1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Argument.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Statepoint.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/IR/ValueMap.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/BlockFrequency.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/MachineValueType.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Target/TargetMachine.h"
86 #include "llvm/Target/TargetOptions.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
100 using namespace llvm::PatternMatch
;
102 #define DEBUG_TYPE "codegenprepare"
104 STATISTIC(NumBlocksElim
, "Number of blocks eliminated");
105 STATISTIC(NumPHIsElim
, "Number of trivial PHIs eliminated");
106 STATISTIC(NumGEPsElim
, "Number of GEPs converted to casts");
107 STATISTIC(NumCmpUses
, "Number of uses of Cmp expressions replaced with uses of "
109 STATISTIC(NumCastUses
, "Number of uses of Cast expressions replaced with uses "
111 STATISTIC(NumMemoryInsts
, "Number of memory instructions whose address "
112 "computations were sunk");
113 STATISTIC(NumMemoryInstsPhiCreated
,
114 "Number of phis created when address "
115 "computations were sunk to memory instructions");
116 STATISTIC(NumMemoryInstsSelectCreated
,
117 "Number of select created when address "
118 "computations were sunk to memory instructions");
119 STATISTIC(NumExtsMoved
, "Number of [s|z]ext instructions combined with loads");
120 STATISTIC(NumExtUses
, "Number of uses of [s|z]ext instructions optimized");
121 STATISTIC(NumAndsAdded
,
122 "Number of and mask instructions added to form ext loads");
123 STATISTIC(NumAndUses
, "Number of uses of and mask instructions optimized");
124 STATISTIC(NumRetsDup
, "Number of return instructions duplicated");
125 STATISTIC(NumDbgValueMoved
, "Number of debug value instructions moved");
126 STATISTIC(NumSelectsExpanded
, "Number of selects turned into branches");
127 STATISTIC(NumStoreExtractExposed
, "Number of store(extractelement) exposed");
129 static cl::opt
<bool> DisableBranchOpts(
130 "disable-cgp-branch-opts", cl::Hidden
, cl::init(false),
131 cl::desc("Disable branch optimizations in CodeGenPrepare"));
134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden
, cl::init(false),
135 cl::desc("Disable GC optimizations in CodeGenPrepare"));
137 static cl::opt
<bool> DisableSelectToBranch(
138 "disable-cgp-select2branch", cl::Hidden
, cl::init(false),
139 cl::desc("Disable select to branch conversion."));
141 static cl::opt
<bool> AddrSinkUsingGEPs(
142 "addr-sink-using-gep", cl::Hidden
, cl::init(true),
143 cl::desc("Address sinking in CGP using GEPs."));
145 static cl::opt
<bool> EnableAndCmpSinking(
146 "enable-andcmp-sinking", cl::Hidden
, cl::init(true),
147 cl::desc("Enable sinkinig and/cmp into branches."));
149 static cl::opt
<bool> DisableStoreExtract(
150 "disable-cgp-store-extract", cl::Hidden
, cl::init(false),
151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
153 static cl::opt
<bool> StressStoreExtract(
154 "stress-cgp-store-extract", cl::Hidden
, cl::init(false),
155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
157 static cl::opt
<bool> DisableExtLdPromotion(
158 "disable-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
162 static cl::opt
<bool> StressExtLdPromotion(
163 "stress-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
165 "optimization in CodeGenPrepare"));
167 static cl::opt
<bool> DisablePreheaderProtect(
168 "disable-preheader-prot", cl::Hidden
, cl::init(false),
169 cl::desc("Disable protection against removing loop preheaders"));
171 static cl::opt
<bool> ProfileGuidedSectionPrefix(
172 "profile-guided-section-prefix", cl::Hidden
, cl::init(true), cl::ZeroOrMore
,
173 cl::desc("Use profile info to add section prefix for hot/cold functions"));
175 static cl::opt
<unsigned> FreqRatioToSkipMerge(
176 "cgp-freq-ratio-to-skip-merge", cl::Hidden
, cl::init(2),
177 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
178 "(frequency of destination block) is greater than this ratio"));
180 static cl::opt
<bool> ForceSplitStore(
181 "force-split-store", cl::Hidden
, cl::init(false),
182 cl::desc("Force store splitting no matter what the target query says."));
185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden
,
186 cl::desc("Enable merging of redundant sexts when one is dominating"
187 " the other."), cl::init(true));
189 static cl::opt
<bool> DisableComplexAddrModes(
190 "disable-complex-addr-modes", cl::Hidden
, cl::init(false),
191 cl::desc("Disables combining addressing modes with different parts "
192 "in optimizeMemoryInst."));
195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden
, cl::init(false),
196 cl::desc("Allow creation of Phis in Address sinking."));
199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden
, cl::init(true),
200 cl::desc("Allow creation of selects in Address sinking."));
202 static cl::opt
<bool> AddrSinkCombineBaseReg(
203 "addr-sink-combine-base-reg", cl::Hidden
, cl::init(true),
204 cl::desc("Allow combining of BaseReg field in Address sinking."));
206 static cl::opt
<bool> AddrSinkCombineBaseGV(
207 "addr-sink-combine-base-gv", cl::Hidden
, cl::init(true),
208 cl::desc("Allow combining of BaseGV field in Address sinking."));
210 static cl::opt
<bool> AddrSinkCombineBaseOffs(
211 "addr-sink-combine-base-offs", cl::Hidden
, cl::init(true),
212 cl::desc("Allow combining of BaseOffs field in Address sinking."));
214 static cl::opt
<bool> AddrSinkCombineScaledReg(
215 "addr-sink-combine-scaled-reg", cl::Hidden
, cl::init(true),
216 cl::desc("Allow combining of ScaledReg field in Address sinking."));
219 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden
,
221 cl::desc("Enable splitting large offset of GEP."));
226 ZeroExtension
, // Zero extension has been seen.
227 SignExtension
, // Sign extension has been seen.
228 BothExtension
// This extension type is used if we saw sext after
229 // ZeroExtension had been set, or if we saw zext after
230 // SignExtension had been set. It makes the type
231 // information of a promoted instruction invalid.
234 using SetOfInstrs
= SmallPtrSet
<Instruction
*, 16>;
235 using TypeIsSExt
= PointerIntPair
<Type
*, 2, ExtType
>;
236 using InstrToOrigTy
= DenseMap
<Instruction
*, TypeIsSExt
>;
237 using SExts
= SmallVector
<Instruction
*, 16>;
238 using ValueToSExts
= DenseMap
<Value
*, SExts
>;
240 class TypePromotionTransaction
;
242 class CodeGenPrepare
: public FunctionPass
{
243 const TargetMachine
*TM
= nullptr;
244 const TargetSubtargetInfo
*SubtargetInfo
;
245 const TargetLowering
*TLI
= nullptr;
246 const TargetRegisterInfo
*TRI
;
247 const TargetTransformInfo
*TTI
= nullptr;
248 const TargetLibraryInfo
*TLInfo
;
250 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
251 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
253 /// As we scan instructions optimizing them, this is the next instruction
254 /// to optimize. Transforms that can invalidate this should update it.
255 BasicBlock::iterator CurInstIterator
;
257 /// Keeps track of non-local addresses that have been sunk into a block.
258 /// This allows us to avoid inserting duplicate code for blocks with
259 /// multiple load/stores of the same address. The usage of WeakTrackingVH
260 /// enables SunkAddrs to be treated as a cache whose entries can be
261 /// invalidated if a sunken address computation has been erased.
262 ValueMap
<Value
*, WeakTrackingVH
> SunkAddrs
;
264 /// Keeps track of all instructions inserted for the current function.
265 SetOfInstrs InsertedInsts
;
267 /// Keeps track of the type of the related instruction before their
268 /// promotion for the current function.
269 InstrToOrigTy PromotedInsts
;
271 /// Keep track of instructions removed during promotion.
272 SetOfInstrs RemovedInsts
;
274 /// Keep track of sext chains based on their initial value.
275 DenseMap
<Value
*, Instruction
*> SeenChainsForSExt
;
277 /// Keep track of GEPs accessing the same data structures such as structs or
278 /// arrays that are candidates to be split later because of their large
282 SmallVector
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>, 32>>
285 /// Keep track of new GEP base after splitting the GEPs having large offset.
286 SmallSet
<AssertingVH
<Value
>, 2> NewGEPBases
;
288 /// Map serial numbers to Large offset GEPs.
289 DenseMap
<AssertingVH
<GetElementPtrInst
>, int> LargeOffsetGEPID
;
291 /// Keep track of SExt promoted.
292 ValueToSExts ValToSExtendedUses
;
294 /// True if CFG is modified in any way.
297 /// True if optimizing for size.
300 /// DataLayout for the Function being processed.
301 const DataLayout
*DL
= nullptr;
304 static char ID
; // Pass identification, replacement for typeid
306 CodeGenPrepare() : FunctionPass(ID
) {
307 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
310 bool runOnFunction(Function
&F
) override
;
312 StringRef
getPassName() const override
{ return "CodeGen Prepare"; }
314 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
315 // FIXME: When we can selectively preserve passes, preserve the domtree.
316 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
317 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
318 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
319 AU
.addRequired
<LoopInfoWrapperPass
>();
323 template <typename F
>
324 void resetIteratorIfInvalidatedWhileCalling(BasicBlock
*BB
, F f
) {
325 // Substituting can cause recursive simplifications, which can invalidate
326 // our iterator. Use a WeakTrackingVH to hold onto it in case this
328 Value
*CurValue
= &*CurInstIterator
;
329 WeakTrackingVH
IterHandle(CurValue
);
333 // If the iterator instruction was recursively deleted, start over at the
334 // start of the block.
335 if (IterHandle
!= CurValue
) {
336 CurInstIterator
= BB
->begin();
341 bool eliminateFallThrough(Function
&F
);
342 bool eliminateMostlyEmptyBlocks(Function
&F
);
343 BasicBlock
*findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
);
344 bool canMergeBlocks(const BasicBlock
*BB
, const BasicBlock
*DestBB
) const;
345 void eliminateMostlyEmptyBlock(BasicBlock
*BB
);
346 bool isMergingEmptyBlockProfitable(BasicBlock
*BB
, BasicBlock
*DestBB
,
348 bool optimizeBlock(BasicBlock
&BB
, bool &ModifiedDT
);
349 bool optimizeInst(Instruction
*I
, bool &ModifiedDT
);
350 bool optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
351 Type
*AccessTy
, unsigned AddrSpace
);
352 bool optimizeInlineAsmInst(CallInst
*CS
);
353 bool optimizeCallInst(CallInst
*CI
, bool &ModifiedDT
);
354 bool optimizeExt(Instruction
*&I
);
355 bool optimizeExtUses(Instruction
*I
);
356 bool optimizeLoadExt(LoadInst
*Load
);
357 bool optimizeSelectInst(SelectInst
*SI
);
358 bool optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
);
359 bool optimizeSwitchInst(SwitchInst
*SI
);
360 bool optimizeExtractElementInst(Instruction
*Inst
);
361 bool dupRetToEnableTailCallOpts(BasicBlock
*BB
);
362 bool placeDbgValues(Function
&F
);
363 bool canFormExtLd(const SmallVectorImpl
<Instruction
*> &MovedExts
,
364 LoadInst
*&LI
, Instruction
*&Inst
, bool HasPromoted
);
365 bool tryToPromoteExts(TypePromotionTransaction
&TPT
,
366 const SmallVectorImpl
<Instruction
*> &Exts
,
367 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
368 unsigned CreatedInstsCost
= 0);
369 bool mergeSExts(Function
&F
);
370 bool splitLargeGEPOffsets();
371 bool performAddressTypePromotion(
373 bool AllowPromotionWithoutCommonHeader
,
374 bool HasPromoted
, TypePromotionTransaction
&TPT
,
375 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
);
376 bool splitBranchCondition(Function
&F
);
377 bool simplifyOffsetableRelocate(Instruction
&I
);
379 bool tryToSinkFreeOperands(Instruction
*I
);
382 } // end anonymous namespace
384 char CodeGenPrepare::ID
= 0;
386 INITIALIZE_PASS_BEGIN(CodeGenPrepare
, DEBUG_TYPE
,
387 "Optimize for code generation", false, false)
388 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
389 INITIALIZE_PASS_END(CodeGenPrepare
, DEBUG_TYPE
,
390 "Optimize for code generation", false, false)
392 FunctionPass
*llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
394 bool CodeGenPrepare::runOnFunction(Function
&F
) {
398 DL
= &F
.getParent()->getDataLayout();
400 bool EverMadeChange
= false;
401 // Clear per function information.
402 InsertedInsts
.clear();
403 PromotedInsts
.clear();
406 if (auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>()) {
407 TM
= &TPC
->getTM
<TargetMachine
>();
408 SubtargetInfo
= TM
->getSubtargetImpl(F
);
409 TLI
= SubtargetInfo
->getTargetLowering();
410 TRI
= SubtargetInfo
->getRegisterInfo();
412 TLInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
413 TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
414 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
415 BPI
.reset(new BranchProbabilityInfo(F
, *LI
));
416 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, *LI
));
417 OptSize
= F
.optForSize();
419 ProfileSummaryInfo
*PSI
=
420 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
421 if (ProfileGuidedSectionPrefix
) {
422 if (PSI
->isFunctionHotInCallGraph(&F
, *BFI
))
423 F
.setSectionPrefix(".hot");
424 else if (PSI
->isFunctionColdInCallGraph(&F
, *BFI
))
425 F
.setSectionPrefix(".unlikely");
428 /// This optimization identifies DIV instructions that can be
429 /// profitably bypassed and carried out with a shorter, faster divide.
430 if (!OptSize
&& !PSI
->hasHugeWorkingSetSize() && TLI
&&
431 TLI
->isSlowDivBypassed()) {
432 const DenseMap
<unsigned int, unsigned int> &BypassWidths
=
433 TLI
->getBypassSlowDivWidths();
434 BasicBlock
* BB
= &*F
.begin();
435 while (BB
!= nullptr) {
436 // bypassSlowDivision may create new BBs, but we don't want to reapply the
437 // optimization to those blocks.
438 BasicBlock
* Next
= BB
->getNextNode();
439 EverMadeChange
|= bypassSlowDivision(BB
, BypassWidths
);
444 // Eliminate blocks that contain only PHI nodes and an
445 // unconditional branch.
446 EverMadeChange
|= eliminateMostlyEmptyBlocks(F
);
448 if (!DisableBranchOpts
)
449 EverMadeChange
|= splitBranchCondition(F
);
451 // Split some critical edges where one of the sources is an indirect branch,
452 // to help generate sane code for PHIs involving such edges.
453 EverMadeChange
|= SplitIndirectBrCriticalEdges(F
);
455 bool MadeChange
= true;
458 for (Function::iterator I
= F
.begin(); I
!= F
.end(); ) {
459 BasicBlock
*BB
= &*I
++;
460 bool ModifiedDTOnIteration
= false;
461 MadeChange
|= optimizeBlock(*BB
, ModifiedDTOnIteration
);
463 // Restart BB iteration if the dominator tree of the Function was changed
464 if (ModifiedDTOnIteration
)
467 if (EnableTypePromotionMerge
&& !ValToSExtendedUses
.empty())
468 MadeChange
|= mergeSExts(F
);
469 if (!LargeOffsetGEPMap
.empty())
470 MadeChange
|= splitLargeGEPOffsets();
472 // Really free removed instructions during promotion.
473 for (Instruction
*I
: RemovedInsts
)
476 EverMadeChange
|= MadeChange
;
477 SeenChainsForSExt
.clear();
478 ValToSExtendedUses
.clear();
479 RemovedInsts
.clear();
480 LargeOffsetGEPMap
.clear();
481 LargeOffsetGEPID
.clear();
486 if (!DisableBranchOpts
) {
488 // Use a set vector to get deterministic iteration order. The order the
489 // blocks are removed may affect whether or not PHI nodes in successors
491 SmallSetVector
<BasicBlock
*, 8> WorkList
;
492 for (BasicBlock
&BB
: F
) {
493 SmallVector
<BasicBlock
*, 2> Successors(succ_begin(&BB
), succ_end(&BB
));
494 MadeChange
|= ConstantFoldTerminator(&BB
, true);
495 if (!MadeChange
) continue;
497 for (SmallVectorImpl
<BasicBlock
*>::iterator
498 II
= Successors
.begin(), IE
= Successors
.end(); II
!= IE
; ++II
)
499 if (pred_begin(*II
) == pred_end(*II
))
500 WorkList
.insert(*II
);
503 // Delete the dead blocks and any of their dead successors.
504 MadeChange
|= !WorkList
.empty();
505 while (!WorkList
.empty()) {
506 BasicBlock
*BB
= WorkList
.pop_back_val();
507 SmallVector
<BasicBlock
*, 2> Successors(succ_begin(BB
), succ_end(BB
));
511 for (SmallVectorImpl
<BasicBlock
*>::iterator
512 II
= Successors
.begin(), IE
= Successors
.end(); II
!= IE
; ++II
)
513 if (pred_begin(*II
) == pred_end(*II
))
514 WorkList
.insert(*II
);
517 // Merge pairs of basic blocks with unconditional branches, connected by
519 if (EverMadeChange
|| MadeChange
)
520 MadeChange
|= eliminateFallThrough(F
);
522 EverMadeChange
|= MadeChange
;
525 if (!DisableGCOpts
) {
526 SmallVector
<Instruction
*, 2> Statepoints
;
527 for (BasicBlock
&BB
: F
)
528 for (Instruction
&I
: BB
)
530 Statepoints
.push_back(&I
);
531 for (auto &I
: Statepoints
)
532 EverMadeChange
|= simplifyOffsetableRelocate(*I
);
535 // Do this last to clean up use-before-def scenarios introduced by other
536 // preparatory transforms.
537 EverMadeChange
|= placeDbgValues(F
);
539 return EverMadeChange
;
542 /// Merge basic blocks which are connected by a single edge, where one of the
543 /// basic blocks has a single successor pointing to the other basic block,
544 /// which has a single predecessor.
545 bool CodeGenPrepare::eliminateFallThrough(Function
&F
) {
546 bool Changed
= false;
547 // Scan all of the blocks in the function, except for the entry block.
548 // Use a temporary array to avoid iterator being invalidated when
550 SmallVector
<WeakTrackingVH
, 16> Blocks
;
551 for (auto &Block
: llvm::make_range(std::next(F
.begin()), F
.end()))
552 Blocks
.push_back(&Block
);
554 for (auto &Block
: Blocks
) {
555 auto *BB
= cast_or_null
<BasicBlock
>(Block
);
558 // If the destination block has a single pred, then this is a trivial
559 // edge, just collapse it.
560 BasicBlock
*SinglePred
= BB
->getSinglePredecessor();
562 // Don't merge if BB's address is taken.
563 if (!SinglePred
|| SinglePred
== BB
|| BB
->hasAddressTaken()) continue;
565 BranchInst
*Term
= dyn_cast
<BranchInst
>(SinglePred
->getTerminator());
566 if (Term
&& !Term
->isConditional()) {
568 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB
<< "\n\n\n");
570 // Merge BB into SinglePred and delete it.
571 MergeBlockIntoPredecessor(BB
);
577 /// Find a destination block from BB if BB is mergeable empty block.
578 BasicBlock
*CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
) {
579 // If this block doesn't end with an uncond branch, ignore it.
580 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
581 if (!BI
|| !BI
->isUnconditional())
584 // If the instruction before the branch (skipping debug info) isn't a phi
585 // node, then other stuff is happening here.
586 BasicBlock::iterator BBI
= BI
->getIterator();
587 if (BBI
!= BB
->begin()) {
589 while (isa
<DbgInfoIntrinsic
>(BBI
)) {
590 if (BBI
== BB
->begin())
594 if (!isa
<DbgInfoIntrinsic
>(BBI
) && !isa
<PHINode
>(BBI
))
598 // Do not break infinite loops.
599 BasicBlock
*DestBB
= BI
->getSuccessor(0);
603 if (!canMergeBlocks(BB
, DestBB
))
609 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
610 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
611 /// edges in ways that are non-optimal for isel. Start by eliminating these
612 /// blocks so we can split them the way we want them.
613 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function
&F
) {
614 SmallPtrSet
<BasicBlock
*, 16> Preheaders
;
615 SmallVector
<Loop
*, 16> LoopList(LI
->begin(), LI
->end());
616 while (!LoopList
.empty()) {
617 Loop
*L
= LoopList
.pop_back_val();
618 LoopList
.insert(LoopList
.end(), L
->begin(), L
->end());
619 if (BasicBlock
*Preheader
= L
->getLoopPreheader())
620 Preheaders
.insert(Preheader
);
623 bool MadeChange
= false;
624 // Copy blocks into a temporary array to avoid iterator invalidation issues
625 // as we remove them.
626 // Note that this intentionally skips the entry block.
627 SmallVector
<WeakTrackingVH
, 16> Blocks
;
628 for (auto &Block
: llvm::make_range(std::next(F
.begin()), F
.end()))
629 Blocks
.push_back(&Block
);
631 for (auto &Block
: Blocks
) {
632 BasicBlock
*BB
= cast_or_null
<BasicBlock
>(Block
);
635 BasicBlock
*DestBB
= findDestBlockOfMergeableEmptyBlock(BB
);
637 !isMergingEmptyBlockProfitable(BB
, DestBB
, Preheaders
.count(BB
)))
640 eliminateMostlyEmptyBlock(BB
);
646 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock
*BB
,
649 // Do not delete loop preheaders if doing so would create a critical edge.
650 // Loop preheaders can be good locations to spill registers. If the
651 // preheader is deleted and we create a critical edge, registers may be
652 // spilled in the loop body instead.
653 if (!DisablePreheaderProtect
&& isPreheader
&&
654 !(BB
->getSinglePredecessor() &&
655 BB
->getSinglePredecessor()->getSingleSuccessor()))
658 // Skip merging if the block's successor is also a successor to any callbr
659 // that leads to this block.
660 // FIXME: Is this really needed? Is this a correctness issue?
661 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
662 if (auto *CBI
= dyn_cast
<CallBrInst
>((*PI
)->getTerminator()))
663 for (unsigned i
= 0, e
= CBI
->getNumSuccessors(); i
!= e
; ++i
)
664 if (DestBB
== CBI
->getSuccessor(i
))
668 // Try to skip merging if the unique predecessor of BB is terminated by a
669 // switch or indirect branch instruction, and BB is used as an incoming block
670 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
671 // add COPY instructions in the predecessor of BB instead of BB (if it is not
672 // merged). Note that the critical edge created by merging such blocks wont be
673 // split in MachineSink because the jump table is not analyzable. By keeping
674 // such empty block (BB), ISel will place COPY instructions in BB, not in the
675 // predecessor of BB.
676 BasicBlock
*Pred
= BB
->getUniquePredecessor();
678 !(isa
<SwitchInst
>(Pred
->getTerminator()) ||
679 isa
<IndirectBrInst
>(Pred
->getTerminator())))
682 if (BB
->getTerminator() != BB
->getFirstNonPHIOrDbg())
685 // We use a simple cost heuristic which determine skipping merging is
686 // profitable if the cost of skipping merging is less than the cost of
687 // merging : Cost(skipping merging) < Cost(merging BB), where the
688 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
689 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
690 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
691 // Freq(Pred) / Freq(BB) > 2.
692 // Note that if there are multiple empty blocks sharing the same incoming
693 // value for the PHIs in the DestBB, we consider them together. In such
694 // case, Cost(merging BB) will be the sum of their frequencies.
696 if (!isa
<PHINode
>(DestBB
->begin()))
699 SmallPtrSet
<BasicBlock
*, 16> SameIncomingValueBBs
;
701 // Find all other incoming blocks from which incoming values of all PHIs in
702 // DestBB are the same as the ones from BB.
703 for (pred_iterator PI
= pred_begin(DestBB
), E
= pred_end(DestBB
); PI
!= E
;
705 BasicBlock
*DestBBPred
= *PI
;
706 if (DestBBPred
== BB
)
709 if (llvm::all_of(DestBB
->phis(), [&](const PHINode
&DestPN
) {
710 return DestPN
.getIncomingValueForBlock(BB
) ==
711 DestPN
.getIncomingValueForBlock(DestBBPred
);
713 SameIncomingValueBBs
.insert(DestBBPred
);
716 // See if all BB's incoming values are same as the value from Pred. In this
717 // case, no reason to skip merging because COPYs are expected to be place in
719 if (SameIncomingValueBBs
.count(Pred
))
722 BlockFrequency PredFreq
= BFI
->getBlockFreq(Pred
);
723 BlockFrequency BBFreq
= BFI
->getBlockFreq(BB
);
725 for (auto SameValueBB
: SameIncomingValueBBs
)
726 if (SameValueBB
->getUniquePredecessor() == Pred
&&
727 DestBB
== findDestBlockOfMergeableEmptyBlock(SameValueBB
))
728 BBFreq
+= BFI
->getBlockFreq(SameValueBB
);
730 return PredFreq
.getFrequency() <=
731 BBFreq
.getFrequency() * FreqRatioToSkipMerge
;
734 /// Return true if we can merge BB into DestBB if there is a single
735 /// unconditional branch between them, and BB contains no other non-phi
737 bool CodeGenPrepare::canMergeBlocks(const BasicBlock
*BB
,
738 const BasicBlock
*DestBB
) const {
739 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
740 // the successor. If there are more complex condition (e.g. preheaders),
741 // don't mess around with them.
742 for (const PHINode
&PN
: BB
->phis()) {
743 for (const User
*U
: PN
.users()) {
744 const Instruction
*UI
= cast
<Instruction
>(U
);
745 if (UI
->getParent() != DestBB
|| !isa
<PHINode
>(UI
))
747 // If User is inside DestBB block and it is a PHINode then check
748 // incoming value. If incoming value is not from BB then this is
749 // a complex condition (e.g. preheaders) we want to avoid here.
750 if (UI
->getParent() == DestBB
) {
751 if (const PHINode
*UPN
= dyn_cast
<PHINode
>(UI
))
752 for (unsigned I
= 0, E
= UPN
->getNumIncomingValues(); I
!= E
; ++I
) {
753 Instruction
*Insn
= dyn_cast
<Instruction
>(UPN
->getIncomingValue(I
));
754 if (Insn
&& Insn
->getParent() == BB
&&
755 Insn
->getParent() != UPN
->getIncomingBlock(I
))
762 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
763 // and DestBB may have conflicting incoming values for the block. If so, we
764 // can't merge the block.
765 const PHINode
*DestBBPN
= dyn_cast
<PHINode
>(DestBB
->begin());
766 if (!DestBBPN
) return true; // no conflict.
768 // Collect the preds of BB.
769 SmallPtrSet
<const BasicBlock
*, 16> BBPreds
;
770 if (const PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
771 // It is faster to get preds from a PHI than with pred_iterator.
772 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
773 BBPreds
.insert(BBPN
->getIncomingBlock(i
));
775 BBPreds
.insert(pred_begin(BB
), pred_end(BB
));
778 // Walk the preds of DestBB.
779 for (unsigned i
= 0, e
= DestBBPN
->getNumIncomingValues(); i
!= e
; ++i
) {
780 BasicBlock
*Pred
= DestBBPN
->getIncomingBlock(i
);
781 if (BBPreds
.count(Pred
)) { // Common predecessor?
782 for (const PHINode
&PN
: DestBB
->phis()) {
783 const Value
*V1
= PN
.getIncomingValueForBlock(Pred
);
784 const Value
*V2
= PN
.getIncomingValueForBlock(BB
);
786 // If V2 is a phi node in BB, look up what the mapped value will be.
787 if (const PHINode
*V2PN
= dyn_cast
<PHINode
>(V2
))
788 if (V2PN
->getParent() == BB
)
789 V2
= V2PN
->getIncomingValueForBlock(Pred
);
791 // If there is a conflict, bail out.
792 if (V1
!= V2
) return false;
800 /// Eliminate a basic block that has only phi's and an unconditional branch in
802 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock
*BB
) {
803 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
804 BasicBlock
*DestBB
= BI
->getSuccessor(0);
806 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
809 // If the destination block has a single pred, then this is a trivial edge,
811 if (BasicBlock
*SinglePred
= DestBB
->getSinglePredecessor()) {
812 if (SinglePred
!= DestBB
) {
813 assert(SinglePred
== BB
&&
814 "Single predecessor not the same as predecessor");
815 // Merge DestBB into SinglePred/BB and delete it.
816 MergeBlockIntoPredecessor(DestBB
);
817 // Note: BB(=SinglePred) will not be deleted on this path.
818 // DestBB(=its single successor) is the one that was deleted.
819 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred
<< "\n\n\n");
824 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
825 // to handle the new incoming edges it is about to have.
826 for (PHINode
&PN
: DestBB
->phis()) {
827 // Remove the incoming value for BB, and remember it.
828 Value
*InVal
= PN
.removeIncomingValue(BB
, false);
830 // Two options: either the InVal is a phi node defined in BB or it is some
831 // value that dominates BB.
832 PHINode
*InValPhi
= dyn_cast
<PHINode
>(InVal
);
833 if (InValPhi
&& InValPhi
->getParent() == BB
) {
834 // Add all of the input values of the input PHI as inputs of this phi.
835 for (unsigned i
= 0, e
= InValPhi
->getNumIncomingValues(); i
!= e
; ++i
)
836 PN
.addIncoming(InValPhi
->getIncomingValue(i
),
837 InValPhi
->getIncomingBlock(i
));
839 // Otherwise, add one instance of the dominating value for each edge that
840 // we will be adding.
841 if (PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
842 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
843 PN
.addIncoming(InVal
, BBPN
->getIncomingBlock(i
));
845 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
846 PN
.addIncoming(InVal
, *PI
);
851 // The PHIs are now updated, change everything that refers to BB to use
852 // DestBB and remove BB.
853 BB
->replaceAllUsesWith(DestBB
);
854 BB
->eraseFromParent();
857 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
860 // Computes a map of base pointer relocation instructions to corresponding
861 // derived pointer relocation instructions given a vector of all relocate calls
862 static void computeBaseDerivedRelocateMap(
863 const SmallVectorImpl
<GCRelocateInst
*> &AllRelocateCalls
,
864 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>>
866 // Collect information in two maps: one primarily for locating the base object
867 // while filling the second map; the second map is the final structure holding
868 // a mapping between Base and corresponding Derived relocate calls
869 DenseMap
<std::pair
<unsigned, unsigned>, GCRelocateInst
*> RelocateIdxMap
;
870 for (auto *ThisRelocate
: AllRelocateCalls
) {
871 auto K
= std::make_pair(ThisRelocate
->getBasePtrIndex(),
872 ThisRelocate
->getDerivedPtrIndex());
873 RelocateIdxMap
.insert(std::make_pair(K
, ThisRelocate
));
875 for (auto &Item
: RelocateIdxMap
) {
876 std::pair
<unsigned, unsigned> Key
= Item
.first
;
877 if (Key
.first
== Key
.second
)
878 // Base relocation: nothing to insert
881 GCRelocateInst
*I
= Item
.second
;
882 auto BaseKey
= std::make_pair(Key
.first
, Key
.first
);
884 // We're iterating over RelocateIdxMap so we cannot modify it.
885 auto MaybeBase
= RelocateIdxMap
.find(BaseKey
);
886 if (MaybeBase
== RelocateIdxMap
.end())
887 // TODO: We might want to insert a new base object relocate and gep off
888 // that, if there are enough derived object relocates.
891 RelocateInstMap
[MaybeBase
->second
].push_back(I
);
895 // Accepts a GEP and extracts the operands into a vector provided they're all
896 // small integer constants
897 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst
*GEP
,
898 SmallVectorImpl
<Value
*> &OffsetV
) {
899 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++) {
900 // Only accept small constant integer operands
901 auto Op
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
902 if (!Op
|| Op
->getZExtValue() > 20)
906 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++)
907 OffsetV
.push_back(GEP
->getOperand(i
));
911 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
912 // replace, computes a replacement, and affects it.
914 simplifyRelocatesOffABase(GCRelocateInst
*RelocatedBase
,
915 const SmallVectorImpl
<GCRelocateInst
*> &Targets
) {
916 bool MadeChange
= false;
917 // We must ensure the relocation of derived pointer is defined after
918 // relocation of base pointer. If we find a relocation corresponding to base
919 // defined earlier than relocation of base then we move relocation of base
920 // right before found relocation. We consider only relocation in the same
921 // basic block as relocation of base. Relocations from other basic block will
922 // be skipped by optimization and we do not care about them.
923 for (auto R
= RelocatedBase
->getParent()->getFirstInsertionPt();
924 &*R
!= RelocatedBase
; ++R
)
925 if (auto RI
= dyn_cast
<GCRelocateInst
>(R
))
926 if (RI
->getStatepoint() == RelocatedBase
->getStatepoint())
927 if (RI
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex()) {
928 RelocatedBase
->moveBefore(RI
);
932 for (GCRelocateInst
*ToReplace
: Targets
) {
933 assert(ToReplace
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex() &&
934 "Not relocating a derived object of the original base object");
935 if (ToReplace
->getBasePtrIndex() == ToReplace
->getDerivedPtrIndex()) {
936 // A duplicate relocate call. TODO: coalesce duplicates.
940 if (RelocatedBase
->getParent() != ToReplace
->getParent()) {
941 // Base and derived relocates are in different basic blocks.
942 // In this case transform is only valid when base dominates derived
943 // relocate. However it would be too expensive to check dominance
944 // for each such relocate, so we skip the whole transformation.
948 Value
*Base
= ToReplace
->getBasePtr();
949 auto Derived
= dyn_cast
<GetElementPtrInst
>(ToReplace
->getDerivedPtr());
950 if (!Derived
|| Derived
->getPointerOperand() != Base
)
953 SmallVector
<Value
*, 2> OffsetV
;
954 if (!getGEPSmallConstantIntOffsetV(Derived
, OffsetV
))
957 // Create a Builder and replace the target callsite with a gep
958 assert(RelocatedBase
->getNextNode() &&
959 "Should always have one since it's not a terminator");
961 // Insert after RelocatedBase
962 IRBuilder
<> Builder(RelocatedBase
->getNextNode());
963 Builder
.SetCurrentDebugLocation(ToReplace
->getDebugLoc());
965 // If gc_relocate does not match the actual type, cast it to the right type.
966 // In theory, there must be a bitcast after gc_relocate if the type does not
967 // match, and we should reuse it to get the derived pointer. But it could be
971 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
976 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
980 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
981 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
983 // In this case, we can not find the bitcast any more. So we insert a new bitcast
984 // no matter there is already one or not. In this way, we can handle all cases, and
985 // the extra bitcast should be optimized away in later passes.
986 Value
*ActualRelocatedBase
= RelocatedBase
;
987 if (RelocatedBase
->getType() != Base
->getType()) {
988 ActualRelocatedBase
=
989 Builder
.CreateBitCast(RelocatedBase
, Base
->getType());
991 Value
*Replacement
= Builder
.CreateGEP(
992 Derived
->getSourceElementType(), ActualRelocatedBase
, makeArrayRef(OffsetV
));
993 Replacement
->takeName(ToReplace
);
994 // If the newly generated derived pointer's type does not match the original derived
995 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
996 Value
*ActualReplacement
= Replacement
;
997 if (Replacement
->getType() != ToReplace
->getType()) {
999 Builder
.CreateBitCast(Replacement
, ToReplace
->getType());
1001 ToReplace
->replaceAllUsesWith(ActualReplacement
);
1002 ToReplace
->eraseFromParent();
1012 // %ptr = gep %base + 15
1013 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1014 // %base' = relocate(%tok, i32 4, i32 4)
1015 // %ptr' = relocate(%tok, i32 4, i32 5)
1016 // %val = load %ptr'
1021 // %ptr = gep %base + 15
1022 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1023 // %base' = gc.relocate(%tok, i32 4, i32 4)
1024 // %ptr' = gep %base' + 15
1025 // %val = load %ptr'
1026 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction
&I
) {
1027 bool MadeChange
= false;
1028 SmallVector
<GCRelocateInst
*, 2> AllRelocateCalls
;
1030 for (auto *U
: I
.users())
1031 if (GCRelocateInst
*Relocate
= dyn_cast
<GCRelocateInst
>(U
))
1032 // Collect all the relocate calls associated with a statepoint
1033 AllRelocateCalls
.push_back(Relocate
);
1035 // We need atleast one base pointer relocation + one derived pointer
1036 // relocation to mangle
1037 if (AllRelocateCalls
.size() < 2)
1040 // RelocateInstMap is a mapping from the base relocate instruction to the
1041 // corresponding derived relocate instructions
1042 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>> RelocateInstMap
;
1043 computeBaseDerivedRelocateMap(AllRelocateCalls
, RelocateInstMap
);
1044 if (RelocateInstMap
.empty())
1047 for (auto &Item
: RelocateInstMap
)
1048 // Item.first is the RelocatedBase to offset against
1049 // Item.second is the vector of Targets to replace
1050 MadeChange
= simplifyRelocatesOffABase(Item
.first
, Item
.second
);
1054 /// SinkCast - Sink the specified cast instruction into its user blocks
1055 static bool SinkCast(CastInst
*CI
) {
1056 BasicBlock
*DefBB
= CI
->getParent();
1058 /// InsertedCasts - Only insert a cast in each block once.
1059 DenseMap
<BasicBlock
*, CastInst
*> InsertedCasts
;
1061 bool MadeChange
= false;
1062 for (Value::user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
1064 Use
&TheUse
= UI
.getUse();
1065 Instruction
*User
= cast
<Instruction
>(*UI
);
1067 // Figure out which BB this cast is used in. For PHI's this is the
1068 // appropriate predecessor block.
1069 BasicBlock
*UserBB
= User
->getParent();
1070 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
1071 UserBB
= PN
->getIncomingBlock(TheUse
);
1074 // Preincrement use iterator so we don't invalidate it.
1077 // The first insertion point of a block containing an EH pad is after the
1078 // pad. If the pad is the user, we cannot sink the cast past the pad.
1079 if (User
->isEHPad())
1082 // If the block selected to receive the cast is an EH pad that does not
1083 // allow non-PHI instructions before the terminator, we can't sink the
1085 if (UserBB
->getTerminator()->isEHPad())
1088 // If this user is in the same block as the cast, don't change the cast.
1089 if (UserBB
== DefBB
) continue;
1091 // If we have already inserted a cast into this block, use it.
1092 CastInst
*&InsertedCast
= InsertedCasts
[UserBB
];
1094 if (!InsertedCast
) {
1095 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1096 assert(InsertPt
!= UserBB
->end());
1097 InsertedCast
= CastInst::Create(CI
->getOpcode(), CI
->getOperand(0),
1098 CI
->getType(), "", &*InsertPt
);
1099 InsertedCast
->setDebugLoc(CI
->getDebugLoc());
1102 // Replace a use of the cast with a use of the new cast.
1103 TheUse
= InsertedCast
;
1108 // If we removed all uses, nuke the cast.
1109 if (CI
->use_empty()) {
1110 salvageDebugInfo(*CI
);
1111 CI
->eraseFromParent();
1118 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1119 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1120 /// reduce the number of virtual registers that must be created and coalesced.
1122 /// Return true if any changes are made.
1123 static bool OptimizeNoopCopyExpression(CastInst
*CI
, const TargetLowering
&TLI
,
1124 const DataLayout
&DL
) {
1125 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1126 // than sinking only nop casts, but is helpful on some platforms.
1127 if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(CI
)) {
1128 if (!TLI
.isCheapAddrSpaceCast(ASC
->getSrcAddressSpace(),
1129 ASC
->getDestAddressSpace()))
1133 // If this is a noop copy,
1134 EVT SrcVT
= TLI
.getValueType(DL
, CI
->getOperand(0)->getType());
1135 EVT DstVT
= TLI
.getValueType(DL
, CI
->getType());
1137 // This is an fp<->int conversion?
1138 if (SrcVT
.isInteger() != DstVT
.isInteger())
1141 // If this is an extension, it will be a zero or sign extension, which
1143 if (SrcVT
.bitsLT(DstVT
)) return false;
1145 // If these values will be promoted, find out what they will be promoted
1146 // to. This helps us consider truncates on PPC as noop copies when they
1148 if (TLI
.getTypeAction(CI
->getContext(), SrcVT
) ==
1149 TargetLowering::TypePromoteInteger
)
1150 SrcVT
= TLI
.getTypeToTransformTo(CI
->getContext(), SrcVT
);
1151 if (TLI
.getTypeAction(CI
->getContext(), DstVT
) ==
1152 TargetLowering::TypePromoteInteger
)
1153 DstVT
= TLI
.getTypeToTransformTo(CI
->getContext(), DstVT
);
1155 // If, after promotion, these are the same types, this is a noop copy.
1159 return SinkCast(CI
);
1162 static void replaceMathCmpWithIntrinsic(BinaryOperator
*BO
, CmpInst
*Cmp
,
1163 Instruction
*InsertPt
,
1164 Intrinsic::ID IID
) {
1165 IRBuilder
<> Builder(InsertPt
);
1166 Value
*MathOV
= Builder
.CreateBinaryIntrinsic(IID
, BO
->getOperand(0),
1168 Value
*Math
= Builder
.CreateExtractValue(MathOV
, 0, "math");
1169 Value
*OV
= Builder
.CreateExtractValue(MathOV
, 1, "ov");
1170 BO
->replaceAllUsesWith(Math
);
1171 Cmp
->replaceAllUsesWith(OV
);
1172 BO
->eraseFromParent();
1173 Cmp
->eraseFromParent();
1176 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1177 /// intrinsic. Return true if any changes were made.
1178 static bool combineToUAddWithOverflow(CmpInst
*Cmp
, const TargetLowering
&TLI
,
1179 const DataLayout
&DL
) {
1181 BinaryOperator
*Add
;
1182 if (!match(Cmp
, m_UAddWithOverflow(m_Value(A
), m_Value(B
), m_BinOp(Add
))))
1185 // Allow the transform as long as we have an integer type that is not
1186 // obviously illegal and unsupported.
1187 Type
*Ty
= Add
->getType();
1188 if (!isa
<IntegerType
>(Ty
))
1190 EVT CodegenVT
= TLI
.getValueType(DL
, Ty
);
1191 if (!CodegenVT
.isSimple() && TLI
.isOperationExpand(ISD::UADDO
, CodegenVT
))
1194 // We don't want to move around uses of condition values this late, so we
1195 // check if it is legal to create the call to the intrinsic in the basic
1196 // block containing the icmp.
1197 if (Add
->getParent() != Cmp
->getParent() && !Add
->hasOneUse())
1201 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1203 if (Add
->hasOneUse())
1204 assert(*Add
->user_begin() == Cmp
&& "expected!");
1207 Instruction
*InPt
= Add
->hasOneUse() ? cast
<Instruction
>(Cmp
)
1208 : cast
<Instruction
>(Add
);
1209 replaceMathCmpWithIntrinsic(Add
, Cmp
, InPt
, Intrinsic::uadd_with_overflow
);
1213 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1214 /// registers that must be created and coalesced. This is a clear win except on
1215 /// targets with multiple condition code registers (PowerPC), where it might
1216 /// lose; some adjustment may be wanted there.
1218 /// Return true if any changes are made.
1219 static bool sinkCmpExpression(CmpInst
*Cmp
, const TargetLowering
&TLI
) {
1220 if (TLI
.hasMultipleConditionRegisters())
1223 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1224 if (TLI
.useSoftFloat() && isa
<FCmpInst
>(Cmp
))
1227 // Only insert a cmp in each block once.
1228 DenseMap
<BasicBlock
*, CmpInst
*> InsertedCmps
;
1230 bool MadeChange
= false;
1231 for (Value::user_iterator UI
= Cmp
->user_begin(), E
= Cmp
->user_end();
1233 Use
&TheUse
= UI
.getUse();
1234 Instruction
*User
= cast
<Instruction
>(*UI
);
1236 // Preincrement use iterator so we don't invalidate it.
1239 // Don't bother for PHI nodes.
1240 if (isa
<PHINode
>(User
))
1243 // Figure out which BB this cmp is used in.
1244 BasicBlock
*UserBB
= User
->getParent();
1245 BasicBlock
*DefBB
= Cmp
->getParent();
1247 // If this user is in the same block as the cmp, don't change the cmp.
1248 if (UserBB
== DefBB
) continue;
1250 // If we have already inserted a cmp into this block, use it.
1251 CmpInst
*&InsertedCmp
= InsertedCmps
[UserBB
];
1254 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1255 assert(InsertPt
!= UserBB
->end());
1257 CmpInst::Create(Cmp
->getOpcode(), Cmp
->getPredicate(),
1258 Cmp
->getOperand(0), Cmp
->getOperand(1), "",
1260 // Propagate the debug info.
1261 InsertedCmp
->setDebugLoc(Cmp
->getDebugLoc());
1264 // Replace a use of the cmp with a use of the new cmp.
1265 TheUse
= InsertedCmp
;
1270 // If we removed all uses, nuke the cmp.
1271 if (Cmp
->use_empty()) {
1272 Cmp
->eraseFromParent();
1279 static bool optimizeCmpExpression(CmpInst
*Cmp
, const TargetLowering
&TLI
,
1280 const DataLayout
&DL
) {
1281 if (sinkCmpExpression(Cmp
, TLI
))
1284 if (combineToUAddWithOverflow(Cmp
, TLI
, DL
))
1290 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1291 /// used in a compare to allow isel to generate better code for targets where
1292 /// this operation can be combined.
1294 /// Return true if any changes are made.
1295 static bool sinkAndCmp0Expression(Instruction
*AndI
,
1296 const TargetLowering
&TLI
,
1297 SetOfInstrs
&InsertedInsts
) {
1298 // Double-check that we're not trying to optimize an instruction that was
1299 // already optimized by some other part of this pass.
1300 assert(!InsertedInsts
.count(AndI
) &&
1301 "Attempting to optimize already optimized and instruction");
1302 (void) InsertedInsts
;
1304 // Nothing to do for single use in same basic block.
1305 if (AndI
->hasOneUse() &&
1306 AndI
->getParent() == cast
<Instruction
>(*AndI
->user_begin())->getParent())
1309 // Try to avoid cases where sinking/duplicating is likely to increase register
1311 if (!isa
<ConstantInt
>(AndI
->getOperand(0)) &&
1312 !isa
<ConstantInt
>(AndI
->getOperand(1)) &&
1313 AndI
->getOperand(0)->hasOneUse() && AndI
->getOperand(1)->hasOneUse())
1316 for (auto *U
: AndI
->users()) {
1317 Instruction
*User
= cast
<Instruction
>(U
);
1319 // Only sink for and mask feeding icmp with 0.
1320 if (!isa
<ICmpInst
>(User
))
1323 auto *CmpC
= dyn_cast
<ConstantInt
>(User
->getOperand(1));
1324 if (!CmpC
|| !CmpC
->isZero())
1328 if (!TLI
.isMaskAndCmp0FoldingBeneficial(*AndI
))
1331 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1332 LLVM_DEBUG(AndI
->getParent()->dump());
1334 // Push the 'and' into the same block as the icmp 0. There should only be
1335 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1336 // others, so we don't need to keep track of which BBs we insert into.
1337 for (Value::user_iterator UI
= AndI
->user_begin(), E
= AndI
->user_end();
1339 Use
&TheUse
= UI
.getUse();
1340 Instruction
*User
= cast
<Instruction
>(*UI
);
1342 // Preincrement use iterator so we don't invalidate it.
1345 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User
<< "\n");
1347 // Keep the 'and' in the same place if the use is already in the same block.
1348 Instruction
*InsertPt
=
1349 User
->getParent() == AndI
->getParent() ? AndI
: User
;
1350 Instruction
*InsertedAnd
=
1351 BinaryOperator::Create(Instruction::And
, AndI
->getOperand(0),
1352 AndI
->getOperand(1), "", InsertPt
);
1353 // Propagate the debug info.
1354 InsertedAnd
->setDebugLoc(AndI
->getDebugLoc());
1356 // Replace a use of the 'and' with a use of the new 'and'.
1357 TheUse
= InsertedAnd
;
1359 LLVM_DEBUG(User
->getParent()->dump());
1362 // We removed all uses, nuke the and.
1363 AndI
->eraseFromParent();
1367 /// Check if the candidates could be combined with a shift instruction, which
1369 /// 1. Truncate instruction
1370 /// 2. And instruction and the imm is a mask of the low bits:
1371 /// imm & (imm+1) == 0
1372 static bool isExtractBitsCandidateUse(Instruction
*User
) {
1373 if (!isa
<TruncInst
>(User
)) {
1374 if (User
->getOpcode() != Instruction::And
||
1375 !isa
<ConstantInt
>(User
->getOperand(1)))
1378 const APInt
&Cimm
= cast
<ConstantInt
>(User
->getOperand(1))->getValue();
1380 if ((Cimm
& (Cimm
+ 1)).getBoolValue())
1386 /// Sink both shift and truncate instruction to the use of truncate's BB.
1388 SinkShiftAndTruncate(BinaryOperator
*ShiftI
, Instruction
*User
, ConstantInt
*CI
,
1389 DenseMap
<BasicBlock
*, BinaryOperator
*> &InsertedShifts
,
1390 const TargetLowering
&TLI
, const DataLayout
&DL
) {
1391 BasicBlock
*UserBB
= User
->getParent();
1392 DenseMap
<BasicBlock
*, CastInst
*> InsertedTruncs
;
1393 TruncInst
*TruncI
= dyn_cast
<TruncInst
>(User
);
1394 bool MadeChange
= false;
1396 for (Value::user_iterator TruncUI
= TruncI
->user_begin(),
1397 TruncE
= TruncI
->user_end();
1398 TruncUI
!= TruncE
;) {
1400 Use
&TruncTheUse
= TruncUI
.getUse();
1401 Instruction
*TruncUser
= cast
<Instruction
>(*TruncUI
);
1402 // Preincrement use iterator so we don't invalidate it.
1406 int ISDOpcode
= TLI
.InstructionOpcodeToISD(TruncUser
->getOpcode());
1410 // If the use is actually a legal node, there will not be an
1411 // implicit truncate.
1412 // FIXME: always querying the result type is just an
1413 // approximation; some nodes' legality is determined by the
1414 // operand or other means. There's no good way to find out though.
1415 if (TLI
.isOperationLegalOrCustom(
1416 ISDOpcode
, TLI
.getValueType(DL
, TruncUser
->getType(), true)))
1419 // Don't bother for PHI nodes.
1420 if (isa
<PHINode
>(TruncUser
))
1423 BasicBlock
*TruncUserBB
= TruncUser
->getParent();
1425 if (UserBB
== TruncUserBB
)
1428 BinaryOperator
*&InsertedShift
= InsertedShifts
[TruncUserBB
];
1429 CastInst
*&InsertedTrunc
= InsertedTruncs
[TruncUserBB
];
1431 if (!InsertedShift
&& !InsertedTrunc
) {
1432 BasicBlock::iterator InsertPt
= TruncUserBB
->getFirstInsertionPt();
1433 assert(InsertPt
!= TruncUserBB
->end());
1435 if (ShiftI
->getOpcode() == Instruction::AShr
)
1436 InsertedShift
= BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
,
1439 InsertedShift
= BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
,
1441 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
1444 BasicBlock::iterator TruncInsertPt
= TruncUserBB
->getFirstInsertionPt();
1446 assert(TruncInsertPt
!= TruncUserBB
->end());
1448 InsertedTrunc
= CastInst::Create(TruncI
->getOpcode(), InsertedShift
,
1449 TruncI
->getType(), "", &*TruncInsertPt
);
1450 InsertedTrunc
->setDebugLoc(TruncI
->getDebugLoc());
1454 TruncTheUse
= InsertedTrunc
;
1460 /// Sink the shift *right* instruction into user blocks if the uses could
1461 /// potentially be combined with this shift instruction and generate BitExtract
1462 /// instruction. It will only be applied if the architecture supports BitExtract
1463 /// instruction. Here is an example:
1465 /// %x.extract.shift = lshr i64 %arg1, 32
1467 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1471 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1472 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1474 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1476 /// Return true if any changes are made.
1477 static bool OptimizeExtractBits(BinaryOperator
*ShiftI
, ConstantInt
*CI
,
1478 const TargetLowering
&TLI
,
1479 const DataLayout
&DL
) {
1480 BasicBlock
*DefBB
= ShiftI
->getParent();
1482 /// Only insert instructions in each block once.
1483 DenseMap
<BasicBlock
*, BinaryOperator
*> InsertedShifts
;
1485 bool shiftIsLegal
= TLI
.isTypeLegal(TLI
.getValueType(DL
, ShiftI
->getType()));
1487 bool MadeChange
= false;
1488 for (Value::user_iterator UI
= ShiftI
->user_begin(), E
= ShiftI
->user_end();
1490 Use
&TheUse
= UI
.getUse();
1491 Instruction
*User
= cast
<Instruction
>(*UI
);
1492 // Preincrement use iterator so we don't invalidate it.
1495 // Don't bother for PHI nodes.
1496 if (isa
<PHINode
>(User
))
1499 if (!isExtractBitsCandidateUse(User
))
1502 BasicBlock
*UserBB
= User
->getParent();
1504 if (UserBB
== DefBB
) {
1505 // If the shift and truncate instruction are in the same BB. The use of
1506 // the truncate(TruncUse) may still introduce another truncate if not
1507 // legal. In this case, we would like to sink both shift and truncate
1508 // instruction to the BB of TruncUse.
1511 // i64 shift.result = lshr i64 opnd, imm
1512 // trunc.result = trunc shift.result to i16
1515 // ----> We will have an implicit truncate here if the architecture does
1516 // not have i16 compare.
1517 // cmp i16 trunc.result, opnd2
1519 if (isa
<TruncInst
>(User
) && shiftIsLegal
1520 // If the type of the truncate is legal, no truncate will be
1521 // introduced in other basic blocks.
1523 (!TLI
.isTypeLegal(TLI
.getValueType(DL
, User
->getType()))))
1525 SinkShiftAndTruncate(ShiftI
, User
, CI
, InsertedShifts
, TLI
, DL
);
1529 // If we have already inserted a shift into this block, use it.
1530 BinaryOperator
*&InsertedShift
= InsertedShifts
[UserBB
];
1532 if (!InsertedShift
) {
1533 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1534 assert(InsertPt
!= UserBB
->end());
1536 if (ShiftI
->getOpcode() == Instruction::AShr
)
1537 InsertedShift
= BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
,
1540 InsertedShift
= BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
,
1542 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
1547 // Replace a use of the shift with a use of the new shift.
1548 TheUse
= InsertedShift
;
1551 // If we removed all uses, nuke the shift.
1552 if (ShiftI
->use_empty()) {
1553 salvageDebugInfo(*ShiftI
);
1554 ShiftI
->eraseFromParent();
1560 /// If counting leading or trailing zeros is an expensive operation and a zero
1561 /// input is defined, add a check for zero to avoid calling the intrinsic.
1563 /// We want to transform:
1564 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1568 /// %cmpz = icmp eq i64 %A, 0
1569 /// br i1 %cmpz, label %cond.end, label %cond.false
1571 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1572 /// br label %cond.end
1574 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1576 /// If the transform is performed, return true and set ModifiedDT to true.
1577 static bool despeculateCountZeros(IntrinsicInst
*CountZeros
,
1578 const TargetLowering
*TLI
,
1579 const DataLayout
*DL
,
1584 // If a zero input is undefined, it doesn't make sense to despeculate that.
1585 if (match(CountZeros
->getOperand(1), m_One()))
1588 // If it's cheap to speculate, there's nothing to do.
1589 auto IntrinsicID
= CountZeros
->getIntrinsicID();
1590 if ((IntrinsicID
== Intrinsic::cttz
&& TLI
->isCheapToSpeculateCttz()) ||
1591 (IntrinsicID
== Intrinsic::ctlz
&& TLI
->isCheapToSpeculateCtlz()))
1594 // Only handle legal scalar cases. Anything else requires too much work.
1595 Type
*Ty
= CountZeros
->getType();
1596 unsigned SizeInBits
= Ty
->getPrimitiveSizeInBits();
1597 if (Ty
->isVectorTy() || SizeInBits
> DL
->getLargestLegalIntTypeSizeInBits())
1600 // The intrinsic will be sunk behind a compare against zero and branch.
1601 BasicBlock
*StartBlock
= CountZeros
->getParent();
1602 BasicBlock
*CallBlock
= StartBlock
->splitBasicBlock(CountZeros
, "cond.false");
1604 // Create another block after the count zero intrinsic. A PHI will be added
1605 // in this block to select the result of the intrinsic or the bit-width
1606 // constant if the input to the intrinsic is zero.
1607 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(CountZeros
));
1608 BasicBlock
*EndBlock
= CallBlock
->splitBasicBlock(SplitPt
, "cond.end");
1610 // Set up a builder to create a compare, conditional branch, and PHI.
1611 IRBuilder
<> Builder(CountZeros
->getContext());
1612 Builder
.SetInsertPoint(StartBlock
->getTerminator());
1613 Builder
.SetCurrentDebugLocation(CountZeros
->getDebugLoc());
1615 // Replace the unconditional branch that was created by the first split with
1616 // a compare against zero and a conditional branch.
1617 Value
*Zero
= Constant::getNullValue(Ty
);
1618 Value
*Cmp
= Builder
.CreateICmpEQ(CountZeros
->getOperand(0), Zero
, "cmpz");
1619 Builder
.CreateCondBr(Cmp
, EndBlock
, CallBlock
);
1620 StartBlock
->getTerminator()->eraseFromParent();
1622 // Create a PHI in the end block to select either the output of the intrinsic
1623 // or the bit width of the operand.
1624 Builder
.SetInsertPoint(&EndBlock
->front());
1625 PHINode
*PN
= Builder
.CreatePHI(Ty
, 2, "ctz");
1626 CountZeros
->replaceAllUsesWith(PN
);
1627 Value
*BitWidth
= Builder
.getInt(APInt(SizeInBits
, SizeInBits
));
1628 PN
->addIncoming(BitWidth
, StartBlock
);
1629 PN
->addIncoming(CountZeros
, CallBlock
);
1631 // We are explicitly handling the zero case, so we can set the intrinsic's
1632 // undefined zero argument to 'true'. This will also prevent reprocessing the
1633 // intrinsic; we only despeculate when a zero input is defined.
1634 CountZeros
->setArgOperand(1, Builder
.getTrue());
1639 bool CodeGenPrepare::optimizeCallInst(CallInst
*CI
, bool &ModifiedDT
) {
1640 BasicBlock
*BB
= CI
->getParent();
1642 // Lower inline assembly if we can.
1643 // If we found an inline asm expession, and if the target knows how to
1644 // lower it to normal LLVM code, do so now.
1645 if (TLI
&& isa
<InlineAsm
>(CI
->getCalledValue())) {
1646 if (TLI
->ExpandInlineAsm(CI
)) {
1647 // Avoid invalidating the iterator.
1648 CurInstIterator
= BB
->begin();
1649 // Avoid processing instructions out of order, which could cause
1650 // reuse before a value is defined.
1654 // Sink address computing for memory operands into the block.
1655 if (optimizeInlineAsmInst(CI
))
1659 // Align the pointer arguments to this call if the target thinks it's a good
1661 unsigned MinSize
, PrefAlign
;
1662 if (TLI
&& TLI
->shouldAlignPointerArgs(CI
, MinSize
, PrefAlign
)) {
1663 for (auto &Arg
: CI
->arg_operands()) {
1664 // We want to align both objects whose address is used directly and
1665 // objects whose address is used in casts and GEPs, though it only makes
1666 // sense for GEPs if the offset is a multiple of the desired alignment and
1667 // if size - offset meets the size threshold.
1668 if (!Arg
->getType()->isPointerTy())
1670 APInt
Offset(DL
->getIndexSizeInBits(
1671 cast
<PointerType
>(Arg
->getType())->getAddressSpace()),
1673 Value
*Val
= Arg
->stripAndAccumulateInBoundsConstantOffsets(*DL
, Offset
);
1674 uint64_t Offset2
= Offset
.getLimitedValue();
1675 if ((Offset2
& (PrefAlign
-1)) != 0)
1678 if ((AI
= dyn_cast
<AllocaInst
>(Val
)) && AI
->getAlignment() < PrefAlign
&&
1679 DL
->getTypeAllocSize(AI
->getAllocatedType()) >= MinSize
+ Offset2
)
1680 AI
->setAlignment(PrefAlign
);
1681 // Global variables can only be aligned if they are defined in this
1682 // object (i.e. they are uniquely initialized in this object), and
1683 // over-aligning global variables that have an explicit section is
1686 if ((GV
= dyn_cast
<GlobalVariable
>(Val
)) && GV
->canIncreaseAlignment() &&
1687 GV
->getPointerAlignment(*DL
) < PrefAlign
&&
1688 DL
->getTypeAllocSize(GV
->getValueType()) >=
1690 GV
->setAlignment(PrefAlign
);
1692 // If this is a memcpy (or similar) then we may be able to improve the
1694 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(CI
)) {
1695 unsigned DestAlign
= getKnownAlignment(MI
->getDest(), *DL
);
1696 if (DestAlign
> MI
->getDestAlignment())
1697 MI
->setDestAlignment(DestAlign
);
1698 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
1699 unsigned SrcAlign
= getKnownAlignment(MTI
->getSource(), *DL
);
1700 if (SrcAlign
> MTI
->getSourceAlignment())
1701 MTI
->setSourceAlignment(SrcAlign
);
1706 // If we have a cold call site, try to sink addressing computation into the
1707 // cold block. This interacts with our handling for loads and stores to
1708 // ensure that we can fold all uses of a potential addressing computation
1709 // into their uses. TODO: generalize this to work over profiling data
1710 if (!OptSize
&& CI
->hasFnAttr(Attribute::Cold
))
1711 for (auto &Arg
: CI
->arg_operands()) {
1712 if (!Arg
->getType()->isPointerTy())
1714 unsigned AS
= Arg
->getType()->getPointerAddressSpace();
1715 return optimizeMemoryInst(CI
, Arg
, Arg
->getType(), AS
);
1718 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
);
1720 switch (II
->getIntrinsicID()) {
1722 case Intrinsic::experimental_widenable_condition
: {
1723 // Give up on future widening oppurtunties so that we can fold away dead
1724 // paths and merge blocks before going into block-local instruction
1726 if (II
->use_empty()) {
1727 II
->eraseFromParent();
1730 Constant
*RetVal
= ConstantInt::getTrue(II
->getContext());
1731 resetIteratorIfInvalidatedWhileCalling(BB
, [&]() {
1732 replaceAndRecursivelySimplify(CI
, RetVal
, TLInfo
, nullptr);
1736 case Intrinsic::objectsize
: {
1737 // Lower all uses of llvm.objectsize.*
1739 lowerObjectSizeCall(II
, *DL
, TLInfo
, /*MustSucceed=*/true);
1741 resetIteratorIfInvalidatedWhileCalling(BB
, [&]() {
1742 replaceAndRecursivelySimplify(CI
, RetVal
, TLInfo
, nullptr);
1746 case Intrinsic::is_constant
: {
1747 // If is_constant hasn't folded away yet, lower it to false now.
1748 Constant
*RetVal
= ConstantInt::get(II
->getType(), 0);
1749 resetIteratorIfInvalidatedWhileCalling(BB
, [&]() {
1750 replaceAndRecursivelySimplify(CI
, RetVal
, TLInfo
, nullptr);
1754 case Intrinsic::aarch64_stlxr
:
1755 case Intrinsic::aarch64_stxr
: {
1756 ZExtInst
*ExtVal
= dyn_cast
<ZExtInst
>(CI
->getArgOperand(0));
1757 if (!ExtVal
|| !ExtVal
->hasOneUse() ||
1758 ExtVal
->getParent() == CI
->getParent())
1760 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1761 ExtVal
->moveBefore(CI
);
1762 // Mark this instruction as "inserted by CGP", so that other
1763 // optimizations don't touch it.
1764 InsertedInsts
.insert(ExtVal
);
1768 case Intrinsic::launder_invariant_group
:
1769 case Intrinsic::strip_invariant_group
: {
1770 Value
*ArgVal
= II
->getArgOperand(0);
1771 auto it
= LargeOffsetGEPMap
.find(II
);
1772 if (it
!= LargeOffsetGEPMap
.end()) {
1773 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1774 // Make sure not to have to deal with iterator invalidation
1775 // after possibly adding ArgVal to LargeOffsetGEPMap.
1776 auto GEPs
= std::move(it
->second
);
1777 LargeOffsetGEPMap
[ArgVal
].append(GEPs
.begin(), GEPs
.end());
1778 LargeOffsetGEPMap
.erase(II
);
1781 II
->replaceAllUsesWith(ArgVal
);
1782 II
->eraseFromParent();
1785 case Intrinsic::cttz
:
1786 case Intrinsic::ctlz
:
1787 // If counting zeros is expensive, try to avoid it.
1788 return despeculateCountZeros(II
, TLI
, DL
, ModifiedDT
);
1792 SmallVector
<Value
*, 2> PtrOps
;
1794 if (TLI
->getAddrModeArguments(II
, PtrOps
, AccessTy
))
1795 while (!PtrOps
.empty()) {
1796 Value
*PtrVal
= PtrOps
.pop_back_val();
1797 unsigned AS
= PtrVal
->getType()->getPointerAddressSpace();
1798 if (optimizeMemoryInst(II
, PtrVal
, AccessTy
, AS
))
1804 // From here on out we're working with named functions.
1805 if (!CI
->getCalledFunction()) return false;
1807 // Lower all default uses of _chk calls. This is very similar
1808 // to what InstCombineCalls does, but here we are only lowering calls
1809 // to fortified library functions (e.g. __memcpy_chk) that have the default
1810 // "don't know" as the objectsize. Anything else should be left alone.
1811 FortifiedLibCallSimplifier
Simplifier(TLInfo
, true);
1812 if (Value
*V
= Simplifier
.optimizeCall(CI
)) {
1813 CI
->replaceAllUsesWith(V
);
1814 CI
->eraseFromParent();
1821 /// Look for opportunities to duplicate return instructions to the predecessor
1822 /// to enable tail call optimizations. The case it is currently looking for is:
1825 /// %tmp0 = tail call i32 @f0()
1826 /// br label %return
1828 /// %tmp1 = tail call i32 @f1()
1829 /// br label %return
1831 /// %tmp2 = tail call i32 @f2()
1832 /// br label %return
1834 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1842 /// %tmp0 = tail call i32 @f0()
1845 /// %tmp1 = tail call i32 @f1()
1848 /// %tmp2 = tail call i32 @f2()
1851 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock
*BB
) {
1855 ReturnInst
*RetI
= dyn_cast
<ReturnInst
>(BB
->getTerminator());
1859 PHINode
*PN
= nullptr;
1860 BitCastInst
*BCI
= nullptr;
1861 Value
*V
= RetI
->getReturnValue();
1863 BCI
= dyn_cast
<BitCastInst
>(V
);
1865 V
= BCI
->getOperand(0);
1867 PN
= dyn_cast
<PHINode
>(V
);
1872 if (PN
&& PN
->getParent() != BB
)
1875 // Make sure there are no instructions between the PHI and return, or that the
1876 // return is the first instruction in the block.
1878 BasicBlock::iterator BI
= BB
->begin();
1879 // Skip over debug and the bitcast.
1880 do { ++BI
; } while (isa
<DbgInfoIntrinsic
>(BI
) || &*BI
== BCI
);
1884 BasicBlock::iterator BI
= BB
->begin();
1885 while (isa
<DbgInfoIntrinsic
>(BI
)) ++BI
;
1890 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1892 const Function
*F
= BB
->getParent();
1893 SmallVector
<CallInst
*, 4> TailCalls
;
1895 for (unsigned I
= 0, E
= PN
->getNumIncomingValues(); I
!= E
; ++I
) {
1896 CallInst
*CI
= dyn_cast
<CallInst
>(PN
->getIncomingValue(I
));
1897 // Make sure the phi value is indeed produced by the tail call.
1898 if (CI
&& CI
->hasOneUse() && CI
->getParent() == PN
->getIncomingBlock(I
) &&
1899 TLI
->mayBeEmittedAsTailCall(CI
) &&
1900 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
1901 TailCalls
.push_back(CI
);
1904 SmallPtrSet
<BasicBlock
*, 4> VisitedBBs
;
1905 for (pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
); PI
!= PE
; ++PI
) {
1906 if (!VisitedBBs
.insert(*PI
).second
)
1909 BasicBlock::InstListType
&InstList
= (*PI
)->getInstList();
1910 BasicBlock::InstListType::reverse_iterator RI
= InstList
.rbegin();
1911 BasicBlock::InstListType::reverse_iterator RE
= InstList
.rend();
1912 do { ++RI
; } while (RI
!= RE
&& isa
<DbgInfoIntrinsic
>(&*RI
));
1916 CallInst
*CI
= dyn_cast
<CallInst
>(&*RI
);
1917 if (CI
&& CI
->use_empty() && TLI
->mayBeEmittedAsTailCall(CI
) &&
1918 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
1919 TailCalls
.push_back(CI
);
1923 bool Changed
= false;
1924 for (unsigned i
= 0, e
= TailCalls
.size(); i
!= e
; ++i
) {
1925 CallInst
*CI
= TailCalls
[i
];
1928 // Make sure the call instruction is followed by an unconditional branch to
1929 // the return block.
1930 BasicBlock
*CallBB
= CI
->getParent();
1931 BranchInst
*BI
= dyn_cast
<BranchInst
>(CallBB
->getTerminator());
1932 if (!BI
|| !BI
->isUnconditional() || BI
->getSuccessor(0) != BB
)
1935 // Duplicate the return into CallBB.
1936 (void)FoldReturnIntoUncondBranch(RetI
, BB
, CallBB
);
1937 ModifiedDT
= Changed
= true;
1941 // If we eliminated all predecessors of the block, delete the block now.
1942 if (Changed
&& !BB
->hasAddressTaken() && pred_begin(BB
) == pred_end(BB
))
1943 BB
->eraseFromParent();
1948 //===----------------------------------------------------------------------===//
1949 // Memory Optimization
1950 //===----------------------------------------------------------------------===//
1954 /// This is an extended version of TargetLowering::AddrMode
1955 /// which holds actual Value*'s for register values.
1956 struct ExtAddrMode
: public TargetLowering::AddrMode
{
1957 Value
*BaseReg
= nullptr;
1958 Value
*ScaledReg
= nullptr;
1959 Value
*OriginalValue
= nullptr;
1963 BaseRegField
= 0x01,
1965 BaseOffsField
= 0x04,
1966 ScaledRegField
= 0x08,
1968 MultipleFields
= 0xff
1971 ExtAddrMode() = default;
1973 void print(raw_ostream
&OS
) const;
1976 FieldName
compare(const ExtAddrMode
&other
) {
1977 // First check that the types are the same on each field, as differing types
1978 // is something we can't cope with later on.
1979 if (BaseReg
&& other
.BaseReg
&&
1980 BaseReg
->getType() != other
.BaseReg
->getType())
1981 return MultipleFields
;
1982 if (BaseGV
&& other
.BaseGV
&&
1983 BaseGV
->getType() != other
.BaseGV
->getType())
1984 return MultipleFields
;
1985 if (ScaledReg
&& other
.ScaledReg
&&
1986 ScaledReg
->getType() != other
.ScaledReg
->getType())
1987 return MultipleFields
;
1989 // Check each field to see if it differs.
1990 unsigned Result
= NoField
;
1991 if (BaseReg
!= other
.BaseReg
)
1992 Result
|= BaseRegField
;
1993 if (BaseGV
!= other
.BaseGV
)
1994 Result
|= BaseGVField
;
1995 if (BaseOffs
!= other
.BaseOffs
)
1996 Result
|= BaseOffsField
;
1997 if (ScaledReg
!= other
.ScaledReg
)
1998 Result
|= ScaledRegField
;
1999 // Don't count 0 as being a different scale, because that actually means
2000 // unscaled (which will already be counted by having no ScaledReg).
2001 if (Scale
&& other
.Scale
&& Scale
!= other
.Scale
)
2002 Result
|= ScaleField
;
2004 if (countPopulation(Result
) > 1)
2005 return MultipleFields
;
2007 return static_cast<FieldName
>(Result
);
2010 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2013 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2014 // trivial if at most one of these terms is nonzero, except that BaseGV and
2015 // BaseReg both being zero actually means a null pointer value, which we
2016 // consider to be 'non-zero' here.
2017 return !BaseOffs
&& !Scale
&& !(BaseGV
&& BaseReg
);
2020 Value
*GetFieldAsValue(FieldName Field
, Type
*IntPtrTy
) {
2028 case ScaledRegField
:
2031 return ConstantInt::get(IntPtrTy
, BaseOffs
);
2035 void SetCombinedField(FieldName Field
, Value
*V
,
2036 const SmallVectorImpl
<ExtAddrMode
> &AddrModes
) {
2039 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2041 case ExtAddrMode::BaseRegField
:
2044 case ExtAddrMode::BaseGVField
:
2045 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2046 // in the BaseReg field.
2047 assert(BaseReg
== nullptr);
2051 case ExtAddrMode::ScaledRegField
:
2053 // If we have a mix of scaled and unscaled addrmodes then we want scale
2054 // to be the scale and not zero.
2056 for (const ExtAddrMode
&AM
: AddrModes
)
2062 case ExtAddrMode::BaseOffsField
:
2063 // The offset is no longer a constant, so it goes in ScaledReg with a
2065 assert(ScaledReg
== nullptr);
2074 } // end anonymous namespace
2077 static inline raw_ostream
&operator<<(raw_ostream
&OS
, const ExtAddrMode
&AM
) {
2083 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2084 void ExtAddrMode::print(raw_ostream
&OS
) const {
2085 bool NeedPlus
= false;
2088 OS
<< (NeedPlus
? " + " : "")
2090 BaseGV
->printAsOperand(OS
, /*PrintType=*/false);
2095 OS
<< (NeedPlus
? " + " : "")
2101 OS
<< (NeedPlus
? " + " : "")
2103 BaseReg
->printAsOperand(OS
, /*PrintType=*/false);
2107 OS
<< (NeedPlus
? " + " : "")
2109 ScaledReg
->printAsOperand(OS
, /*PrintType=*/false);
2115 LLVM_DUMP_METHOD
void ExtAddrMode::dump() const {
2123 /// This class provides transaction based operation on the IR.
2124 /// Every change made through this class is recorded in the internal state and
2125 /// can be undone (rollback) until commit is called.
2126 class TypePromotionTransaction
{
2127 /// This represents the common interface of the individual transaction.
2128 /// Each class implements the logic for doing one specific modification on
2129 /// the IR via the TypePromotionTransaction.
2130 class TypePromotionAction
{
2132 /// The Instruction modified.
2136 /// Constructor of the action.
2137 /// The constructor performs the related action on the IR.
2138 TypePromotionAction(Instruction
*Inst
) : Inst(Inst
) {}
2140 virtual ~TypePromotionAction() = default;
2142 /// Undo the modification done by this action.
2143 /// When this method is called, the IR must be in the same state as it was
2144 /// before this action was applied.
2145 /// \pre Undoing the action works if and only if the IR is in the exact same
2146 /// state as it was directly after this action was applied.
2147 virtual void undo() = 0;
2149 /// Advocate every change made by this action.
2150 /// When the results on the IR of the action are to be kept, it is important
2151 /// to call this function, otherwise hidden information may be kept forever.
2152 virtual void commit() {
2153 // Nothing to be done, this action is not doing anything.
2157 /// Utility to remember the position of an instruction.
2158 class InsertionHandler
{
2159 /// Position of an instruction.
2160 /// Either an instruction:
2161 /// - Is the first in a basic block: BB is used.
2162 /// - Has a previous instruction: PrevInst is used.
2164 Instruction
*PrevInst
;
2168 /// Remember whether or not the instruction had a previous instruction.
2169 bool HasPrevInstruction
;
2172 /// Record the position of \p Inst.
2173 InsertionHandler(Instruction
*Inst
) {
2174 BasicBlock::iterator It
= Inst
->getIterator();
2175 HasPrevInstruction
= (It
!= (Inst
->getParent()->begin()));
2176 if (HasPrevInstruction
)
2177 Point
.PrevInst
= &*--It
;
2179 Point
.BB
= Inst
->getParent();
2182 /// Insert \p Inst at the recorded position.
2183 void insert(Instruction
*Inst
) {
2184 if (HasPrevInstruction
) {
2185 if (Inst
->getParent())
2186 Inst
->removeFromParent();
2187 Inst
->insertAfter(Point
.PrevInst
);
2189 Instruction
*Position
= &*Point
.BB
->getFirstInsertionPt();
2190 if (Inst
->getParent())
2191 Inst
->moveBefore(Position
);
2193 Inst
->insertBefore(Position
);
2198 /// Move an instruction before another.
2199 class InstructionMoveBefore
: public TypePromotionAction
{
2200 /// Original position of the instruction.
2201 InsertionHandler Position
;
2204 /// Move \p Inst before \p Before.
2205 InstructionMoveBefore(Instruction
*Inst
, Instruction
*Before
)
2206 : TypePromotionAction(Inst
), Position(Inst
) {
2207 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst
<< "\nbefore: " << *Before
2209 Inst
->moveBefore(Before
);
2212 /// Move the instruction back to its original position.
2213 void undo() override
{
2214 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst
<< "\n");
2215 Position
.insert(Inst
);
2219 /// Set the operand of an instruction with a new value.
2220 class OperandSetter
: public TypePromotionAction
{
2221 /// Original operand of the instruction.
2224 /// Index of the modified instruction.
2228 /// Set \p Idx operand of \p Inst with \p NewVal.
2229 OperandSetter(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
)
2230 : TypePromotionAction(Inst
), Idx(Idx
) {
2231 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx
<< "\n"
2232 << "for:" << *Inst
<< "\n"
2233 << "with:" << *NewVal
<< "\n");
2234 Origin
= Inst
->getOperand(Idx
);
2235 Inst
->setOperand(Idx
, NewVal
);
2238 /// Restore the original value of the instruction.
2239 void undo() override
{
2240 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx
<< "\n"
2241 << "for: " << *Inst
<< "\n"
2242 << "with: " << *Origin
<< "\n");
2243 Inst
->setOperand(Idx
, Origin
);
2247 /// Hide the operands of an instruction.
2248 /// Do as if this instruction was not using any of its operands.
2249 class OperandsHider
: public TypePromotionAction
{
2250 /// The list of original operands.
2251 SmallVector
<Value
*, 4> OriginalValues
;
2254 /// Remove \p Inst from the uses of the operands of \p Inst.
2255 OperandsHider(Instruction
*Inst
) : TypePromotionAction(Inst
) {
2256 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst
<< "\n");
2257 unsigned NumOpnds
= Inst
->getNumOperands();
2258 OriginalValues
.reserve(NumOpnds
);
2259 for (unsigned It
= 0; It
< NumOpnds
; ++It
) {
2260 // Save the current operand.
2261 Value
*Val
= Inst
->getOperand(It
);
2262 OriginalValues
.push_back(Val
);
2264 // We could use OperandSetter here, but that would imply an overhead
2265 // that we are not willing to pay.
2266 Inst
->setOperand(It
, UndefValue::get(Val
->getType()));
2270 /// Restore the original list of uses.
2271 void undo() override
{
2272 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst
<< "\n");
2273 for (unsigned It
= 0, EndIt
= OriginalValues
.size(); It
!= EndIt
; ++It
)
2274 Inst
->setOperand(It
, OriginalValues
[It
]);
2278 /// Build a truncate instruction.
2279 class TruncBuilder
: public TypePromotionAction
{
2283 /// Build a truncate instruction of \p Opnd producing a \p Ty
2285 /// trunc Opnd to Ty.
2286 TruncBuilder(Instruction
*Opnd
, Type
*Ty
) : TypePromotionAction(Opnd
) {
2287 IRBuilder
<> Builder(Opnd
);
2288 Val
= Builder
.CreateTrunc(Opnd
, Ty
, "promoted");
2289 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val
<< "\n");
2292 /// Get the built value.
2293 Value
*getBuiltValue() { return Val
; }
2295 /// Remove the built instruction.
2296 void undo() override
{
2297 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val
<< "\n");
2298 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2299 IVal
->eraseFromParent();
2303 /// Build a sign extension instruction.
2304 class SExtBuilder
: public TypePromotionAction
{
2308 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2310 /// sext Opnd to Ty.
2311 SExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
2312 : TypePromotionAction(InsertPt
) {
2313 IRBuilder
<> Builder(InsertPt
);
2314 Val
= Builder
.CreateSExt(Opnd
, Ty
, "promoted");
2315 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val
<< "\n");
2318 /// Get the built value.
2319 Value
*getBuiltValue() { return Val
; }
2321 /// Remove the built instruction.
2322 void undo() override
{
2323 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val
<< "\n");
2324 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2325 IVal
->eraseFromParent();
2329 /// Build a zero extension instruction.
2330 class ZExtBuilder
: public TypePromotionAction
{
2334 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2336 /// zext Opnd to Ty.
2337 ZExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
2338 : TypePromotionAction(InsertPt
) {
2339 IRBuilder
<> Builder(InsertPt
);
2340 Val
= Builder
.CreateZExt(Opnd
, Ty
, "promoted");
2341 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val
<< "\n");
2344 /// Get the built value.
2345 Value
*getBuiltValue() { return Val
; }
2347 /// Remove the built instruction.
2348 void undo() override
{
2349 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val
<< "\n");
2350 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2351 IVal
->eraseFromParent();
2355 /// Mutate an instruction to another type.
2356 class TypeMutator
: public TypePromotionAction
{
2357 /// Record the original type.
2361 /// Mutate the type of \p Inst into \p NewTy.
2362 TypeMutator(Instruction
*Inst
, Type
*NewTy
)
2363 : TypePromotionAction(Inst
), OrigTy(Inst
->getType()) {
2364 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst
<< " with " << *NewTy
2366 Inst
->mutateType(NewTy
);
2369 /// Mutate the instruction back to its original type.
2370 void undo() override
{
2371 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst
<< " with " << *OrigTy
2373 Inst
->mutateType(OrigTy
);
2377 /// Replace the uses of an instruction by another instruction.
2378 class UsesReplacer
: public TypePromotionAction
{
2379 /// Helper structure to keep track of the replaced uses.
2380 struct InstructionAndIdx
{
2381 /// The instruction using the instruction.
2384 /// The index where this instruction is used for Inst.
2387 InstructionAndIdx(Instruction
*Inst
, unsigned Idx
)
2388 : Inst(Inst
), Idx(Idx
) {}
2391 /// Keep track of the original uses (pair Instruction, Index).
2392 SmallVector
<InstructionAndIdx
, 4> OriginalUses
;
2393 /// Keep track of the debug users.
2394 SmallVector
<DbgValueInst
*, 1> DbgValues
;
2396 using use_iterator
= SmallVectorImpl
<InstructionAndIdx
>::iterator
;
2399 /// Replace all the use of \p Inst by \p New.
2400 UsesReplacer(Instruction
*Inst
, Value
*New
) : TypePromotionAction(Inst
) {
2401 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst
<< " with " << *New
2403 // Record the original uses.
2404 for (Use
&U
: Inst
->uses()) {
2405 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
2406 OriginalUses
.push_back(InstructionAndIdx(UserI
, U
.getOperandNo()));
2408 // Record the debug uses separately. They are not in the instruction's
2409 // use list, but they are replaced by RAUW.
2410 findDbgValues(DbgValues
, Inst
);
2412 // Now, we can replace the uses.
2413 Inst
->replaceAllUsesWith(New
);
2416 /// Reassign the original uses of Inst to Inst.
2417 void undo() override
{
2418 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst
<< "\n");
2419 for (use_iterator UseIt
= OriginalUses
.begin(),
2420 EndIt
= OriginalUses
.end();
2421 UseIt
!= EndIt
; ++UseIt
) {
2422 UseIt
->Inst
->setOperand(UseIt
->Idx
, Inst
);
2424 // RAUW has replaced all original uses with references to the new value,
2425 // including the debug uses. Since we are undoing the replacements,
2426 // the original debug uses must also be reinstated to maintain the
2427 // correctness and utility of debug value instructions.
2428 for (auto *DVI
: DbgValues
) {
2429 LLVMContext
&Ctx
= Inst
->getType()->getContext();
2430 auto *MV
= MetadataAsValue::get(Ctx
, ValueAsMetadata::get(Inst
));
2431 DVI
->setOperand(0, MV
);
2436 /// Remove an instruction from the IR.
2437 class InstructionRemover
: public TypePromotionAction
{
2438 /// Original position of the instruction.
2439 InsertionHandler Inserter
;
2441 /// Helper structure to hide all the link to the instruction. In other
2442 /// words, this helps to do as if the instruction was removed.
2443 OperandsHider Hider
;
2445 /// Keep track of the uses replaced, if any.
2446 UsesReplacer
*Replacer
= nullptr;
2448 /// Keep track of instructions removed.
2449 SetOfInstrs
&RemovedInsts
;
2452 /// Remove all reference of \p Inst and optionally replace all its
2454 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2455 /// \pre If !Inst->use_empty(), then New != nullptr
2456 InstructionRemover(Instruction
*Inst
, SetOfInstrs
&RemovedInsts
,
2457 Value
*New
= nullptr)
2458 : TypePromotionAction(Inst
), Inserter(Inst
), Hider(Inst
),
2459 RemovedInsts(RemovedInsts
) {
2461 Replacer
= new UsesReplacer(Inst
, New
);
2462 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst
<< "\n");
2463 RemovedInsts
.insert(Inst
);
2464 /// The instructions removed here will be freed after completing
2465 /// optimizeBlock() for all blocks as we need to keep track of the
2466 /// removed instructions during promotion.
2467 Inst
->removeFromParent();
2470 ~InstructionRemover() override
{ delete Replacer
; }
2472 /// Resurrect the instruction and reassign it to the proper uses if
2473 /// new value was provided when build this action.
2474 void undo() override
{
2475 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst
<< "\n");
2476 Inserter
.insert(Inst
);
2480 RemovedInsts
.erase(Inst
);
2485 /// Restoration point.
2486 /// The restoration point is a pointer to an action instead of an iterator
2487 /// because the iterator may be invalidated but not the pointer.
2488 using ConstRestorationPt
= const TypePromotionAction
*;
2490 TypePromotionTransaction(SetOfInstrs
&RemovedInsts
)
2491 : RemovedInsts(RemovedInsts
) {}
2493 /// Advocate every changes made in that transaction.
2496 /// Undo all the changes made after the given point.
2497 void rollback(ConstRestorationPt Point
);
2499 /// Get the current restoration point.
2500 ConstRestorationPt
getRestorationPoint() const;
2502 /// \name API for IR modification with state keeping to support rollback.
2504 /// Same as Instruction::setOperand.
2505 void setOperand(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
);
2507 /// Same as Instruction::eraseFromParent.
2508 void eraseInstruction(Instruction
*Inst
, Value
*NewVal
= nullptr);
2510 /// Same as Value::replaceAllUsesWith.
2511 void replaceAllUsesWith(Instruction
*Inst
, Value
*New
);
2513 /// Same as Value::mutateType.
2514 void mutateType(Instruction
*Inst
, Type
*NewTy
);
2516 /// Same as IRBuilder::createTrunc.
2517 Value
*createTrunc(Instruction
*Opnd
, Type
*Ty
);
2519 /// Same as IRBuilder::createSExt.
2520 Value
*createSExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
2522 /// Same as IRBuilder::createZExt.
2523 Value
*createZExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
2525 /// Same as Instruction::moveBefore.
2526 void moveBefore(Instruction
*Inst
, Instruction
*Before
);
2530 /// The ordered list of actions made so far.
2531 SmallVector
<std::unique_ptr
<TypePromotionAction
>, 16> Actions
;
2533 using CommitPt
= SmallVectorImpl
<std::unique_ptr
<TypePromotionAction
>>::iterator
;
2535 SetOfInstrs
&RemovedInsts
;
2538 } // end anonymous namespace
2540 void TypePromotionTransaction::setOperand(Instruction
*Inst
, unsigned Idx
,
2542 Actions
.push_back(llvm::make_unique
<TypePromotionTransaction::OperandSetter
>(
2543 Inst
, Idx
, NewVal
));
2546 void TypePromotionTransaction::eraseInstruction(Instruction
*Inst
,
2549 llvm::make_unique
<TypePromotionTransaction::InstructionRemover
>(
2550 Inst
, RemovedInsts
, NewVal
));
2553 void TypePromotionTransaction::replaceAllUsesWith(Instruction
*Inst
,
2556 llvm::make_unique
<TypePromotionTransaction::UsesReplacer
>(Inst
, New
));
2559 void TypePromotionTransaction::mutateType(Instruction
*Inst
, Type
*NewTy
) {
2561 llvm::make_unique
<TypePromotionTransaction::TypeMutator
>(Inst
, NewTy
));
2564 Value
*TypePromotionTransaction::createTrunc(Instruction
*Opnd
,
2566 std::unique_ptr
<TruncBuilder
> Ptr(new TruncBuilder(Opnd
, Ty
));
2567 Value
*Val
= Ptr
->getBuiltValue();
2568 Actions
.push_back(std::move(Ptr
));
2572 Value
*TypePromotionTransaction::createSExt(Instruction
*Inst
,
2573 Value
*Opnd
, Type
*Ty
) {
2574 std::unique_ptr
<SExtBuilder
> Ptr(new SExtBuilder(Inst
, Opnd
, Ty
));
2575 Value
*Val
= Ptr
->getBuiltValue();
2576 Actions
.push_back(std::move(Ptr
));
2580 Value
*TypePromotionTransaction::createZExt(Instruction
*Inst
,
2581 Value
*Opnd
, Type
*Ty
) {
2582 std::unique_ptr
<ZExtBuilder
> Ptr(new ZExtBuilder(Inst
, Opnd
, Ty
));
2583 Value
*Val
= Ptr
->getBuiltValue();
2584 Actions
.push_back(std::move(Ptr
));
2588 void TypePromotionTransaction::moveBefore(Instruction
*Inst
,
2589 Instruction
*Before
) {
2591 llvm::make_unique
<TypePromotionTransaction::InstructionMoveBefore
>(
2595 TypePromotionTransaction::ConstRestorationPt
2596 TypePromotionTransaction::getRestorationPoint() const {
2597 return !Actions
.empty() ? Actions
.back().get() : nullptr;
2600 void TypePromotionTransaction::commit() {
2601 for (CommitPt It
= Actions
.begin(), EndIt
= Actions
.end(); It
!= EndIt
;
2607 void TypePromotionTransaction::rollback(
2608 TypePromotionTransaction::ConstRestorationPt Point
) {
2609 while (!Actions
.empty() && Point
!= Actions
.back().get()) {
2610 std::unique_ptr
<TypePromotionAction
> Curr
= Actions
.pop_back_val();
2617 /// A helper class for matching addressing modes.
2619 /// This encapsulates the logic for matching the target-legal addressing modes.
2620 class AddressingModeMatcher
{
2621 SmallVectorImpl
<Instruction
*> &AddrModeInsts
;
2622 const TargetLowering
&TLI
;
2623 const TargetRegisterInfo
&TRI
;
2624 const DataLayout
&DL
;
2626 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2627 /// the memory instruction that we're computing this address for.
2630 Instruction
*MemoryInst
;
2632 /// This is the addressing mode that we're building up. This is
2633 /// part of the return value of this addressing mode matching stuff.
2634 ExtAddrMode
&AddrMode
;
2636 /// The instructions inserted by other CodeGenPrepare optimizations.
2637 const SetOfInstrs
&InsertedInsts
;
2639 /// A map from the instructions to their type before promotion.
2640 InstrToOrigTy
&PromotedInsts
;
2642 /// The ongoing transaction where every action should be registered.
2643 TypePromotionTransaction
&TPT
;
2645 // A GEP which has too large offset to be folded into the addressing mode.
2646 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
;
2648 /// This is set to true when we should not do profitability checks.
2649 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2650 bool IgnoreProfitability
;
2652 AddressingModeMatcher(
2653 SmallVectorImpl
<Instruction
*> &AMI
, const TargetLowering
&TLI
,
2654 const TargetRegisterInfo
&TRI
, Type
*AT
, unsigned AS
, Instruction
*MI
,
2655 ExtAddrMode
&AM
, const SetOfInstrs
&InsertedInsts
,
2656 InstrToOrigTy
&PromotedInsts
, TypePromotionTransaction
&TPT
,
2657 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
)
2658 : AddrModeInsts(AMI
), TLI(TLI
), TRI(TRI
),
2659 DL(MI
->getModule()->getDataLayout()), AccessTy(AT
), AddrSpace(AS
),
2660 MemoryInst(MI
), AddrMode(AM
), InsertedInsts(InsertedInsts
),
2661 PromotedInsts(PromotedInsts
), TPT(TPT
), LargeOffsetGEP(LargeOffsetGEP
) {
2662 IgnoreProfitability
= false;
2666 /// Find the maximal addressing mode that a load/store of V can fold,
2667 /// give an access type of AccessTy. This returns a list of involved
2668 /// instructions in AddrModeInsts.
2669 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2671 /// \p PromotedInsts maps the instructions to their type before promotion.
2672 /// \p The ongoing transaction where every action should be registered.
2674 Match(Value
*V
, Type
*AccessTy
, unsigned AS
, Instruction
*MemoryInst
,
2675 SmallVectorImpl
<Instruction
*> &AddrModeInsts
,
2676 const TargetLowering
&TLI
, const TargetRegisterInfo
&TRI
,
2677 const SetOfInstrs
&InsertedInsts
, InstrToOrigTy
&PromotedInsts
,
2678 TypePromotionTransaction
&TPT
,
2679 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
) {
2682 bool Success
= AddressingModeMatcher(AddrModeInsts
, TLI
, TRI
, AccessTy
, AS
,
2683 MemoryInst
, Result
, InsertedInsts
,
2684 PromotedInsts
, TPT
, LargeOffsetGEP
)
2686 (void)Success
; assert(Success
&& "Couldn't select *anything*?");
2691 bool matchScaledValue(Value
*ScaleReg
, int64_t Scale
, unsigned Depth
);
2692 bool matchAddr(Value
*Addr
, unsigned Depth
);
2693 bool matchOperationAddr(User
*AddrInst
, unsigned Opcode
, unsigned Depth
,
2694 bool *MovedAway
= nullptr);
2695 bool isProfitableToFoldIntoAddressingMode(Instruction
*I
,
2696 ExtAddrMode
&AMBefore
,
2697 ExtAddrMode
&AMAfter
);
2698 bool valueAlreadyLiveAtInst(Value
*Val
, Value
*KnownLive1
, Value
*KnownLive2
);
2699 bool isPromotionProfitable(unsigned NewCost
, unsigned OldCost
,
2700 Value
*PromotedOperand
) const;
2705 /// An iterator for PhiNodeSet.
2706 class PhiNodeSetIterator
{
2707 PhiNodeSet
* const Set
;
2708 size_t CurrentIndex
= 0;
2711 /// The constructor. Start should point to either a valid element, or be equal
2712 /// to the size of the underlying SmallVector of the PhiNodeSet.
2713 PhiNodeSetIterator(PhiNodeSet
* const Set
, size_t Start
);
2714 PHINode
* operator*() const;
2715 PhiNodeSetIterator
& operator++();
2716 bool operator==(const PhiNodeSetIterator
&RHS
) const;
2717 bool operator!=(const PhiNodeSetIterator
&RHS
) const;
2720 /// Keeps a set of PHINodes.
2722 /// This is a minimal set implementation for a specific use case:
2723 /// It is very fast when there are very few elements, but also provides good
2724 /// performance when there are many. It is similar to SmallPtrSet, but also
2725 /// provides iteration by insertion order, which is deterministic and stable
2726 /// across runs. It is also similar to SmallSetVector, but provides removing
2727 /// elements in O(1) time. This is achieved by not actually removing the element
2728 /// from the underlying vector, so comes at the cost of using more memory, but
2729 /// that is fine, since PhiNodeSets are used as short lived objects.
2731 friend class PhiNodeSetIterator
;
2733 using MapType
= SmallDenseMap
<PHINode
*, size_t, 32>;
2734 using iterator
= PhiNodeSetIterator
;
2736 /// Keeps the elements in the order of their insertion in the underlying
2737 /// vector. To achieve constant time removal, it never deletes any element.
2738 SmallVector
<PHINode
*, 32> NodeList
;
2740 /// Keeps the elements in the underlying set implementation. This (and not the
2741 /// NodeList defined above) is the source of truth on whether an element
2742 /// is actually in the collection.
2745 /// Points to the first valid (not deleted) element when the set is not empty
2746 /// and the value is not zero. Equals to the size of the underlying vector
2747 /// when the set is empty. When the value is 0, as in the beginning, the
2748 /// first element may or may not be valid.
2749 size_t FirstValidElement
= 0;
2752 /// Inserts a new element to the collection.
2753 /// \returns true if the element is actually added, i.e. was not in the
2754 /// collection before the operation.
2755 bool insert(PHINode
*Ptr
) {
2756 if (NodeMap
.insert(std::make_pair(Ptr
, NodeList
.size())).second
) {
2757 NodeList
.push_back(Ptr
);
2763 /// Removes the element from the collection.
2764 /// \returns whether the element is actually removed, i.e. was in the
2765 /// collection before the operation.
2766 bool erase(PHINode
*Ptr
) {
2767 auto it
= NodeMap
.find(Ptr
);
2768 if (it
!= NodeMap
.end()) {
2770 SkipRemovedElements(FirstValidElement
);
2776 /// Removes all elements and clears the collection.
2780 FirstValidElement
= 0;
2783 /// \returns an iterator that will iterate the elements in the order of
2786 if (FirstValidElement
== 0)
2787 SkipRemovedElements(FirstValidElement
);
2788 return PhiNodeSetIterator(this, FirstValidElement
);
2791 /// \returns an iterator that points to the end of the collection.
2792 iterator
end() { return PhiNodeSetIterator(this, NodeList
.size()); }
2794 /// Returns the number of elements in the collection.
2795 size_t size() const {
2796 return NodeMap
.size();
2799 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2800 size_t count(PHINode
*Ptr
) const {
2801 return NodeMap
.count(Ptr
);
2805 /// Updates the CurrentIndex so that it will point to a valid element.
2807 /// If the element of NodeList at CurrentIndex is valid, it does not
2808 /// change it. If there are no more valid elements, it updates CurrentIndex
2809 /// to point to the end of the NodeList.
2810 void SkipRemovedElements(size_t &CurrentIndex
) {
2811 while (CurrentIndex
< NodeList
.size()) {
2812 auto it
= NodeMap
.find(NodeList
[CurrentIndex
]);
2813 // If the element has been deleted and added again later, NodeMap will
2814 // point to a different index, so CurrentIndex will still be invalid.
2815 if (it
!= NodeMap
.end() && it
->second
== CurrentIndex
)
2822 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet
*const Set
, size_t Start
)
2823 : Set(Set
), CurrentIndex(Start
) {}
2825 PHINode
* PhiNodeSetIterator::operator*() const {
2826 assert(CurrentIndex
< Set
->NodeList
.size() &&
2827 "PhiNodeSet access out of range");
2828 return Set
->NodeList
[CurrentIndex
];
2831 PhiNodeSetIterator
& PhiNodeSetIterator::operator++() {
2832 assert(CurrentIndex
< Set
->NodeList
.size() &&
2833 "PhiNodeSet access out of range");
2835 Set
->SkipRemovedElements(CurrentIndex
);
2839 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator
&RHS
) const {
2840 return CurrentIndex
== RHS
.CurrentIndex
;
2843 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator
&RHS
) const {
2844 return !((*this) == RHS
);
2847 /// Keep track of simplification of Phi nodes.
2848 /// Accept the set of all phi nodes and erase phi node from this set
2849 /// if it is simplified.
2850 class SimplificationTracker
{
2851 DenseMap
<Value
*, Value
*> Storage
;
2852 const SimplifyQuery
&SQ
;
2853 // Tracks newly created Phi nodes. The elements are iterated by insertion
2855 PhiNodeSet AllPhiNodes
;
2856 // Tracks newly created Select nodes.
2857 SmallPtrSet
<SelectInst
*, 32> AllSelectNodes
;
2860 SimplificationTracker(const SimplifyQuery
&sq
)
2863 Value
*Get(Value
*V
) {
2865 auto SV
= Storage
.find(V
);
2866 if (SV
== Storage
.end())
2872 Value
*Simplify(Value
*Val
) {
2873 SmallVector
<Value
*, 32> WorkList
;
2874 SmallPtrSet
<Value
*, 32> Visited
;
2875 WorkList
.push_back(Val
);
2876 while (!WorkList
.empty()) {
2877 auto P
= WorkList
.pop_back_val();
2878 if (!Visited
.insert(P
).second
)
2880 if (auto *PI
= dyn_cast
<Instruction
>(P
))
2881 if (Value
*V
= SimplifyInstruction(cast
<Instruction
>(PI
), SQ
)) {
2882 for (auto *U
: PI
->users())
2883 WorkList
.push_back(cast
<Value
>(U
));
2885 PI
->replaceAllUsesWith(V
);
2886 if (auto *PHI
= dyn_cast
<PHINode
>(PI
))
2887 AllPhiNodes
.erase(PHI
);
2888 if (auto *Select
= dyn_cast
<SelectInst
>(PI
))
2889 AllSelectNodes
.erase(Select
);
2890 PI
->eraseFromParent();
2896 void Put(Value
*From
, Value
*To
) {
2897 Storage
.insert({ From
, To
});
2900 void ReplacePhi(PHINode
*From
, PHINode
*To
) {
2901 Value
* OldReplacement
= Get(From
);
2902 while (OldReplacement
!= From
) {
2904 To
= dyn_cast
<PHINode
>(OldReplacement
);
2905 OldReplacement
= Get(From
);
2907 assert(Get(To
) == To
&& "Replacement PHI node is already replaced.");
2909 From
->replaceAllUsesWith(To
);
2910 AllPhiNodes
.erase(From
);
2911 From
->eraseFromParent();
2914 PhiNodeSet
& newPhiNodes() { return AllPhiNodes
; }
2916 void insertNewPhi(PHINode
*PN
) { AllPhiNodes
.insert(PN
); }
2918 void insertNewSelect(SelectInst
*SI
) { AllSelectNodes
.insert(SI
); }
2920 unsigned countNewPhiNodes() const { return AllPhiNodes
.size(); }
2922 unsigned countNewSelectNodes() const { return AllSelectNodes
.size(); }
2924 void destroyNewNodes(Type
*CommonType
) {
2925 // For safe erasing, replace the uses with dummy value first.
2926 auto Dummy
= UndefValue::get(CommonType
);
2927 for (auto I
: AllPhiNodes
) {
2928 I
->replaceAllUsesWith(Dummy
);
2929 I
->eraseFromParent();
2931 AllPhiNodes
.clear();
2932 for (auto I
: AllSelectNodes
) {
2933 I
->replaceAllUsesWith(Dummy
);
2934 I
->eraseFromParent();
2936 AllSelectNodes
.clear();
2940 /// A helper class for combining addressing modes.
2941 class AddressingModeCombiner
{
2942 typedef DenseMap
<Value
*, Value
*> FoldAddrToValueMapping
;
2943 typedef std::pair
<PHINode
*, PHINode
*> PHIPair
;
2946 /// The addressing modes we've collected.
2947 SmallVector
<ExtAddrMode
, 16> AddrModes
;
2949 /// The field in which the AddrModes differ, when we have more than one.
2950 ExtAddrMode::FieldName DifferentField
= ExtAddrMode::NoField
;
2952 /// Are the AddrModes that we have all just equal to their original values?
2953 bool AllAddrModesTrivial
= true;
2955 /// Common Type for all different fields in addressing modes.
2958 /// SimplifyQuery for simplifyInstruction utility.
2959 const SimplifyQuery
&SQ
;
2961 /// Original Address.
2965 AddressingModeCombiner(const SimplifyQuery
&_SQ
, Value
*OriginalValue
)
2966 : CommonType(nullptr), SQ(_SQ
), Original(OriginalValue
) {}
2968 /// Get the combined AddrMode
2969 const ExtAddrMode
&getAddrMode() const {
2970 return AddrModes
[0];
2973 /// Add a new AddrMode if it's compatible with the AddrModes we already
2975 /// \return True iff we succeeded in doing so.
2976 bool addNewAddrMode(ExtAddrMode
&NewAddrMode
) {
2977 // Take note of if we have any non-trivial AddrModes, as we need to detect
2978 // when all AddrModes are trivial as then we would introduce a phi or select
2979 // which just duplicates what's already there.
2980 AllAddrModesTrivial
= AllAddrModesTrivial
&& NewAddrMode
.isTrivial();
2982 // If this is the first addrmode then everything is fine.
2983 if (AddrModes
.empty()) {
2984 AddrModes
.emplace_back(NewAddrMode
);
2988 // Figure out how different this is from the other address modes, which we
2989 // can do just by comparing against the first one given that we only care
2990 // about the cumulative difference.
2991 ExtAddrMode::FieldName ThisDifferentField
=
2992 AddrModes
[0].compare(NewAddrMode
);
2993 if (DifferentField
== ExtAddrMode::NoField
)
2994 DifferentField
= ThisDifferentField
;
2995 else if (DifferentField
!= ThisDifferentField
)
2996 DifferentField
= ExtAddrMode::MultipleFields
;
2998 // If NewAddrMode differs in more than one dimension we cannot handle it.
2999 bool CanHandle
= DifferentField
!= ExtAddrMode::MultipleFields
;
3001 // If Scale Field is different then we reject.
3002 CanHandle
= CanHandle
&& DifferentField
!= ExtAddrMode::ScaleField
;
3004 // We also must reject the case when base offset is different and
3005 // scale reg is not null, we cannot handle this case due to merge of
3006 // different offsets will be used as ScaleReg.
3007 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseOffsField
||
3008 !NewAddrMode
.ScaledReg
);
3010 // We also must reject the case when GV is different and BaseReg installed
3011 // due to we want to use base reg as a merge of GV values.
3012 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseGVField
||
3013 !NewAddrMode
.HasBaseReg
);
3015 // Even if NewAddMode is the same we still need to collect it due to
3016 // original value is different. And later we will need all original values
3017 // as anchors during finding the common Phi node.
3019 AddrModes
.emplace_back(NewAddrMode
);
3026 /// Combine the addressing modes we've collected into a single
3027 /// addressing mode.
3028 /// \return True iff we successfully combined them or we only had one so
3029 /// didn't need to combine them anyway.
3030 bool combineAddrModes() {
3031 // If we have no AddrModes then they can't be combined.
3032 if (AddrModes
.size() == 0)
3035 // A single AddrMode can trivially be combined.
3036 if (AddrModes
.size() == 1 || DifferentField
== ExtAddrMode::NoField
)
3039 // If the AddrModes we collected are all just equal to the value they are
3040 // derived from then combining them wouldn't do anything useful.
3041 if (AllAddrModesTrivial
)
3044 if (!addrModeCombiningAllowed())
3047 // Build a map between <original value, basic block where we saw it> to
3048 // value of base register.
3049 // Bail out if there is no common type.
3050 FoldAddrToValueMapping Map
;
3051 if (!initializeMap(Map
))
3054 Value
*CommonValue
= findCommon(Map
);
3056 AddrModes
[0].SetCombinedField(DifferentField
, CommonValue
, AddrModes
);
3057 return CommonValue
!= nullptr;
3061 /// Initialize Map with anchor values. For address seen
3062 /// we set the value of different field saw in this address.
3063 /// At the same time we find a common type for different field we will
3064 /// use to create new Phi/Select nodes. Keep it in CommonType field.
3065 /// Return false if there is no common type found.
3066 bool initializeMap(FoldAddrToValueMapping
&Map
) {
3067 // Keep track of keys where the value is null. We will need to replace it
3068 // with constant null when we know the common type.
3069 SmallVector
<Value
*, 2> NullValue
;
3070 Type
*IntPtrTy
= SQ
.DL
.getIntPtrType(AddrModes
[0].OriginalValue
->getType());
3071 for (auto &AM
: AddrModes
) {
3072 Value
*DV
= AM
.GetFieldAsValue(DifferentField
, IntPtrTy
);
3074 auto *Type
= DV
->getType();
3075 if (CommonType
&& CommonType
!= Type
)
3078 Map
[AM
.OriginalValue
] = DV
;
3080 NullValue
.push_back(AM
.OriginalValue
);
3083 assert(CommonType
&& "At least one non-null value must be!");
3084 for (auto *V
: NullValue
)
3085 Map
[V
] = Constant::getNullValue(CommonType
);
3089 /// We have mapping between value A and other value B where B was a field in
3090 /// addressing mode represented by A. Also we have an original value C
3091 /// representing an address we start with. Traversing from C through phi and
3092 /// selects we ended up with A's in a map. This utility function tries to find
3093 /// a value V which is a field in addressing mode C and traversing through phi
3094 /// nodes and selects we will end up in corresponded values B in a map.
3095 /// The utility will create a new Phi/Selects if needed.
3096 // The simple example looks as follows:
3104 // p = phi [p1, BB1], [p2, BB2]
3111 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3112 Value
*findCommon(FoldAddrToValueMapping
&Map
) {
3113 // Tracks the simplification of newly created phi nodes. The reason we use
3114 // this mapping is because we will add new created Phi nodes in AddrToBase.
3115 // Simplification of Phi nodes is recursive, so some Phi node may
3116 // be simplified after we added it to AddrToBase. In reality this
3117 // simplification is possible only if original phi/selects were not
3119 // Using this mapping we can find the current value in AddrToBase.
3120 SimplificationTracker
ST(SQ
);
3122 // First step, DFS to create PHI nodes for all intermediate blocks.
3123 // Also fill traverse order for the second step.
3124 SmallVector
<Value
*, 32> TraverseOrder
;
3125 InsertPlaceholders(Map
, TraverseOrder
, ST
);
3127 // Second Step, fill new nodes by merged values and simplify if possible.
3128 FillPlaceholders(Map
, TraverseOrder
, ST
);
3130 if (!AddrSinkNewSelects
&& ST
.countNewSelectNodes() > 0) {
3131 ST
.destroyNewNodes(CommonType
);
3135 // Now we'd like to match New Phi nodes to existed ones.
3136 unsigned PhiNotMatchedCount
= 0;
3137 if (!MatchPhiSet(ST
, AddrSinkNewPhis
, PhiNotMatchedCount
)) {
3138 ST
.destroyNewNodes(CommonType
);
3142 auto *Result
= ST
.Get(Map
.find(Original
)->second
);
3144 NumMemoryInstsPhiCreated
+= ST
.countNewPhiNodes() + PhiNotMatchedCount
;
3145 NumMemoryInstsSelectCreated
+= ST
.countNewSelectNodes();
3150 /// Try to match PHI node to Candidate.
3151 /// Matcher tracks the matched Phi nodes.
3152 bool MatchPhiNode(PHINode
*PHI
, PHINode
*Candidate
,
3153 SmallSetVector
<PHIPair
, 8> &Matcher
,
3154 PhiNodeSet
&PhiNodesToMatch
) {
3155 SmallVector
<PHIPair
, 8> WorkList
;
3156 Matcher
.insert({ PHI
, Candidate
});
3157 WorkList
.push_back({ PHI
, Candidate
});
3158 SmallSet
<PHIPair
, 8> Visited
;
3159 while (!WorkList
.empty()) {
3160 auto Item
= WorkList
.pop_back_val();
3161 if (!Visited
.insert(Item
).second
)
3163 // We iterate over all incoming values to Phi to compare them.
3164 // If values are different and both of them Phi and the first one is a
3165 // Phi we added (subject to match) and both of them is in the same basic
3166 // block then we can match our pair if values match. So we state that
3167 // these values match and add it to work list to verify that.
3168 for (auto B
: Item
.first
->blocks()) {
3169 Value
*FirstValue
= Item
.first
->getIncomingValueForBlock(B
);
3170 Value
*SecondValue
= Item
.second
->getIncomingValueForBlock(B
);
3171 if (FirstValue
== SecondValue
)
3174 PHINode
*FirstPhi
= dyn_cast
<PHINode
>(FirstValue
);
3175 PHINode
*SecondPhi
= dyn_cast
<PHINode
>(SecondValue
);
3177 // One of them is not Phi or
3178 // The first one is not Phi node from the set we'd like to match or
3179 // Phi nodes from different basic blocks then
3180 // we will not be able to match.
3181 if (!FirstPhi
|| !SecondPhi
|| !PhiNodesToMatch
.count(FirstPhi
) ||
3182 FirstPhi
->getParent() != SecondPhi
->getParent())
3185 // If we already matched them then continue.
3186 if (Matcher
.count({ FirstPhi
, SecondPhi
}))
3188 // So the values are different and does not match. So we need them to
3190 Matcher
.insert({ FirstPhi
, SecondPhi
});
3191 // But me must check it.
3192 WorkList
.push_back({ FirstPhi
, SecondPhi
});
3198 /// For the given set of PHI nodes (in the SimplificationTracker) try
3199 /// to find their equivalents.
3200 /// Returns false if this matching fails and creation of new Phi is disabled.
3201 bool MatchPhiSet(SimplificationTracker
&ST
, bool AllowNewPhiNodes
,
3202 unsigned &PhiNotMatchedCount
) {
3203 // Matched and PhiNodesToMatch iterate their elements in a deterministic
3204 // order, so the replacements (ReplacePhi) are also done in a deterministic
3206 SmallSetVector
<PHIPair
, 8> Matched
;
3207 SmallPtrSet
<PHINode
*, 8> WillNotMatch
;
3208 PhiNodeSet
&PhiNodesToMatch
= ST
.newPhiNodes();
3209 while (PhiNodesToMatch
.size()) {
3210 PHINode
*PHI
= *PhiNodesToMatch
.begin();
3212 // Add us, if no Phi nodes in the basic block we do not match.
3213 WillNotMatch
.clear();
3214 WillNotMatch
.insert(PHI
);
3216 // Traverse all Phis until we found equivalent or fail to do that.
3217 bool IsMatched
= false;
3218 for (auto &P
: PHI
->getParent()->phis()) {
3221 if ((IsMatched
= MatchPhiNode(PHI
, &P
, Matched
, PhiNodesToMatch
)))
3223 // If it does not match, collect all Phi nodes from matcher.
3224 // if we end up with no match, them all these Phi nodes will not match
3226 for (auto M
: Matched
)
3227 WillNotMatch
.insert(M
.first
);
3231 // Replace all matched values and erase them.
3232 for (auto MV
: Matched
)
3233 ST
.ReplacePhi(MV
.first
, MV
.second
);
3237 // If we are not allowed to create new nodes then bail out.
3238 if (!AllowNewPhiNodes
)
3240 // Just remove all seen values in matcher. They will not match anything.
3241 PhiNotMatchedCount
+= WillNotMatch
.size();
3242 for (auto *P
: WillNotMatch
)
3243 PhiNodesToMatch
.erase(P
);
3247 /// Fill the placeholders with values from predecessors and simplify them.
3248 void FillPlaceholders(FoldAddrToValueMapping
&Map
,
3249 SmallVectorImpl
<Value
*> &TraverseOrder
,
3250 SimplificationTracker
&ST
) {
3251 while (!TraverseOrder
.empty()) {
3252 Value
*Current
= TraverseOrder
.pop_back_val();
3253 assert(Map
.find(Current
) != Map
.end() && "No node to fill!!!");
3254 Value
*V
= Map
[Current
];
3256 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(V
)) {
3257 // CurrentValue also must be Select.
3258 auto *CurrentSelect
= cast
<SelectInst
>(Current
);
3259 auto *TrueValue
= CurrentSelect
->getTrueValue();
3260 assert(Map
.find(TrueValue
) != Map
.end() && "No True Value!");
3261 Select
->setTrueValue(ST
.Get(Map
[TrueValue
]));
3262 auto *FalseValue
= CurrentSelect
->getFalseValue();
3263 assert(Map
.find(FalseValue
) != Map
.end() && "No False Value!");
3264 Select
->setFalseValue(ST
.Get(Map
[FalseValue
]));
3266 // Must be a Phi node then.
3267 PHINode
*PHI
= cast
<PHINode
>(V
);
3268 auto *CurrentPhi
= dyn_cast
<PHINode
>(Current
);
3269 // Fill the Phi node with values from predecessors.
3270 for (auto B
: predecessors(PHI
->getParent())) {
3271 Value
*PV
= CurrentPhi
->getIncomingValueForBlock(B
);
3272 assert(Map
.find(PV
) != Map
.end() && "No predecessor Value!");
3273 PHI
->addIncoming(ST
.Get(Map
[PV
]), B
);
3276 Map
[Current
] = ST
.Simplify(V
);
3280 /// Starting from original value recursively iterates over def-use chain up to
3281 /// known ending values represented in a map. For each traversed phi/select
3282 /// inserts a placeholder Phi or Select.
3283 /// Reports all new created Phi/Select nodes by adding them to set.
3284 /// Also reports and order in what values have been traversed.
3285 void InsertPlaceholders(FoldAddrToValueMapping
&Map
,
3286 SmallVectorImpl
<Value
*> &TraverseOrder
,
3287 SimplificationTracker
&ST
) {
3288 SmallVector
<Value
*, 32> Worklist
;
3289 assert((isa
<PHINode
>(Original
) || isa
<SelectInst
>(Original
)) &&
3290 "Address must be a Phi or Select node");
3291 auto *Dummy
= UndefValue::get(CommonType
);
3292 Worklist
.push_back(Original
);
3293 while (!Worklist
.empty()) {
3294 Value
*Current
= Worklist
.pop_back_val();
3295 // if it is already visited or it is an ending value then skip it.
3296 if (Map
.find(Current
) != Map
.end())
3298 TraverseOrder
.push_back(Current
);
3300 // CurrentValue must be a Phi node or select. All others must be covered
3302 if (SelectInst
*CurrentSelect
= dyn_cast
<SelectInst
>(Current
)) {
3303 // Is it OK to get metadata from OrigSelect?!
3304 // Create a Select placeholder with dummy value.
3305 SelectInst
*Select
= SelectInst::Create(
3306 CurrentSelect
->getCondition(), Dummy
, Dummy
,
3307 CurrentSelect
->getName(), CurrentSelect
, CurrentSelect
);
3308 Map
[Current
] = Select
;
3309 ST
.insertNewSelect(Select
);
3310 // We are interested in True and False values.
3311 Worklist
.push_back(CurrentSelect
->getTrueValue());
3312 Worklist
.push_back(CurrentSelect
->getFalseValue());
3314 // It must be a Phi node then.
3315 PHINode
*CurrentPhi
= cast
<PHINode
>(Current
);
3316 unsigned PredCount
= CurrentPhi
->getNumIncomingValues();
3318 PHINode::Create(CommonType
, PredCount
, "sunk_phi", CurrentPhi
);
3320 ST
.insertNewPhi(PHI
);
3321 for (Value
*P
: CurrentPhi
->incoming_values())
3322 Worklist
.push_back(P
);
3327 bool addrModeCombiningAllowed() {
3328 if (DisableComplexAddrModes
)
3330 switch (DifferentField
) {
3333 case ExtAddrMode::BaseRegField
:
3334 return AddrSinkCombineBaseReg
;
3335 case ExtAddrMode::BaseGVField
:
3336 return AddrSinkCombineBaseGV
;
3337 case ExtAddrMode::BaseOffsField
:
3338 return AddrSinkCombineBaseOffs
;
3339 case ExtAddrMode::ScaledRegField
:
3340 return AddrSinkCombineScaledReg
;
3344 } // end anonymous namespace
3346 /// Try adding ScaleReg*Scale to the current addressing mode.
3347 /// Return true and update AddrMode if this addr mode is legal for the target,
3349 bool AddressingModeMatcher::matchScaledValue(Value
*ScaleReg
, int64_t Scale
,
3351 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3352 // mode. Just process that directly.
3354 return matchAddr(ScaleReg
, Depth
);
3356 // If the scale is 0, it takes nothing to add this.
3360 // If we already have a scale of this value, we can add to it, otherwise, we
3361 // need an available scale field.
3362 if (AddrMode
.Scale
!= 0 && AddrMode
.ScaledReg
!= ScaleReg
)
3365 ExtAddrMode TestAddrMode
= AddrMode
;
3367 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3368 // [A+B + A*7] -> [B+A*8].
3369 TestAddrMode
.Scale
+= Scale
;
3370 TestAddrMode
.ScaledReg
= ScaleReg
;
3372 // If the new address isn't legal, bail out.
3373 if (!TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
))
3376 // It was legal, so commit it.
3377 AddrMode
= TestAddrMode
;
3379 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3380 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3381 // X*Scale + C*Scale to addr mode.
3382 ConstantInt
*CI
= nullptr; Value
*AddLHS
= nullptr;
3383 if (isa
<Instruction
>(ScaleReg
) && // not a constant expr.
3384 match(ScaleReg
, m_Add(m_Value(AddLHS
), m_ConstantInt(CI
)))) {
3385 TestAddrMode
.ScaledReg
= AddLHS
;
3386 TestAddrMode
.BaseOffs
+= CI
->getSExtValue()*TestAddrMode
.Scale
;
3388 // If this addressing mode is legal, commit it and remember that we folded
3389 // this instruction.
3390 if (TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
)) {
3391 AddrModeInsts
.push_back(cast
<Instruction
>(ScaleReg
));
3392 AddrMode
= TestAddrMode
;
3397 // Otherwise, not (x+c)*scale, just return what we have.
3401 /// This is a little filter, which returns true if an addressing computation
3402 /// involving I might be folded into a load/store accessing it.
3403 /// This doesn't need to be perfect, but needs to accept at least
3404 /// the set of instructions that MatchOperationAddr can.
3405 static bool MightBeFoldableInst(Instruction
*I
) {
3406 switch (I
->getOpcode()) {
3407 case Instruction::BitCast
:
3408 case Instruction::AddrSpaceCast
:
3409 // Don't touch identity bitcasts.
3410 if (I
->getType() == I
->getOperand(0)->getType())
3412 return I
->getType()->isIntOrPtrTy();
3413 case Instruction::PtrToInt
:
3414 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3416 case Instruction::IntToPtr
:
3417 // We know the input is intptr_t, so this is foldable.
3419 case Instruction::Add
:
3421 case Instruction::Mul
:
3422 case Instruction::Shl
:
3423 // Can only handle X*C and X << C.
3424 return isa
<ConstantInt
>(I
->getOperand(1));
3425 case Instruction::GetElementPtr
:
3432 /// Check whether or not \p Val is a legal instruction for \p TLI.
3433 /// \note \p Val is assumed to be the product of some type promotion.
3434 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3435 /// to be legal, as the non-promoted value would have had the same state.
3436 static bool isPromotedInstructionLegal(const TargetLowering
&TLI
,
3437 const DataLayout
&DL
, Value
*Val
) {
3438 Instruction
*PromotedInst
= dyn_cast
<Instruction
>(Val
);
3441 int ISDOpcode
= TLI
.InstructionOpcodeToISD(PromotedInst
->getOpcode());
3442 // If the ISDOpcode is undefined, it was undefined before the promotion.
3445 // Otherwise, check if the promoted instruction is legal or not.
3446 return TLI
.isOperationLegalOrCustom(
3447 ISDOpcode
, TLI
.getValueType(DL
, PromotedInst
->getType()));
3452 /// Hepler class to perform type promotion.
3453 class TypePromotionHelper
{
3454 /// Utility function to add a promoted instruction \p ExtOpnd to
3455 /// \p PromotedInsts and record the type of extension we have seen.
3456 static void addPromotedInst(InstrToOrigTy
&PromotedInsts
,
3457 Instruction
*ExtOpnd
,
3459 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
3460 InstrToOrigTy::iterator It
= PromotedInsts
.find(ExtOpnd
);
3461 if (It
!= PromotedInsts
.end()) {
3462 // If the new extension is same as original, the information in
3463 // PromotedInsts[ExtOpnd] is still correct.
3464 if (It
->second
.getInt() == ExtTy
)
3467 // Now the new extension is different from old extension, we make
3468 // the type information invalid by setting extension type to
3470 ExtTy
= BothExtension
;
3472 PromotedInsts
[ExtOpnd
] = TypeIsSExt(ExtOpnd
->getType(), ExtTy
);
3475 /// Utility function to query the original type of instruction \p Opnd
3476 /// with a matched extension type. If the extension doesn't match, we
3477 /// cannot use the information we had on the original type.
3478 /// BothExtension doesn't match any extension type.
3479 static const Type
*getOrigType(const InstrToOrigTy
&PromotedInsts
,
3482 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
3483 InstrToOrigTy::const_iterator It
= PromotedInsts
.find(Opnd
);
3484 if (It
!= PromotedInsts
.end() && It
->second
.getInt() == ExtTy
)
3485 return It
->second
.getPointer();
3489 /// Utility function to check whether or not a sign or zero extension
3490 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3491 /// either using the operands of \p Inst or promoting \p Inst.
3492 /// The type of the extension is defined by \p IsSExt.
3493 /// In other words, check if:
3494 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3495 /// #1 Promotion applies:
3496 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3497 /// #2 Operand reuses:
3498 /// ext opnd1 to ConsideredExtType.
3499 /// \p PromotedInsts maps the instructions to their type before promotion.
3500 static bool canGetThrough(const Instruction
*Inst
, Type
*ConsideredExtType
,
3501 const InstrToOrigTy
&PromotedInsts
, bool IsSExt
);
3503 /// Utility function to determine if \p OpIdx should be promoted when
3504 /// promoting \p Inst.
3505 static bool shouldExtOperand(const Instruction
*Inst
, int OpIdx
) {
3506 return !(isa
<SelectInst
>(Inst
) && OpIdx
== 0);
3509 /// Utility function to promote the operand of \p Ext when this
3510 /// operand is a promotable trunc or sext or zext.
3511 /// \p PromotedInsts maps the instructions to their type before promotion.
3512 /// \p CreatedInstsCost[out] contains the cost of all instructions
3513 /// created to promote the operand of Ext.
3514 /// Newly added extensions are inserted in \p Exts.
3515 /// Newly added truncates are inserted in \p Truncs.
3516 /// Should never be called directly.
3517 /// \return The promoted value which is used instead of Ext.
3518 static Value
*promoteOperandForTruncAndAnyExt(
3519 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3520 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3521 SmallVectorImpl
<Instruction
*> *Exts
,
3522 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
);
3524 /// Utility function to promote the operand of \p Ext when this
3525 /// operand is promotable and is not a supported trunc or sext.
3526 /// \p PromotedInsts maps the instructions to their type before promotion.
3527 /// \p CreatedInstsCost[out] contains the cost of all the instructions
3528 /// created to promote the operand of Ext.
3529 /// Newly added extensions are inserted in \p Exts.
3530 /// Newly added truncates are inserted in \p Truncs.
3531 /// Should never be called directly.
3532 /// \return The promoted value which is used instead of Ext.
3533 static Value
*promoteOperandForOther(Instruction
*Ext
,
3534 TypePromotionTransaction
&TPT
,
3535 InstrToOrigTy
&PromotedInsts
,
3536 unsigned &CreatedInstsCost
,
3537 SmallVectorImpl
<Instruction
*> *Exts
,
3538 SmallVectorImpl
<Instruction
*> *Truncs
,
3539 const TargetLowering
&TLI
, bool IsSExt
);
3541 /// \see promoteOperandForOther.
3542 static Value
*signExtendOperandForOther(
3543 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3544 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3545 SmallVectorImpl
<Instruction
*> *Exts
,
3546 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
3547 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
3548 Exts
, Truncs
, TLI
, true);
3551 /// \see promoteOperandForOther.
3552 static Value
*zeroExtendOperandForOther(
3553 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3554 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3555 SmallVectorImpl
<Instruction
*> *Exts
,
3556 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
3557 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
3558 Exts
, Truncs
, TLI
, false);
3562 /// Type for the utility function that promotes the operand of Ext.
3563 using Action
= Value
*(*)(Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3564 InstrToOrigTy
&PromotedInsts
,
3565 unsigned &CreatedInstsCost
,
3566 SmallVectorImpl
<Instruction
*> *Exts
,
3567 SmallVectorImpl
<Instruction
*> *Truncs
,
3568 const TargetLowering
&TLI
);
3570 /// Given a sign/zero extend instruction \p Ext, return the appropriate
3571 /// action to promote the operand of \p Ext instead of using Ext.
3572 /// \return NULL if no promotable action is possible with the current
3574 /// \p InsertedInsts keeps track of all the instructions inserted by the
3575 /// other CodeGenPrepare optimizations. This information is important
3576 /// because we do not want to promote these instructions as CodeGenPrepare
3577 /// will reinsert them later. Thus creating an infinite loop: create/remove.
3578 /// \p PromotedInsts maps the instructions to their type before promotion.
3579 static Action
getAction(Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
3580 const TargetLowering
&TLI
,
3581 const InstrToOrigTy
&PromotedInsts
);
3584 } // end anonymous namespace
3586 bool TypePromotionHelper::canGetThrough(const Instruction
*Inst
,
3587 Type
*ConsideredExtType
,
3588 const InstrToOrigTy
&PromotedInsts
,
3590 // The promotion helper does not know how to deal with vector types yet.
3591 // To be able to fix that, we would need to fix the places where we
3592 // statically extend, e.g., constants and such.
3593 if (Inst
->getType()->isVectorTy())
3596 // We can always get through zext.
3597 if (isa
<ZExtInst
>(Inst
))
3600 // sext(sext) is ok too.
3601 if (IsSExt
&& isa
<SExtInst
>(Inst
))
3604 // We can get through binary operator, if it is legal. In other words, the
3605 // binary operator must have a nuw or nsw flag.
3606 const BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(Inst
);
3607 if (BinOp
&& isa
<OverflowingBinaryOperator
>(BinOp
) &&
3608 ((!IsSExt
&& BinOp
->hasNoUnsignedWrap()) ||
3609 (IsSExt
&& BinOp
->hasNoSignedWrap())))
3612 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3613 if ((Inst
->getOpcode() == Instruction::And
||
3614 Inst
->getOpcode() == Instruction::Or
))
3617 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3618 if (Inst
->getOpcode() == Instruction::Xor
) {
3619 const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1));
3620 // Make sure it is not a NOT.
3621 if (Cst
&& !Cst
->getValue().isAllOnesValue())
3625 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3626 // It may change a poisoned value into a regular value, like
3627 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
3628 // poisoned value regular value
3629 // It should be OK since undef covers valid value.
3630 if (Inst
->getOpcode() == Instruction::LShr
&& !IsSExt
)
3633 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3634 // It may change a poisoned value into a regular value, like
3635 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
3636 // poisoned value regular value
3637 // It should be OK since undef covers valid value.
3638 if (Inst
->getOpcode() == Instruction::Shl
&& Inst
->hasOneUse()) {
3639 const Instruction
*ExtInst
=
3640 dyn_cast
<const Instruction
>(*Inst
->user_begin());
3641 if (ExtInst
->hasOneUse()) {
3642 const Instruction
*AndInst
=
3643 dyn_cast
<const Instruction
>(*ExtInst
->user_begin());
3644 if (AndInst
&& AndInst
->getOpcode() == Instruction::And
) {
3645 const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(AndInst
->getOperand(1));
3647 Cst
->getValue().isIntN(Inst
->getType()->getIntegerBitWidth()))
3653 // Check if we can do the following simplification.
3654 // ext(trunc(opnd)) --> ext(opnd)
3655 if (!isa
<TruncInst
>(Inst
))
3658 Value
*OpndVal
= Inst
->getOperand(0);
3659 // Check if we can use this operand in the extension.
3660 // If the type is larger than the result type of the extension, we cannot.
3661 if (!OpndVal
->getType()->isIntegerTy() ||
3662 OpndVal
->getType()->getIntegerBitWidth() >
3663 ConsideredExtType
->getIntegerBitWidth())
3666 // If the operand of the truncate is not an instruction, we will not have
3667 // any information on the dropped bits.
3668 // (Actually we could for constant but it is not worth the extra logic).
3669 Instruction
*Opnd
= dyn_cast
<Instruction
>(OpndVal
);
3673 // Check if the source of the type is narrow enough.
3674 // I.e., check that trunc just drops extended bits of the same kind of
3676 // #1 get the type of the operand and check the kind of the extended bits.
3677 const Type
*OpndType
= getOrigType(PromotedInsts
, Opnd
, IsSExt
);
3680 else if ((IsSExt
&& isa
<SExtInst
>(Opnd
)) || (!IsSExt
&& isa
<ZExtInst
>(Opnd
)))
3681 OpndType
= Opnd
->getOperand(0)->getType();
3685 // #2 check that the truncate just drops extended bits.
3686 return Inst
->getType()->getIntegerBitWidth() >=
3687 OpndType
->getIntegerBitWidth();
3690 TypePromotionHelper::Action
TypePromotionHelper::getAction(
3691 Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
3692 const TargetLowering
&TLI
, const InstrToOrigTy
&PromotedInsts
) {
3693 assert((isa
<SExtInst
>(Ext
) || isa
<ZExtInst
>(Ext
)) &&
3694 "Unexpected instruction type");
3695 Instruction
*ExtOpnd
= dyn_cast
<Instruction
>(Ext
->getOperand(0));
3696 Type
*ExtTy
= Ext
->getType();
3697 bool IsSExt
= isa
<SExtInst
>(Ext
);
3698 // If the operand of the extension is not an instruction, we cannot
3700 // If it, check we can get through.
3701 if (!ExtOpnd
|| !canGetThrough(ExtOpnd
, ExtTy
, PromotedInsts
, IsSExt
))
3704 // Do not promote if the operand has been added by codegenprepare.
3705 // Otherwise, it means we are undoing an optimization that is likely to be
3706 // redone, thus causing potential infinite loop.
3707 if (isa
<TruncInst
>(ExtOpnd
) && InsertedInsts
.count(ExtOpnd
))
3710 // SExt or Trunc instructions.
3711 // Return the related handler.
3712 if (isa
<SExtInst
>(ExtOpnd
) || isa
<TruncInst
>(ExtOpnd
) ||
3713 isa
<ZExtInst
>(ExtOpnd
))
3714 return promoteOperandForTruncAndAnyExt
;
3716 // Regular instruction.
3717 // Abort early if we will have to insert non-free instructions.
3718 if (!ExtOpnd
->hasOneUse() && !TLI
.isTruncateFree(ExtTy
, ExtOpnd
->getType()))
3720 return IsSExt
? signExtendOperandForOther
: zeroExtendOperandForOther
;
3723 Value
*TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3724 Instruction
*SExt
, TypePromotionTransaction
&TPT
,
3725 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3726 SmallVectorImpl
<Instruction
*> *Exts
,
3727 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
3728 // By construction, the operand of SExt is an instruction. Otherwise we cannot
3729 // get through it and this method should not be called.
3730 Instruction
*SExtOpnd
= cast
<Instruction
>(SExt
->getOperand(0));
3731 Value
*ExtVal
= SExt
;
3732 bool HasMergedNonFreeExt
= false;
3733 if (isa
<ZExtInst
>(SExtOpnd
)) {
3734 // Replace s|zext(zext(opnd))
3736 HasMergedNonFreeExt
= !TLI
.isExtFree(SExtOpnd
);
3738 TPT
.createZExt(SExt
, SExtOpnd
->getOperand(0), SExt
->getType());
3739 TPT
.replaceAllUsesWith(SExt
, ZExt
);
3740 TPT
.eraseInstruction(SExt
);
3743 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3745 TPT
.setOperand(SExt
, 0, SExtOpnd
->getOperand(0));
3747 CreatedInstsCost
= 0;
3749 // Remove dead code.
3750 if (SExtOpnd
->use_empty())
3751 TPT
.eraseInstruction(SExtOpnd
);
3753 // Check if the extension is still needed.
3754 Instruction
*ExtInst
= dyn_cast
<Instruction
>(ExtVal
);
3755 if (!ExtInst
|| ExtInst
->getType() != ExtInst
->getOperand(0)->getType()) {
3758 Exts
->push_back(ExtInst
);
3759 CreatedInstsCost
= !TLI
.isExtFree(ExtInst
) && !HasMergedNonFreeExt
;
3764 // At this point we have: ext ty opnd to ty.
3765 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3766 Value
*NextVal
= ExtInst
->getOperand(0);
3767 TPT
.eraseInstruction(ExtInst
, NextVal
);
3771 Value
*TypePromotionHelper::promoteOperandForOther(
3772 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3773 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3774 SmallVectorImpl
<Instruction
*> *Exts
,
3775 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
,
3777 // By construction, the operand of Ext is an instruction. Otherwise we cannot
3778 // get through it and this method should not be called.
3779 Instruction
*ExtOpnd
= cast
<Instruction
>(Ext
->getOperand(0));
3780 CreatedInstsCost
= 0;
3781 if (!ExtOpnd
->hasOneUse()) {
3782 // ExtOpnd will be promoted.
3783 // All its uses, but Ext, will need to use a truncated value of the
3784 // promoted version.
3785 // Create the truncate now.
3786 Value
*Trunc
= TPT
.createTrunc(Ext
, ExtOpnd
->getType());
3787 if (Instruction
*ITrunc
= dyn_cast
<Instruction
>(Trunc
)) {
3788 // Insert it just after the definition.
3789 ITrunc
->moveAfter(ExtOpnd
);
3791 Truncs
->push_back(ITrunc
);
3794 TPT
.replaceAllUsesWith(ExtOpnd
, Trunc
);
3795 // Restore the operand of Ext (which has been replaced by the previous call
3796 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3797 TPT
.setOperand(Ext
, 0, ExtOpnd
);
3800 // Get through the Instruction:
3801 // 1. Update its type.
3802 // 2. Replace the uses of Ext by Inst.
3803 // 3. Extend each operand that needs to be extended.
3805 // Remember the original type of the instruction before promotion.
3806 // This is useful to know that the high bits are sign extended bits.
3807 addPromotedInst(PromotedInsts
, ExtOpnd
, IsSExt
);
3809 TPT
.mutateType(ExtOpnd
, Ext
->getType());
3811 TPT
.replaceAllUsesWith(Ext
, ExtOpnd
);
3813 Instruction
*ExtForOpnd
= Ext
;
3815 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3816 for (int OpIdx
= 0, EndOpIdx
= ExtOpnd
->getNumOperands(); OpIdx
!= EndOpIdx
;
3818 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd
->getOperand(OpIdx
)) << '\n');
3819 if (ExtOpnd
->getOperand(OpIdx
)->getType() == Ext
->getType() ||
3820 !shouldExtOperand(ExtOpnd
, OpIdx
)) {
3821 LLVM_DEBUG(dbgs() << "No need to propagate\n");
3824 // Check if we can statically extend the operand.
3825 Value
*Opnd
= ExtOpnd
->getOperand(OpIdx
);
3826 if (const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(Opnd
)) {
3827 LLVM_DEBUG(dbgs() << "Statically extend\n");
3828 unsigned BitWidth
= Ext
->getType()->getIntegerBitWidth();
3829 APInt CstVal
= IsSExt
? Cst
->getValue().sext(BitWidth
)
3830 : Cst
->getValue().zext(BitWidth
);
3831 TPT
.setOperand(ExtOpnd
, OpIdx
, ConstantInt::get(Ext
->getType(), CstVal
));
3834 // UndefValue are typed, so we have to statically sign extend them.
3835 if (isa
<UndefValue
>(Opnd
)) {
3836 LLVM_DEBUG(dbgs() << "Statically extend\n");
3837 TPT
.setOperand(ExtOpnd
, OpIdx
, UndefValue::get(Ext
->getType()));
3841 // Otherwise we have to explicitly sign extend the operand.
3842 // Check if Ext was reused to extend an operand.
3844 // If yes, create a new one.
3845 LLVM_DEBUG(dbgs() << "More operands to ext\n");
3846 Value
*ValForExtOpnd
= IsSExt
? TPT
.createSExt(Ext
, Opnd
, Ext
->getType())
3847 : TPT
.createZExt(Ext
, Opnd
, Ext
->getType());
3848 if (!isa
<Instruction
>(ValForExtOpnd
)) {
3849 TPT
.setOperand(ExtOpnd
, OpIdx
, ValForExtOpnd
);
3852 ExtForOpnd
= cast
<Instruction
>(ValForExtOpnd
);
3855 Exts
->push_back(ExtForOpnd
);
3856 TPT
.setOperand(ExtForOpnd
, 0, Opnd
);
3858 // Move the sign extension before the insertion point.
3859 TPT
.moveBefore(ExtForOpnd
, ExtOpnd
);
3860 TPT
.setOperand(ExtOpnd
, OpIdx
, ExtForOpnd
);
3861 CreatedInstsCost
+= !TLI
.isExtFree(ExtForOpnd
);
3862 // If more sext are required, new instructions will have to be created.
3863 ExtForOpnd
= nullptr;
3865 if (ExtForOpnd
== Ext
) {
3866 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3867 TPT
.eraseInstruction(Ext
);
3872 /// Check whether or not promoting an instruction to a wider type is profitable.
3873 /// \p NewCost gives the cost of extension instructions created by the
3875 /// \p OldCost gives the cost of extension instructions before the promotion
3876 /// plus the number of instructions that have been
3877 /// matched in the addressing mode the promotion.
3878 /// \p PromotedOperand is the value that has been promoted.
3879 /// \return True if the promotion is profitable, false otherwise.
3880 bool AddressingModeMatcher::isPromotionProfitable(
3881 unsigned NewCost
, unsigned OldCost
, Value
*PromotedOperand
) const {
3882 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost
<< "\tNewCost: " << NewCost
3884 // The cost of the new extensions is greater than the cost of the
3885 // old extension plus what we folded.
3886 // This is not profitable.
3887 if (NewCost
> OldCost
)
3889 if (NewCost
< OldCost
)
3891 // The promotion is neutral but it may help folding the sign extension in
3892 // loads for instance.
3893 // Check that we did not create an illegal instruction.
3894 return isPromotedInstructionLegal(TLI
, DL
, PromotedOperand
);
3897 /// Given an instruction or constant expr, see if we can fold the operation
3898 /// into the addressing mode. If so, update the addressing mode and return
3899 /// true, otherwise return false without modifying AddrMode.
3900 /// If \p MovedAway is not NULL, it contains the information of whether or
3901 /// not AddrInst has to be folded into the addressing mode on success.
3902 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3903 /// because it has been moved away.
3904 /// Thus AddrInst must not be added in the matched instructions.
3905 /// This state can happen when AddrInst is a sext, since it may be moved away.
3906 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3907 /// not be referenced anymore.
3908 bool AddressingModeMatcher::matchOperationAddr(User
*AddrInst
, unsigned Opcode
,
3911 // Avoid exponential behavior on extremely deep expression trees.
3912 if (Depth
>= 5) return false;
3914 // By default, all matched instructions stay in place.
3919 case Instruction::PtrToInt
:
3920 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3921 return matchAddr(AddrInst
->getOperand(0), Depth
);
3922 case Instruction::IntToPtr
: {
3923 auto AS
= AddrInst
->getType()->getPointerAddressSpace();
3924 auto PtrTy
= MVT::getIntegerVT(DL
.getPointerSizeInBits(AS
));
3925 // This inttoptr is a no-op if the integer type is pointer sized.
3926 if (TLI
.getValueType(DL
, AddrInst
->getOperand(0)->getType()) == PtrTy
)
3927 return matchAddr(AddrInst
->getOperand(0), Depth
);
3930 case Instruction::BitCast
:
3931 // BitCast is always a noop, and we can handle it as long as it is
3932 // int->int or pointer->pointer (we don't want int<->fp or something).
3933 if (AddrInst
->getOperand(0)->getType()->isIntOrPtrTy() &&
3934 // Don't touch identity bitcasts. These were probably put here by LSR,
3935 // and we don't want to mess around with them. Assume it knows what it
3937 AddrInst
->getOperand(0)->getType() != AddrInst
->getType())
3938 return matchAddr(AddrInst
->getOperand(0), Depth
);
3940 case Instruction::AddrSpaceCast
: {
3942 = AddrInst
->getOperand(0)->getType()->getPointerAddressSpace();
3943 unsigned DestAS
= AddrInst
->getType()->getPointerAddressSpace();
3944 if (TLI
.isNoopAddrSpaceCast(SrcAS
, DestAS
))
3945 return matchAddr(AddrInst
->getOperand(0), Depth
);
3948 case Instruction::Add
: {
3949 // Check to see if we can merge in the RHS then the LHS. If so, we win.
3950 ExtAddrMode BackupAddrMode
= AddrMode
;
3951 unsigned OldSize
= AddrModeInsts
.size();
3952 // Start a transaction at this point.
3953 // The LHS may match but not the RHS.
3954 // Therefore, we need a higher level restoration point to undo partially
3955 // matched operation.
3956 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
3957 TPT
.getRestorationPoint();
3959 if (matchAddr(AddrInst
->getOperand(1), Depth
+1) &&
3960 matchAddr(AddrInst
->getOperand(0), Depth
+1))
3963 // Restore the old addr mode info.
3964 AddrMode
= BackupAddrMode
;
3965 AddrModeInsts
.resize(OldSize
);
3966 TPT
.rollback(LastKnownGood
);
3968 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
3969 if (matchAddr(AddrInst
->getOperand(0), Depth
+1) &&
3970 matchAddr(AddrInst
->getOperand(1), Depth
+1))
3973 // Otherwise we definitely can't merge the ADD in.
3974 AddrMode
= BackupAddrMode
;
3975 AddrModeInsts
.resize(OldSize
);
3976 TPT
.rollback(LastKnownGood
);
3979 //case Instruction::Or:
3980 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3982 case Instruction::Mul
:
3983 case Instruction::Shl
: {
3984 // Can only handle X*C and X << C.
3985 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(1));
3986 if (!RHS
|| RHS
->getBitWidth() > 64)
3988 int64_t Scale
= RHS
->getSExtValue();
3989 if (Opcode
== Instruction::Shl
)
3990 Scale
= 1LL << Scale
;
3992 return matchScaledValue(AddrInst
->getOperand(0), Scale
, Depth
);
3994 case Instruction::GetElementPtr
: {
3995 // Scan the GEP. We check it if it contains constant offsets and at most
3996 // one variable offset.
3997 int VariableOperand
= -1;
3998 unsigned VariableScale
= 0;
4000 int64_t ConstantOffset
= 0;
4001 gep_type_iterator GTI
= gep_type_begin(AddrInst
);
4002 for (unsigned i
= 1, e
= AddrInst
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
4003 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
4004 const StructLayout
*SL
= DL
.getStructLayout(STy
);
4006 cast
<ConstantInt
>(AddrInst
->getOperand(i
))->getZExtValue();
4007 ConstantOffset
+= SL
->getElementOffset(Idx
);
4009 uint64_t TypeSize
= DL
.getTypeAllocSize(GTI
.getIndexedType());
4010 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(i
))) {
4011 const APInt
&CVal
= CI
->getValue();
4012 if (CVal
.getMinSignedBits() <= 64) {
4013 ConstantOffset
+= CVal
.getSExtValue() * TypeSize
;
4017 if (TypeSize
) { // Scales of zero don't do anything.
4018 // We only allow one variable index at the moment.
4019 if (VariableOperand
!= -1)
4022 // Remember the variable index.
4023 VariableOperand
= i
;
4024 VariableScale
= TypeSize
;
4029 // A common case is for the GEP to only do a constant offset. In this case,
4030 // just add it to the disp field and check validity.
4031 if (VariableOperand
== -1) {
4032 AddrMode
.BaseOffs
+= ConstantOffset
;
4033 if (ConstantOffset
== 0 ||
4034 TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
)) {
4035 // Check to see if we can fold the base pointer in too.
4036 if (matchAddr(AddrInst
->getOperand(0), Depth
+1))
4038 } else if (EnableGEPOffsetSplit
&& isa
<GetElementPtrInst
>(AddrInst
) &&
4039 TLI
.shouldConsiderGEPOffsetSplit() && Depth
== 0 &&
4040 ConstantOffset
> 0) {
4041 // Record GEPs with non-zero offsets as candidates for splitting in the
4042 // event that the offset cannot fit into the r+i addressing mode.
4043 // Simple and common case that only one GEP is used in calculating the
4044 // address for the memory access.
4045 Value
*Base
= AddrInst
->getOperand(0);
4046 auto *BaseI
= dyn_cast
<Instruction
>(Base
);
4047 auto *GEP
= cast
<GetElementPtrInst
>(AddrInst
);
4048 if (isa
<Argument
>(Base
) || isa
<GlobalValue
>(Base
) ||
4049 (BaseI
&& !isa
<CastInst
>(BaseI
) &&
4050 !isa
<GetElementPtrInst
>(BaseI
))) {
4051 // If the base is an instruction, make sure the GEP is not in the same
4052 // basic block as the base. If the base is an argument or global
4053 // value, make sure the GEP is not in the entry block. Otherwise,
4054 // instruction selection can undo the split. Also make sure the
4055 // parent block allows inserting non-PHI instructions before the
4057 BasicBlock
*Parent
=
4058 BaseI
? BaseI
->getParent() : &GEP
->getFunction()->getEntryBlock();
4059 if (GEP
->getParent() != Parent
&& !Parent
->getTerminator()->isEHPad())
4060 LargeOffsetGEP
= std::make_pair(GEP
, ConstantOffset
);
4063 AddrMode
.BaseOffs
-= ConstantOffset
;
4067 // Save the valid addressing mode in case we can't match.
4068 ExtAddrMode BackupAddrMode
= AddrMode
;
4069 unsigned OldSize
= AddrModeInsts
.size();
4071 // See if the scale and offset amount is valid for this target.
4072 AddrMode
.BaseOffs
+= ConstantOffset
;
4074 // Match the base operand of the GEP.
4075 if (!matchAddr(AddrInst
->getOperand(0), Depth
+1)) {
4076 // If it couldn't be matched, just stuff the value in a register.
4077 if (AddrMode
.HasBaseReg
) {
4078 AddrMode
= BackupAddrMode
;
4079 AddrModeInsts
.resize(OldSize
);
4082 AddrMode
.HasBaseReg
= true;
4083 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
4086 // Match the remaining variable portion of the GEP.
4087 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
), VariableScale
,
4089 // If it couldn't be matched, try stuffing the base into a register
4090 // instead of matching it, and retrying the match of the scale.
4091 AddrMode
= BackupAddrMode
;
4092 AddrModeInsts
.resize(OldSize
);
4093 if (AddrMode
.HasBaseReg
)
4095 AddrMode
.HasBaseReg
= true;
4096 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
4097 AddrMode
.BaseOffs
+= ConstantOffset
;
4098 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
),
4099 VariableScale
, Depth
)) {
4100 // If even that didn't work, bail.
4101 AddrMode
= BackupAddrMode
;
4102 AddrModeInsts
.resize(OldSize
);
4109 case Instruction::SExt
:
4110 case Instruction::ZExt
: {
4111 Instruction
*Ext
= dyn_cast
<Instruction
>(AddrInst
);
4115 // Try to move this ext out of the way of the addressing mode.
4116 // Ask for a method for doing so.
4117 TypePromotionHelper::Action TPH
=
4118 TypePromotionHelper::getAction(Ext
, InsertedInsts
, TLI
, PromotedInsts
);
4122 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4123 TPT
.getRestorationPoint();
4124 unsigned CreatedInstsCost
= 0;
4125 unsigned ExtCost
= !TLI
.isExtFree(Ext
);
4126 Value
*PromotedOperand
=
4127 TPH(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
, nullptr, nullptr, TLI
);
4128 // SExt has been moved away.
4129 // Thus either it will be rematched later in the recursive calls or it is
4130 // gone. Anyway, we must not fold it into the addressing mode at this point.
4134 // addr = gep base, idx
4136 // promotedOpnd = ext opnd <- no match here
4137 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
4138 // addr = gep base, op <- match
4142 assert(PromotedOperand
&&
4143 "TypePromotionHelper should have filtered out those cases");
4145 ExtAddrMode BackupAddrMode
= AddrMode
;
4146 unsigned OldSize
= AddrModeInsts
.size();
4148 if (!matchAddr(PromotedOperand
, Depth
) ||
4149 // The total of the new cost is equal to the cost of the created
4151 // The total of the old cost is equal to the cost of the extension plus
4152 // what we have saved in the addressing mode.
4153 !isPromotionProfitable(CreatedInstsCost
,
4154 ExtCost
+ (AddrModeInsts
.size() - OldSize
),
4156 AddrMode
= BackupAddrMode
;
4157 AddrModeInsts
.resize(OldSize
);
4158 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4159 TPT
.rollback(LastKnownGood
);
4168 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4169 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4170 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4173 bool AddressingModeMatcher::matchAddr(Value
*Addr
, unsigned Depth
) {
4174 // Start a transaction at this point that we will rollback if the matching
4176 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4177 TPT
.getRestorationPoint();
4178 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Addr
)) {
4179 // Fold in immediates if legal for the target.
4180 AddrMode
.BaseOffs
+= CI
->getSExtValue();
4181 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4183 AddrMode
.BaseOffs
-= CI
->getSExtValue();
4184 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Addr
)) {
4185 // If this is a global variable, try to fold it into the addressing mode.
4186 if (!AddrMode
.BaseGV
) {
4187 AddrMode
.BaseGV
= GV
;
4188 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4190 AddrMode
.BaseGV
= nullptr;
4192 } else if (Instruction
*I
= dyn_cast
<Instruction
>(Addr
)) {
4193 ExtAddrMode BackupAddrMode
= AddrMode
;
4194 unsigned OldSize
= AddrModeInsts
.size();
4196 // Check to see if it is possible to fold this operation.
4197 bool MovedAway
= false;
4198 if (matchOperationAddr(I
, I
->getOpcode(), Depth
, &MovedAway
)) {
4199 // This instruction may have been moved away. If so, there is nothing
4203 // Okay, it's possible to fold this. Check to see if it is actually
4204 // *profitable* to do so. We use a simple cost model to avoid increasing
4205 // register pressure too much.
4206 if (I
->hasOneUse() ||
4207 isProfitableToFoldIntoAddressingMode(I
, BackupAddrMode
, AddrMode
)) {
4208 AddrModeInsts
.push_back(I
);
4212 // It isn't profitable to do this, roll back.
4213 //cerr << "NOT FOLDING: " << *I;
4214 AddrMode
= BackupAddrMode
;
4215 AddrModeInsts
.resize(OldSize
);
4216 TPT
.rollback(LastKnownGood
);
4218 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Addr
)) {
4219 if (matchOperationAddr(CE
, CE
->getOpcode(), Depth
))
4221 TPT
.rollback(LastKnownGood
);
4222 } else if (isa
<ConstantPointerNull
>(Addr
)) {
4223 // Null pointer gets folded without affecting the addressing mode.
4227 // Worse case, the target should support [reg] addressing modes. :)
4228 if (!AddrMode
.HasBaseReg
) {
4229 AddrMode
.HasBaseReg
= true;
4230 AddrMode
.BaseReg
= Addr
;
4231 // Still check for legality in case the target supports [imm] but not [i+r].
4232 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4234 AddrMode
.HasBaseReg
= false;
4235 AddrMode
.BaseReg
= nullptr;
4238 // If the base register is already taken, see if we can do [r+r].
4239 if (AddrMode
.Scale
== 0) {
4241 AddrMode
.ScaledReg
= Addr
;
4242 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4245 AddrMode
.ScaledReg
= nullptr;
4248 TPT
.rollback(LastKnownGood
);
4252 /// Check to see if all uses of OpVal by the specified inline asm call are due
4253 /// to memory operands. If so, return true, otherwise return false.
4254 static bool IsOperandAMemoryOperand(CallInst
*CI
, InlineAsm
*IA
, Value
*OpVal
,
4255 const TargetLowering
&TLI
,
4256 const TargetRegisterInfo
&TRI
) {
4257 const Function
*F
= CI
->getFunction();
4258 TargetLowering::AsmOperandInfoVector TargetConstraints
=
4259 TLI
.ParseConstraints(F
->getParent()->getDataLayout(), &TRI
,
4260 ImmutableCallSite(CI
));
4262 for (unsigned i
= 0, e
= TargetConstraints
.size(); i
!= e
; ++i
) {
4263 TargetLowering::AsmOperandInfo
&OpInfo
= TargetConstraints
[i
];
4265 // Compute the constraint code and ConstraintType to use.
4266 TLI
.ComputeConstraintToUse(OpInfo
, SDValue());
4268 // If this asm operand is our Value*, and if it isn't an indirect memory
4269 // operand, we can't fold it!
4270 if (OpInfo
.CallOperandVal
== OpVal
&&
4271 (OpInfo
.ConstraintType
!= TargetLowering::C_Memory
||
4272 !OpInfo
.isIndirect
))
4279 // Max number of memory uses to look at before aborting the search to conserve
4281 static constexpr int MaxMemoryUsesToScan
= 20;
4283 /// Recursively walk all the uses of I until we find a memory use.
4284 /// If we find an obviously non-foldable instruction, return true.
4285 /// Add the ultimately found memory instructions to MemoryUses.
4286 static bool FindAllMemoryUses(
4288 SmallVectorImpl
<std::pair
<Instruction
*, unsigned>> &MemoryUses
,
4289 SmallPtrSetImpl
<Instruction
*> &ConsideredInsts
, const TargetLowering
&TLI
,
4290 const TargetRegisterInfo
&TRI
, int SeenInsts
= 0) {
4291 // If we already considered this instruction, we're done.
4292 if (!ConsideredInsts
.insert(I
).second
)
4295 // If this is an obviously unfoldable instruction, bail out.
4296 if (!MightBeFoldableInst(I
))
4299 const bool OptSize
= I
->getFunction()->optForSize();
4301 // Loop over all the uses, recursively processing them.
4302 for (Use
&U
: I
->uses()) {
4303 // Conservatively return true if we're seeing a large number or a deep chain
4304 // of users. This avoids excessive compilation times in pathological cases.
4305 if (SeenInsts
++ >= MaxMemoryUsesToScan
)
4308 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
4309 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UserI
)) {
4310 MemoryUses
.push_back(std::make_pair(LI
, U
.getOperandNo()));
4314 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UserI
)) {
4315 unsigned opNo
= U
.getOperandNo();
4316 if (opNo
!= StoreInst::getPointerOperandIndex())
4317 return true; // Storing addr, not into addr.
4318 MemoryUses
.push_back(std::make_pair(SI
, opNo
));
4322 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(UserI
)) {
4323 unsigned opNo
= U
.getOperandNo();
4324 if (opNo
!= AtomicRMWInst::getPointerOperandIndex())
4325 return true; // Storing addr, not into addr.
4326 MemoryUses
.push_back(std::make_pair(RMW
, opNo
));
4330 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(UserI
)) {
4331 unsigned opNo
= U
.getOperandNo();
4332 if (opNo
!= AtomicCmpXchgInst::getPointerOperandIndex())
4333 return true; // Storing addr, not into addr.
4334 MemoryUses
.push_back(std::make_pair(CmpX
, opNo
));
4338 if (CallInst
*CI
= dyn_cast
<CallInst
>(UserI
)) {
4339 // If this is a cold call, we can sink the addressing calculation into
4340 // the cold path. See optimizeCallInst
4341 if (!OptSize
&& CI
->hasFnAttr(Attribute::Cold
))
4344 InlineAsm
*IA
= dyn_cast
<InlineAsm
>(CI
->getCalledValue());
4345 if (!IA
) return true;
4347 // If this is a memory operand, we're cool, otherwise bail out.
4348 if (!IsOperandAMemoryOperand(CI
, IA
, I
, TLI
, TRI
))
4353 if (FindAllMemoryUses(UserI
, MemoryUses
, ConsideredInsts
, TLI
, TRI
,
4361 /// Return true if Val is already known to be live at the use site that we're
4362 /// folding it into. If so, there is no cost to include it in the addressing
4363 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4364 /// instruction already.
4365 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value
*Val
,Value
*KnownLive1
,
4366 Value
*KnownLive2
) {
4367 // If Val is either of the known-live values, we know it is live!
4368 if (Val
== nullptr || Val
== KnownLive1
|| Val
== KnownLive2
)
4371 // All values other than instructions and arguments (e.g. constants) are live.
4372 if (!isa
<Instruction
>(Val
) && !isa
<Argument
>(Val
)) return true;
4374 // If Val is a constant sized alloca in the entry block, it is live, this is
4375 // true because it is just a reference to the stack/frame pointer, which is
4376 // live for the whole function.
4377 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Val
))
4378 if (AI
->isStaticAlloca())
4381 // Check to see if this value is already used in the memory instruction's
4382 // block. If so, it's already live into the block at the very least, so we
4383 // can reasonably fold it.
4384 return Val
->isUsedInBasicBlock(MemoryInst
->getParent());
4387 /// It is possible for the addressing mode of the machine to fold the specified
4388 /// instruction into a load or store that ultimately uses it.
4389 /// However, the specified instruction has multiple uses.
4390 /// Given this, it may actually increase register pressure to fold it
4391 /// into the load. For example, consider this code:
4395 /// use(Y) -> nonload/store
4399 /// In this case, Y has multiple uses, and can be folded into the load of Z
4400 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4401 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4402 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4403 /// number of computations either.
4405 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4406 /// X was live across 'load Z' for other reasons, we actually *would* want to
4407 /// fold the addressing mode in the Z case. This would make Y die earlier.
4408 bool AddressingModeMatcher::
4409 isProfitableToFoldIntoAddressingMode(Instruction
*I
, ExtAddrMode
&AMBefore
,
4410 ExtAddrMode
&AMAfter
) {
4411 if (IgnoreProfitability
) return true;
4413 // AMBefore is the addressing mode before this instruction was folded into it,
4414 // and AMAfter is the addressing mode after the instruction was folded. Get
4415 // the set of registers referenced by AMAfter and subtract out those
4416 // referenced by AMBefore: this is the set of values which folding in this
4417 // address extends the lifetime of.
4419 // Note that there are only two potential values being referenced here,
4420 // BaseReg and ScaleReg (global addresses are always available, as are any
4421 // folded immediates).
4422 Value
*BaseReg
= AMAfter
.BaseReg
, *ScaledReg
= AMAfter
.ScaledReg
;
4424 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4425 // lifetime wasn't extended by adding this instruction.
4426 if (valueAlreadyLiveAtInst(BaseReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
4428 if (valueAlreadyLiveAtInst(ScaledReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
4429 ScaledReg
= nullptr;
4431 // If folding this instruction (and it's subexprs) didn't extend any live
4432 // ranges, we're ok with it.
4433 if (!BaseReg
&& !ScaledReg
)
4436 // If all uses of this instruction can have the address mode sunk into them,
4437 // we can remove the addressing mode and effectively trade one live register
4438 // for another (at worst.) In this context, folding an addressing mode into
4439 // the use is just a particularly nice way of sinking it.
4440 SmallVector
<std::pair
<Instruction
*,unsigned>, 16> MemoryUses
;
4441 SmallPtrSet
<Instruction
*, 16> ConsideredInsts
;
4442 if (FindAllMemoryUses(I
, MemoryUses
, ConsideredInsts
, TLI
, TRI
))
4443 return false; // Has a non-memory, non-foldable use!
4445 // Now that we know that all uses of this instruction are part of a chain of
4446 // computation involving only operations that could theoretically be folded
4447 // into a memory use, loop over each of these memory operation uses and see
4448 // if they could *actually* fold the instruction. The assumption is that
4449 // addressing modes are cheap and that duplicating the computation involved
4450 // many times is worthwhile, even on a fastpath. For sinking candidates
4451 // (i.e. cold call sites), this serves as a way to prevent excessive code
4452 // growth since most architectures have some reasonable small and fast way to
4453 // compute an effective address. (i.e LEA on x86)
4454 SmallVector
<Instruction
*, 32> MatchedAddrModeInsts
;
4455 for (unsigned i
= 0, e
= MemoryUses
.size(); i
!= e
; ++i
) {
4456 Instruction
*User
= MemoryUses
[i
].first
;
4457 unsigned OpNo
= MemoryUses
[i
].second
;
4459 // Get the access type of this use. If the use isn't a pointer, we don't
4460 // know what it accesses.
4461 Value
*Address
= User
->getOperand(OpNo
);
4462 PointerType
*AddrTy
= dyn_cast
<PointerType
>(Address
->getType());
4465 Type
*AddressAccessTy
= AddrTy
->getElementType();
4466 unsigned AS
= AddrTy
->getAddressSpace();
4468 // Do a match against the root of this address, ignoring profitability. This
4469 // will tell us if the addressing mode for the memory operation will
4470 // *actually* cover the shared instruction.
4472 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
4474 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4475 TPT
.getRestorationPoint();
4476 AddressingModeMatcher
Matcher(
4477 MatchedAddrModeInsts
, TLI
, TRI
, AddressAccessTy
, AS
, MemoryInst
, Result
,
4478 InsertedInsts
, PromotedInsts
, TPT
, LargeOffsetGEP
);
4479 Matcher
.IgnoreProfitability
= true;
4480 bool Success
= Matcher
.matchAddr(Address
, 0);
4481 (void)Success
; assert(Success
&& "Couldn't select *anything*?");
4483 // The match was to check the profitability, the changes made are not
4484 // part of the original matcher. Therefore, they should be dropped
4485 // otherwise the original matcher will not present the right state.
4486 TPT
.rollback(LastKnownGood
);
4488 // If the match didn't cover I, then it won't be shared by it.
4489 if (!is_contained(MatchedAddrModeInsts
, I
))
4492 MatchedAddrModeInsts
.clear();
4498 /// Return true if the specified values are defined in a
4499 /// different basic block than BB.
4500 static bool IsNonLocalValue(Value
*V
, BasicBlock
*BB
) {
4501 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
4502 return I
->getParent() != BB
;
4506 /// Sink addressing mode computation immediate before MemoryInst if doing so
4507 /// can be done without increasing register pressure. The need for the
4508 /// register pressure constraint means this can end up being an all or nothing
4509 /// decision for all uses of the same addressing computation.
4511 /// Load and Store Instructions often have addressing modes that can do
4512 /// significant amounts of computation. As such, instruction selection will try
4513 /// to get the load or store to do as much computation as possible for the
4514 /// program. The problem is that isel can only see within a single block. As
4515 /// such, we sink as much legal addressing mode work into the block as possible.
4517 /// This method is used to optimize both load/store and inline asms with memory
4518 /// operands. It's also used to sink addressing computations feeding into cold
4519 /// call sites into their (cold) basic block.
4521 /// The motivation for handling sinking into cold blocks is that doing so can
4522 /// both enable other address mode sinking (by satisfying the register pressure
4523 /// constraint above), and reduce register pressure globally (by removing the
4524 /// addressing mode computation from the fast path entirely.).
4525 bool CodeGenPrepare::optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
4526 Type
*AccessTy
, unsigned AddrSpace
) {
4529 // Try to collapse single-value PHI nodes. This is necessary to undo
4530 // unprofitable PRE transformations.
4531 SmallVector
<Value
*, 8> worklist
;
4532 SmallPtrSet
<Value
*, 16> Visited
;
4533 worklist
.push_back(Addr
);
4535 // Use a worklist to iteratively look through PHI and select nodes, and
4536 // ensure that the addressing mode obtained from the non-PHI/select roots of
4537 // the graph are compatible.
4538 bool PhiOrSelectSeen
= false;
4539 SmallVector
<Instruction
*, 16> AddrModeInsts
;
4540 const SimplifyQuery
SQ(*DL
, TLInfo
);
4541 AddressingModeCombiner
AddrModes(SQ
, Addr
);
4542 TypePromotionTransaction
TPT(RemovedInsts
);
4543 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4544 TPT
.getRestorationPoint();
4545 while (!worklist
.empty()) {
4546 Value
*V
= worklist
.back();
4547 worklist
.pop_back();
4549 // We allow traversing cyclic Phi nodes.
4550 // In case of success after this loop we ensure that traversing through
4551 // Phi nodes ends up with all cases to compute address of the form
4552 // BaseGV + Base + Scale * Index + Offset
4553 // where Scale and Offset are constans and BaseGV, Base and Index
4554 // are exactly the same Values in all cases.
4555 // It means that BaseGV, Scale and Offset dominate our memory instruction
4556 // and have the same value as they had in address computation represented
4557 // as Phi. So we can safely sink address computation to memory instruction.
4558 if (!Visited
.insert(V
).second
)
4561 // For a PHI node, push all of its incoming values.
4562 if (PHINode
*P
= dyn_cast
<PHINode
>(V
)) {
4563 for (Value
*IncValue
: P
->incoming_values())
4564 worklist
.push_back(IncValue
);
4565 PhiOrSelectSeen
= true;
4568 // Similar for select.
4569 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
4570 worklist
.push_back(SI
->getFalseValue());
4571 worklist
.push_back(SI
->getTrueValue());
4572 PhiOrSelectSeen
= true;
4576 // For non-PHIs, determine the addressing mode being computed. Note that
4577 // the result may differ depending on what other uses our candidate
4578 // addressing instructions might have.
4579 AddrModeInsts
.clear();
4580 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
4582 ExtAddrMode NewAddrMode
= AddressingModeMatcher::Match(
4583 V
, AccessTy
, AddrSpace
, MemoryInst
, AddrModeInsts
, *TLI
, *TRI
,
4584 InsertedInsts
, PromotedInsts
, TPT
, LargeOffsetGEP
);
4586 GetElementPtrInst
*GEP
= LargeOffsetGEP
.first
;
4587 if (GEP
&& GEP
->getParent() != MemoryInst
->getParent() &&
4588 !NewGEPBases
.count(GEP
)) {
4589 // If splitting the underlying data structure can reduce the offset of a
4590 // GEP, collect the GEP. Skip the GEPs that are the new bases of
4591 // previously split data structures.
4592 LargeOffsetGEPMap
[GEP
->getPointerOperand()].push_back(LargeOffsetGEP
);
4593 if (LargeOffsetGEPID
.find(GEP
) == LargeOffsetGEPID
.end())
4594 LargeOffsetGEPID
[GEP
] = LargeOffsetGEPID
.size();
4597 NewAddrMode
.OriginalValue
= V
;
4598 if (!AddrModes
.addNewAddrMode(NewAddrMode
))
4602 // Try to combine the AddrModes we've collected. If we couldn't collect any,
4603 // or we have multiple but either couldn't combine them or combining them
4604 // wouldn't do anything useful, bail out now.
4605 if (!AddrModes
.combineAddrModes()) {
4606 TPT
.rollback(LastKnownGood
);
4611 // Get the combined AddrMode (or the only AddrMode, if we only had one).
4612 ExtAddrMode AddrMode
= AddrModes
.getAddrMode();
4614 // If all the instructions matched are already in this BB, don't do anything.
4615 // If we saw a Phi node then it is not local definitely, and if we saw a select
4616 // then we want to push the address calculation past it even if it's already
4618 if (!PhiOrSelectSeen
&& none_of(AddrModeInsts
, [&](Value
*V
) {
4619 return IsNonLocalValue(V
, MemoryInst
->getParent());
4621 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
4626 // Insert this computation right after this user. Since our caller is
4627 // scanning from the top of the BB to the bottom, reuse of the expr are
4628 // guaranteed to happen later.
4629 IRBuilder
<> Builder(MemoryInst
);
4631 // Now that we determined the addressing expression we want to use and know
4632 // that we have to sink it into this block. Check to see if we have already
4633 // done this for some other load/store instr in this block. If so, reuse
4634 // the computation. Before attempting reuse, check if the address is valid
4635 // as it may have been erased.
4637 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Addr
];
4639 Value
* SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
4641 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4642 << " for " << *MemoryInst
<< "\n");
4643 if (SunkAddr
->getType() != Addr
->getType())
4644 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
4645 } else if (AddrSinkUsingGEPs
||
4646 (!AddrSinkUsingGEPs
.getNumOccurrences() && TM
&& TTI
->useAA())) {
4647 // By default, we use the GEP-based method when AA is used later. This
4648 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4649 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4650 << " for " << *MemoryInst
<< "\n");
4651 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
4652 Value
*ResultPtr
= nullptr, *ResultIndex
= nullptr;
4654 // First, find the pointer.
4655 if (AddrMode
.BaseReg
&& AddrMode
.BaseReg
->getType()->isPointerTy()) {
4656 ResultPtr
= AddrMode
.BaseReg
;
4657 AddrMode
.BaseReg
= nullptr;
4660 if (AddrMode
.Scale
&& AddrMode
.ScaledReg
->getType()->isPointerTy()) {
4661 // We can't add more than one pointer together, nor can we scale a
4662 // pointer (both of which seem meaningless).
4663 if (ResultPtr
|| AddrMode
.Scale
!= 1)
4666 ResultPtr
= AddrMode
.ScaledReg
;
4670 // It is only safe to sign extend the BaseReg if we know that the math
4671 // required to create it did not overflow before we extend it. Since
4672 // the original IR value was tossed in favor of a constant back when
4673 // the AddrMode was created we need to bail out gracefully if widths
4674 // do not match instead of extending it.
4676 // (See below for code to add the scale.)
4677 if (AddrMode
.Scale
) {
4678 Type
*ScaledRegTy
= AddrMode
.ScaledReg
->getType();
4679 if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() >
4680 cast
<IntegerType
>(ScaledRegTy
)->getBitWidth())
4684 if (AddrMode
.BaseGV
) {
4688 ResultPtr
= AddrMode
.BaseGV
;
4691 // If the real base value actually came from an inttoptr, then the matcher
4692 // will look through it and provide only the integer value. In that case,
4694 if (!DL
->isNonIntegralPointerType(Addr
->getType())) {
4695 if (!ResultPtr
&& AddrMode
.BaseReg
) {
4696 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.BaseReg
, Addr
->getType(),
4698 AddrMode
.BaseReg
= nullptr;
4699 } else if (!ResultPtr
&& AddrMode
.Scale
== 1) {
4700 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.ScaledReg
, Addr
->getType(),
4707 !AddrMode
.BaseReg
&& !AddrMode
.Scale
&& !AddrMode
.BaseOffs
) {
4708 SunkAddr
= Constant::getNullValue(Addr
->getType());
4709 } else if (!ResultPtr
) {
4713 Builder
.getInt8PtrTy(Addr
->getType()->getPointerAddressSpace());
4714 Type
*I8Ty
= Builder
.getInt8Ty();
4716 // Start with the base register. Do this first so that subsequent address
4717 // matching finds it last, which will prevent it from trying to match it
4718 // as the scaled value in case it happens to be a mul. That would be
4719 // problematic if we've sunk a different mul for the scale, because then
4720 // we'd end up sinking both muls.
4721 if (AddrMode
.BaseReg
) {
4722 Value
*V
= AddrMode
.BaseReg
;
4723 if (V
->getType() != IntPtrTy
)
4724 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
4729 // Add the scale value.
4730 if (AddrMode
.Scale
) {
4731 Value
*V
= AddrMode
.ScaledReg
;
4732 if (V
->getType() == IntPtrTy
) {
4735 assert(cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
4736 cast
<IntegerType
>(V
->getType())->getBitWidth() &&
4737 "We can't transform if ScaledReg is too narrow");
4738 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
4741 if (AddrMode
.Scale
!= 1)
4742 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
4745 ResultIndex
= Builder
.CreateAdd(ResultIndex
, V
, "sunkaddr");
4750 // Add in the Base Offset if present.
4751 if (AddrMode
.BaseOffs
) {
4752 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
4754 // We need to add this separately from the scale above to help with
4755 // SDAG consecutive load/store merging.
4756 if (ResultPtr
->getType() != I8PtrTy
)
4757 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
4758 ResultPtr
= Builder
.CreateGEP(I8Ty
, ResultPtr
, ResultIndex
, "sunkaddr");
4765 SunkAddr
= ResultPtr
;
4767 if (ResultPtr
->getType() != I8PtrTy
)
4768 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
4769 SunkAddr
= Builder
.CreateGEP(I8Ty
, ResultPtr
, ResultIndex
, "sunkaddr");
4772 if (SunkAddr
->getType() != Addr
->getType())
4773 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
4776 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4777 // non-integral pointers, so in that case bail out now.
4778 Type
*BaseTy
= AddrMode
.BaseReg
? AddrMode
.BaseReg
->getType() : nullptr;
4779 Type
*ScaleTy
= AddrMode
.Scale
? AddrMode
.ScaledReg
->getType() : nullptr;
4780 PointerType
*BasePtrTy
= dyn_cast_or_null
<PointerType
>(BaseTy
);
4781 PointerType
*ScalePtrTy
= dyn_cast_or_null
<PointerType
>(ScaleTy
);
4782 if (DL
->isNonIntegralPointerType(Addr
->getType()) ||
4783 (BasePtrTy
&& DL
->isNonIntegralPointerType(BasePtrTy
)) ||
4784 (ScalePtrTy
&& DL
->isNonIntegralPointerType(ScalePtrTy
)) ||
4786 DL
->isNonIntegralPointerType(AddrMode
.BaseGV
->getType())))
4789 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4790 << " for " << *MemoryInst
<< "\n");
4791 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
4792 Value
*Result
= nullptr;
4794 // Start with the base register. Do this first so that subsequent address
4795 // matching finds it last, which will prevent it from trying to match it
4796 // as the scaled value in case it happens to be a mul. That would be
4797 // problematic if we've sunk a different mul for the scale, because then
4798 // we'd end up sinking both muls.
4799 if (AddrMode
.BaseReg
) {
4800 Value
*V
= AddrMode
.BaseReg
;
4801 if (V
->getType()->isPointerTy())
4802 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
4803 if (V
->getType() != IntPtrTy
)
4804 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
4808 // Add the scale value.
4809 if (AddrMode
.Scale
) {
4810 Value
*V
= AddrMode
.ScaledReg
;
4811 if (V
->getType() == IntPtrTy
) {
4813 } else if (V
->getType()->isPointerTy()) {
4814 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
4815 } else if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
4816 cast
<IntegerType
>(V
->getType())->getBitWidth()) {
4817 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
4819 // It is only safe to sign extend the BaseReg if we know that the math
4820 // required to create it did not overflow before we extend it. Since
4821 // the original IR value was tossed in favor of a constant back when
4822 // the AddrMode was created we need to bail out gracefully if widths
4823 // do not match instead of extending it.
4824 Instruction
*I
= dyn_cast_or_null
<Instruction
>(Result
);
4825 if (I
&& (Result
!= AddrMode
.BaseReg
))
4826 I
->eraseFromParent();
4829 if (AddrMode
.Scale
!= 1)
4830 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
4833 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
4838 // Add in the BaseGV if present.
4839 if (AddrMode
.BaseGV
) {
4840 Value
*V
= Builder
.CreatePtrToInt(AddrMode
.BaseGV
, IntPtrTy
, "sunkaddr");
4842 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
4847 // Add in the Base Offset if present.
4848 if (AddrMode
.BaseOffs
) {
4849 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
4851 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
4857 SunkAddr
= Constant::getNullValue(Addr
->getType());
4859 SunkAddr
= Builder
.CreateIntToPtr(Result
, Addr
->getType(), "sunkaddr");
4862 MemoryInst
->replaceUsesOfWith(Repl
, SunkAddr
);
4863 // Store the newly computed address into the cache. In the case we reused a
4864 // value, this should be idempotent.
4865 SunkAddrs
[Addr
] = WeakTrackingVH(SunkAddr
);
4867 // If we have no uses, recursively delete the value and all dead instructions
4869 if (Repl
->use_empty()) {
4870 // This can cause recursive deletion, which can invalidate our iterator.
4871 // Use a WeakTrackingVH to hold onto it in case this happens.
4872 Value
*CurValue
= &*CurInstIterator
;
4873 WeakTrackingVH
IterHandle(CurValue
);
4874 BasicBlock
*BB
= CurInstIterator
->getParent();
4876 RecursivelyDeleteTriviallyDeadInstructions(Repl
, TLInfo
);
4878 if (IterHandle
!= CurValue
) {
4879 // If the iterator instruction was recursively deleted, start over at the
4880 // start of the block.
4881 CurInstIterator
= BB
->begin();
4889 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4890 /// address computing into the block when possible / profitable.
4891 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst
*CS
) {
4892 bool MadeChange
= false;
4894 const TargetRegisterInfo
*TRI
=
4895 TM
->getSubtargetImpl(*CS
->getFunction())->getRegisterInfo();
4896 TargetLowering::AsmOperandInfoVector TargetConstraints
=
4897 TLI
->ParseConstraints(*DL
, TRI
, CS
);
4899 for (unsigned i
= 0, e
= TargetConstraints
.size(); i
!= e
; ++i
) {
4900 TargetLowering::AsmOperandInfo
&OpInfo
= TargetConstraints
[i
];
4902 // Compute the constraint code and ConstraintType to use.
4903 TLI
->ComputeConstraintToUse(OpInfo
, SDValue());
4905 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
4906 OpInfo
.isIndirect
) {
4907 Value
*OpVal
= CS
->getArgOperand(ArgNo
++);
4908 MadeChange
|= optimizeMemoryInst(CS
, OpVal
, OpVal
->getType(), ~0u);
4909 } else if (OpInfo
.Type
== InlineAsm::isInput
)
4916 /// Check if all the uses of \p Val are equivalent (or free) zero or
4917 /// sign extensions.
4918 static bool hasSameExtUse(Value
*Val
, const TargetLowering
&TLI
) {
4919 assert(!Val
->use_empty() && "Input must have at least one use");
4920 const Instruction
*FirstUser
= cast
<Instruction
>(*Val
->user_begin());
4921 bool IsSExt
= isa
<SExtInst
>(FirstUser
);
4922 Type
*ExtTy
= FirstUser
->getType();
4923 for (const User
*U
: Val
->users()) {
4924 const Instruction
*UI
= cast
<Instruction
>(U
);
4925 if ((IsSExt
&& !isa
<SExtInst
>(UI
)) || (!IsSExt
&& !isa
<ZExtInst
>(UI
)))
4927 Type
*CurTy
= UI
->getType();
4928 // Same input and output types: Same instruction after CSE.
4932 // If IsSExt is true, we are in this situation:
4934 // b = sext ty1 a to ty2
4935 // c = sext ty1 a to ty3
4936 // Assuming ty2 is shorter than ty3, this could be turned into:
4938 // b = sext ty1 a to ty2
4939 // c = sext ty2 b to ty3
4940 // However, the last sext is not free.
4944 // This is a ZExt, maybe this is free to extend from one type to another.
4945 // In that case, we would not account for a different use.
4948 if (ExtTy
->getScalarType()->getIntegerBitWidth() >
4949 CurTy
->getScalarType()->getIntegerBitWidth()) {
4957 if (!TLI
.isZExtFree(NarrowTy
, LargeTy
))
4960 // All uses are the same or can be derived from one another for free.
4964 /// Try to speculatively promote extensions in \p Exts and continue
4965 /// promoting through newly promoted operands recursively as far as doing so is
4966 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4967 /// When some promotion happened, \p TPT contains the proper state to revert
4970 /// \return true if some promotion happened, false otherwise.
4971 bool CodeGenPrepare::tryToPromoteExts(
4972 TypePromotionTransaction
&TPT
, const SmallVectorImpl
<Instruction
*> &Exts
,
4973 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
4974 unsigned CreatedInstsCost
) {
4975 bool Promoted
= false;
4977 // Iterate over all the extensions to try to promote them.
4978 for (auto I
: Exts
) {
4979 // Early check if we directly have ext(load).
4980 if (isa
<LoadInst
>(I
->getOperand(0))) {
4981 ProfitablyMovedExts
.push_back(I
);
4985 // Check whether or not we want to do any promotion. The reason we have
4986 // this check inside the for loop is to catch the case where an extension
4987 // is directly fed by a load because in such case the extension can be moved
4988 // up without any promotion on its operands.
4989 if (!TLI
|| !TLI
->enableExtLdPromotion() || DisableExtLdPromotion
)
4992 // Get the action to perform the promotion.
4993 TypePromotionHelper::Action TPH
=
4994 TypePromotionHelper::getAction(I
, InsertedInsts
, *TLI
, PromotedInsts
);
4995 // Check if we can promote.
4997 // Save the current extension as we cannot move up through its operand.
4998 ProfitablyMovedExts
.push_back(I
);
5002 // Save the current state.
5003 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5004 TPT
.getRestorationPoint();
5005 SmallVector
<Instruction
*, 4> NewExts
;
5006 unsigned NewCreatedInstsCost
= 0;
5007 unsigned ExtCost
= !TLI
->isExtFree(I
);
5009 Value
*PromotedVal
= TPH(I
, TPT
, PromotedInsts
, NewCreatedInstsCost
,
5010 &NewExts
, nullptr, *TLI
);
5011 assert(PromotedVal
&&
5012 "TypePromotionHelper should have filtered out those cases");
5014 // We would be able to merge only one extension in a load.
5015 // Therefore, if we have more than 1 new extension we heuristically
5016 // cut this search path, because it means we degrade the code quality.
5017 // With exactly 2, the transformation is neutral, because we will merge
5018 // one extension but leave one. However, we optimistically keep going,
5019 // because the new extension may be removed too.
5020 long long TotalCreatedInstsCost
= CreatedInstsCost
+ NewCreatedInstsCost
;
5021 // FIXME: It would be possible to propagate a negative value instead of
5022 // conservatively ceiling it to 0.
5023 TotalCreatedInstsCost
=
5024 std::max((long long)0, (TotalCreatedInstsCost
- ExtCost
));
5025 if (!StressExtLdPromotion
&&
5026 (TotalCreatedInstsCost
> 1 ||
5027 !isPromotedInstructionLegal(*TLI
, *DL
, PromotedVal
))) {
5028 // This promotion is not profitable, rollback to the previous state, and
5029 // save the current extension in ProfitablyMovedExts as the latest
5030 // speculative promotion turned out to be unprofitable.
5031 TPT
.rollback(LastKnownGood
);
5032 ProfitablyMovedExts
.push_back(I
);
5035 // Continue promoting NewExts as far as doing so is profitable.
5036 SmallVector
<Instruction
*, 2> NewlyMovedExts
;
5037 (void)tryToPromoteExts(TPT
, NewExts
, NewlyMovedExts
, TotalCreatedInstsCost
);
5038 bool NewPromoted
= false;
5039 for (auto ExtInst
: NewlyMovedExts
) {
5040 Instruction
*MovedExt
= cast
<Instruction
>(ExtInst
);
5041 Value
*ExtOperand
= MovedExt
->getOperand(0);
5042 // If we have reached to a load, we need this extra profitability check
5043 // as it could potentially be merged into an ext(load).
5044 if (isa
<LoadInst
>(ExtOperand
) &&
5045 !(StressExtLdPromotion
|| NewCreatedInstsCost
<= ExtCost
||
5046 (ExtOperand
->hasOneUse() || hasSameExtUse(ExtOperand
, *TLI
))))
5049 ProfitablyMovedExts
.push_back(MovedExt
);
5053 // If none of speculative promotions for NewExts is profitable, rollback
5054 // and save the current extension (I) as the last profitable extension.
5056 TPT
.rollback(LastKnownGood
);
5057 ProfitablyMovedExts
.push_back(I
);
5060 // The promotion is profitable.
5066 /// Merging redundant sexts when one is dominating the other.
5067 bool CodeGenPrepare::mergeSExts(Function
&F
) {
5068 DominatorTree
DT(F
);
5069 bool Changed
= false;
5070 for (auto &Entry
: ValToSExtendedUses
) {
5071 SExts
&Insts
= Entry
.second
;
5073 for (Instruction
*Inst
: Insts
) {
5074 if (RemovedInsts
.count(Inst
) || !isa
<SExtInst
>(Inst
) ||
5075 Inst
->getOperand(0) != Entry
.first
)
5077 bool inserted
= false;
5078 for (auto &Pt
: CurPts
) {
5079 if (DT
.dominates(Inst
, Pt
)) {
5080 Pt
->replaceAllUsesWith(Inst
);
5081 RemovedInsts
.insert(Pt
);
5082 Pt
->removeFromParent();
5088 if (!DT
.dominates(Pt
, Inst
))
5089 // Give up if we need to merge in a common dominator as the
5090 // experiments show it is not profitable.
5092 Inst
->replaceAllUsesWith(Pt
);
5093 RemovedInsts
.insert(Inst
);
5094 Inst
->removeFromParent();
5100 CurPts
.push_back(Inst
);
5106 // Spliting large data structures so that the GEPs accessing them can have
5107 // smaller offsets so that they can be sunk to the same blocks as their users.
5108 // For example, a large struct starting from %base is splitted into two parts
5109 // where the second part starts from %new_base.
5116 // %gep0 = gep %base, off0
5117 // %gep1 = gep %base, off1
5118 // %gep2 = gep %base, off2
5121 // %load1 = load %gep0
5122 // %load2 = load %gep1
5123 // %load3 = load %gep2
5128 // %new_base = gep %base, off0
5131 // %new_gep0 = %new_base
5132 // %new_gep1 = gep %new_base, off1 - off0
5133 // %new_gep2 = gep %new_base, off2 - off0
5136 // %load1 = load i32, i32* %new_gep0
5137 // %load2 = load i32, i32* %new_gep1
5138 // %load3 = load i32, i32* %new_gep2
5140 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5141 // their offsets are smaller enough to fit into the addressing mode.
5142 bool CodeGenPrepare::splitLargeGEPOffsets() {
5143 bool Changed
= false;
5144 for (auto &Entry
: LargeOffsetGEPMap
) {
5145 Value
*OldBase
= Entry
.first
;
5146 SmallVectorImpl
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>>
5147 &LargeOffsetGEPs
= Entry
.second
;
5148 auto compareGEPOffset
=
5149 [&](const std::pair
<GetElementPtrInst
*, int64_t> &LHS
,
5150 const std::pair
<GetElementPtrInst
*, int64_t> &RHS
) {
5151 if (LHS
.first
== RHS
.first
)
5153 if (LHS
.second
!= RHS
.second
)
5154 return LHS
.second
< RHS
.second
;
5155 return LargeOffsetGEPID
[LHS
.first
] < LargeOffsetGEPID
[RHS
.first
];
5157 // Sorting all the GEPs of the same data structures based on the offsets.
5158 llvm::sort(LargeOffsetGEPs
, compareGEPOffset
);
5159 LargeOffsetGEPs
.erase(
5160 std::unique(LargeOffsetGEPs
.begin(), LargeOffsetGEPs
.end()),
5161 LargeOffsetGEPs
.end());
5162 // Skip if all the GEPs have the same offsets.
5163 if (LargeOffsetGEPs
.front().second
== LargeOffsetGEPs
.back().second
)
5165 GetElementPtrInst
*BaseGEP
= LargeOffsetGEPs
.begin()->first
;
5166 int64_t BaseOffset
= LargeOffsetGEPs
.begin()->second
;
5167 Value
*NewBaseGEP
= nullptr;
5169 auto LargeOffsetGEP
= LargeOffsetGEPs
.begin();
5170 while (LargeOffsetGEP
!= LargeOffsetGEPs
.end()) {
5171 GetElementPtrInst
*GEP
= LargeOffsetGEP
->first
;
5172 int64_t Offset
= LargeOffsetGEP
->second
;
5173 if (Offset
!= BaseOffset
) {
5174 TargetLowering::AddrMode AddrMode
;
5175 AddrMode
.BaseOffs
= Offset
- BaseOffset
;
5176 // The result type of the GEP might not be the type of the memory
5178 if (!TLI
->isLegalAddressingMode(*DL
, AddrMode
,
5179 GEP
->getResultElementType(),
5180 GEP
->getAddressSpace())) {
5181 // We need to create a new base if the offset to the current base is
5182 // too large to fit into the addressing mode. So, a very large struct
5183 // may be splitted into several parts.
5185 BaseOffset
= Offset
;
5186 NewBaseGEP
= nullptr;
5190 // Generate a new GEP to replace the current one.
5191 LLVMContext
&Ctx
= GEP
->getContext();
5192 Type
*IntPtrTy
= DL
->getIntPtrType(GEP
->getType());
5194 Type::getInt8PtrTy(Ctx
, GEP
->getType()->getPointerAddressSpace());
5195 Type
*I8Ty
= Type::getInt8Ty(Ctx
);
5198 // Create a new base if we don't have one yet. Find the insertion
5199 // pointer for the new base first.
5200 BasicBlock::iterator NewBaseInsertPt
;
5201 BasicBlock
*NewBaseInsertBB
;
5202 if (auto *BaseI
= dyn_cast
<Instruction
>(OldBase
)) {
5203 // If the base of the struct is an instruction, the new base will be
5204 // inserted close to it.
5205 NewBaseInsertBB
= BaseI
->getParent();
5206 if (isa
<PHINode
>(BaseI
))
5207 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5208 else if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(BaseI
)) {
5210 SplitEdge(NewBaseInsertBB
, Invoke
->getNormalDest());
5211 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5213 NewBaseInsertPt
= std::next(BaseI
->getIterator());
5215 // If the current base is an argument or global value, the new base
5216 // will be inserted to the entry block.
5217 NewBaseInsertBB
= &BaseGEP
->getFunction()->getEntryBlock();
5218 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5220 IRBuilder
<> NewBaseBuilder(NewBaseInsertBB
, NewBaseInsertPt
);
5221 // Create a new base.
5222 Value
*BaseIndex
= ConstantInt::get(IntPtrTy
, BaseOffset
);
5223 NewBaseGEP
= OldBase
;
5224 if (NewBaseGEP
->getType() != I8PtrTy
)
5225 NewBaseGEP
= NewBaseBuilder
.CreatePointerCast(NewBaseGEP
, I8PtrTy
);
5227 NewBaseBuilder
.CreateGEP(I8Ty
, NewBaseGEP
, BaseIndex
, "splitgep");
5228 NewGEPBases
.insert(NewBaseGEP
);
5231 IRBuilder
<> Builder(GEP
);
5232 Value
*NewGEP
= NewBaseGEP
;
5233 if (Offset
== BaseOffset
) {
5234 if (GEP
->getType() != I8PtrTy
)
5235 NewGEP
= Builder
.CreatePointerCast(NewGEP
, GEP
->getType());
5237 // Calculate the new offset for the new GEP.
5238 Value
*Index
= ConstantInt::get(IntPtrTy
, Offset
- BaseOffset
);
5239 NewGEP
= Builder
.CreateGEP(I8Ty
, NewBaseGEP
, Index
);
5241 if (GEP
->getType() != I8PtrTy
)
5242 NewGEP
= Builder
.CreatePointerCast(NewGEP
, GEP
->getType());
5244 GEP
->replaceAllUsesWith(NewGEP
);
5245 LargeOffsetGEPID
.erase(GEP
);
5246 LargeOffsetGEP
= LargeOffsetGEPs
.erase(LargeOffsetGEP
);
5247 GEP
->eraseFromParent();
5254 /// Return true, if an ext(load) can be formed from an extension in
5256 bool CodeGenPrepare::canFormExtLd(
5257 const SmallVectorImpl
<Instruction
*> &MovedExts
, LoadInst
*&LI
,
5258 Instruction
*&Inst
, bool HasPromoted
) {
5259 for (auto *MovedExtInst
: MovedExts
) {
5260 if (isa
<LoadInst
>(MovedExtInst
->getOperand(0))) {
5261 LI
= cast
<LoadInst
>(MovedExtInst
->getOperand(0));
5262 Inst
= MovedExtInst
;
5269 // If they're already in the same block, there's nothing to do.
5270 // Make the cheap checks first if we did not promote.
5271 // If we promoted, we need to check if it is indeed profitable.
5272 if (!HasPromoted
&& LI
->getParent() == Inst
->getParent())
5275 return TLI
->isExtLoad(LI
, Inst
, *DL
);
5278 /// Move a zext or sext fed by a load into the same basic block as the load,
5279 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5280 /// extend into the load.
5284 /// %ld = load i32* %addr
5285 /// %add = add nuw i32 %ld, 4
5286 /// %zext = zext i32 %add to i64
5290 /// %ld = load i32* %addr
5291 /// %zext = zext i32 %ld to i64
5292 /// %add = add nuw i64 %zext, 4
5294 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5295 /// allow us to match zext(load i32*) to i64.
5297 /// Also, try to promote the computations used to obtain a sign extended
5298 /// value used into memory accesses.
5301 /// a = add nsw i32 b, 3
5302 /// d = sext i32 a to i64
5303 /// e = getelementptr ..., i64 d
5307 /// f = sext i32 b to i64
5308 /// a = add nsw i64 f, 3
5309 /// e = getelementptr ..., i64 a
5312 /// \p Inst[in/out] the extension may be modified during the process if some
5313 /// promotions apply.
5314 bool CodeGenPrepare::optimizeExt(Instruction
*&Inst
) {
5315 // ExtLoad formation and address type promotion infrastructure requires TLI to
5320 bool AllowPromotionWithoutCommonHeader
= false;
5321 /// See if it is an interesting sext operations for the address type
5322 /// promotion before trying to promote it, e.g., the ones with the right
5323 /// type and used in memory accesses.
5324 bool ATPConsiderable
= TTI
->shouldConsiderAddressTypePromotion(
5325 *Inst
, AllowPromotionWithoutCommonHeader
);
5326 TypePromotionTransaction
TPT(RemovedInsts
);
5327 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5328 TPT
.getRestorationPoint();
5329 SmallVector
<Instruction
*, 1> Exts
;
5330 SmallVector
<Instruction
*, 2> SpeculativelyMovedExts
;
5331 Exts
.push_back(Inst
);
5333 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, SpeculativelyMovedExts
);
5335 // Look for a load being extended.
5336 LoadInst
*LI
= nullptr;
5337 Instruction
*ExtFedByLoad
;
5339 // Try to promote a chain of computation if it allows to form an extended
5341 if (canFormExtLd(SpeculativelyMovedExts
, LI
, ExtFedByLoad
, HasPromoted
)) {
5342 assert(LI
&& ExtFedByLoad
&& "Expect a valid load and extension");
5344 // Move the extend into the same block as the load
5345 ExtFedByLoad
->moveAfter(LI
);
5346 // CGP does not check if the zext would be speculatively executed when moved
5347 // to the same basic block as the load. Preserving its original location
5348 // would pessimize the debugging experience, as well as negatively impact
5349 // the quality of sample pgo. We don't want to use "line 0" as that has a
5350 // size cost in the line-table section and logically the zext can be seen as
5351 // part of the load. Therefore we conservatively reuse the same debug
5352 // location for the load and the zext.
5353 ExtFedByLoad
->setDebugLoc(LI
->getDebugLoc());
5355 Inst
= ExtFedByLoad
;
5359 // Continue promoting SExts if known as considerable depending on targets.
5360 if (ATPConsiderable
&&
5361 performAddressTypePromotion(Inst
, AllowPromotionWithoutCommonHeader
,
5362 HasPromoted
, TPT
, SpeculativelyMovedExts
))
5365 TPT
.rollback(LastKnownGood
);
5369 // Perform address type promotion if doing so is profitable.
5370 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5371 // instructions that sign extended the same initial value. However, if
5372 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5373 // extension is just profitable.
5374 bool CodeGenPrepare::performAddressTypePromotion(
5375 Instruction
*&Inst
, bool AllowPromotionWithoutCommonHeader
,
5376 bool HasPromoted
, TypePromotionTransaction
&TPT
,
5377 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
) {
5378 bool Promoted
= false;
5379 SmallPtrSet
<Instruction
*, 1> UnhandledExts
;
5380 bool AllSeenFirst
= true;
5381 for (auto I
: SpeculativelyMovedExts
) {
5382 Value
*HeadOfChain
= I
->getOperand(0);
5383 DenseMap
<Value
*, Instruction
*>::iterator AlreadySeen
=
5384 SeenChainsForSExt
.find(HeadOfChain
);
5385 // If there is an unhandled SExt which has the same header, try to promote
5387 if (AlreadySeen
!= SeenChainsForSExt
.end()) {
5388 if (AlreadySeen
->second
!= nullptr)
5389 UnhandledExts
.insert(AlreadySeen
->second
);
5390 AllSeenFirst
= false;
5394 if (!AllSeenFirst
|| (AllowPromotionWithoutCommonHeader
&&
5395 SpeculativelyMovedExts
.size() == 1)) {
5399 for (auto I
: SpeculativelyMovedExts
) {
5400 Value
*HeadOfChain
= I
->getOperand(0);
5401 SeenChainsForSExt
[HeadOfChain
] = nullptr;
5402 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
5404 // Update Inst as promotion happen.
5405 Inst
= SpeculativelyMovedExts
.pop_back_val();
5407 // This is the first chain visited from the header, keep the current chain
5408 // as unhandled. Defer to promote this until we encounter another SExt
5409 // chain derived from the same header.
5410 for (auto I
: SpeculativelyMovedExts
) {
5411 Value
*HeadOfChain
= I
->getOperand(0);
5412 SeenChainsForSExt
[HeadOfChain
] = Inst
;
5417 if (!AllSeenFirst
&& !UnhandledExts
.empty())
5418 for (auto VisitedSExt
: UnhandledExts
) {
5419 if (RemovedInsts
.count(VisitedSExt
))
5421 TypePromotionTransaction
TPT(RemovedInsts
);
5422 SmallVector
<Instruction
*, 1> Exts
;
5423 SmallVector
<Instruction
*, 2> Chains
;
5424 Exts
.push_back(VisitedSExt
);
5425 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, Chains
);
5429 for (auto I
: Chains
) {
5430 Value
*HeadOfChain
= I
->getOperand(0);
5431 // Mark this as handled.
5432 SeenChainsForSExt
[HeadOfChain
] = nullptr;
5433 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
5439 bool CodeGenPrepare::optimizeExtUses(Instruction
*I
) {
5440 BasicBlock
*DefBB
= I
->getParent();
5442 // If the result of a {s|z}ext and its source are both live out, rewrite all
5443 // other uses of the source with result of extension.
5444 Value
*Src
= I
->getOperand(0);
5445 if (Src
->hasOneUse())
5448 // Only do this xform if truncating is free.
5449 if (TLI
&& !TLI
->isTruncateFree(I
->getType(), Src
->getType()))
5452 // Only safe to perform the optimization if the source is also defined in
5454 if (!isa
<Instruction
>(Src
) || DefBB
!= cast
<Instruction
>(Src
)->getParent())
5457 bool DefIsLiveOut
= false;
5458 for (User
*U
: I
->users()) {
5459 Instruction
*UI
= cast
<Instruction
>(U
);
5461 // Figure out which BB this ext is used in.
5462 BasicBlock
*UserBB
= UI
->getParent();
5463 if (UserBB
== DefBB
) continue;
5464 DefIsLiveOut
= true;
5470 // Make sure none of the uses are PHI nodes.
5471 for (User
*U
: Src
->users()) {
5472 Instruction
*UI
= cast
<Instruction
>(U
);
5473 BasicBlock
*UserBB
= UI
->getParent();
5474 if (UserBB
== DefBB
) continue;
5475 // Be conservative. We don't want this xform to end up introducing
5476 // reloads just before load / store instructions.
5477 if (isa
<PHINode
>(UI
) || isa
<LoadInst
>(UI
) || isa
<StoreInst
>(UI
))
5481 // InsertedTruncs - Only insert one trunc in each block once.
5482 DenseMap
<BasicBlock
*, Instruction
*> InsertedTruncs
;
5484 bool MadeChange
= false;
5485 for (Use
&U
: Src
->uses()) {
5486 Instruction
*User
= cast
<Instruction
>(U
.getUser());
5488 // Figure out which BB this ext is used in.
5489 BasicBlock
*UserBB
= User
->getParent();
5490 if (UserBB
== DefBB
) continue;
5492 // Both src and def are live in this block. Rewrite the use.
5493 Instruction
*&InsertedTrunc
= InsertedTruncs
[UserBB
];
5495 if (!InsertedTrunc
) {
5496 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
5497 assert(InsertPt
!= UserBB
->end());
5498 InsertedTrunc
= new TruncInst(I
, Src
->getType(), "", &*InsertPt
);
5499 InsertedInsts
.insert(InsertedTrunc
);
5502 // Replace a use of the {s|z}ext source with a use of the result.
5511 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
5512 // just after the load if the target can fold this into one extload instruction,
5513 // with the hope of eliminating some of the other later "and" instructions using
5514 // the loaded value. "and"s that are made trivially redundant by the insertion
5515 // of the new "and" are removed by this function, while others (e.g. those whose
5516 // path from the load goes through a phi) are left for isel to potentially
5549 // becomes (after a call to optimizeLoadExt for each load):
5553 // x1' = and x1, 0xff
5557 // x2' = and x2, 0xff
5562 bool CodeGenPrepare::optimizeLoadExt(LoadInst
*Load
) {
5563 if (!Load
->isSimple() || !Load
->getType()->isIntOrPtrTy())
5566 // Skip loads we've already transformed.
5567 if (Load
->hasOneUse() &&
5568 InsertedInsts
.count(cast
<Instruction
>(*Load
->user_begin())))
5571 // Look at all uses of Load, looking through phis, to determine how many bits
5572 // of the loaded value are needed.
5573 SmallVector
<Instruction
*, 8> WorkList
;
5574 SmallPtrSet
<Instruction
*, 16> Visited
;
5575 SmallVector
<Instruction
*, 8> AndsToMaybeRemove
;
5576 for (auto *U
: Load
->users())
5577 WorkList
.push_back(cast
<Instruction
>(U
));
5579 EVT LoadResultVT
= TLI
->getValueType(*DL
, Load
->getType());
5580 unsigned BitWidth
= LoadResultVT
.getSizeInBits();
5581 APInt
DemandBits(BitWidth
, 0);
5582 APInt
WidestAndBits(BitWidth
, 0);
5584 while (!WorkList
.empty()) {
5585 Instruction
*I
= WorkList
.back();
5586 WorkList
.pop_back();
5588 // Break use-def graph loops.
5589 if (!Visited
.insert(I
).second
)
5592 // For a PHI node, push all of its users.
5593 if (auto *Phi
= dyn_cast
<PHINode
>(I
)) {
5594 for (auto *U
: Phi
->users())
5595 WorkList
.push_back(cast
<Instruction
>(U
));
5599 switch (I
->getOpcode()) {
5600 case Instruction::And
: {
5601 auto *AndC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
5604 APInt AndBits
= AndC
->getValue();
5605 DemandBits
|= AndBits
;
5606 // Keep track of the widest and mask we see.
5607 if (AndBits
.ugt(WidestAndBits
))
5608 WidestAndBits
= AndBits
;
5609 if (AndBits
== WidestAndBits
&& I
->getOperand(0) == Load
)
5610 AndsToMaybeRemove
.push_back(I
);
5614 case Instruction::Shl
: {
5615 auto *ShlC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
5618 uint64_t ShiftAmt
= ShlC
->getLimitedValue(BitWidth
- 1);
5619 DemandBits
.setLowBits(BitWidth
- ShiftAmt
);
5623 case Instruction::Trunc
: {
5624 EVT TruncVT
= TLI
->getValueType(*DL
, I
->getType());
5625 unsigned TruncBitWidth
= TruncVT
.getSizeInBits();
5626 DemandBits
.setLowBits(TruncBitWidth
);
5635 uint32_t ActiveBits
= DemandBits
.getActiveBits();
5636 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5637 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
5638 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5639 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5640 // followed by an AND.
5641 // TODO: Look into removing this restriction by fixing backends to either
5642 // return false for isLoadExtLegal for i1 or have them select this pattern to
5643 // a single instruction.
5645 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5646 // mask, since these are the only ands that will be removed by isel.
5647 if (ActiveBits
<= 1 || !DemandBits
.isMask(ActiveBits
) ||
5648 WidestAndBits
!= DemandBits
)
5651 LLVMContext
&Ctx
= Load
->getType()->getContext();
5652 Type
*TruncTy
= Type::getIntNTy(Ctx
, ActiveBits
);
5653 EVT TruncVT
= TLI
->getValueType(*DL
, TruncTy
);
5655 // Reject cases that won't be matched as extloads.
5656 if (!LoadResultVT
.bitsGT(TruncVT
) || !TruncVT
.isRound() ||
5657 !TLI
->isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultVT
, TruncVT
))
5660 IRBuilder
<> Builder(Load
->getNextNode());
5661 auto *NewAnd
= dyn_cast
<Instruction
>(
5662 Builder
.CreateAnd(Load
, ConstantInt::get(Ctx
, DemandBits
)));
5663 // Mark this instruction as "inserted by CGP", so that other
5664 // optimizations don't touch it.
5665 InsertedInsts
.insert(NewAnd
);
5667 // Replace all uses of load with new and (except for the use of load in the
5669 Load
->replaceAllUsesWith(NewAnd
);
5670 NewAnd
->setOperand(0, Load
);
5672 // Remove any and instructions that are now redundant.
5673 for (auto *And
: AndsToMaybeRemove
)
5674 // Check that the and mask is the same as the one we decided to put on the
5676 if (cast
<ConstantInt
>(And
->getOperand(1))->getValue() == DemandBits
) {
5677 And
->replaceAllUsesWith(NewAnd
);
5678 if (&*CurInstIterator
== And
)
5679 CurInstIterator
= std::next(And
->getIterator());
5680 And
->eraseFromParent();
5688 /// Check if V (an operand of a select instruction) is an expensive instruction
5689 /// that is only used once.
5690 static bool sinkSelectOperand(const TargetTransformInfo
*TTI
, Value
*V
) {
5691 auto *I
= dyn_cast
<Instruction
>(V
);
5692 // If it's safe to speculatively execute, then it should not have side
5693 // effects; therefore, it's safe to sink and possibly *not* execute.
5694 return I
&& I
->hasOneUse() && isSafeToSpeculativelyExecute(I
) &&
5695 TTI
->getUserCost(I
) >= TargetTransformInfo::TCC_Expensive
;
5698 /// Returns true if a SelectInst should be turned into an explicit branch.
5699 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo
*TTI
,
5700 const TargetLowering
*TLI
,
5702 // If even a predictable select is cheap, then a branch can't be cheaper.
5703 if (!TLI
->isPredictableSelectExpensive())
5706 // FIXME: This should use the same heuristics as IfConversion to determine
5707 // whether a select is better represented as a branch.
5709 // If metadata tells us that the select condition is obviously predictable,
5710 // then we want to replace the select with a branch.
5711 uint64_t TrueWeight
, FalseWeight
;
5712 if (SI
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
5713 uint64_t Max
= std::max(TrueWeight
, FalseWeight
);
5714 uint64_t Sum
= TrueWeight
+ FalseWeight
;
5716 auto Probability
= BranchProbability::getBranchProbability(Max
, Sum
);
5717 if (Probability
> TLI
->getPredictableBranchThreshold())
5722 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(SI
->getCondition());
5724 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5725 // comparison condition. If the compare has more than one use, there's
5726 // probably another cmov or setcc around, so it's not worth emitting a branch.
5727 if (!Cmp
|| !Cmp
->hasOneUse())
5730 // If either operand of the select is expensive and only needed on one side
5731 // of the select, we should form a branch.
5732 if (sinkSelectOperand(TTI
, SI
->getTrueValue()) ||
5733 sinkSelectOperand(TTI
, SI
->getFalseValue()))
5739 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5740 /// false value of \p SI. If the true/false value of \p SI is defined by any
5741 /// select instructions in \p Selects, look through the defining select
5742 /// instruction until the true/false value is not defined in \p Selects.
5743 static Value
*getTrueOrFalseValue(
5744 SelectInst
*SI
, bool isTrue
,
5745 const SmallPtrSet
<const Instruction
*, 2> &Selects
) {
5748 for (SelectInst
*DefSI
= SI
; DefSI
!= nullptr && Selects
.count(DefSI
);
5749 DefSI
= dyn_cast
<SelectInst
>(V
)) {
5750 assert(DefSI
->getCondition() == SI
->getCondition() &&
5751 "The condition of DefSI does not match with SI");
5752 V
= (isTrue
? DefSI
->getTrueValue() : DefSI
->getFalseValue());
5757 /// If we have a SelectInst that will likely profit from branch prediction,
5758 /// turn it into a branch.
5759 bool CodeGenPrepare::optimizeSelectInst(SelectInst
*SI
) {
5760 // If branch conversion isn't desirable, exit early.
5761 if (DisableSelectToBranch
|| OptSize
|| !TLI
)
5764 // Find all consecutive select instructions that share the same condition.
5765 SmallVector
<SelectInst
*, 2> ASI
;
5767 for (BasicBlock::iterator It
= ++BasicBlock::iterator(SI
);
5768 It
!= SI
->getParent()->end(); ++It
) {
5769 SelectInst
*I
= dyn_cast
<SelectInst
>(&*It
);
5770 if (I
&& SI
->getCondition() == I
->getCondition()) {
5777 SelectInst
*LastSI
= ASI
.back();
5778 // Increment the current iterator to skip all the rest of select instructions
5779 // because they will be either "not lowered" or "all lowered" to branch.
5780 CurInstIterator
= std::next(LastSI
->getIterator());
5782 bool VectorCond
= !SI
->getCondition()->getType()->isIntegerTy(1);
5784 // Can we convert the 'select' to CF ?
5785 if (VectorCond
|| SI
->getMetadata(LLVMContext::MD_unpredictable
))
5788 TargetLowering::SelectSupportKind SelectKind
;
5790 SelectKind
= TargetLowering::VectorMaskSelect
;
5791 else if (SI
->getType()->isVectorTy())
5792 SelectKind
= TargetLowering::ScalarCondVectorVal
;
5794 SelectKind
= TargetLowering::ScalarValSelect
;
5796 if (TLI
->isSelectSupported(SelectKind
) &&
5797 !isFormingBranchFromSelectProfitable(TTI
, TLI
, SI
))
5802 // Transform a sequence like this:
5804 // %cmp = cmp uge i32 %a, %b
5805 // %sel = select i1 %cmp, i32 %c, i32 %d
5809 // %cmp = cmp uge i32 %a, %b
5810 // br i1 %cmp, label %select.true, label %select.false
5812 // br label %select.end
5814 // br label %select.end
5816 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5818 // In addition, we may sink instructions that produce %c or %d from
5819 // the entry block into the destination(s) of the new branch.
5820 // If the true or false blocks do not contain a sunken instruction, that
5821 // block and its branch may be optimized away. In that case, one side of the
5822 // first branch will point directly to select.end, and the corresponding PHI
5823 // predecessor block will be the start block.
5825 // First, we split the block containing the select into 2 blocks.
5826 BasicBlock
*StartBlock
= SI
->getParent();
5827 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(LastSI
));
5828 BasicBlock
*EndBlock
= StartBlock
->splitBasicBlock(SplitPt
, "select.end");
5830 // Delete the unconditional branch that was just created by the split.
5831 StartBlock
->getTerminator()->eraseFromParent();
5833 // These are the new basic blocks for the conditional branch.
5834 // At least one will become an actual new basic block.
5835 BasicBlock
*TrueBlock
= nullptr;
5836 BasicBlock
*FalseBlock
= nullptr;
5837 BranchInst
*TrueBranch
= nullptr;
5838 BranchInst
*FalseBranch
= nullptr;
5840 // Sink expensive instructions into the conditional blocks to avoid executing
5841 // them speculatively.
5842 for (SelectInst
*SI
: ASI
) {
5843 if (sinkSelectOperand(TTI
, SI
->getTrueValue())) {
5844 if (TrueBlock
== nullptr) {
5845 TrueBlock
= BasicBlock::Create(SI
->getContext(), "select.true.sink",
5846 EndBlock
->getParent(), EndBlock
);
5847 TrueBranch
= BranchInst::Create(EndBlock
, TrueBlock
);
5848 TrueBranch
->setDebugLoc(SI
->getDebugLoc());
5850 auto *TrueInst
= cast
<Instruction
>(SI
->getTrueValue());
5851 TrueInst
->moveBefore(TrueBranch
);
5853 if (sinkSelectOperand(TTI
, SI
->getFalseValue())) {
5854 if (FalseBlock
== nullptr) {
5855 FalseBlock
= BasicBlock::Create(SI
->getContext(), "select.false.sink",
5856 EndBlock
->getParent(), EndBlock
);
5857 FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
5858 FalseBranch
->setDebugLoc(SI
->getDebugLoc());
5860 auto *FalseInst
= cast
<Instruction
>(SI
->getFalseValue());
5861 FalseInst
->moveBefore(FalseBranch
);
5865 // If there was nothing to sink, then arbitrarily choose the 'false' side
5866 // for a new input value to the PHI.
5867 if (TrueBlock
== FalseBlock
) {
5868 assert(TrueBlock
== nullptr &&
5869 "Unexpected basic block transform while optimizing select");
5871 FalseBlock
= BasicBlock::Create(SI
->getContext(), "select.false",
5872 EndBlock
->getParent(), EndBlock
);
5873 auto *FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
5874 FalseBranch
->setDebugLoc(SI
->getDebugLoc());
5877 // Insert the real conditional branch based on the original condition.
5878 // If we did not create a new block for one of the 'true' or 'false' paths
5879 // of the condition, it means that side of the branch goes to the end block
5880 // directly and the path originates from the start block from the point of
5881 // view of the new PHI.
5882 BasicBlock
*TT
, *FT
;
5883 if (TrueBlock
== nullptr) {
5886 TrueBlock
= StartBlock
;
5887 } else if (FalseBlock
== nullptr) {
5890 FalseBlock
= StartBlock
;
5895 IRBuilder
<>(SI
).CreateCondBr(SI
->getCondition(), TT
, FT
, SI
);
5897 SmallPtrSet
<const Instruction
*, 2> INS
;
5898 INS
.insert(ASI
.begin(), ASI
.end());
5899 // Use reverse iterator because later select may use the value of the
5900 // earlier select, and we need to propagate value through earlier select
5901 // to get the PHI operand.
5902 for (auto It
= ASI
.rbegin(); It
!= ASI
.rend(); ++It
) {
5903 SelectInst
*SI
= *It
;
5904 // The select itself is replaced with a PHI Node.
5905 PHINode
*PN
= PHINode::Create(SI
->getType(), 2, "", &EndBlock
->front());
5907 PN
->addIncoming(getTrueOrFalseValue(SI
, true, INS
), TrueBlock
);
5908 PN
->addIncoming(getTrueOrFalseValue(SI
, false, INS
), FalseBlock
);
5909 PN
->setDebugLoc(SI
->getDebugLoc());
5911 SI
->replaceAllUsesWith(PN
);
5912 SI
->eraseFromParent();
5914 ++NumSelectsExpanded
;
5917 // Instruct OptimizeBlock to skip to the next block.
5918 CurInstIterator
= StartBlock
->end();
5922 static bool isBroadcastShuffle(ShuffleVectorInst
*SVI
) {
5923 SmallVector
<int, 16> Mask(SVI
->getShuffleMask());
5925 for (unsigned i
= 0; i
< Mask
.size(); ++i
) {
5926 if (SplatElem
!= -1 && Mask
[i
] != -1 && Mask
[i
] != SplatElem
)
5928 SplatElem
= Mask
[i
];
5934 /// Some targets have expensive vector shifts if the lanes aren't all the same
5935 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5936 /// it's often worth sinking a shufflevector splat down to its use so that
5937 /// codegen can spot all lanes are identical.
5938 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
) {
5939 BasicBlock
*DefBB
= SVI
->getParent();
5941 // Only do this xform if variable vector shifts are particularly expensive.
5942 if (!TLI
|| !TLI
->isVectorShiftByScalarCheap(SVI
->getType()))
5945 // We only expect better codegen by sinking a shuffle if we can recognise a
5947 if (!isBroadcastShuffle(SVI
))
5950 // InsertedShuffles - Only insert a shuffle in each block once.
5951 DenseMap
<BasicBlock
*, Instruction
*> InsertedShuffles
;
5953 bool MadeChange
= false;
5954 for (User
*U
: SVI
->users()) {
5955 Instruction
*UI
= cast
<Instruction
>(U
);
5957 // Figure out which BB this ext is used in.
5958 BasicBlock
*UserBB
= UI
->getParent();
5959 if (UserBB
== DefBB
) continue;
5961 // For now only apply this when the splat is used by a shift instruction.
5962 if (!UI
->isShift()) continue;
5964 // Everything checks out, sink the shuffle if the user's block doesn't
5965 // already have a copy.
5966 Instruction
*&InsertedShuffle
= InsertedShuffles
[UserBB
];
5968 if (!InsertedShuffle
) {
5969 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
5970 assert(InsertPt
!= UserBB
->end());
5972 new ShuffleVectorInst(SVI
->getOperand(0), SVI
->getOperand(1),
5973 SVI
->getOperand(2), "", &*InsertPt
);
5976 UI
->replaceUsesOfWith(SVI
, InsertedShuffle
);
5980 // If we removed all uses, nuke the shuffle.
5981 if (SVI
->use_empty()) {
5982 SVI
->eraseFromParent();
5989 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction
*I
) {
5990 // If the operands of I can be folded into a target instruction together with
5991 // I, duplicate and sink them.
5992 SmallVector
<Use
*, 4> OpsToSink
;
5993 if (!TLI
|| !TLI
->shouldSinkOperands(I
, OpsToSink
))
5996 // OpsToSink can contain multiple uses in a use chain (e.g.
5997 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
5998 // uses must come first, which means they are sunk first, temporarily creating
5999 // invalid IR. This will be fixed once their dominated users are sunk and
6001 BasicBlock
*TargetBB
= I
->getParent();
6002 bool Changed
= false;
6003 SmallVector
<Use
*, 4> ToReplace
;
6004 for (Use
*U
: OpsToSink
) {
6005 auto *UI
= cast
<Instruction
>(U
->get());
6006 if (UI
->getParent() == TargetBB
|| isa
<PHINode
>(UI
))
6008 ToReplace
.push_back(U
);
6011 SmallPtrSet
<Instruction
*, 4> MaybeDead
;
6012 for (Use
*U
: ToReplace
) {
6013 auto *UI
= cast
<Instruction
>(U
->get());
6014 Instruction
*NI
= UI
->clone();
6015 MaybeDead
.insert(UI
);
6016 LLVM_DEBUG(dbgs() << "Sinking " << *UI
<< " to user " << *I
<< "\n");
6017 NI
->insertBefore(I
);
6018 InsertedInsts
.insert(NI
);
6023 // Remove instructions that are dead after sinking.
6024 for (auto *I
: MaybeDead
)
6025 if (!I
->hasNUsesOrMore(1))
6026 I
->eraseFromParent();
6031 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst
*SI
) {
6035 Value
*Cond
= SI
->getCondition();
6036 Type
*OldType
= Cond
->getType();
6037 LLVMContext
&Context
= Cond
->getContext();
6038 MVT RegType
= TLI
->getRegisterType(Context
, TLI
->getValueType(*DL
, OldType
));
6039 unsigned RegWidth
= RegType
.getSizeInBits();
6041 if (RegWidth
<= cast
<IntegerType
>(OldType
)->getBitWidth())
6044 // If the register width is greater than the type width, expand the condition
6045 // of the switch instruction and each case constant to the width of the
6046 // register. By widening the type of the switch condition, subsequent
6047 // comparisons (for case comparisons) will not need to be extended to the
6048 // preferred register width, so we will potentially eliminate N-1 extends,
6049 // where N is the number of cases in the switch.
6050 auto *NewType
= Type::getIntNTy(Context
, RegWidth
);
6052 // Zero-extend the switch condition and case constants unless the switch
6053 // condition is a function argument that is already being sign-extended.
6054 // In that case, we can avoid an unnecessary mask/extension by sign-extending
6055 // everything instead.
6056 Instruction::CastOps ExtType
= Instruction::ZExt
;
6057 if (auto *Arg
= dyn_cast
<Argument
>(Cond
))
6058 if (Arg
->hasSExtAttr())
6059 ExtType
= Instruction::SExt
;
6061 auto *ExtInst
= CastInst::Create(ExtType
, Cond
, NewType
);
6062 ExtInst
->insertBefore(SI
);
6063 ExtInst
->setDebugLoc(SI
->getDebugLoc());
6064 SI
->setCondition(ExtInst
);
6065 for (auto Case
: SI
->cases()) {
6066 APInt NarrowConst
= Case
.getCaseValue()->getValue();
6067 APInt WideConst
= (ExtType
== Instruction::ZExt
) ?
6068 NarrowConst
.zext(RegWidth
) : NarrowConst
.sext(RegWidth
);
6069 Case
.setValue(ConstantInt::get(Context
, WideConst
));
6078 /// Helper class to promote a scalar operation to a vector one.
6079 /// This class is used to move downward extractelement transition.
6081 /// a = vector_op <2 x i32>
6082 /// b = extractelement <2 x i32> a, i32 0
6087 /// a = vector_op <2 x i32>
6088 /// c = vector_op a (equivalent to scalar_op on the related lane)
6089 /// * d = extractelement <2 x i32> c, i32 0
6091 /// Assuming both extractelement and store can be combine, we get rid of the
6093 class VectorPromoteHelper
{
6094 /// DataLayout associated with the current module.
6095 const DataLayout
&DL
;
6097 /// Used to perform some checks on the legality of vector operations.
6098 const TargetLowering
&TLI
;
6100 /// Used to estimated the cost of the promoted chain.
6101 const TargetTransformInfo
&TTI
;
6103 /// The transition being moved downwards.
6104 Instruction
*Transition
;
6106 /// The sequence of instructions to be promoted.
6107 SmallVector
<Instruction
*, 4> InstsToBePromoted
;
6109 /// Cost of combining a store and an extract.
6110 unsigned StoreExtractCombineCost
;
6112 /// Instruction that will be combined with the transition.
6113 Instruction
*CombineInst
= nullptr;
6115 /// The instruction that represents the current end of the transition.
6116 /// Since we are faking the promotion until we reach the end of the chain
6117 /// of computation, we need a way to get the current end of the transition.
6118 Instruction
*getEndOfTransition() const {
6119 if (InstsToBePromoted
.empty())
6121 return InstsToBePromoted
.back();
6124 /// Return the index of the original value in the transition.
6125 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6126 /// c, is at index 0.
6127 unsigned getTransitionOriginalValueIdx() const {
6128 assert(isa
<ExtractElementInst
>(Transition
) &&
6129 "Other kind of transitions are not supported yet");
6133 /// Return the index of the index in the transition.
6134 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6136 unsigned getTransitionIdx() const {
6137 assert(isa
<ExtractElementInst
>(Transition
) &&
6138 "Other kind of transitions are not supported yet");
6142 /// Get the type of the transition.
6143 /// This is the type of the original value.
6144 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6145 /// transition is <2 x i32>.
6146 Type
*getTransitionType() const {
6147 return Transition
->getOperand(getTransitionOriginalValueIdx())->getType();
6150 /// Promote \p ToBePromoted by moving \p Def downward through.
6151 /// I.e., we have the following sequence:
6152 /// Def = Transition <ty1> a to <ty2>
6153 /// b = ToBePromoted <ty2> Def, ...
6155 /// b = ToBePromoted <ty1> a, ...
6156 /// Def = Transition <ty1> ToBePromoted to <ty2>
6157 void promoteImpl(Instruction
*ToBePromoted
);
6159 /// Check whether or not it is profitable to promote all the
6160 /// instructions enqueued to be promoted.
6161 bool isProfitableToPromote() {
6162 Value
*ValIdx
= Transition
->getOperand(getTransitionOriginalValueIdx());
6163 unsigned Index
= isa
<ConstantInt
>(ValIdx
)
6164 ? cast
<ConstantInt
>(ValIdx
)->getZExtValue()
6166 Type
*PromotedType
= getTransitionType();
6168 StoreInst
*ST
= cast
<StoreInst
>(CombineInst
);
6169 unsigned AS
= ST
->getPointerAddressSpace();
6170 unsigned Align
= ST
->getAlignment();
6171 // Check if this store is supported.
6172 if (!TLI
.allowsMisalignedMemoryAccesses(
6173 TLI
.getValueType(DL
, ST
->getValueOperand()->getType()), AS
,
6175 // If this is not supported, there is no way we can combine
6176 // the extract with the store.
6180 // The scalar chain of computation has to pay for the transition
6181 // scalar to vector.
6182 // The vector chain has to account for the combining cost.
6183 uint64_t ScalarCost
=
6184 TTI
.getVectorInstrCost(Transition
->getOpcode(), PromotedType
, Index
);
6185 uint64_t VectorCost
= StoreExtractCombineCost
;
6186 for (const auto &Inst
: InstsToBePromoted
) {
6187 // Compute the cost.
6188 // By construction, all instructions being promoted are arithmetic ones.
6189 // Moreover, one argument is a constant that can be viewed as a splat
6191 Value
*Arg0
= Inst
->getOperand(0);
6192 bool IsArg0Constant
= isa
<UndefValue
>(Arg0
) || isa
<ConstantInt
>(Arg0
) ||
6193 isa
<ConstantFP
>(Arg0
);
6194 TargetTransformInfo::OperandValueKind Arg0OVK
=
6195 IsArg0Constant
? TargetTransformInfo::OK_UniformConstantValue
6196 : TargetTransformInfo::OK_AnyValue
;
6197 TargetTransformInfo::OperandValueKind Arg1OVK
=
6198 !IsArg0Constant
? TargetTransformInfo::OK_UniformConstantValue
6199 : TargetTransformInfo::OK_AnyValue
;
6200 ScalarCost
+= TTI
.getArithmeticInstrCost(
6201 Inst
->getOpcode(), Inst
->getType(), Arg0OVK
, Arg1OVK
);
6202 VectorCost
+= TTI
.getArithmeticInstrCost(Inst
->getOpcode(), PromotedType
,
6206 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6207 << ScalarCost
<< "\nVector: " << VectorCost
<< '\n');
6208 return ScalarCost
> VectorCost
;
6211 /// Generate a constant vector with \p Val with the same
6212 /// number of elements as the transition.
6213 /// \p UseSplat defines whether or not \p Val should be replicated
6214 /// across the whole vector.
6215 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6216 /// otherwise we generate a vector with as many undef as possible:
6217 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6218 /// used at the index of the extract.
6219 Value
*getConstantVector(Constant
*Val
, bool UseSplat
) const {
6220 unsigned ExtractIdx
= std::numeric_limits
<unsigned>::max();
6222 // If we cannot determine where the constant must be, we have to
6223 // use a splat constant.
6224 Value
*ValExtractIdx
= Transition
->getOperand(getTransitionIdx());
6225 if (ConstantInt
*CstVal
= dyn_cast
<ConstantInt
>(ValExtractIdx
))
6226 ExtractIdx
= CstVal
->getSExtValue();
6231 unsigned End
= getTransitionType()->getVectorNumElements();
6233 return ConstantVector::getSplat(End
, Val
);
6235 SmallVector
<Constant
*, 4> ConstVec
;
6236 UndefValue
*UndefVal
= UndefValue::get(Val
->getType());
6237 for (unsigned Idx
= 0; Idx
!= End
; ++Idx
) {
6238 if (Idx
== ExtractIdx
)
6239 ConstVec
.push_back(Val
);
6241 ConstVec
.push_back(UndefVal
);
6243 return ConstantVector::get(ConstVec
);
6246 /// Check if promoting to a vector type an operand at \p OperandIdx
6247 /// in \p Use can trigger undefined behavior.
6248 static bool canCauseUndefinedBehavior(const Instruction
*Use
,
6249 unsigned OperandIdx
) {
6250 // This is not safe to introduce undef when the operand is on
6251 // the right hand side of a division-like instruction.
6252 if (OperandIdx
!= 1)
6254 switch (Use
->getOpcode()) {
6257 case Instruction::SDiv
:
6258 case Instruction::UDiv
:
6259 case Instruction::SRem
:
6260 case Instruction::URem
:
6262 case Instruction::FDiv
:
6263 case Instruction::FRem
:
6264 return !Use
->hasNoNaNs();
6266 llvm_unreachable(nullptr);
6270 VectorPromoteHelper(const DataLayout
&DL
, const TargetLowering
&TLI
,
6271 const TargetTransformInfo
&TTI
, Instruction
*Transition
,
6272 unsigned CombineCost
)
6273 : DL(DL
), TLI(TLI
), TTI(TTI
), Transition(Transition
),
6274 StoreExtractCombineCost(CombineCost
) {
6275 assert(Transition
&& "Do not know how to promote null");
6278 /// Check if we can promote \p ToBePromoted to \p Type.
6279 bool canPromote(const Instruction
*ToBePromoted
) const {
6280 // We could support CastInst too.
6281 return isa
<BinaryOperator
>(ToBePromoted
);
6284 /// Check if it is profitable to promote \p ToBePromoted
6285 /// by moving downward the transition through.
6286 bool shouldPromote(const Instruction
*ToBePromoted
) const {
6287 // Promote only if all the operands can be statically expanded.
6288 // Indeed, we do not want to introduce any new kind of transitions.
6289 for (const Use
&U
: ToBePromoted
->operands()) {
6290 const Value
*Val
= U
.get();
6291 if (Val
== getEndOfTransition()) {
6292 // If the use is a division and the transition is on the rhs,
6293 // we cannot promote the operation, otherwise we may create a
6294 // division by zero.
6295 if (canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()))
6299 if (!isa
<ConstantInt
>(Val
) && !isa
<UndefValue
>(Val
) &&
6300 !isa
<ConstantFP
>(Val
))
6303 // Check that the resulting operation is legal.
6304 int ISDOpcode
= TLI
.InstructionOpcodeToISD(ToBePromoted
->getOpcode());
6307 return StressStoreExtract
||
6308 TLI
.isOperationLegalOrCustom(
6309 ISDOpcode
, TLI
.getValueType(DL
, getTransitionType(), true));
6312 /// Check whether or not \p Use can be combined
6313 /// with the transition.
6314 /// I.e., is it possible to do Use(Transition) => AnotherUse?
6315 bool canCombine(const Instruction
*Use
) { return isa
<StoreInst
>(Use
); }
6317 /// Record \p ToBePromoted as part of the chain to be promoted.
6318 void enqueueForPromotion(Instruction
*ToBePromoted
) {
6319 InstsToBePromoted
.push_back(ToBePromoted
);
6322 /// Set the instruction that will be combined with the transition.
6323 void recordCombineInstruction(Instruction
*ToBeCombined
) {
6324 assert(canCombine(ToBeCombined
) && "Unsupported instruction to combine");
6325 CombineInst
= ToBeCombined
;
6328 /// Promote all the instructions enqueued for promotion if it is
6330 /// \return True if the promotion happened, false otherwise.
6332 // Check if there is something to promote.
6333 // Right now, if we do not have anything to combine with,
6334 // we assume the promotion is not profitable.
6335 if (InstsToBePromoted
.empty() || !CombineInst
)
6339 if (!StressStoreExtract
&& !isProfitableToPromote())
6343 for (auto &ToBePromoted
: InstsToBePromoted
)
6344 promoteImpl(ToBePromoted
);
6345 InstsToBePromoted
.clear();
6350 } // end anonymous namespace
6352 void VectorPromoteHelper::promoteImpl(Instruction
*ToBePromoted
) {
6353 // At this point, we know that all the operands of ToBePromoted but Def
6354 // can be statically promoted.
6355 // For Def, we need to use its parameter in ToBePromoted:
6356 // b = ToBePromoted ty1 a
6357 // Def = Transition ty1 b to ty2
6358 // Move the transition down.
6359 // 1. Replace all uses of the promoted operation by the transition.
6360 // = ... b => = ... Def.
6361 assert(ToBePromoted
->getType() == Transition
->getType() &&
6362 "The type of the result of the transition does not match "
6364 ToBePromoted
->replaceAllUsesWith(Transition
);
6365 // 2. Update the type of the uses.
6366 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6367 Type
*TransitionTy
= getTransitionType();
6368 ToBePromoted
->mutateType(TransitionTy
);
6369 // 3. Update all the operands of the promoted operation with promoted
6371 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6372 for (Use
&U
: ToBePromoted
->operands()) {
6373 Value
*Val
= U
.get();
6374 Value
*NewVal
= nullptr;
6375 if (Val
== Transition
)
6376 NewVal
= Transition
->getOperand(getTransitionOriginalValueIdx());
6377 else if (isa
<UndefValue
>(Val
) || isa
<ConstantInt
>(Val
) ||
6378 isa
<ConstantFP
>(Val
)) {
6379 // Use a splat constant if it is not safe to use undef.
6380 NewVal
= getConstantVector(
6381 cast
<Constant
>(Val
),
6382 isa
<UndefValue
>(Val
) ||
6383 canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()));
6385 llvm_unreachable("Did you modified shouldPromote and forgot to update "
6387 ToBePromoted
->setOperand(U
.getOperandNo(), NewVal
);
6389 Transition
->moveAfter(ToBePromoted
);
6390 Transition
->setOperand(getTransitionOriginalValueIdx(), ToBePromoted
);
6393 /// Some targets can do store(extractelement) with one instruction.
6394 /// Try to push the extractelement towards the stores when the target
6395 /// has this feature and this is profitable.
6396 bool CodeGenPrepare::optimizeExtractElementInst(Instruction
*Inst
) {
6397 unsigned CombineCost
= std::numeric_limits
<unsigned>::max();
6398 if (DisableStoreExtract
|| !TLI
||
6399 (!StressStoreExtract
&&
6400 !TLI
->canCombineStoreAndExtract(Inst
->getOperand(0)->getType(),
6401 Inst
->getOperand(1), CombineCost
)))
6404 // At this point we know that Inst is a vector to scalar transition.
6405 // Try to move it down the def-use chain, until:
6406 // - We can combine the transition with its single use
6407 // => we got rid of the transition.
6408 // - We escape the current basic block
6409 // => we would need to check that we are moving it at a cheaper place and
6410 // we do not do that for now.
6411 BasicBlock
*Parent
= Inst
->getParent();
6412 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst
<< '\n');
6413 VectorPromoteHelper
VPH(*DL
, *TLI
, *TTI
, Inst
, CombineCost
);
6414 // If the transition has more than one use, assume this is not going to be
6416 while (Inst
->hasOneUse()) {
6417 Instruction
*ToBePromoted
= cast
<Instruction
>(*Inst
->user_begin());
6418 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted
<< '\n');
6420 if (ToBePromoted
->getParent() != Parent
) {
6421 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6422 << ToBePromoted
->getParent()->getName()
6423 << ") than the transition (" << Parent
->getName()
6428 if (VPH
.canCombine(ToBePromoted
)) {
6429 LLVM_DEBUG(dbgs() << "Assume " << *Inst
<< '\n'
6430 << "will be combined with: " << *ToBePromoted
<< '\n');
6431 VPH
.recordCombineInstruction(ToBePromoted
);
6432 bool Changed
= VPH
.promote();
6433 NumStoreExtractExposed
+= Changed
;
6437 LLVM_DEBUG(dbgs() << "Try promoting.\n");
6438 if (!VPH
.canPromote(ToBePromoted
) || !VPH
.shouldPromote(ToBePromoted
))
6441 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6443 VPH
.enqueueForPromotion(ToBePromoted
);
6444 Inst
= ToBePromoted
;
6449 /// For the instruction sequence of store below, F and I values
6450 /// are bundled together as an i64 value before being stored into memory.
6451 /// Sometimes it is more efficient to generate separate stores for F and I,
6452 /// which can remove the bitwise instructions or sink them to colder places.
6454 /// (store (or (zext (bitcast F to i32) to i64),
6455 /// (shl (zext I to i64), 32)), addr) -->
6456 /// (store F, addr) and (store I, addr+4)
6458 /// Similarly, splitting for other merged store can also be beneficial, like:
6459 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6460 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6461 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6462 /// For pair of {i16, i8}, i32 store --> two i16 stores.
6463 /// For pair of {i8, i8}, i16 store --> two i8 stores.
6465 /// We allow each target to determine specifically which kind of splitting is
6468 /// The store patterns are commonly seen from the simple code snippet below
6469 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6470 /// void goo(const std::pair<int, float> &);
6473 /// goo(std::make_pair(tmp, ftmp));
6477 /// Although we already have similar splitting in DAG Combine, we duplicate
6478 /// it in CodeGenPrepare to catch the case in which pattern is across
6479 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6480 /// during code expansion.
6481 static bool splitMergedValStore(StoreInst
&SI
, const DataLayout
&DL
,
6482 const TargetLowering
&TLI
) {
6483 // Handle simple but common cases only.
6484 Type
*StoreType
= SI
.getValueOperand()->getType();
6485 if (DL
.getTypeStoreSizeInBits(StoreType
) != DL
.getTypeSizeInBits(StoreType
) ||
6486 DL
.getTypeSizeInBits(StoreType
) == 0)
6489 unsigned HalfValBitSize
= DL
.getTypeSizeInBits(StoreType
) / 2;
6490 Type
*SplitStoreType
= Type::getIntNTy(SI
.getContext(), HalfValBitSize
);
6491 if (DL
.getTypeStoreSizeInBits(SplitStoreType
) !=
6492 DL
.getTypeSizeInBits(SplitStoreType
))
6495 // Match the following patterns:
6496 // (store (or (zext LValue to i64),
6497 // (shl (zext HValue to i64), 32)), HalfValBitSize)
6499 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6500 // (zext LValue to i64),
6501 // Expect both operands of OR and the first operand of SHL have only
6503 Value
*LValue
, *HValue
;
6504 if (!match(SI
.getValueOperand(),
6505 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue
))),
6506 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue
))),
6507 m_SpecificInt(HalfValBitSize
))))))
6510 // Check LValue and HValue are int with size less or equal than 32.
6511 if (!LValue
->getType()->isIntegerTy() ||
6512 DL
.getTypeSizeInBits(LValue
->getType()) > HalfValBitSize
||
6513 !HValue
->getType()->isIntegerTy() ||
6514 DL
.getTypeSizeInBits(HValue
->getType()) > HalfValBitSize
)
6517 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6518 // as the input of target query.
6519 auto *LBC
= dyn_cast
<BitCastInst
>(LValue
);
6520 auto *HBC
= dyn_cast
<BitCastInst
>(HValue
);
6521 EVT LowTy
= LBC
? EVT::getEVT(LBC
->getOperand(0)->getType())
6522 : EVT::getEVT(LValue
->getType());
6523 EVT HighTy
= HBC
? EVT::getEVT(HBC
->getOperand(0)->getType())
6524 : EVT::getEVT(HValue
->getType());
6525 if (!ForceSplitStore
&& !TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
6528 // Start to split store.
6529 IRBuilder
<> Builder(SI
.getContext());
6530 Builder
.SetInsertPoint(&SI
);
6532 // If LValue/HValue is a bitcast in another BB, create a new one in current
6533 // BB so it may be merged with the splitted stores by dag combiner.
6534 if (LBC
&& LBC
->getParent() != SI
.getParent())
6535 LValue
= Builder
.CreateBitCast(LBC
->getOperand(0), LBC
->getType());
6536 if (HBC
&& HBC
->getParent() != SI
.getParent())
6537 HValue
= Builder
.CreateBitCast(HBC
->getOperand(0), HBC
->getType());
6539 bool IsLE
= SI
.getModule()->getDataLayout().isLittleEndian();
6540 auto CreateSplitStore
= [&](Value
*V
, bool Upper
) {
6541 V
= Builder
.CreateZExtOrBitCast(V
, SplitStoreType
);
6542 Value
*Addr
= Builder
.CreateBitCast(
6544 SplitStoreType
->getPointerTo(SI
.getPointerAddressSpace()));
6545 if ((IsLE
&& Upper
) || (!IsLE
&& !Upper
))
6546 Addr
= Builder
.CreateGEP(
6547 SplitStoreType
, Addr
,
6548 ConstantInt::get(Type::getInt32Ty(SI
.getContext()), 1));
6549 Builder
.CreateAlignedStore(
6550 V
, Addr
, Upper
? SI
.getAlignment() / 2 : SI
.getAlignment());
6553 CreateSplitStore(LValue
, false);
6554 CreateSplitStore(HValue
, true);
6556 // Delete the old store.
6557 SI
.eraseFromParent();
6561 // Return true if the GEP has two operands, the first operand is of a sequential
6562 // type, and the second operand is a constant.
6563 static bool GEPSequentialConstIndexed(GetElementPtrInst
*GEP
) {
6564 gep_type_iterator I
= gep_type_begin(*GEP
);
6565 return GEP
->getNumOperands() == 2 &&
6567 isa
<ConstantInt
>(GEP
->getOperand(1));
6570 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6571 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6572 // reducing liveness interference across those edges benefits global register
6573 // allocation. Currently handles only certain cases.
6575 // For example, unmerge %GEPI and %UGEPI as below.
6577 // ---------- BEFORE ----------
6582 // %GEPI = gep %GEPIOp, Idx
6584 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6585 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6586 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6589 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6590 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6595 // %UGEPI = gep %GEPIOp, UIdx
6597 // ---------------------------
6599 // ---------- AFTER ----------
6601 // ... (same as above)
6602 // (* %GEPI is still alive on the indirectbr edges)
6603 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6609 // %UGEPI = gep %GEPI, (UIdx-Idx)
6611 // ---------------------------
6613 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6614 // no longer alive on them.
6616 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6617 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6618 // not to disable further simplications and optimizations as a result of GEP
6621 // Note this unmerging may increase the length of the data flow critical path
6622 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6623 // between the register pressure and the length of data-flow critical
6624 // path. Restricting this to the uncommon IndirectBr case would minimize the
6625 // impact of potentially longer critical path, if any, and the impact on compile
6627 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst
*GEPI
,
6628 const TargetTransformInfo
*TTI
) {
6629 BasicBlock
*SrcBlock
= GEPI
->getParent();
6630 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6631 // (non-IndirectBr) cases exit early here.
6632 if (!isa
<IndirectBrInst
>(SrcBlock
->getTerminator()))
6634 // Check that GEPI is a simple gep with a single constant index.
6635 if (!GEPSequentialConstIndexed(GEPI
))
6637 ConstantInt
*GEPIIdx
= cast
<ConstantInt
>(GEPI
->getOperand(1));
6638 // Check that GEPI is a cheap one.
6639 if (TTI
->getIntImmCost(GEPIIdx
->getValue(), GEPIIdx
->getType())
6640 > TargetTransformInfo::TCC_Basic
)
6642 Value
*GEPIOp
= GEPI
->getOperand(0);
6643 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6644 if (!isa
<Instruction
>(GEPIOp
))
6646 auto *GEPIOpI
= cast
<Instruction
>(GEPIOp
);
6647 if (GEPIOpI
->getParent() != SrcBlock
)
6649 // Check that GEP is used outside the block, meaning it's alive on the
6650 // IndirectBr edge(s).
6651 if (find_if(GEPI
->users(), [&](User
*Usr
) {
6652 if (auto *I
= dyn_cast
<Instruction
>(Usr
)) {
6653 if (I
->getParent() != SrcBlock
) {
6658 }) == GEPI
->users().end())
6660 // The second elements of the GEP chains to be unmerged.
6661 std::vector
<GetElementPtrInst
*> UGEPIs
;
6662 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6663 // on IndirectBr edges.
6664 for (User
*Usr
: GEPIOp
->users()) {
6665 if (Usr
== GEPI
) continue;
6666 // Check if Usr is an Instruction. If not, give up.
6667 if (!isa
<Instruction
>(Usr
))
6669 auto *UI
= cast
<Instruction
>(Usr
);
6670 // Check if Usr in the same block as GEPIOp, which is fine, skip.
6671 if (UI
->getParent() == SrcBlock
)
6673 // Check if Usr is a GEP. If not, give up.
6674 if (!isa
<GetElementPtrInst
>(Usr
))
6676 auto *UGEPI
= cast
<GetElementPtrInst
>(Usr
);
6677 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6678 // the pointer operand to it. If so, record it in the vector. If not, give
6680 if (!GEPSequentialConstIndexed(UGEPI
))
6682 if (UGEPI
->getOperand(0) != GEPIOp
)
6684 if (GEPIIdx
->getType() !=
6685 cast
<ConstantInt
>(UGEPI
->getOperand(1))->getType())
6687 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
6688 if (TTI
->getIntImmCost(UGEPIIdx
->getValue(), UGEPIIdx
->getType())
6689 > TargetTransformInfo::TCC_Basic
)
6691 UGEPIs
.push_back(UGEPI
);
6693 if (UGEPIs
.size() == 0)
6695 // Check the materializing cost of (Uidx-Idx).
6696 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
6697 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
6698 APInt NewIdx
= UGEPIIdx
->getValue() - GEPIIdx
->getValue();
6699 unsigned ImmCost
= TTI
->getIntImmCost(NewIdx
, GEPIIdx
->getType());
6700 if (ImmCost
> TargetTransformInfo::TCC_Basic
)
6703 // Now unmerge between GEPI and UGEPIs.
6704 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
6705 UGEPI
->setOperand(0, GEPI
);
6706 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
6707 Constant
*NewUGEPIIdx
=
6708 ConstantInt::get(GEPIIdx
->getType(),
6709 UGEPIIdx
->getValue() - GEPIIdx
->getValue());
6710 UGEPI
->setOperand(1, NewUGEPIIdx
);
6711 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6712 // inbounds to avoid UB.
6713 if (!GEPI
->isInBounds()) {
6714 UGEPI
->setIsInBounds(false);
6717 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6718 // alive on IndirectBr edges).
6719 assert(find_if(GEPIOp
->users(), [&](User
*Usr
) {
6720 return cast
<Instruction
>(Usr
)->getParent() != SrcBlock
;
6721 }) == GEPIOp
->users().end() && "GEPIOp is used outside SrcBlock");
6725 bool CodeGenPrepare::optimizeInst(Instruction
*I
, bool &ModifiedDT
) {
6726 // Bail out if we inserted the instruction to prevent optimizations from
6727 // stepping on each other's toes.
6728 if (InsertedInsts
.count(I
))
6731 if (PHINode
*P
= dyn_cast
<PHINode
>(I
)) {
6732 // It is possible for very late stage optimizations (such as SimplifyCFG)
6733 // to introduce PHI nodes too late to be cleaned up. If we detect such a
6734 // trivial PHI, go ahead and zap it here.
6735 if (Value
*V
= SimplifyInstruction(P
, {*DL
, TLInfo
})) {
6736 P
->replaceAllUsesWith(V
);
6737 P
->eraseFromParent();
6744 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
6745 // If the source of the cast is a constant, then this should have
6746 // already been constant folded. The only reason NOT to constant fold
6747 // it is if something (e.g. LSR) was careful to place the constant
6748 // evaluation in a block other than then one that uses it (e.g. to hoist
6749 // the address of globals out of a loop). If this is the case, we don't
6750 // want to forward-subst the cast.
6751 if (isa
<Constant
>(CI
->getOperand(0)))
6754 if (TLI
&& OptimizeNoopCopyExpression(CI
, *TLI
, *DL
))
6757 if (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)) {
6758 /// Sink a zext or sext into its user blocks if the target type doesn't
6759 /// fit in one register
6761 TLI
->getTypeAction(CI
->getContext(),
6762 TLI
->getValueType(*DL
, CI
->getType())) ==
6763 TargetLowering::TypeExpandInteger
) {
6764 return SinkCast(CI
);
6766 bool MadeChange
= optimizeExt(I
);
6767 return MadeChange
| optimizeExtUses(I
);
6773 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
6774 if (TLI
&& optimizeCmpExpression(CI
, *TLI
, *DL
))
6777 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
6778 LI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
6780 bool Modified
= optimizeLoadExt(LI
);
6781 unsigned AS
= LI
->getPointerAddressSpace();
6782 Modified
|= optimizeMemoryInst(I
, I
->getOperand(0), LI
->getType(), AS
);
6788 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
6789 if (TLI
&& splitMergedValStore(*SI
, *DL
, *TLI
))
6791 SI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
6793 unsigned AS
= SI
->getPointerAddressSpace();
6794 return optimizeMemoryInst(I
, SI
->getOperand(1),
6795 SI
->getOperand(0)->getType(), AS
);
6800 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
6801 unsigned AS
= RMW
->getPointerAddressSpace();
6802 return optimizeMemoryInst(I
, RMW
->getPointerOperand(),
6803 RMW
->getType(), AS
);
6806 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
6807 unsigned AS
= CmpX
->getPointerAddressSpace();
6808 return optimizeMemoryInst(I
, CmpX
->getPointerOperand(),
6809 CmpX
->getCompareOperand()->getType(), AS
);
6812 BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(I
);
6814 if (BinOp
&& (BinOp
->getOpcode() == Instruction::And
) &&
6815 EnableAndCmpSinking
&& TLI
)
6816 return sinkAndCmp0Expression(BinOp
, *TLI
, InsertedInsts
);
6818 if (BinOp
&& (BinOp
->getOpcode() == Instruction::AShr
||
6819 BinOp
->getOpcode() == Instruction::LShr
)) {
6820 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BinOp
->getOperand(1));
6821 if (TLI
&& CI
&& TLI
->hasExtractBitsInsn())
6822 return OptimizeExtractBits(BinOp
, CI
, *TLI
, *DL
);
6827 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
6828 if (GEPI
->hasAllZeroIndices()) {
6829 /// The GEP operand must be a pointer, so must its result -> BitCast
6830 Instruction
*NC
= new BitCastInst(GEPI
->getOperand(0), GEPI
->getType(),
6831 GEPI
->getName(), GEPI
);
6832 NC
->setDebugLoc(GEPI
->getDebugLoc());
6833 GEPI
->replaceAllUsesWith(NC
);
6834 GEPI
->eraseFromParent();
6836 optimizeInst(NC
, ModifiedDT
);
6839 if (tryUnmergingGEPsAcrossIndirectBr(GEPI
, TTI
)) {
6845 if (tryToSinkFreeOperands(I
))
6848 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
))
6849 return optimizeCallInst(CI
, ModifiedDT
);
6851 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
))
6852 return optimizeSelectInst(SI
);
6854 if (ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(I
))
6855 return optimizeShuffleVectorInst(SVI
);
6857 if (auto *Switch
= dyn_cast
<SwitchInst
>(I
))
6858 return optimizeSwitchInst(Switch
);
6860 if (isa
<ExtractElementInst
>(I
))
6861 return optimizeExtractElementInst(I
);
6866 /// Given an OR instruction, check to see if this is a bitreverse
6867 /// idiom. If so, insert the new intrinsic and return true.
6868 static bool makeBitReverse(Instruction
&I
, const DataLayout
&DL
,
6869 const TargetLowering
&TLI
) {
6870 if (!I
.getType()->isIntegerTy() ||
6871 !TLI
.isOperationLegalOrCustom(ISD::BITREVERSE
,
6872 TLI
.getValueType(DL
, I
.getType(), true)))
6875 SmallVector
<Instruction
*, 4> Insts
;
6876 if (!recognizeBSwapOrBitReverseIdiom(&I
, false, true, Insts
))
6878 Instruction
*LastInst
= Insts
.back();
6879 I
.replaceAllUsesWith(LastInst
);
6880 RecursivelyDeleteTriviallyDeadInstructions(&I
);
6884 // In this pass we look for GEP and cast instructions that are used
6885 // across basic blocks and rewrite them to improve basic-block-at-a-time
6887 bool CodeGenPrepare::optimizeBlock(BasicBlock
&BB
, bool &ModifiedDT
) {
6889 bool MadeChange
= false;
6891 CurInstIterator
= BB
.begin();
6892 while (CurInstIterator
!= BB
.end()) {
6893 MadeChange
|= optimizeInst(&*CurInstIterator
++, ModifiedDT
);
6898 bool MadeBitReverse
= true;
6899 while (TLI
&& MadeBitReverse
) {
6900 MadeBitReverse
= false;
6901 for (auto &I
: reverse(BB
)) {
6902 if (makeBitReverse(I
, *DL
, *TLI
)) {
6903 MadeBitReverse
= MadeChange
= true;
6909 MadeChange
|= dupRetToEnableTailCallOpts(&BB
);
6914 // llvm.dbg.value is far away from the value then iSel may not be able
6915 // handle it properly. iSel will drop llvm.dbg.value if it can not
6916 // find a node corresponding to the value.
6917 bool CodeGenPrepare::placeDbgValues(Function
&F
) {
6918 bool MadeChange
= false;
6919 for (BasicBlock
&BB
: F
) {
6920 Instruction
*PrevNonDbgInst
= nullptr;
6921 for (BasicBlock::iterator BI
= BB
.begin(), BE
= BB
.end(); BI
!= BE
;) {
6922 Instruction
*Insn
= &*BI
++;
6923 DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(Insn
);
6924 // Leave dbg.values that refer to an alloca alone. These
6925 // intrinsics describe the address of a variable (= the alloca)
6926 // being taken. They should not be moved next to the alloca
6927 // (and to the beginning of the scope), but rather stay close to
6928 // where said address is used.
6929 if (!DVI
|| (DVI
->getValue() && isa
<AllocaInst
>(DVI
->getValue()))) {
6930 PrevNonDbgInst
= Insn
;
6934 Instruction
*VI
= dyn_cast_or_null
<Instruction
>(DVI
->getValue());
6935 if (VI
&& VI
!= PrevNonDbgInst
&& !VI
->isTerminator()) {
6936 // If VI is a phi in a block with an EHPad terminator, we can't insert
6938 if (isa
<PHINode
>(VI
) && VI
->getParent()->getTerminator()->isEHPad())
6940 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
6941 << *DVI
<< ' ' << *VI
);
6942 DVI
->removeFromParent();
6943 if (isa
<PHINode
>(VI
))
6944 DVI
->insertBefore(&*VI
->getParent()->getFirstInsertionPt());
6946 DVI
->insertAfter(VI
);
6955 /// Scale down both weights to fit into uint32_t.
6956 static void scaleWeights(uint64_t &NewTrue
, uint64_t &NewFalse
) {
6957 uint64_t NewMax
= (NewTrue
> NewFalse
) ? NewTrue
: NewFalse
;
6958 uint32_t Scale
= (NewMax
/ std::numeric_limits
<uint32_t>::max()) + 1;
6959 NewTrue
= NewTrue
/ Scale
;
6960 NewFalse
= NewFalse
/ Scale
;
6963 /// Some targets prefer to split a conditional branch like:
6965 /// %0 = icmp ne i32 %a, 0
6966 /// %1 = icmp ne i32 %b, 0
6967 /// %or.cond = or i1 %0, %1
6968 /// br i1 %or.cond, label %TrueBB, label %FalseBB
6970 /// into multiple branch instructions like:
6973 /// %0 = icmp ne i32 %a, 0
6974 /// br i1 %0, label %TrueBB, label %bb2
6976 /// %1 = icmp ne i32 %b, 0
6977 /// br i1 %1, label %TrueBB, label %FalseBB
6979 /// This usually allows instruction selection to do even further optimizations
6980 /// and combine the compare with the branch instruction. Currently this is
6981 /// applied for targets which have "cheap" jump instructions.
6983 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6985 bool CodeGenPrepare::splitBranchCondition(Function
&F
) {
6986 if (!TM
|| !TM
->Options
.EnableFastISel
|| !TLI
|| TLI
->isJumpExpensive())
6989 bool MadeChange
= false;
6990 for (auto &BB
: F
) {
6991 // Does this BB end with the following?
6992 // %cond1 = icmp|fcmp|binary instruction ...
6993 // %cond2 = icmp|fcmp|binary instruction ...
6994 // %cond.or = or|and i1 %cond1, cond2
6995 // br i1 %cond.or label %dest1, label %dest2"
6996 BinaryOperator
*LogicOp
;
6997 BasicBlock
*TBB
, *FBB
;
6998 if (!match(BB
.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp
)), TBB
, FBB
)))
7001 auto *Br1
= cast
<BranchInst
>(BB
.getTerminator());
7002 if (Br1
->getMetadata(LLVMContext::MD_unpredictable
))
7006 Value
*Cond1
, *Cond2
;
7007 if (match(LogicOp
, m_And(m_OneUse(m_Value(Cond1
)),
7008 m_OneUse(m_Value(Cond2
)))))
7009 Opc
= Instruction::And
;
7010 else if (match(LogicOp
, m_Or(m_OneUse(m_Value(Cond1
)),
7011 m_OneUse(m_Value(Cond2
)))))
7012 Opc
= Instruction::Or
;
7016 if (!match(Cond1
, m_CombineOr(m_Cmp(), m_BinOp())) ||
7017 !match(Cond2
, m_CombineOr(m_Cmp(), m_BinOp())) )
7020 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB
.dump());
7024 BasicBlock::Create(BB
.getContext(), BB
.getName() + ".cond.split",
7025 BB
.getParent(), BB
.getNextNode());
7027 // Update original basic block by using the first condition directly by the
7028 // branch instruction and removing the no longer needed and/or instruction.
7029 Br1
->setCondition(Cond1
);
7030 LogicOp
->eraseFromParent();
7032 // Depending on the condition we have to either replace the true or the
7033 // false successor of the original branch instruction.
7034 if (Opc
== Instruction::And
)
7035 Br1
->setSuccessor(0, TmpBB
);
7037 Br1
->setSuccessor(1, TmpBB
);
7039 // Fill in the new basic block.
7040 auto *Br2
= IRBuilder
<>(TmpBB
).CreateCondBr(Cond2
, TBB
, FBB
);
7041 if (auto *I
= dyn_cast
<Instruction
>(Cond2
)) {
7042 I
->removeFromParent();
7043 I
->insertBefore(Br2
);
7046 // Update PHI nodes in both successors. The original BB needs to be
7047 // replaced in one successor's PHI nodes, because the branch comes now from
7048 // the newly generated BB (NewBB). In the other successor we need to add one
7049 // incoming edge to the PHI nodes, because both branch instructions target
7050 // now the same successor. Depending on the original branch condition
7051 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7052 // we perform the correct update for the PHI nodes.
7053 // This doesn't change the successor order of the just created branch
7054 // instruction (or any other instruction).
7055 if (Opc
== Instruction::Or
)
7056 std::swap(TBB
, FBB
);
7058 // Replace the old BB with the new BB.
7059 for (PHINode
&PN
: TBB
->phis()) {
7061 while ((i
= PN
.getBasicBlockIndex(&BB
)) >= 0)
7062 PN
.setIncomingBlock(i
, TmpBB
);
7065 // Add another incoming edge form the new BB.
7066 for (PHINode
&PN
: FBB
->phis()) {
7067 auto *Val
= PN
.getIncomingValueForBlock(&BB
);
7068 PN
.addIncoming(Val
, TmpBB
);
7071 // Update the branch weights (from SelectionDAGBuilder::
7072 // FindMergedConditions).
7073 if (Opc
== Instruction::Or
) {
7074 // Codegen X | Y as:
7083 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7084 // The requirement is that
7085 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7086 // = TrueProb for original BB.
7087 // Assuming the original weights are A and B, one choice is to set BB1's
7088 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7090 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7091 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7092 // TmpBB, but the math is more complicated.
7093 uint64_t TrueWeight
, FalseWeight
;
7094 if (Br1
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
7095 uint64_t NewTrueWeight
= TrueWeight
;
7096 uint64_t NewFalseWeight
= TrueWeight
+ 2 * FalseWeight
;
7097 scaleWeights(NewTrueWeight
, NewFalseWeight
);
7098 Br1
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br1
->getContext())
7099 .createBranchWeights(TrueWeight
, FalseWeight
));
7101 NewTrueWeight
= TrueWeight
;
7102 NewFalseWeight
= 2 * FalseWeight
;
7103 scaleWeights(NewTrueWeight
, NewFalseWeight
);
7104 Br2
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br2
->getContext())
7105 .createBranchWeights(TrueWeight
, FalseWeight
));
7108 // Codegen X & Y as:
7116 // This requires creation of TmpBB after CurBB.
7118 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7119 // The requirement is that
7120 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7121 // = FalseProb for original BB.
7122 // Assuming the original weights are A and B, one choice is to set BB1's
7123 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7125 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7126 uint64_t TrueWeight
, FalseWeight
;
7127 if (Br1
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
7128 uint64_t NewTrueWeight
= 2 * TrueWeight
+ FalseWeight
;
7129 uint64_t NewFalseWeight
= FalseWeight
;
7130 scaleWeights(NewTrueWeight
, NewFalseWeight
);
7131 Br1
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br1
->getContext())
7132 .createBranchWeights(TrueWeight
, FalseWeight
));
7134 NewTrueWeight
= 2 * TrueWeight
;
7135 NewFalseWeight
= FalseWeight
;
7136 scaleWeights(NewTrueWeight
, NewFalseWeight
);
7137 Br2
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br2
->getContext())
7138 .createBranchWeights(TrueWeight
, FalseWeight
));
7142 // Note: No point in getting fancy here, since the DT info is never
7143 // available to CodeGenPrepare.
7148 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB
.dump();