FT;
5883 if (TrueBlock == nullptr) {
5884 TT = EndBlock;
5885 FT = FalseBlock;
5886 TrueBlock = StartBlock;
5887 } else if (FalseBlock == nullptr) {
5888 TT = TrueBlock;
5889 FT = EndBlock;
5890 FalseBlock = StartBlock;
5891 } else {
5892 TT = TrueBlock;
5893 FT = FalseBlock;
5895 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5897 SmallPtrSet<const Instruction *, 2> INS;
5898 INS.insert(ASI.begin(), ASI.end());
5899 // Use reverse iterator because later select may use the value of the
5900 // earlier select, and we need to propagate value through earlier select
5901 // to get the PHI operand.
5902 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5903 SelectInst *SI = *It;
5904 // The select itself is replaced with a PHI Node.
5905 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5906 PN->takeName(SI);
5907 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5908 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5909 PN->setDebugLoc(SI->getDebugLoc());
5911 SI->replaceAllUsesWith(PN);
5912 SI->eraseFromParent();
5913 INS.erase(SI);
5914 ++NumSelectsExpanded;
5917 // Instruct OptimizeBlock to skip to the next block.
5918 CurInstIterator = StartBlock->end();
5919 return true;
5922 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5923 SmallVector<int, 16> Mask(SVI->getShuffleMask());
5924 int SplatElem = -1;
5925 for (unsigned i = 0; i < Mask.size(); ++i) {
5926 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5927 return false;
5928 SplatElem = Mask[i];
5931 return true;
5934 /// Some targets have expensive vector shifts if the lanes aren't all the same
5935 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5936 /// it's often worth sinking a shufflevector splat down to its use so that
5937 /// codegen can spot all lanes are identical.
5938 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5939 BasicBlock *DefBB = SVI->getParent();
5941 // Only do this xform if variable vector shifts are particularly expensive.
5942 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5943 return false;
5945 // We only expect better codegen by sinking a shuffle if we can recognise a
5946 // constant splat.
5947 if (!isBroadcastShuffle(SVI))
5948 return false;
5950 // InsertedShuffles - Only insert a shuffle in each block once.
5951 DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5953 bool MadeChange = false;
5954 for (User *U : SVI->users()) {
5955 Instruction *UI = cast<Instruction>(U);
5957 // Figure out which BB this ext is used in.
5958 BasicBlock *UserBB = UI->getParent();
5959 if (UserBB == DefBB) continue;
5961 // For now only apply this when the splat is used by a shift instruction.
5962 if (!UI->isShift()) continue;
5964 // Everything checks out, sink the shuffle if the user's block doesn't
5965 // already have a copy.
5966 Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5968 if (!InsertedShuffle) {
5969 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5970 assert(InsertPt != UserBB->end());
5971 InsertedShuffle =
5972 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5973 SVI->getOperand(2), "", &*InsertPt);
5976 UI->replaceUsesOfWith(SVI, InsertedShuffle);
5977 MadeChange = true;
5980 // If we removed all uses, nuke the shuffle.
5981 if (SVI->use_empty()) {
5982 SVI->eraseFromParent();
5983 MadeChange = true;
5986 return MadeChange;
5989 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
5990 // If the operands of I can be folded into a target instruction together with
5991 // I, duplicate and sink them.
5992 SmallVector<Use *, 4> OpsToSink;
5993 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
5994 return false;
5996 // OpsToSink can contain multiple uses in a use chain (e.g.
5997 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
5998 // uses must come first, which means they are sunk first, temporarily creating
5999 // invalid IR. This will be fixed once their dominated users are sunk and
6000 // updated.
6001 BasicBlock *TargetBB = I->getParent();
6002 bool Changed = false;
6003 SmallVector<Use *, 4> ToReplace;
6004 for (Use *U : OpsToSink) {
6005 auto *UI = cast<Instruction>(U->get());
6006 if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6007 continue;
6008 ToReplace.push_back(U);
6011 SmallPtrSet<Instruction *, 4> MaybeDead;
6012 for (Use *U : ToReplace) {
6013 auto *UI = cast<Instruction>(U->get());
6014 Instruction *NI = UI->clone();
6015 MaybeDead.insert(UI);
6016 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6017 NI->insertBefore(I);
6018 InsertedInsts.insert(NI);
6019 U->set(NI);
6020 Changed = true;
6023 // Remove instructions that are dead after sinking.
6024 for (auto *I : MaybeDead)
6025 if (!I->hasNUsesOrMore(1))
6026 I->eraseFromParent();
6028 return Changed;
6031 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6032 if (!TLI || !DL)
6033 return false;
6035 Value *Cond = SI->getCondition();
6036 Type *OldType = Cond->getType();
6037 LLVMContext &Context = Cond->getContext();
6038 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6039 unsigned RegWidth = RegType.getSizeInBits();
6041 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6042 return false;
6044 // If the register width is greater than the type width, expand the condition
6045 // of the switch instruction and each case constant to the width of the
6046 // register. By widening the type of the switch condition, subsequent
6047 // comparisons (for case comparisons) will not need to be extended to the
6048 // preferred register width, so we will potentially eliminate N-1 extends,
6049 // where N is the number of cases in the switch.
6050 auto *NewType = Type::getIntNTy(Context, RegWidth);
6052 // Zero-extend the switch condition and case constants unless the switch
6053 // condition is a function argument that is already being sign-extended.
6054 // In that case, we can avoid an unnecessary mask/extension by sign-extending
6055 // everything instead.
6056 Instruction::CastOps ExtType = Instruction::ZExt;
6057 if (auto *Arg = dyn_cast<Argument>(Cond))
6058 if (Arg->hasSExtAttr())
6059 ExtType = Instruction::SExt;
6061 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6062 ExtInst->insertBefore(SI);
6063 ExtInst->setDebugLoc(SI->getDebugLoc());
6064 SI->setCondition(ExtInst);
6065 for (auto Case : SI->cases()) {
6066 APInt NarrowConst = Case.getCaseValue()->getValue();
6067 APInt WideConst = (ExtType == Instruction::ZExt) ?
6068 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6069 Case.setValue(ConstantInt::get(Context, WideConst));
6072 return true;
6076 namespace {
6078 /// Helper class to promote a scalar operation to a vector one.
6079 /// This class is used to move downward extractelement transition.
6080 /// E.g.,
6081 /// a = vector_op <2 x i32>
6082 /// b = extractelement <2 x i32> a, i32 0
6083 /// c = scalar_op b
6084 /// store c
6086 /// =>
6087 /// a = vector_op <2 x i32>
6088 /// c = vector_op a (equivalent to scalar_op on the related lane)
6089 /// * d = extractelement <2 x i32> c, i32 0
6090 /// * store d
6091 /// Assuming both extractelement and store can be combine, we get rid of the
6092 /// transition.
6093 class VectorPromoteHelper {
6094 /// DataLayout associated with the current module.
6095 const DataLayout &DL;
6097 /// Used to perform some checks on the legality of vector operations.
6098 const TargetLowering &TLI;
6100 /// Used to estimated the cost of the promoted chain.
6101 const TargetTransformInfo &TTI;
6103 /// The transition being moved downwards.
6104 Instruction *Transition;
6106 /// The sequence of instructions to be promoted.
6107 SmallVector<Instruction *, 4> InstsToBePromoted;
6109 /// Cost of combining a store and an extract.
6110 unsigned StoreExtractCombineCost;
6112 /// Instruction that will be combined with the transition.
6113 Instruction *CombineInst = nullptr;
6115 /// The instruction that represents the current end of the transition.
6116 /// Since we are faking the promotion until we reach the end of the chain
6117 /// of computation, we need a way to get the current end of the transition.
6118 Instruction *getEndOfTransition() const {
6119 if (InstsToBePromoted.empty())
6120 return Transition;
6121 return InstsToBePromoted.back();
6124 /// Return the index of the original value in the transition.
6125 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6126 /// c, is at index 0.
6127 unsigned getTransitionOriginalValueIdx() const {
6128 assert(isa<ExtractElementInst>(Transition) &&
6129 "Other kind of transitions are not supported yet");
6130 return 0;
6133 /// Return the index of the index in the transition.
6134 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6135 /// is at index 1.
6136 unsigned getTransitionIdx() const {
6137 assert(isa<ExtractElementInst>(Transition) &&
6138 "Other kind of transitions are not supported yet");
6139 return 1;
6142 /// Get the type of the transition.
6143 /// This is the type of the original value.
6144 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6145 /// transition is <2 x i32>.
6146 Type *getTransitionType() const {
6147 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6150 /// Promote \p ToBePromoted by moving \p Def downward through.
6151 /// I.e., we have the following sequence:
6152 /// Def = Transition <ty1> a to <ty2>
6153 /// b = ToBePromoted <ty2> Def, ...
6154 /// =>
6155 /// b = ToBePromoted <ty1> a, ...
6156 /// Def = Transition <ty1> ToBePromoted to <ty2>
6157 void promoteImpl(Instruction *ToBePromoted);
6159 /// Check whether or not it is profitable to promote all the
6160 /// instructions enqueued to be promoted.
6161 bool isProfitableToPromote() {
6162 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6163 unsigned Index = isa<ConstantInt>(ValIdx)
6164 ? cast<ConstantInt>(ValIdx)->getZExtValue()
6165 : -1;
6166 Type *PromotedType = getTransitionType();
6168 StoreInst *ST = cast<StoreInst>(CombineInst);
6169 unsigned AS = ST->getPointerAddressSpace();
6170 unsigned Align = ST->getAlignment();
6171 // Check if this store is supported.
6172 if (!TLI.allowsMisalignedMemoryAccesses(
6173 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6174 Align)) {
6175 // If this is not supported, there is no way we can combine
6176 // the extract with the store.
6177 return false;
6180 // The scalar chain of computation has to pay for the transition
6181 // scalar to vector.
6182 // The vector chain has to account for the combining cost.
6183 uint64_t ScalarCost =
6184 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6185 uint64_t VectorCost = StoreExtractCombineCost;
6186 for (const auto &Inst : InstsToBePromoted) {
6187 // Compute the cost.
6188 // By construction, all instructions being promoted are arithmetic ones.
6189 // Moreover, one argument is a constant that can be viewed as a splat
6190 // constant.
6191 Value *Arg0 = Inst->getOperand(0);
6192 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6193 isa<ConstantFP>(Arg0);
6194 TargetTransformInfo::OperandValueKind Arg0OVK =
6195 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6196 : TargetTransformInfo::OK_AnyValue;
6197 TargetTransformInfo::OperandValueKind Arg1OVK =
6198 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6199 : TargetTransformInfo::OK_AnyValue;
6200 ScalarCost += TTI.getArithmeticInstrCost(
6201 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6202 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6203 Arg0OVK, Arg1OVK);
6205 LLVM_DEBUG(
6206 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6207 << ScalarCost << "\nVector: " << VectorCost << '\n');
6208 return ScalarCost > VectorCost;
6211 /// Generate a constant vector with \p Val with the same
6212 /// number of elements as the transition.
6213 /// \p UseSplat defines whether or not \p Val should be replicated
6214 /// across the whole vector.
6215 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6216 /// otherwise we generate a vector with as many undef as possible:
6217 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6218 /// used at the index of the extract.
6219 Value *getConstantVector(Constant *Val, bool UseSplat) const {
6220 unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6221 if (!UseSplat) {
6222 // If we cannot determine where the constant must be, we have to
6223 // use a splat constant.
6224 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6225 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6226 ExtractIdx = CstVal->getSExtValue();
6227 else
6228 UseSplat = true;
6231 unsigned End = getTransitionType()->getVectorNumElements();
6232 if (UseSplat)
6233 return ConstantVector::getSplat(End, Val);
6235 SmallVector<Constant *, 4> ConstVec;
6236 UndefValue *UndefVal = UndefValue::get(Val->getType());
6237 for (unsigned Idx = 0; Idx != End; ++Idx) {
6238 if (Idx == ExtractIdx)
6239 ConstVec.push_back(Val);
6240 else
6241 ConstVec.push_back(UndefVal);
6243 return ConstantVector::get(ConstVec);
6246 /// Check if promoting to a vector type an operand at \p OperandIdx
6247 /// in \p Use can trigger undefined behavior.
6248 static bool canCauseUndefinedBehavior(const Instruction *Use,
6249 unsigned OperandIdx) {
6250 // This is not safe to introduce undef when the operand is on
6251 // the right hand side of a division-like instruction.
6252 if (OperandIdx != 1)
6253 return false;
6254 switch (Use->getOpcode()) {
6255 default:
6256 return false;
6257 case Instruction::SDiv:
6258 case Instruction::UDiv:
6259 case Instruction::SRem:
6260 case Instruction::URem:
6261 return true;
6262 case Instruction::FDiv:
6263 case Instruction::FRem:
6264 return !Use->hasNoNaNs();
6266 llvm_unreachable(nullptr);
6269 public:
6270 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6271 const TargetTransformInfo &TTI, Instruction *Transition,
6272 unsigned CombineCost)
6273 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6274 StoreExtractCombineCost(CombineCost) {
6275 assert(Transition && "Do not know how to promote null");
6278 /// Check if we can promote \p ToBePromoted to \p Type.
6279 bool canPromote(const Instruction *ToBePromoted) const {
6280 // We could support CastInst too.
6281 return isa<BinaryOperator>(ToBePromoted);
6284 /// Check if it is profitable to promote \p ToBePromoted
6285 /// by moving downward the transition through.
6286 bool shouldPromote(const Instruction *ToBePromoted) const {
6287 // Promote only if all the operands can be statically expanded.
6288 // Indeed, we do not want to introduce any new kind of transitions.
6289 for (const Use &U : ToBePromoted->operands()) {
6290 const Value *Val = U.get();
6291 if (Val == getEndOfTransition()) {
6292 // If the use is a division and the transition is on the rhs,
6293 // we cannot promote the operation, otherwise we may create a
6294 // division by zero.
6295 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6296 return false;
6297 continue;
6299 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6300 !isa<ConstantFP>(Val))
6301 return false;
6303 // Check that the resulting operation is legal.
6304 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6305 if (!ISDOpcode)
6306 return false;
6307 return StressStoreExtract ||
6308 TLI.isOperationLegalOrCustom(
6309 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6312 /// Check whether or not \p Use can be combined
6313 /// with the transition.
6314 /// I.e., is it possible to do Use(Transition) => AnotherUse?
6315 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6317 /// Record \p ToBePromoted as part of the chain to be promoted.
6318 void enqueueForPromotion(Instruction *ToBePromoted) {
6319 InstsToBePromoted.push_back(ToBePromoted);
6322 /// Set the instruction that will be combined with the transition.
6323 void recordCombineInstruction(Instruction *ToBeCombined) {
6324 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6325 CombineInst = ToBeCombined;
6328 /// Promote all the instructions enqueued for promotion if it is
6329 /// is profitable.
6330 /// \return True if the promotion happened, false otherwise.
6331 bool promote() {
6332 // Check if there is something to promote.
6333 // Right now, if we do not have anything to combine with,
6334 // we assume the promotion is not profitable.
6335 if (InstsToBePromoted.empty() || !CombineInst)
6336 return false;
6338 // Check cost.
6339 if (!StressStoreExtract && !isProfitableToPromote())
6340 return false;
6342 // Promote.
6343 for (auto &ToBePromoted : InstsToBePromoted)
6344 promoteImpl(ToBePromoted);
6345 InstsToBePromoted.clear();
6346 return true;
6350 } // end anonymous namespace
6352 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6353 // At this point, we know that all the operands of ToBePromoted but Def
6354 // can be statically promoted.
6355 // For Def, we need to use its parameter in ToBePromoted:
6356 // b = ToBePromoted ty1 a
6357 // Def = Transition ty1 b to ty2
6358 // Move the transition down.
6359 // 1. Replace all uses of the promoted operation by the transition.
6360 // = ... b => = ... Def.
6361 assert(ToBePromoted->getType() == Transition->getType() &&
6362 "The type of the result of the transition does not match "
6363 "the final type");
6364 ToBePromoted->replaceAllUsesWith(Transition);
6365 // 2. Update the type of the uses.
6366 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6367 Type *TransitionTy = getTransitionType();
6368 ToBePromoted->mutateType(TransitionTy);
6369 // 3. Update all the operands of the promoted operation with promoted
6370 // operands.
6371 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6372 for (Use &U : ToBePromoted->operands()) {
6373 Value *Val = U.get();
6374 Value *NewVal = nullptr;
6375 if (Val == Transition)
6376 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6377 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6378 isa<ConstantFP>(Val)) {
6379 // Use a splat constant if it is not safe to use undef.
6380 NewVal = getConstantVector(
6381 cast<Constant>(Val),
6382 isa<UndefValue>(Val) ||
6383 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6384 } else
6385 llvm_unreachable("Did you modified shouldPromote and forgot to update "
6386 "this?");
6387 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6389 Transition->moveAfter(ToBePromoted);
6390 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6393 /// Some targets can do store(extractelement) with one instruction.
6394 /// Try to push the extractelement towards the stores when the target
6395 /// has this feature and this is profitable.
6396 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6397 unsigned CombineCost = std::numeric_limits<unsigned>::max();
6398 if (DisableStoreExtract || !TLI ||
6399 (!StressStoreExtract &&
6400 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6401 Inst->getOperand(1), CombineCost)))
6402 return false;
6404 // At this point we know that Inst is a vector to scalar transition.
6405 // Try to move it down the def-use chain, until:
6406 // - We can combine the transition with its single use
6407 // => we got rid of the transition.
6408 // - We escape the current basic block
6409 // => we would need to check that we are moving it at a cheaper place and
6410 // we do not do that for now.
6411 BasicBlock *Parent = Inst->getParent();
6412 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6413 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6414 // If the transition has more than one use, assume this is not going to be
6415 // beneficial.
6416 while (Inst->hasOneUse()) {
6417 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6418 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6420 if (ToBePromoted->getParent() != Parent) {
6421 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6422 << ToBePromoted->getParent()->getName()
6423 << ") than the transition (" << Parent->getName()
6424 << ").\n");
6425 return false;
6428 if (VPH.canCombine(ToBePromoted)) {
6429 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6430 << "will be combined with: " << *ToBePromoted << '\n');
6431 VPH.recordCombineInstruction(ToBePromoted);
6432 bool Changed = VPH.promote();
6433 NumStoreExtractExposed += Changed;
6434 return Changed;
6437 LLVM_DEBUG(dbgs() << "Try promoting.\n");
6438 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6439 return false;
6441 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6443 VPH.enqueueForPromotion(ToBePromoted);
6444 Inst = ToBePromoted;
6446 return false;
6449 /// For the instruction sequence of store below, F and I values
6450 /// are bundled together as an i64 value before being stored into memory.
6451 /// Sometimes it is more efficient to generate separate stores for F and I,
6452 /// which can remove the bitwise instructions or sink them to colder places.
6454 /// (store (or (zext (bitcast F to i32) to i64),
6455 /// (shl (zext I to i64), 32)), addr) -->
6456 /// (store F, addr) and (store I, addr+4)
6458 /// Similarly, splitting for other merged store can also be beneficial, like:
6459 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6460 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6461 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6462 /// For pair of {i16, i8}, i32 store --> two i16 stores.
6463 /// For pair of {i8, i8}, i16 store --> two i8 stores.
6465 /// We allow each target to determine specifically which kind of splitting is
6466 /// supported.
6468 /// The store patterns are commonly seen from the simple code snippet below
6469 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6470 /// void goo(const std::pair<int, float> &);
6471 /// hoo() {
6472 /// ...
6473 /// goo(std::make_pair(tmp, ftmp));
6474 /// ...
6475 /// }
6477 /// Although we already have similar splitting in DAG Combine, we duplicate
6478 /// it in CodeGenPrepare to catch the case in which pattern is across
6479 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6480 /// during code expansion.
6481 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6482 const TargetLowering &TLI) {
6483 // Handle simple but common cases only.
6484 Type *StoreType = SI.getValueOperand()->getType();
6485 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6486 DL.getTypeSizeInBits(StoreType) == 0)
6487 return false;
6489 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6490 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6491 if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6492 DL.getTypeSizeInBits(SplitStoreType))
6493 return false;
6495 // Match the following patterns:
6496 // (store (or (zext LValue to i64),
6497 // (shl (zext HValue to i64), 32)), HalfValBitSize)
6498 // or
6499 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6500 // (zext LValue to i64),
6501 // Expect both operands of OR and the first operand of SHL have only
6502 // one use.
6503 Value *LValue, *HValue;
6504 if (!match(SI.getValueOperand(),
6505 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6506 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6507 m_SpecificInt(HalfValBitSize))))))
6508 return false;
6510 // Check LValue and HValue are int with size less or equal than 32.
6511 if (!LValue->getType()->isIntegerTy() ||
6512 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6513 !HValue->getType()->isIntegerTy() ||
6514 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6515 return false;
6517 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6518 // as the input of target query.
6519 auto *LBC = dyn_cast<BitCastInst>(LValue);
6520 auto *HBC = dyn_cast<BitCastInst>(HValue);
6521 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6522 : EVT::getEVT(LValue->getType());
6523 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6524 : EVT::getEVT(HValue->getType());
6525 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6526 return false;
6528 // Start to split store.
6529 IRBuilder<> Builder(SI.getContext());
6530 Builder.SetInsertPoint(&SI);
6532 // If LValue/HValue is a bitcast in another BB, create a new one in current
6533 // BB so it may be merged with the splitted stores by dag combiner.
6534 if (LBC && LBC->getParent() != SI.getParent())
6535 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6536 if (HBC && HBC->getParent() != SI.getParent())
6537 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6539 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6540 auto CreateSplitStore = [&](Value *V, bool Upper) {
6541 V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6542 Value *Addr = Builder.CreateBitCast(
6543 SI.getOperand(1),
6544 SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6545 if ((IsLE && Upper) || (!IsLE && !Upper))
6546 Addr = Builder.CreateGEP(
6547 SplitStoreType, Addr,
6548 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6549 Builder.CreateAlignedStore(
6550 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6553 CreateSplitStore(LValue, false);
6554 CreateSplitStore(HValue, true);
6556 // Delete the old store.
6557 SI.eraseFromParent();
6558 return true;
6561 // Return true if the GEP has two operands, the first operand is of a sequential
6562 // type, and the second operand is a constant.
6563 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6564 gep_type_iterator I = gep_type_begin(*GEP);
6565 return GEP->getNumOperands() == 2 &&
6566 I.isSequential() &&
6567 isa<ConstantInt>(GEP->getOperand(1));
6570 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6571 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6572 // reducing liveness interference across those edges benefits global register
6573 // allocation. Currently handles only certain cases.
6575 // For example, unmerge %GEPI and %UGEPI as below.
6577 // ---------- BEFORE ----------
6578 // SrcBlock:
6579 // ...
6580 // %GEPIOp = ...
6581 // ...
6582 // %GEPI = gep %GEPIOp, Idx
6583 // ...
6584 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6585 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6586 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6587 // %UGEPI)
6589 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6590 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6591 // ...
6593 // DstBi:
6594 // ...
6595 // %UGEPI = gep %GEPIOp, UIdx
6596 // ...
6597 // ---------------------------
6599 // ---------- AFTER ----------
6600 // SrcBlock:
6601 // ... (same as above)
6602 // (* %GEPI is still alive on the indirectbr edges)
6603 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6604 // unmerging)
6605 // ...
6607 // DstBi:
6608 // ...
6609 // %UGEPI = gep %GEPI, (UIdx-Idx)
6610 // ...
6611 // ---------------------------
6613 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6614 // no longer alive on them.
6616 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6617 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6618 // not to disable further simplications and optimizations as a result of GEP
6619 // merging.
6621 // Note this unmerging may increase the length of the data flow critical path
6622 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6623 // between the register pressure and the length of data-flow critical
6624 // path. Restricting this to the uncommon IndirectBr case would minimize the
6625 // impact of potentially longer critical path, if any, and the impact on compile
6626 // time.
6627 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6628 const TargetTransformInfo *TTI) {
6629 BasicBlock *SrcBlock = GEPI->getParent();
6630 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6631 // (non-IndirectBr) cases exit early here.
6632 if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6633 return false;
6634 // Check that GEPI is a simple gep with a single constant index.
6635 if (!GEPSequentialConstIndexed(GEPI))
6636 return false;
6637 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6638 // Check that GEPI is a cheap one.
6639 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6640 > TargetTransformInfo::TCC_Basic)
6641 return false;
6642 Value *GEPIOp = GEPI->getOperand(0);
6643 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6644 if (!isa<Instruction>(GEPIOp))
6645 return false;
6646 auto *GEPIOpI = cast<Instruction>(GEPIOp);
6647 if (GEPIOpI->getParent() != SrcBlock)
6648 return false;
6649 // Check that GEP is used outside the block, meaning it's alive on the
6650 // IndirectBr edge(s).
6651 if (find_if(GEPI->users(), [&](User *Usr) {
6652 if (auto *I = dyn_cast<Instruction>(Usr)) {
6653 if (I->getParent() != SrcBlock) {
6654 return true;
6657 return false;
6658 }) == GEPI->users().end())
6659 return false;
6660 // The second elements of the GEP chains to be unmerged.
6661 std::vector<GetElementPtrInst *> UGEPIs;
6662 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6663 // on IndirectBr edges.
6664 for (User *Usr : GEPIOp->users()) {
6665 if (Usr == GEPI) continue;
6666 // Check if Usr is an Instruction. If not, give up.
6667 if (!isa<Instruction>(Usr))
6668 return false;
6669 auto *UI = cast<Instruction>(Usr);
6670 // Check if Usr in the same block as GEPIOp, which is fine, skip.
6671 if (UI->getParent() == SrcBlock)
6672 continue;
6673 // Check if Usr is a GEP. If not, give up.
6674 if (!isa<GetElementPtrInst>(Usr))
6675 return false;
6676 auto *UGEPI = cast<GetElementPtrInst>(Usr);
6677 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6678 // the pointer operand to it. If so, record it in the vector. If not, give
6679 // up.
6680 if (!GEPSequentialConstIndexed(UGEPI))
6681 return false;
6682 if (UGEPI->getOperand(0) != GEPIOp)
6683 return false;
6684 if (GEPIIdx->getType() !=
6685 cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6686 return false;
6687 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6688 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6689 > TargetTransformInfo::TCC_Basic)
6690 return false;
6691 UGEPIs.push_back(UGEPI);
6693 if (UGEPIs.size() == 0)
6694 return false;
6695 // Check the materializing cost of (Uidx-Idx).
6696 for (GetElementPtrInst *UGEPI : UGEPIs) {
6697 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6698 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6699 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6700 if (ImmCost > TargetTransformInfo::TCC_Basic)
6701 return false;
6703 // Now unmerge between GEPI and UGEPIs.
6704 for (GetElementPtrInst *UGEPI : UGEPIs) {
6705 UGEPI->setOperand(0, GEPI);
6706 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6707 Constant *NewUGEPIIdx =
6708 ConstantInt::get(GEPIIdx->getType(),
6709 UGEPIIdx->getValue() - GEPIIdx->getValue());
6710 UGEPI->setOperand(1, NewUGEPIIdx);
6711 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6712 // inbounds to avoid UB.
6713 if (!GEPI->isInBounds()) {
6714 UGEPI->setIsInBounds(false);
6717 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6718 // alive on IndirectBr edges).
6719 assert(find_if(GEPIOp->users(), [&](User *Usr) {
6720 return cast<Instruction>(Usr)->getParent() != SrcBlock;
6721 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6722 return true;
6725 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6726 // Bail out if we inserted the instruction to prevent optimizations from
6727 // stepping on each other's toes.
6728 if (InsertedInsts.count(I))
6729 return false;
6731 if (PHINode *P = dyn_cast<PHINode>(I)) {
6732 // It is possible for very late stage optimizations (such as SimplifyCFG)
6733 // to introduce PHI nodes too late to be cleaned up. If we detect such a
6734 // trivial PHI, go ahead and zap it here.
6735 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6736 P->replaceAllUsesWith(V);
6737 P->eraseFromParent();
6738 ++NumPHIsElim;
6739 return true;
6741 return false;
6744 if (CastInst *CI = dyn_cast<CastInst>(I)) {
6745 // If the source of the cast is a constant, then this should have
6746 // already been constant folded. The only reason NOT to constant fold
6747 // it is if something (e.g. LSR) was careful to place the constant
6748 // evaluation in a block other than then one that uses it (e.g. to hoist
6749 // the address of globals out of a loop). If this is the case, we don't
6750 // want to forward-subst the cast.
6751 if (isa<Constant>(CI->getOperand(0)))
6752 return false;
6754 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6755 return true;
6757 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6758 /// Sink a zext or sext into its user blocks if the target type doesn't
6759 /// fit in one register
6760 if (TLI &&
6761 TLI->getTypeAction(CI->getContext(),
6762 TLI->getValueType(*DL, CI->getType())) ==
6763 TargetLowering::TypeExpandInteger) {
6764 return SinkCast(CI);
6765 } else {
6766 bool MadeChange = optimizeExt(I);
6767 return MadeChange | optimizeExtUses(I);
6770 return false;
6773 if (CmpInst *CI = dyn_cast<CmpInst>(I))
6774 if (TLI && optimizeCmpExpression(CI, *TLI, *DL))
6775 return true;
6777 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6778 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6779 if (TLI) {
6780 bool Modified = optimizeLoadExt(LI);
6781 unsigned AS = LI->getPointerAddressSpace();
6782 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6783 return Modified;
6785 return false;
6788 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6789 if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6790 return true;
6791 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6792 if (TLI) {
6793 unsigned AS = SI->getPointerAddressSpace();
6794 return optimizeMemoryInst(I, SI->getOperand(1),
6795 SI->getOperand(0)->getType(), AS);
6797 return false;
6800 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6801 unsigned AS = RMW->getPointerAddressSpace();
6802 return optimizeMemoryInst(I, RMW->getPointerOperand(),
6803 RMW->getType(), AS);
6806 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6807 unsigned AS = CmpX->getPointerAddressSpace();
6808 return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6809 CmpX->getCompareOperand()->getType(), AS);
6812 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6814 if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6815 EnableAndCmpSinking && TLI)
6816 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6818 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6819 BinOp->getOpcode() == Instruction::LShr)) {
6820 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6821 if (TLI && CI && TLI->hasExtractBitsInsn())
6822 return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6824 return false;
6827 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6828 if (GEPI->hasAllZeroIndices()) {
6829 /// The GEP operand must be a pointer, so must its result -> BitCast
6830 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6831 GEPI->getName(), GEPI);
6832 NC->setDebugLoc(GEPI->getDebugLoc());
6833 GEPI->replaceAllUsesWith(NC);
6834 GEPI->eraseFromParent();
6835 ++NumGEPsElim;
6836 optimizeInst(NC, ModifiedDT);
6837 return true;
6839 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6840 return true;
6842 return false;
6845 if (tryToSinkFreeOperands(I))
6846 return true;
6848 if (CallInst *CI = dyn_cast<CallInst>(I))
6849 return optimizeCallInst(CI, ModifiedDT);
6851 if (SelectInst *SI = dyn_cast<SelectInst>(I))
6852 return optimizeSelectInst(SI);
6854 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6855 return optimizeShuffleVectorInst(SVI);
6857 if (auto *Switch = dyn_cast<SwitchInst>(I))
6858 return optimizeSwitchInst(Switch);
6860 if (isa<ExtractElementInst>(I))
6861 return optimizeExtractElementInst(I);
6863 return false;
6866 /// Given an OR instruction, check to see if this is a bitreverse
6867 /// idiom. If so, insert the new intrinsic and return true.
6868 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6869 const TargetLowering &TLI) {
6870 if (!I.getType()->isIntegerTy() ||
6871 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6872 TLI.getValueType(DL, I.getType(), true)))
6873 return false;
6875 SmallVector<Instruction*, 4> Insts;
6876 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6877 return false;
6878 Instruction *LastInst = Insts.back();
6879 I.replaceAllUsesWith(LastInst);
6880 RecursivelyDeleteTriviallyDeadInstructions(&I);
6881 return true;
6884 // In this pass we look for GEP and cast instructions that are used
6885 // across basic blocks and rewrite them to improve basic-block-at-a-time
6886 // selection.
6887 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6888 SunkAddrs.clear();
6889 bool MadeChange = false;
6891 CurInstIterator = BB.begin();
6892 while (CurInstIterator != BB.end()) {
6893 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6894 if (ModifiedDT)
6895 return true;
6898 bool MadeBitReverse = true;
6899 while (TLI && MadeBitReverse) {
6900 MadeBitReverse = false;
6901 for (auto &I : reverse(BB)) {
6902 if (makeBitReverse(I, *DL, *TLI)) {
6903 MadeBitReverse = MadeChange = true;
6904 ModifiedDT = true;
6905 break;
6909 MadeChange |= dupRetToEnableTailCallOpts(&BB);
6911 return MadeChange;
6914 // llvm.dbg.value is far away from the value then iSel may not be able
6915 // handle it properly. iSel will drop llvm.dbg.value if it can not
6916 // find a node corresponding to the value.
6917 bool CodeGenPrepare::placeDbgValues(Function &F) {
6918 bool MadeChange = false;
6919 for (BasicBlock &BB : F) {
6920 Instruction *PrevNonDbgInst = nullptr;
6921 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6922 Instruction *Insn = &*BI++;
6923 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6924 // Leave dbg.values that refer to an alloca alone. These
6925 // intrinsics describe the address of a variable (= the alloca)
6926 // being taken. They should not be moved next to the alloca
6927 // (and to the beginning of the scope), but rather stay close to
6928 // where said address is used.
6929 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6930 PrevNonDbgInst = Insn;
6931 continue;
6934 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6935 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6936 // If VI is a phi in a block with an EHPad terminator, we can't insert
6937 // after it.
6938 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6939 continue;
6940 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
6941 << *DVI << ' ' << *VI);
6942 DVI->removeFromParent();
6943 if (isa<PHINode>(VI))
6944 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6945 else
6946 DVI->insertAfter(VI);
6947 MadeChange = true;
6948 ++NumDbgValueMoved;
6952 return MadeChange;
6955 /// Scale down both weights to fit into uint32_t.
6956 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6957 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6958 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6959 NewTrue = NewTrue / Scale;
6960 NewFalse = NewFalse / Scale;
6963 /// Some targets prefer to split a conditional branch like:
6964 /// \code
6965 /// %0 = icmp ne i32 %a, 0
6966 /// %1 = icmp ne i32 %b, 0
6967 /// %or.cond = or i1 %0, %1
6968 /// br i1 %or.cond, label %TrueBB, label %FalseBB
6969 /// \endcode
6970 /// into multiple branch instructions like:
6971 /// \code
6972 /// bb1:
6973 /// %0 = icmp ne i32 %a, 0
6974 /// br i1 %0, label %TrueBB, label %bb2
6975 /// bb2:
6976 /// %1 = icmp ne i32 %b, 0
6977 /// br i1 %1, label %TrueBB, label %FalseBB
6978 /// \endcode
6979 /// This usually allows instruction selection to do even further optimizations
6980 /// and combine the compare with the branch instruction. Currently this is
6981 /// applied for targets which have "cheap" jump instructions.
6983 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6985 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6986 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6987 return false;
6989 bool MadeChange = false;
6990 for (auto &BB : F) {
6991 // Does this BB end with the following?
6992 // %cond1 = icmp|fcmp|binary instruction ...
6993 // %cond2 = icmp|fcmp|binary instruction ...
6994 // %cond.or = or|and i1 %cond1, cond2
6995 // br i1 %cond.or label %dest1, label %dest2"
6996 BinaryOperator *LogicOp;
6997 BasicBlock *TBB, *FBB;
6998 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6999 continue;
7001 auto *Br1 = cast<BranchInst>(BB.getTerminator());
7002 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7003 continue;
7005 unsigned Opc;
7006 Value *Cond1, *Cond2;
7007 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7008 m_OneUse(m_Value(Cond2)))))
7009 Opc = Instruction::And;
7010 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7011 m_OneUse(m_Value(Cond2)))))
7012 Opc = Instruction::Or;
7013 else
7014 continue;
7016 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7017 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
7018 continue;
7020 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7022 // Create a new BB.
7023 auto TmpBB =
7024 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7025 BB.getParent(), BB.getNextNode());
7027 // Update original basic block by using the first condition directly by the
7028 // branch instruction and removing the no longer needed and/or instruction.
7029 Br1->setCondition(Cond1);
7030 LogicOp->eraseFromParent();
7032 // Depending on the condition we have to either replace the true or the
7033 // false successor of the original branch instruction.
7034 if (Opc == Instruction::And)
7035 Br1->setSuccessor(0, TmpBB);
7036 else
7037 Br1->setSuccessor(1, TmpBB);
7039 // Fill in the new basic block.
7040 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7041 if (auto *I = dyn_cast<Instruction>(Cond2)) {
7042 I->removeFromParent();
7043 I->insertBefore(Br2);
7046 // Update PHI nodes in both successors. The original BB needs to be
7047 // replaced in one successor's PHI nodes, because the branch comes now from
7048 // the newly generated BB (NewBB). In the other successor we need to add one
7049 // incoming edge to the PHI nodes, because both branch instructions target
7050 // now the same successor. Depending on the original branch condition
7051 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7052 // we perform the correct update for the PHI nodes.
7053 // This doesn't change the successor order of the just created branch
7054 // instruction (or any other instruction).
7055 if (Opc == Instruction::Or)
7056 std::swap(TBB, FBB);
7058 // Replace the old BB with the new BB.
7059 for (PHINode &PN : TBB->phis()) {
7060 int i;
7061 while ((i = PN.getBasicBlockIndex(&BB)) >= 0)
7062 PN.setIncomingBlock(i, TmpBB);
7065 // Add another incoming edge form the new BB.
7066 for (PHINode &PN : FBB->phis()) {
7067 auto *Val = PN.getIncomingValueForBlock(&BB);
7068 PN.addIncoming(Val, TmpBB);
7071 // Update the branch weights (from SelectionDAGBuilder::
7072 // FindMergedConditions).
7073 if (Opc == Instruction::Or) {
7074 // Codegen X | Y as:
7075 // BB1:
7076 // jmp_if_X TBB
7077 // jmp TmpBB
7078 // TmpBB:
7079 // jmp_if_Y TBB
7080 // jmp FBB
7083 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7084 // The requirement is that
7085 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7086 // = TrueProb for original BB.
7087 // Assuming the original weights are A and B, one choice is to set BB1's
7088 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7089 // assumes that
7090 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7091 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7092 // TmpBB, but the math is more complicated.
7093 uint64_t TrueWeight, FalseWeight;
7094 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7095 uint64_t NewTrueWeight = TrueWeight;
7096 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7097 scaleWeights(NewTrueWeight, NewFalseWeight);
7098 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7099 .createBranchWeights(TrueWeight, FalseWeight));
7101 NewTrueWeight = TrueWeight;
7102 NewFalseWeight = 2 * FalseWeight;
7103 scaleWeights(NewTrueWeight, NewFalseWeight);
7104 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7105 .createBranchWeights(TrueWeight, FalseWeight));
7107 } else {
7108 // Codegen X & Y as:
7109 // BB1:
7110 // jmp_if_X TmpBB
7111 // jmp FBB
7112 // TmpBB:
7113 // jmp_if_Y TBB
7114 // jmp FBB
7116 // This requires creation of TmpBB after CurBB.
7118 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7119 // The requirement is that
7120 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7121 // = FalseProb for original BB.
7122 // Assuming the original weights are A and B, one choice is to set BB1's
7123 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7124 // assumes that
7125 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7126 uint64_t TrueWeight, FalseWeight;
7127 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7128 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7129 uint64_t NewFalseWeight = FalseWeight;
7130 scaleWeights(NewTrueWeight, NewFalseWeight);
7131 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7132 .createBranchWeights(TrueWeight, FalseWeight));
7134 NewTrueWeight = 2 * TrueWeight;
7135 NewFalseWeight = FalseWeight;
7136 scaleWeights(NewTrueWeight, NewFalseWeight);
7137 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7138 .createBranchWeights(TrueWeight, FalseWeight));
7142 // Note: No point in getting fancy here, since the DT info is never
7143 // available to CodeGenPrepare.
7144 ModifiedDT = true;
7146 MadeChange = true;
7148 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7149 TmpBB->dump());
7151 return MadeChange;